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3. Science

3 (a) Summary of the state of the knowledge of the field

Symbolic algebra systems such as Maple and Mathematica have achieved a remarkable degree of sophis-
tication over the last twenty years. Difficult problems, such as exact indefinite integration of elementary
functions and polynomial factorization, have been attacked with considerable success. These systems have
incorporated many of the most important algorithms of the twentieth century, including the Fast Fourier
Transform, lattice reduction with the LLL algorithm, algorithms for computing Gröbner bases, and the
Risch decision procedure for elementary function integration. As a result, they can now effectively deal
with large parts of the standard mathematics curriculum and have become a central research tool in many
subareas of mathematics both from an exploratory and formal point of view.

Of course there are many places where symbolic systems need improvement. For example, while these
systems can all factor large multivariate polynomials with integer coefficients most still cannot do any alge-
bra with polynomials like x(n2−n)/2 − yn where n is a symbolic exponent (or in general any sort of algebra
with n × n matrices with n indeterminant). Symbolic systems have limited capabilities for efficiently han-
dling polynomials having algebraic functions such as

√
1− uv in their coefficients. Similarly, while able to

determine if closed form solutions can be given in terms of elementary functions, these systems typically
cannot find definite integrals in terms of say elliptic functions. Our project has contributed new algorithms
to answer such questions and also the software to do the actual computations, primarily in the form of Maple
programs. Our first goal remains one of continuing to expand the scope of symbolic algebra systems so that
they can provide useful answers to wider classes of input.

While symbolic algebra systems have had a large impact in education and research they also all have the
goal to solve problems in industrial settings. One area which holds considerable promise is in engineering
modeling environments. An example is the work currently being done by Maplesoft with Toyota. Here
components in a given model retain the differential and algebraic equations (with symbolic parameters) that
define what they do. Components are combined, with the resulting equations requiring symbolic simplifi-
cation and other manipulations. Of course simulations later give values to the parameters and the defining
equations are in turn solved numerically. The key is that the components of the models always keep their
mathematical representations so that the equations can be viewed and understood in symbolic rather than
numeric form. One can think of this as a symbolic version of Matlab’s Simulink where boxes represent
exact rather than approximate models and where no information is lost during the modeling. Maplesoft is
releasing a new product, MapleSim, for this in early 2009.

The second goal of our project is to strengthen and extend the capabilities of symbolic computation
for industrial settings. Currently, the biggest stumbling block to the use of symbolic computation in an
industrial setting is the efficiency of exact algorithms. Used naively, symbolic computation can generate
huge formulae that fill memory. Our plan for realizing this goal is to increase the size of problems that can
be efficiently handled by core operations in symbolic algebra systems. These core operations include linear
algebra, symbolic and numeric polynomial algebra and symbolic differential algebra.

High performance computer algebra focuses on techniques such as parallel computation, the use com-
piled rather than interpreted libraries for linear and polynomial algebra and the construction of optimal
algorithms using bit-complexity models. The optimal algorithms are built using theoretic advances (for
example, give procedures in terms of matrix multiplication or polynomial multiplication where fast meth-
ods exist) but which ultimately also provide practical advances (for example, making use of highly tuned
numerical libraries at the hardware level - e.g. BLAS and ATLAS).
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3 (b) Summary of main achievements during last project CV

In this section we summarize the project’s main achievements since November 2006 and the project’s
progress towards objectives set at that time. We will give highlights in five areas : (i) linear algebra, (ii)
high performance computer algebra, (iii) polynomial algebra, (iv) symbolic-numeric computation and (v)
emerging technologies of computer algebra.

In the case of linear algebra we have work to report on fast algorithms for working with integer matrices,
Ore matrices and linear system solving. Some highlights include:

(1) The paper “Faster algorithms for the characteristic polynomial” (2007) by Pernet and Storjohann gives
an asymptotically optimal, randomized algorithm for computing the characteristic polynomial of an
arbitrary matrix over a field. The improvement over the earlier near optimal algorithm of Keller-
Gehrig in 1982 gives the first complexity breakthrough for this problem in over twenty years. The
new algorithm is also practical. An implementation of the new algorithm in LinBox demonstrates
significant running time improvements compared to previously most efficient implementations.

A copy of this paper has been included with the submission.

(2) In “Faster inversion and other black box matrix computations using efficient block projections” (2007),
Eberly, Giesbrecht, Giorgi, Storjohann and Villard give a proof of the existence of efficient block pro-
jections for arbitrary non-singular matrices over sufficiently large fields. The result provides the final
tool needed to complete the probabilistic Las Vegas algorithm for solving sparse linear systems over
the integers in sub cubic time given earlier by the authors in their ISSAC paper of 2006 (where its
runtime was validated using LinBox).

(3) The paper “Solving linear systems over cyclotomic fields” ([23], 2008) by Chen and Monagan de-
scribes three modular algorithms for solving Ax = b modulo Φk(x), the k′th cyclotomic polynomial.
The fastest method uses a representation for the solutions xi ∈ Q(z) that is a factor of d = deg Φk(z)
more compact than the standard representation (in general, e.g. for random inputs). However, on real
problems given to us to solve, the standard representation was often much more compact. Thus the
code, installed in Maple in 2008, simultaneously computes the solution in both representations and
stops when the first method succeeds.

(4) The paper “Output-sensitive Modular Algorithms for Polynomial Matrix Normal Forms” (2007) by
Cheng and Labahn gives algorithms for modular computation of row reduced, weak Popov and Popov
forms of polynomial matrices and the corresponding unimodular transformation matrices. The modu-
lar algorithms are output-sensitive and can be used for to solve one-sided matrix gcd and lcm problems
and give irreducible matrix-fraction descriptions of matrix rational functions.

(5) In the paper “Solving structured linear systems with large displacement rank” (in press), by Bostan,
Jeannerod and Schost, the authors discuss the complexity of solving structured linear systems. One
way to measure structure is through "displacement rank". As it turns out, none of the previous algo-
rithms adequately managed systems featuring a large rank. The algorithms proposed here handle this
question. They feature the best known complexity for large classes of systems, with applications to
multivariate interpolation, Hermite-Pade approximation, etc.

(6) The paper “The Solution of S exp(S) = A is not always the Lambert W Function of A” (ISSAC
2007) by R. M. Corless, H. Ding, N. J. Higham, and D. J. Jeffrey represents the first attempt to
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systematically solve transcendental matrix equations. The matrix exponential, matrix logarithm, and
certain other notable matrix functions, and the numerical solution of important matrix equations, such
as the Sylvester equation, have been well studied numerically. In contrast, this work represents a
beginning of the study of certain transcendental matrix equations. Recent work by Higham on matrix
functions (his Chapter in the book The Handbook of Linear Algebra) demonstrate that this work is
timely.

(7) The paper “Linearization of Matrix Polynomials Expressed in Polynomial Bases” (2008) by A. Ami-
raslani, P. Lancaster and R. Corless establishes new strong linearizations for matrix polynomials. This
includes a linearization for matrix polynomials expressed in the Lagrange basis, including the case
where the leading coefficient is singular.

