Computing minimal polynomials for bifurcation points of the logistic map.

Michael Monagan,
Department of Mathematics, Simon Fraser University. mmonagan@cecm.sfu.ca

Extended Abstract

Recall that logistic map is the function

$$
f(x)=a x(1-x)
$$

with parameter a. Consider applying $f(x)$ to a value $x_{0} \in(0,1)$ to generate the sequence $x_{1}, x_{2}, x_{3}, \ldots$ where

$$
x_{1}=f\left(x_{0}\right), x_{2}=f\left(f\left(x_{0}\right)\right), \ldots, x_{k}=f\left(x_{k-1}\right)=f^{(k)}\left(x_{0}\right) .
$$

It is known that this sequence converges to a one-cycle for $1<a<3$. For $3<a<1+\sqrt{6}$, the sequence converges to a two-cycle, and beyond this there is a stable 4 -cycle. Thus there are bifurcations at $a=3$ and $a=1+\sqrt{6}$. Beyond $a=1+\sqrt{6}$, a period-doubling bifurcation sequence occurs, that is, we find a stable 4 -cycle, then 8 -cycle, 16 -cycle, etc.

Let B_{n} denote the bifurcation point between the stable cycles of periods n and $2 n$. Many numerical methods (we will describe one in the talk that uses automatic differentiation) have been developed to compute the B_{n}. It turns out that the B_{n} are algebraic numbers and so we may speak of their minimal polynomials $M_{n}(a)$. The first few bifurcation points and their minimal polynomials are given in the table below.

n	B_{n}	$M_{n}(a)$
1	3	$a-3$
2	$1+\sqrt{6}$	$a^{2}-2 a-5$
4	3.498561699	$a^{12}-12 a^{11}+48 a^{10}-40 a^{9}-192 a^{8}+384 a^{7}$
		$+64 a^{6}-1024 a^{4}-512 a^{3}+2048 a^{2}+4096$

The next bifurcation point is $B_{8}=3.564407266$. Computing $M_{8}(a)$ is not easy. The polynomial $M_{8}(a)$ has degree 240 and 73 digit integer coefficients. Computing $M_{16}(a)$ is MUCH harder. The polynomial $M_{16}(a)$ has degree just under 2^{16} and its integer coefficients have length 2^{16} bits. That is, the total size of $M_{16}(a)$ is 2^{32} bits or about half a Gigabyte. We'd like to set computing $M_{16}(a)$ as a computational challenge. It may well be that computing $M_{16}(a)$ is just not possible. As steps towards this challenge, we propose to compute the minimal polynomials $M_{9}(a), M_{10}(a), M_{11}(a), \ldots$ for the bifurcation points between the n-cycles and $2 n$-cycles for $n=9,10,11, \ldots, 15$ and, finally $n=16$. Since the degree of $M_{n}(a)$ is approximately 2^{n} and the size of its coefficients are approximately 2^{n} bits, increasing n by 1 quadruples the size of $M(a)$.

In this talk we consider three methods for computing $M_{n}(a)$. The first is described by Bailey et. al. in their paper "Ten Problems in Experimental Mathematics" - see [1]. In outline, one first approximates B_{n} to high precision using a numerical method. Next, assuming that the degree of $M_{n}(a)$ is known to be less than N, one applies Ferguson's PSLQ algorithm to search for a integer relation between the decimal numbers $1, B_{n}, B_{n}^{2}, \ldots, B_{n}^{N}$. This gives the coefficients of $M_{n}(a)$. Bailey et. al. used this method to determine $M_{8}(a)$. It required that B_{8} be computed to over 10,000 digits of precision. The numerical precision needed for B_{n} is a little more than $\operatorname{deg}\left(M_{n}\right) \log _{10}\left\|M_{n}\right\|_{\infty}$ decimal digits, that is, about the size of $M_{n}(a)$.

In [2], Kotsirias and Karamanos describe a method for computing $M_{n}(a)$ which is purely algebraic. It does not compute B_{n}, but rather uses Groebner bases to do an elimination to compute $M_{n}(a)$. We illustrate the method for $n=2$. The 2 -cycle of the logistic map can be defined by the equations.

$$
x_{2}=a x_{1}\left(1-x_{1}\right), x_{3}=a x_{2}\left(1-x_{2}\right) \text { and } x_{3}=x_{1} .
$$

The bifurcation occurs when the stability of the map is ± 1. This occurs when $[f(f(x))]^{\prime}=+1$. From this one obtains $a^{2}\left(1-2 x_{1}\right)\left(1-2 x_{2}\right)=-1$. One constructs the ideal

$$
I=\left\langle x_{2}-a x_{1}\left(1-x_{1}\right), x_{1}-a x_{2}\left(1-x_{2}\right), a^{2}\left(1-2 x_{1}\right)\left(1-2 x_{2}\right)+1\right\rangle
$$

in $\mathbb{Q}\left[a, x_{1}, x_{2}\right]$ and computes generators for

$$
I \cap \mathbb{Q}[a]
$$

using Groebner bases. Since $I \cap \mathbb{Q}[a]$ is a principal ideal, $M_{2}(a)$ is a factor of a generator of $I \cap \mathbb{Q}[a]$. The authors reported in [2] that it took 5 and a half hours in Magma to compute $M_{8}(a)$ using this method.

We will present a third method that is semi-numerical. In principle, $M_{n}(a)$ can be found using resultants to eliminate x from a factor of $f^{(n)}(x)-$ x and the polynomial $\left[f^{(n)}(x)\right]^{\prime}+1$. For $n=2$ one obtains the polynomial

$$
a^{6}\left(a^{2}-2 a-5\right)^{2}
$$

which is not equal to $M_{2}(a)$. In general the resultant we obtain is of the form $a^{L_{n}} M_{n}(a)^{D_{n}}$ where L_{n} is approximately $2^{2 n}$ and $D_{n}=n$. The very large factor $a^{L_{n}}$ is a problem for the modular resultant algorithm of Collins which interpolates $M_{n}(a)$ modulo a sequence of primes. In [3], we modified Collins' modular resultant algorithm to automatically detects the high low degree L_{n} in such a way that the number of interpolation points used is $O\left(D_{n} \operatorname{deg} M_{n}(a)\right)$ instead of $O\left(L_{n} D_{n} \operatorname{deg} M_{n}(a)\right)$.

In current work we have refined the method so that it reconstructs the square-free part of the resultant to save a factor of D_{n}. We also now have an exact formula for L_{n} which avoids the need to bound L_{n}. Using our new algorithm we can compute $M_{8}(a)$ in under 2 minutes on a desktop computer - a single core AMD Opteron running at 2.4 GHz . To compute $M_{n}(a)$, the new algorithm is $O\left(N^{2} \log N\right)$ where $N=2^{2 n}$ is the size of $M_{n}(a)$. Thus it takes approximately 16 times longer to compute $M_{n+1