Considerable work has also been done during the past two years in the area of high performance computer
algebra. In particular we mention the following highlights:

(1) The paper “Fast arithmetic for triangular sets: from theory to practice” by Li, Moreno Maza and
Schost ([45], in press) proposes highly efficient algorithms for low-level operations supporting tri-
angular decompositions such as polynomial multiplication modulo a triangular set. The complexity
results given there are the best known so far for this operation. Our implementation outperforms the
packages in Magma or MAPLE with similar specifications. This advance extends a series of papers by
the same authors on implementation techniques for fast polynomial arithmetic.

A copy of this paper has been included with the submission.

(2) Our research on high-performance computer algebra has given birth to modpn, a C library of fast
arithmetic for multivariate polynomials over finite fields. The main objective of modpn is to provide
highly efficient routines for supporting the implementation of modular methods in MAPLE, and hence
obtain considerable efficiency improvements. Timings as a result are quite impressive. For example,
the modpn library solves a random dense bivariate system of two polynomials f1, f2 of total degree
100 (over a prime field) in the same time that MAPLE expands the product of f1f2. The system in
question has 10,000 solutions and of course no other tool in MAPLE can solve it. The modpn library
consists of over 35,000 lines of C code along with 5,000 lines of MAPLE code. It has been submitted
to the next release of MAPLE. The articles [47, 48] report on the design and performances of modpn.

(3) The paper “Sparse Polynomial Pseudo Division Using a Heap” ([54], 2008) by Monagan and Pearce
gives a new fraction-free algorithm for multivariate polynomial division over the integers which uses
a binary heap, and an optimized heap based multivariate polynomial multiplication algorithm. On a
variety of benchmarks, the multiplication and division codes are 10 to 100 times faster than those in
Maple, Magma, Pari and Singular.

A copy of this paper has been included with the submission.

(4) The article “Memory efficient scheduling of the Strassen-Winograd matrix multiplication algorithm”
by Dumas, Pernet and Zhou (submitted [31]) looks at the problem of allocating extra memory for the
Strassen-Winograd matrix multiplication algorithm and reduced the memory requirements by a factor
of 3. They also propose a fully in-place algorithm for multiplication (when allowed) and finally an
O(nlog2 7) in-place algorithm for computing the product with no overwriting of the inputs.

In the area of polynomial algebra we can report the following highlights:
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(1) The paper “A Sparse Modular GCD Algorithm for Polynomial GCD Computation over Algebraic
Function Fields” ([38], 2007) by Monagan and Javadi presents a first sparse modular GCD algorithm
for computing the GCD of two polynomials in L[x1, ..., xn] where L is an algebraic function field in
k ≥ 0 parameters with l ≥ 0 field extensions. A complete implementation was installed in Maple
in the summer of 2008. Benchmarks demonstrating the performance of the algorithm, including the
resulting improvement of Maple’s polynomial factorization code, can be found in
http://www.cecm.sfu.ca/~pborwein/MITACS/AchievementsSummary.htm

(2) In two companion papers by Bostan, Salvy and Schost, “Fast conversion algorithms for orthogonal
polynomials” ([9], accepted) and “Power series composition and change of basis” ([12], 2008), we
give low-complexity algorithms for some basic operations on polynomials and power series, such
as change of basis between orthogonal and monomial bases (such as so-called "discrete polynomial
transforms").

The first paper discusses the general case of an arbitrary sequence of (formal) orthogonal polynomials:
we give algorithms of cost close to optimal; in the second one, we focus on some specific families (e.g.,
Jacobi polynomials) and give yet better algorithms, using the nice properties of their generating series.
Notably, in both cases, beyond classical techniques such as divide-and-conquer and Newton iteration,
a crucial use is made of duality techniques (we rely heavily on the "transposition" of algorithms).

(3) Two recent contributions which add to the toolkit of tractable algorithms for lacunary polynomials. In
the paper “Interpolation of Shifted-Lacunary Polynomials” by Giesbrecht and Roche (2007), we show
how to perform lacunary sparse shift interpolation. This allows us to reconstruct efficiently lacunary
polynomials from interpolation points, even when the polynomial is only sparse in a shifted basis 1,
x−α, (x−α)2, . . . , for an unknown shift α. This addresses an open question of Grigoriev & Karpinski
(1993). In the paper “On Lacunary Polynomial Perfect Powers”, Giesbrecht and Roche (2008) present
new polynomial-time algorithms to determine if a lacunary polynomial is a perfect power, and find
the sparse polynomial root. This is surprising in that evidence suggests related problems such as
irreducibility testing are intractable. This algorithm is implemented in NTL and shows dramatic
improvement in practice, even for dense polynomials.

(4) The paper “Comprehensive Triangular Decomposition (CTD)” ([20], 2007) by Chen, Lemaire, Golu-
bitsky, Moreno Maza and Pan proposes a new algorithmic approach for studying polynomial systems
with parameters. Our implementation of the CTD has been integrated into the RegularChains
library in the release 12 of MAPLE. The CTD also brought new algorithmic tools allowing us to
realize the first package dedicated to the manipulation of (parametric or not) constructible sets:
the ConstructibleSetTools module of the RegularChains library. As a byproduct, we
obtained the first software tool for verifying polynomial system solvers computing decompositions
(triangular, equidimensional, etc.). reported in “On the verification of polynomial system solvers”
([22], 2007) by Chen, Moreno Maza, Pan and Xie.

(5) Significant advances on the theory of polynomial system solving have been made by our group. They
are necessary progress toward better algorithms. One highlight is The paper “When does (T) equal
SAT(T )?” ([42], 2008) by Lemaire, Moreno Maza, Pan and Xie proposes an algorithm to decide
whether a regular chain does or does not generate its saturated ideal. This is an essential question
for handling redundant components when decomposing a polynomial system. This advance is a step
toward solving deep questions in polynomial algebra such as deciding whether an ideal is in complete
intersection.
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In the area of Symbolic-Numeric computation the projects included approximate polynomial interpolation.
Here we mention:

(1) The paper “Symbolic-numeric Sparse Interpolation of Multivariate Polynomials” (to appear) by Gies-
brecht, Labahn and Lee looks at the problem of sparse interpolation of multivariate polynomials rep-
resented as black-boxes over floating point numerical environments. It is shown that interpolation
at random roots of unity combined with generalized eigenvalue computation results in efficient and
numerically robust solutions.

A copy of this paper has been included with the submission.

(2) The paper “On the numerical condition of a generalized Hankel eigenvalue problem” (2007) by Beck-
ermann, Golub and Labahn looks at the numerical sensitivity of certain structured eigenvalue prob-
lems. Results of this paper show that in general such problems as sparse interpolation of black-boxes
and reconstruction of the shape of a polygon from its moments are very sensitive to numerical errors.

(3) The paper “Symbolic-numeric Computation of Implicit Riquier Bases for PDE” ([72], 2007) by Wu
and Reid and the paper “Implicit Riquier bases for PDAE and their semi-discretizations” ([73], ac-
cepted, 2008) by Wu, Reid and Ilie generalize a fast prolongation technique of Pryce from DAE and
PDAE and represents another major practical advance. They show that for a generic class of differ-
ential polynomials, prolongation with respect to one independent variable yields a polynomial time
algorithm for computing an implicit Riquier Basis (a type of formally integrable system). Examples
in [72] demonstrate that this class occurs frequently in applications. The technique completely avoids
elimination, a major source of expression swell in symbolic prolongation-elimination approaches.

Highlights in the area of Emerging Technologies include:

(1) The paper “Elliptic integral representation of Bessel moments” ([3], 2008) by Bailey, Borwein, Broad-
hurst and Glasser provides a major advance in our understanding of the periods and number theoretic
content of massive amplitudes in perturbative quantum field theory and condensed matter physics.
The paper contains many new formulae for definite integrals involving products of Bessel functions
which were found using tools from computer algebra.

A copy of this paper has been included with the submission.

(2) In the paper “Two Families of Algorithms for Symbolic Polynomials”(2007) by Watt studies multi-
variate polynomials with exponents that are themselves integer-valued multivariate polynomials, and
presents algorithms to compute their GCD and factorization. In “Symbolic Polynomials with Sparse
Exponents” (2008) Watt studied the ring of symbolic multivariate polynomials, that is multivariate
polynomials like x(n2−n)/2− y2 with exponents that are integer-valued multivariate polynomials. For
“symbolic” univariate polynomials with coefficients from a field of characteristic zero and multivari-
ate integer-valued polynomials as exponents, we have characterized when and how they may be func-
tionally decomposed (in the sense of Ritt) and present an algorithm that computes the decomposition
when it exists.

(3) The paper “On the zeros of cosine polynomials: solution of an an old problem of Littlewood” (2008)
by P. Borwein, T. Erdélyi, R. Ferguson and R. Lockhart, to quote the referees, “spectacularly dis-
proves an old conjecture of Littlewood”. This was based on very extensive numerical and mathemat-
ical experimentation, primarily using Maple which included developing probabilistic algorithms in
computational analysis.



Labahn and Monagan 9

3 (c) Objectives

The emphasis of the various projects is the development and implementation of software for finding exact
as opposed to numerical solutions to mathematical problems. This is an overlap of computer science with
pure and applied mathematics, requiring deep analysis and sophisticated algorithmic development. Many
researchers develop software tools for their specific needs. The investment required to adapt these tools for
wider applicability is huge. However, the importance and benefits of providing such good working tools
to the general mathematical community is difficult to overestimate. This is an expanding area of expertise,
offering considerable opportunity in both academic and industrial environments.

Objectives of the projects in this consortium may be summarized as follows:

• new algorithm development in computational algebra and related areas

• software development in our various projects

• applying our software in other research projects

• delivery of software to general users through Maple and/or over the web

3 (d) Methodology

Canada’s position as a major participant in the development of mathematical software stems from the early
eighties and the very successful creation of Maple at the University of Waterloo. Systems such as Maple,
and its main competitor Mathematica, and the related numerically-oriented system Matlab, are now primary
research and development tools in mathematics. These are now substantial sized businesses, with Maplesoft
employing well over one hundred personnel. Even at its current size, Maplesoft interacts closely with the
research groups at the three principal sites of this proposal, Waterloo, Simon Fraser, and Western. Indeed
these three labs are Maple’s primary source of both leading-edge research and prototype development. This
unique relationship was recognized in 2004 with an NSERC Synergy award between Maplesoft and these
three computer algebra research groups. The problems under investigation are determined in conjunction
with Maplesoft Inc. on the basis of our common interests. As a corporation, Maplesoft is comfortable with
and understands that it will get the best product from people doing what most interests them. It is a very
satisfactory partnership.

One of the important directions in computer algebra is to provide algorithms that allow symbolic com-
putation to play a significant role in solving industrial problems. In order to achieve this, computer algebra
systems need to address problems of efficiency. Current PC technology has moved to multi-core processors
with dual-core and quad-core processors now commonplace, and machines with 80 cores are now antici-
pated in 2011. Our approach takes the point of view that overall performance gains will be obtained by
making core operations fast, particularly those dealing with multivariate polynomial algebra and linear al-
gebra. This includes, for example, parallel algorithms and parallel support tools for implementing them at
low levels. Finally, while performance gains are important, we also plan to make progress on extending the
applicability of symbolic computation by developing new algorithms for fundamental computations.
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3 (e) Descriptions of Subprojects

Our subprojects are presented under four headings: high-performance computer algebra, polynomial alge-
bra and solvers, symbolic linear algebra and additional projects in computer algebra.

3.1 High-performance computer algebra.

When applied to computer algebra algorithms, high-performance computing offers challenges which are
specific to our discipline. First, intermediate data size renders the usual challenge of memory traffic even
more dramatic. Second, dynamically spawned tasks (in a parallel run) tend to have very irregular work,
in particular in high-level algorithms, which make them difficult to schedule. Third, computer algebra
programs are better written in high-level programming languages offering genericity and abstraction. But a
tight management of computing resources is much easier to achieve in low-level languages like C.

With our first two subprojects, we address these issues by focusing on efficiency-critical low-level rou-
tines: multivariate polynomial arithmetic over finite fields, over the rationals and modulo regular chains (thus
covering towers of algebraic and transcendental extensions of prime fields). Indeed, the efficiency of many
facilities in computer algebra systems like Maple depends a lot on the efficiency of the underlying poly-
nomial arithmetic. Implementation techniques, including code generation, code optimization and platform
adaptation for a specific domain of routines, are important considerations for our other two subprojects.

3.1.1 The modpn and sdmp libraries.

Our MOCAA project during the period 2006 - 2008 brought two C libraries providing highly optimized
sequential code for multivariate polynomial arithmetic:

modpn: for fast arithmetic (SLPs and FFT techniques) modulo regular chains over finite fields, and
sdmp: offering sparse arithmetic (using heaps) over prime fields, and Z.

We shall draw on the sequential C code of modpn [43, 47, 48] and sdmp [55, 54] to design and implement
new parallel algorithms for operations with sparse multivariate polynomials and modulo regular chains.

In a preliminary step, we plan to generalize our sequential codes such that modpn and sdmp could
work over Q and modulo a regular chain, respectively. Together, they would provide a fairly complete set
of efficient low-level routines in support of higher-level algorithms.

While there are several “obvious” approaches for parallel multiplication, it’s not clear which is the best
for sparse polynomials. And for sparse polynomials there are no “obvious” approaches for division. For
dense operations, we shall extend the parallelization of the modpn library initiated in [44], for normal form
computations, to all core operations (subresultant chain computation, regularity test, etc).

Based on those enhancements of modpn and sdmp, we anticipate that higher-level code can gain effi-
cient parallel execution and, more generally, higher performance.

3.1.2 Immediate monomials.

In [54] Monagan and Pearce implemented, in C, new polynomial multiplication and polynomial division
algorithms and found them to be over 100 times faster than those in MAPLE. Their attempt to integrate this
into MAPLE showed that on large sparse problems, up to 90% of the time was spent converting the result into
MAPLE’s polynomial representation. In [45] X. Li, M. Moreno Maza, and É. Schost observed, in a different
context, a similar overhead of 90%. The problem is caused by MAPLE’s representation of monomials and
the high cost of simplifying them and entering them into MAPLE’s “simpl” table.
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This project is to develop a new top level default representation for polynomials in one or more variables
for MAPLE that uses immediate monomials. An immediate monomial is a monomial x3yz2 which has been
encoded (packed) into one machine word. Immediate monomials will avoid MAPLE’s simplifier and simpl
table. To make this work inside MAPLE we will use the number of variables in the polynomial to fix the
packing; if there are too many variables, or they have too high degree, then the existing representation would
be used.

This project will be undertaken jointly with Maplesoft personnel and the group at Simon Fraser. Our
goal is to realize the full factor of 100 gain on core polynomial operations. The new representation will also
result in big efficiency gains for other basic MAPLE operations on polynomials. We think this could be the
biggest single improvement ever made to MAPLE’s performance.

3.1.3 Transposition techniques.

Future work on some foundational aspects of computer algebra includes the development of a formal context
in which to write "transposed algorithms". Indeed, it is known that given an algorithm to perform a linear
operation, there exists an algorithm of the same cost for the transposed operation. This has proved useful
on many occasions, such as [9, 11, 12] among many others. However, the proof of this general result,
while constructive, uses an elementary model for algorithms, without such basic tools as recursion or loops.
Memory aspects are also not covered. As a consequence, most uses made of transposed algorithms actually
involved tailor-made code transposition.

In the next two years, we plan to obtain a much more versatile form of the transposition principle. This
would allow to actually transpose code written in a C-like dialect, without manual intervention. Similar
frameworks already exist for the related question of automatic differentiation of programs. A first step in
this direction is currently taking place in the M.Sc. thesis of L. Ding (UWO), who considers transposition
of polynomial multiplication algorithms.

3.1.4 Compilable numerical evaluation routines for bivariate functions.

The motivation for this project stems from the fact that the speed of numerical evaluation in MAPLE (and
other languages) for bivariate functions such as BesselJ(v, x), and many other bivariate functions, is much
slower than would be desired. By numerical evaluation we mean evaluation at hardware floating point
precision. As is well known, efficient numerical evaluation routines for various mathematical (univariate)
functions is achieved via a library which exploits polynomial or rational function approximations of the
desired functions. The state of the art for developing numerical libraries for functions of more than one
variable is much less well developed.

The solution being developed in this project is to exploit approximations derived via natural tensor
product series, as introduced in the doctoral thesis of F. Chapman [18] supervised by K. Geddes. Work
during 2006-08 by Geddes and Chapman, along with Masters students, on both the convergence theory and
on development of code has shown the feasibility of this approach. We plan to develop as production code
a MAPLE package for generating numerical evaluation routines, based on the above prototype code realized
by X. Wang [70]. This package would be exploited for two purposes. One purpose is to use the MAPLE

package to generate subroutines and produce a “standard numerical library” (via compiled C code) for the
efficient evaluation (in hardware floating point precision) of various specific bivariate functions. Secondly,
the package would be available in MAPLE for users who may wish to generate efficient numerical evaluation
routines for various user-defined bivariate functions.
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3.2 Polynomial algebra and solvers.

Solving systems of polynomial equations, linear or non-linear, algebraic, semi-algebraic or differential,
using symbolic or symbolic-numeric methods, remains the driving subject in computer algebra. Certain
types of input systems and algorithms to solve them are well understood. Thus, they are now subjects of
study in high-performance computing. Other types of input systems still require theoretical and algorithmic
advances; they are addressed with the our six subprojects below. The first two projects deal with two types
of algebraic systems which are more and more important for applications: parametric systems and large
systems (in the sense of many variables and equations). The last three subprojects propose to enhance
MAPLE’s capabilities in solving algebraic systems with approximate coefficients and systems of differential
polynomials, two major areas for applications.

3.2.1 Comprehensive triangular decomposition.

A first step toward high-performance solvers is to design algorithms which can create opportunities to make
use of fast arithmetic and modular methods. In [29], using the notation of equiprojectable (triangular)
decomposition, we achieved this goal for polynomial systems with finitely many solutions. Unfortunately,
the techniques do not generalize to polynomial systems with infinitely many solutions.

The first goal of our project is to specify a type of triangular decomposition which will fills this gap.
The notion of comprehensive triangular decomposition that we introduced in [20] for parametric polyno-
mial systems could be a first building block. An important idea emerged from this work: for polynomial
systems of arbitrary dimension, it is necessary to extend the scope of the study from algebraic varieties to
constructible sets.

The work of [20] is limited to the complex case and the second goal of our project is to extend com-
prehensive triangular decompositions to semi-algebraic sets, following the path initiated by Lu Yang, Xi-
aorong Hou, and Bican Xia [77]. This is needed to attack “real world” applications. A preliminary
step in this direction is the introduction of the module SemiAlgebraicSetTools and the command
RealRootClassification (from the package Discoverer of Bican Xia) in the RegularChains
library.

These advances for solving parametric polynomial systems indicate that a software expert system could
efficiently generate an automatic and systematic discussion of the locus of the equilibria, together with the
normal forms at these equilibria, of a given (polynomial) dynamical system, depending on the values of its
bifurcation parameters.

3.2.2 Automatic selection of solving strategies.

Given non-constant polynomials F = f1, . . . , fm ∈ K[x1, . . . , xn] over a field K, we aim at choosing a total
order on the set of variables X = {x1, . . . , xn} such as to “minimize” the cost of computing a triangular
decomposition of the system f1 = · · · = fm = 0. This choice should rely only on considerations on the
partial and total degrees in F and it should not involve any operations on the coefficients.

By minimizing the cost of solving, we mean minimizing the running time of a software solver, like the
Triangularize command of the RegularChains library in MAPLE. This project has, actually, de-
veloped jointly with Maplesoft personnel and the groups at the University of Western Ontario and University
of Waterloo; some significant experimental results have already been obtained and reported in a poster at
the Milestones in Computer Algebra 2008 workshop.
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The question of selecting variable ordering (heuristically) arises in at least two occasions. First, if any
variable orders would be of interest in order to solveF , in which case one would like to select a “minimizing”
one. Secondly, if one variable order is prescribed and one could make use of a solving strategy based on a
change of variable order such as the one of [28].

For systems with a large number of equations and unknowns, it is desirable to decompose the input
system into sub-systems or “blocks” to be solved one-after-another, generalizing the notion of a triangular
system. (The concept of “good specialization” as introduced in [20] helps formalizing this generalization.)
This idea was successfully experimented in [33] on a particular family of systems. This project aims at
turning these ideas into an algorithm capable of selecting a “solving strategy” for a large input system.

3.2.3 Polynomial algebra by values and derivatives.

Polynomial Algebra by Values refers to doing polynomial algebra solely given the values of the polynomial
and/or its derivative —that is, working in a Lagrange or Hermite basis. In a numerical environment it is
numerically unstable to convert to a standard representation and hence one must remain in the alternate
basis. The question naturally arises on how much can be done directly using such a basis.

Recent progress by Corless and his co-authors in constructing a generalized companion matrix pencil
for polynomials expressed by values and derivatives provides the motivation for several further projects.
In particular we are currently investigating an extension to the Birkhoff interpolation problem. This is
of interest for the numerical solution of ODEs, as well as other algebraic applications. This is a joint
investigation with Corless, Butcher (Auckland) and Gonzalez-Vega (Santander). Further extensions of this
approach to multivariate algebraic equations by use of the Bézout matrix are also planned.

3.2.4 Numerical algebraic geometry in MAPLE.

MAPLE has made a dedicated effort to have the best polynomial system solvers. We wish to develop nu-
merical algebraic geometry in MAPLE which has been having significant impact in recent times. Numerical
algebraic geometry, a new area co-created by Sommese & Wampler. Their 2005 book The Numerical So-
lution of Systems of Polynomials, is the only book in the area. Numerical algebraic geometry gives the first
stable global methods to characterize all positive dimensional irreducible components (manifolds) of solu-
tions of general approximate polynomial systems. It uses homotopy methods that compute points on the
components called witness points to represent the components. Encoded with straight-line programs, homo-
topy methods can be computed at low polynomial cost (Ilie, Corless & Reid [37]), which maybe regarded
as a development of the early complexity results of Shub and Smale.

3.2.5 Differential algebra.

Some recent complexity results in solving arbitrary systems of differential equations symbolically (see for
instance [35]) suggest that this task is significantly harder than solving systems of algebraic equations.
Nevertheless, symbolic differential algebra which has obtained major successes for some specific tasks such
as preprocessing ODEs (used in the MAPLE’s ODE tool kit), Cartan’s equivalence method [13] (used in
[61] by Petitot and Neut) or modeling in biological systems (Boulier and Lemaire, [10]).

It is therefore necessary to improve the performances of our tools for symbolic differential algebra. The
flexibility of the rifsimp algorithm (implemented in MAPLE) to choose alternative symbolic methods for its
leading nonlinear algebraic equation processor will be exploited. We plan to interface the rifsimp package
with the RegularChains library (with its fast arithmetic support modpn) and the Groebner library
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(powered by the Fgb solver of Faugère). Both these packages are available in MAPLE. The possibility
of incorporating geometric resolutions will also be explored. On the symbolic-numeric side, we wish to
take approximate systems of differential-algebraic equations, and implement an environment with the basic
operations of linearization, discretization, and deformation, linked with the numerical algebraic geometry
package project of the previous section.

3.3 Symbolic linear algebra.

Linear algebra over a field or a ring is one of the most important research areas in mathematics with many
applications. Solving linear systems of equations over a field and finding bases of modules are only two
examples of common operations encountered often in computer algebra. Linear algebra is also a difficult
area computationally if only because of the size of its basic object, an m× n matrix. Computations quickly
get large. The aim of Symbolic Linear Algebra is to both improve the efficiency of basic linear algebra
operations and to provide the mathematical functionality needed to tackle new problems.

3.3.1 Fast linear algebra over number fields and function fields.

Our modular methods for linear algebra and polynomial algebra over the integers and rationals can also be
applied to do linear algebra over number fields, polynomial rings, and algebraic function fields.

The simplest number fields in this context are the cyclotomic fields. For a prime p, the cyclotomic
polynomial Φk(x) factors modulo p into distinct linear factors whenever k|p − 1. In this case computing
modulo Φk(x) can be reduced to deg(Φk) computations modulo p, that are done in parallel. In [23] we used
this to develop three modular methods for solving Ax = b mod Φk(x). At the same time in [1] we have
developed two sequential methods for computing Φk(x) of very high order – k > 109.

Computing over extension fields (algebraic or transcendental extensions) is a particular case of com-
puting modulo regular chains. The MatrixTools module of the RegularChains library [41] already
contains tools for doing linear algebra in such a context, albeit not using modular techniques or fast arith-
metic [29, 28].

We propose two new projects that are natural in this context. The first is to build general tools for solving
Ax = b over rational function and algebraic function fields. The second is to improve the algorithms and
implementation of our modular tools.

For the first project, one of the tools needed is sparse rational function interpolation. In [39] we de-
veloped our own algorithm called RATZIP for this purpose, while an alternative algorithm can be found in
[40]. We shall develop a good C implementation for this so that we can use it in a variety of situations.

For the second project we will work to improve the performance of MatrixTools for computations
modulo small primes, using the existing Modpn C library. Non-trivial algorithms will need to be devised,
along the lines of of [27]. Finally, a last ingredient will be to use Hensel lifting techniques for regular chains,
relying on the implementation already present in RegularChains.

3.3.2 Symbolic Matrix Analysis

It is often possible to describe the structure of matrices of indeterminant size. For example, one often refers
to the Sylvester matrix of two polynomials

∑n
i=0 aix

i and
∑m

i=0 bix
i (for undetermined m and n) having

size (m+ n)× (m+ n). Another example is a matrix having one formula for the diagonal entries, another
expression for k super diagonals (for undetermined k) and is zero everywhere else. Earlier work by Sexton
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and Sorge [65] has studied the problem of representing such symbolic matrices. Symbolic matrices appear
often in textbooks and are natural objects in future pen-based math systems [69, 67].

It is natural to want to do arithmetic with symbolic matrices if possible. Unfortunately this can be very
difficult because the usual approach of maintaining case structure leads to severe problems of computational
complexity. For example, if we were adding N different vectors vi = [vi1, ..., vihi

, wihi+1
, ..., win] where

each vector vi has components vij for 1 ≤ j ≤ hi and has components given by wij for hi < j ≤ n, then
the sum of these vectors would have N ! cases, each corresponding to an ordering of the hi.

We propose a project to research algorithms for vector and matrix addition, to do this via a good choice of
basis tensors. For example, addition of vectors can be written as simple sums with O(N) terms by defining
the sum as si = [vijξi,1,hi+1 + wijξi,hi+1, n+ 1]j=1..n where ξi,a,b is 1 if a ≤ i ≤ b, −1 if b ≤ i < a and 0
otherwise.

3.3.3 Matrix Normal Forms of Ore Matrices

Normal forms (such as Hermite, Popov, shifted Popov, or Smith) for matrix polynomials appear in many
areas of mathematics and engineering. For example, the Popov normal form is the central tool used in the
conversion of input-output linear systems represented as transfer functions (rational matrix polynomials)
into state-space representations (first order systems). The normal forms in question can also be defined
in the case of matrices of non-commutative elements, for example matrices of differential and recurrence
operators or an Ore algebra.

We propose three projects. The first two projects involve separate approaches for the efficient compu-
tation of these normal forms, in particular in exact arithmetic environments where coefficient growth is a
concern. This has been done in the case of matrix polynomials by Beckermann, Labahn and Villard [8]
and in the case of matrices of shift operators by Cheng and Labahn [24, 25]. These algorithms determine
normal forms via an associated null space computation. Our first project will be to see if it is possible to
extend these results to the general Ore case. At the same time the null space approach is an indirect method
which does not work by reducing degrees of entries. As such the computation may be quite inefficient for
matrices which are already close to normal form. A direct approach such as that of Mulders and Storjohann
[60] avoids such a problem, but does not handle coefficient growth. At the same time there is no clear way
to make [60] handle such growth. Our second project is to create a procedure which is both direct (degree
reductive) and which controls intermediate expression size. Both fraction-free and modular approaches will
be examined.

A third project involves the use of the Popov form for differential operators in order to find efficient
methods for solving systems of higher order linear differential equations. The use of Popov forms in the
commutative case to convert input-output systems from transfer functions to state-space representations has
a parallel in the non-commutative, differential operator case in the conversion of higher order differential
systems L(D)y(x) = w(x) to a first order system z′(x) = A(x)z(x) + b(x). Existing algorithms and
software for solving linear differential systems of equations typically require that the input is first order
[4]. We plan to investigate algorithms for solving higher order linear differential systems without the need
for first order conversion. The particular algorithms would include finding solutions within the domain or
extensions. We believe that this may be possible by making use of the Popov form of the input matrix L(D)
and taking advantage of its special structure.
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3.3.4 Applications of the outer product adjoint formula

A feature of many linear algebra problems involving polynomials with coefficients from a field is growth
in the degrees of the polynomials in the output. For example, while the space required to represent an
n× n polynomial matrix of degree less than d is exactly n2d field elements, the inverse of the same matrix
requires up to n3d field elements. More importantly, classical algorithms to compute the inverse require
time proportional to more than n4d field operations, a factor of n more than the space required to write the
inverse down. The extra factor of n means that inverse computation is impractical even for modest input
sizes, for example n = 1000.

We have recently discovered the outer product adjoint formula [68] that allows the exact inverse of a
polynomial matrix to be computed in time proportional to approximately n3d field operations. The matrix
inverse is the most fundamental concept in linear algebra. The goal of this research project is to explore
applications of the outer product adjoint formula to obtain faster algorithms for a wide variety of other
linear algebra problems. We are currently working on extending the formula to the case of integer matrices,
and will investigate consequences of the formula for black box computations.

One concrete project is to apply this outer product adjoint formula to obtain an optimal algorithm for
computing the nullspace of a polynomial matrix having rational number coefficients. Such nullspace compu-
tations arise as the bottleneck step in symbolic summation problems, for example, but are especially difficult
because there is growth both in the degrees of polynomials as well as in the size of the rational coefficients.
Our plan is to develop and implement an algorithm that is a factor of n faster than standard techniques.

3.3.5 Vector rational reconstruction

In order to reduce computational cost many algorithms compute in a ring and then at a final step reconstruct
a rational form of the required solution. In the case of vectors (e.g. linear solving) this final step involves
reconstructing a vector of rational numbers or functions having a single common denominator modulo a
given modulus. Interestingly enough the use of rational approximations with common denominators modulo
a modulus to vectors of functions dates back to the time of Hermite where he used such a construction in
his famous proof of the transcendence of e. That construction was later formalized by Padé into the notion
of simultaneous Padé approximants.

We have two projects in mind with respect to the vector rational reconstruction problem. The first is
to extend the vector rational function reconstruction algorithm of Olesh and Storjohann [62] to the integer
case (and so solve the vector rational number problem). The second is to improve the efficiency of the order
basis algorithm of Beckermann and Labahn [7] in the case of simultaneous Padé approximation.

The overall cost of the many modular computations is not typically dominated by the rational recon-
struction, but rather by the required size of the modulus and the computation of the images themselves. The
algorithm of [62] shows how to perform this reconstruction with significantly smaller size. The goal of
extending this to the rational number case is highly nontrivial. The two major difficulties are the presence of
carries in integer arithmetic and the fact that a polynomial time lattice basis reduction for integer matrices is
only approximate and not optimal as in the polynomial case.

In the related case of simultaneous rational approximation (where both numerators and a common de-
nominator are constructed), the algorithm of [7] gives an efficient fraction-free algorithm which controls
coefficient growth in the computation (an important consideration for computation in exact arithmetic en-
vironments). Our goal in the second project is to develop a more efficient fraction-free method for the
computation of simultaneous rational approximation or interpolation functions by taking advantage of both
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the added structure of the input matrix along with making use of its duality with the Hermite-Padé [6]
problem.

3.4 Additional projects in computer algebra.

3.4.1. Zeros and poles of Padé approximants.

The goal of this project is to explore the location of the zeros and poles of the Padé approximations to
the (suitably normalized) Riemann Zeta function. Why look at the Padé approximants to the Riemann zeta
function? The first reason, obviously, is the relationship to the Riemann hypothesis. The patterns are striking
and the computations difficult. Little is possible to prove, but much is suggested. If one really understood
any of the diagrams of the zeros and poles one would be able to prove the Riemann hypothesis. A worthwhile
but rather too lofty goal.

However, even assuming the Riemann hypothesis the particular behavior of the Padé approximations is
not obvious. Clearly there are limit curves both of the zeros and the poles. One goal is to figure out what
these limit curves are. Generating such plots are more difficult than it first might appear. For example,
standard symbolic packages fail. As such another goal is to describe the necessary computations. There is
an interesting body of theory due originally to Szegö that describes the zeros of the partial sums of the power
series expansion of the exponential function. This extends to the zeros and poles of the Padt’e approximants
to the exponential function and a few related functions. In order to get limit curves one scales the zeros and
poles by dividing by the degree. The analysis is possible because there are explicit integral representations
of the numerators and denominators. However there are no useful explicit representations known for the
Padt’e approximants to the zeta function or even for the Taylor series for that matter. Indeed the principal
problem in generating the approximations numerically is to derive large Taylor expansions.

Finally, we also wish to explore general routines for computing and plotting, within Maple, the zeros of
analytic functions. This research continues with work already in place from students and research staff at
SFU (including partial implementations of relevant tools).

3.4.2. Automatic combinatorics.

The goal in this research is to create tools for enumerative and bijective combinatorics using algebra and
symbolic computation methods, and to better understand the analytic nature of generating functions. Indeed,
the tools under present development center around the generating function, a formal power series associated
to a class of combinatorial objects, and the various analytic and algebraic properties that they satisfy. In
particular, many mathematical algorithms and properties for linear differential equations are useful when
the generating functions are known to satisfy differential equations. We would like to understand from a
combinatorial standpoint when the algorithms are appropriate, and what, exactly, they can tell us about the
combinatorial objects in question.

We have two projects in mind. The first works within the algebra of differential operators, and involves
developing new algorithms, and applying known algorithms to the generating functions, and to improve
computations. This is the approach under way in "Taming Apparent singularities in Ore Algebras", a collab-
oration primarily between Mishna and the Algorithms Project in INRIA France. Chyzak, Mishna and Salvy
have successfully used their algorithms on large systems originating from statistical mechanics, in particular
certain Fuchsian differential equations arising from polygon enumeration. These algorithms allow one to
find different differential equations that may better suit a users need, say one with no apparent singularities.
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The second project is the development of direct combinatorial models that are well suited to compu-
tational applications. Eric Fusy, a post doc working under the direction of Mishna has made considerable
progress on defining new operators in a combinatorial calculus that allow one to randomly generate at uni-
form wide new classes of combinatorial objects. For example, the results in [15] lead to the success of [19],
a promising new technique for enumerating planar graphs, and may well lead to improved algorithms for
unlabelled graphs. We also intend to examine how to use this calculus to discover information about recon-
structions of ancestral genomic histories. This is done using a particular data structure (PQ-Trees) which is
well suited to this context.

3.4.3. Efficient tools for arbitrary precision numeric computation.

We are interested in providing efficient tools for arbitrary precision computation of one-dimensional inte-
grals and very high precision (over 100 digits in 2-5 dimensions) multi-dimensional integrals that arise in
many areas of mathematical physics. Such precision is necessary, for example, to apply integer relation
methods to identify relevant constants. In the past twelve months considerable success has been achieved
on a variety of physically meaningful problems. A particular accomplishment featured in IOP Select is [3]
where substantial progress was made in quantum field theory and statistical mechanics.

Bailey, Borwein and Crandall [2] also showed the existence of a phase-transition value above which
loosely couple-oscillators self-organize as the coupling-level increases, as conjectured by Quinn-Rand-
Strogatz. Indeed Strogatz at Cornell requested our assistance. Key to the proof was experimental identi-
fication of the transition value as the smallest positive zero of the Hurwitz-zeta function ζ(1/2, x/2).

At this point, as described in [3], we have reached the boundary of problems for which doubly-exponential
substitution integration works in more that two variables—even with massive symbolic pre-computation and
highly parallel implementation of the resulting integrals. Along with a PhD student, Ye at Dalhousie, we are
now integrating recent ideas from sparse-grid integration (a major workshop on such hybrid techniques will
be held in Sydney in Feb 2009). Attention continues to be paid to the correlate special function algorithms
needed to make such integration efficiently parallelizable.

3.4.4. Application of the geometry of curves to handwriting analysis.

The principal problem we plan to study is that of relating parameterizations of two curves. If the curves
are parameterized (in time) very differently, then they may be far apart in the distance induced by a simple
functional inner product.

One appoach to overcome this problem is to use Legendre-Sobolev inner products 〈f, g〉 =
∫
fgdt +

µ
∫
f ′g′dt in place of Legendre inner products. This will cause curves that certain geometric features aligned

to be measured as closer to each other.
A second approach is to generalize the notion of “dynamic time warping,” which is a sequence alignment

algorithm that finds a correspondence between sample points on the two curves. If instead we consider the
ink traces as parameterized curves, we may define “continuous dynamic time warping” as a problem in
variational calculus, varying the function relating the parameterizations of the two curves. It appears that
the continuous problem may give a better solution than the discrete problem and have a lower computational
complexity.

Our plan for the next two years is to investigate the mathematical structure of these two methods and
to evaluate their effectiveness for classification based on coordinate curves and based on integral and joint
invariant curves.
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4. Development of Highly Qualified Personnel

a) Describe HQP involvement with partner organizations.

The personnel trained through the MOCAA consortium are in general PDFs, graduate students at the
Masters and PhD level, and senior undergraduate students. They interact with faculty and industry personnel
through

• professional conferences (see Section 5 Networking),
• MITACS internships – which means 2 months on site at the company,
• the three group meetings at Simon Fraser, Waterloo, and Western,
• the monthly seminar organized at Waterloo and Western,
• software training provided by company personnel, and our
• MOCAA project workshops (June 2007 at Winnipeg, December 2007 at SFU and May 2008 at UWO)

Students and PDFs are encouraged to give talks and demo software at the biweekly group meetings at
SFU, UW and UWO, present posters and demo software at the ACA, MITACS, CECM, ECCAD, ISSAC,
PASCO, SNC, and MAPLE conferences/meetings. Also, this year we held a project workshop May 6-
9 at UWO which provided an opportunity for HQP from Vancouver to meet and interact with Maplesoft
company personnel.

b) Describe training activities initiated (summer schools, tutorials, curriculum development, etc.)

A first course in computer algebra is offered regularly at Simon Fraser, Waterloo, and Western. Faculty
also regularly provide additional graduate courses in computer algebra and related topics for HQP to take.

• Algebraic Geometry and Gröbner Bases. SFU, spring 2007, Monagan.
• Topics in Symbolic Computation, UW, winter 2007, Giesbrecht and Labahn.
• Topics in Computer Algebra. SFU, summer 2007, Monagan.
• Algorithms for recurrences differential equations, and the automatic proof of identities.

UWO, spring 2008, Schost.
• Cryptography and computational number theory. SFU, fall 2008, Monagan.
• Foundations of computational algebra. UWO, Schost (fall 2008) and Moreno Maza (winters 2006 and

2007).
• Parallel scientific computing: models, algorithms and implementation. UWO, winters 2006 and 2007,

Moreno Maza.

Each summer at SFU, Borwein, Mishna, and Monagan have summer NSERC fellows (senior undergraduate
students) working on various computer algebra/Maple related projects to attract them to graduate school in
this area. The students in 2007 and 2008 were:

Andrew Arnold – computational number theory (cyclotomic polynomials)
Jamie Lutley – computational combinatorics (enumeration of lattice paths).
Rebecca Nie – computational combinatorics (enumeration of lattice paths).
Natasha Richardson – health modelling.
Amy Wiebe – health modelling.
Asif Zaman – computational group theory (algorithms and visuals)
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5. Networking

In this section we provide some details of future planned networking events including those with industry
partners (involving diffusion of results, technology transfer, collaborative research or industry linkage), both
within the project and within MITACS themes.

Regular Meetings and Seminars.

The Computer Algebra Group at SFU, the Symbolic Computation Group at UW, and the Symbolic Compu-
tation Lab at UWO hold weekly or biweekly meetings/seminars. The two groups at Waterloo and Western
collectively form the Ontario Research Center for Computer Algebra (ORCCA).

ORCCA meets on the second Friday of every month either in Waterloo or London with Jacques Carette from
McMaster in Hamilton and members from the Math group at Maplesoft for a seminar, followed by a poster
session and networking over lunch. Individuals from the two groups at UW and UWO also meet regularly
with people at Maplesoft.

Conference Involvement.

Faculty and students on the project, and personnel from the Math group at Maplesoft attend the following
annual scientific meetings.

• The International Symposium on Symbolic and Algebraic Manipulation (ISSAC). The 2007 meeting
was organized at Waterloo, Canada by Keith Geddes, George Labahn, Mark Giesbrecht and Arne
Storjohann. The 2008 meeting was held in July in Hagenberg, Austria. Michael Monagan organized
the Software Systems session. The 2009 meeting will be in Seoul, South Korea.

• Joint MITACS/CMS Conference. The 2008 meeting was held in June at Dalhousie university in
Halifax, Canada. The 2009 meeting will be held in Fredericton, New Brunswick. We plan to organize
a computer algebra session for our project.

• Applications of Computer Algebra (ACA). The 2008 meeting was held at RISC Linz in Hagenberg,
Austria. Stephen Watt co-organized the “Compact Computer Algebra” session and Illias Kotsireas co-
orgaznized the “Gröbner Bases and Applications” session. The 2009 meeting will be held in Montreal,
Canada. Many project members are expected to participate in this meeting given its location.

• Conferences in Intelligent Computer Mathematics (CICM) The 2008 meeting was held in Birming-
ham, England. The 2009 meeting will be held in Grand Bend, Ontario. Stephen Watt is chairing
the 8th International Conference on Mathematical Knowledge Management. Stephen Watt will co-
chair Compact Computer Algebra 2009. George Labahn and Stephen Watt will co-chair Pen-Based
Mathematical Computation 2009.
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6. Knowledge Exchange and Technology Transfer

"Describe the Intellectual Property (IP) generated, including software, since the last Project CV (November
2006). Describe the state of the IP and its readiness for use by other institutions or industry, if applicable.
Indicate whether the IP has or will be licensed. Are patents or other protection being sought?"

The IP generated by our MOCAA project consists mainly of MAPLE software which includes MAPLE

programs, C programs, documentation, MAPLE demo worksheets, and test files.

Proprietary software packages.

The contributions listed here have been contributed in the period November 1, 2006 through November 1,
2008 under contracts with Maplesoft. Contributions that have already been integrated into MAPLE 12 or
MAPLE 13 are identified.

1. M. Javadi and M. Monagan (2008), MAPLE 13. MAPLE code for computing the GCD of two mul-
tivariate polynomials over an algebraic function field with zero or more parameters (hence includes
number fields) where the field is presented with one or more field extensions. The algorithm uses a
sparse interpolation.

2. C. Percival, P. Borwein and A. Wittkopf (2007), MAPLE 12. An implementation of a self initializing
quadratic sieve algorithm for factoring integers. Increases the size of integers MAPLE can factor in
three hours from 60 digits to 90 digits.

3. M. Monagan (2007 & 2008), MAPLE 13. A modular algorithm for solving linear systems involving
roots of unity.

4. A. Erickson, M. Ghebleh, M. Monagan, A. Wittkopf (2007, 2008), MAPLE 12 & 13. Addition of
tools for generating random regular graphs, non-isomorphic graphs with m edges and n vertices, a
graph isomorphism test, etc., were integrated into MAPLE’s GraphTheory package.

5. G. Fee, V. Dhabaghian, M. Monagan (2007). MAPLE 13 (submitted). A data base of finite groups
including all groups of order up to 200 and special groups from the Atlas of Finite Groups.

6. Alan Meichsner and Peter Borwein (2008), MAPLE 13. A complex version for Bailey and Ferguson’s
PSLQ algorithm for searching for integer relations.

7. Roman Pearce and Michael Monagan (2008), MAPLE 13. New heap based algorithms for multivari-
ate polynomial multiplication and division over finite fields. We are awaiting a contract before we
integrate our code for multiplication and division over the integers – which will have a greater impact
than the finite field case.

8. George Labahn (2008), MAPLE 13 (submitted). MAPLE code for the integration of expressions of the
form xmexp(xk)nf(x) with f either Ci, Si, erf, Fresnel C etc, or products of pairs of these functions,
for some m,n (arbitrary) and k (usually 1 or 2).

9. C. Chen, F. Lemaire, L. Li, M. Moreno Maza, W. Pan and Y. Xie. The ConstructibleSetTools
module of the RegularChains library in MAPLE 12. 5,000 lines of MAPLE code. This package
provides an extensive set of commands to compute with constructible sets, parametric or not, in char-
acteristic zero or not.
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10. C. Chen, F. Lemaire, L. Li, M. Moreno Maza, W. Pan and Y. Xie. The ParametricSystemTools
module of the RegularChains library in MAPLE 12. 3,000 lines of MAPLE code. This package
provides an implementation of the Comprehensive Triangular Decomposition (CTD) of a parametric
constructible set. As an application, the command ComplexRootClassification determines
the possible numbers of (complex) solutions of an input parametric system together with the corre-
sponding conditions on the parameters.

11. C. Chen, F. Lemaire, M. Moreno Maza, W. Pan, B. Xia, and Y. Xie. The SemiAlgebraicSetTools
module of the RegularChains library. MAPLE 13. Together with the command Parametric-
SystemTools:-RealRootClassification, it amounts to 25,000 lines of MAPLE code. This
provides a variety of tools for studying the real solutions of polynomial systems, including real root
isolation and counting, partial cylindrical decomposition, real root classification.

12. X. Li and M. Moreno Maza (developers). É. Schost and W. Pan (contributors). The modpn library.
MAPLE 13. modpn is a C and MAPLE library dedicated to fast arithmetic for multivariate polyno-
mials. The main objective of modpn is to provide highly efficient routines implemented in C for
supporting the implementation of modular methods in MAPLE. modpn amounts to 35,000 lines of C
code and 5,000 lines of MAPLE code.

13. X. Li and M. Moreno Maza. The FastArithmeticTools module of the RegularChains
library. MAPLE 13. 5,000 lines of MAPLE code. This package provides modular methods, with
fast arithmetic support from the modpn library, for the core operations of the RegularChains
library. The current version works in prime characteristic only. The characteristic zero case is work
in progress for the next release.

Other: publically available software.

1. Jon Borwein (2008). Updated version of the inverse symbolic calculator.
Available on-line at http://glooscap.cs.dal.ca:8087/standard

2. Roman Pearce and Michael Monagan (2008). sdmp is a C library of high performance software
for computing with multivariate polynomials over Z and Zn. The algorithms for multiplication and
division use binary heaps with chaining to obtain good locality.

3. fflas-ffpack: A new in-place reduction to matrix multiplication for the computation of an inverse of a
square matrix over a finite field. Implemented and included in the LinBox library by C. Pernet (2007)
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7. Additional Information.

Project Management

The current management team is, and will continue to be

Marc Moreno Maza, Western,

George Labahn, Waterloo (Eastern Group Leader) and,

Michael Monagan, Simon Fraser (Western Group Leader).

with Labahn and Monagan co-leading the project. Michael Monagan was promoted to full professor in 2008
and Marc Moreno Maza was promoted to associate professor in 2008.

Relationship to other Research Support

All subprojects except subprojects for 3.2.4, 3.4.1, 3.4.2, and 3.4.3 are new projects not appearing on any
other grant applications. Subprojects 3.4.1 (zeros and poles of Padé approximants) and 3.4.3 (efficient
tools for arbitrary precision numeric computation) are continuations of our existing mitacs grant projects.
Subprojects 3.2.4 (numerical algebraic geometry) has an overlap with the NSERC grant of Reid. The first
project on subproject 3.4.2 (automatic combinatorics) is new but the second one has an overlap with a CNRS
grant of Mishna. For these latter two subprojects the mitacs support will focus entirely on software issues
(computer implementations and experimentation).


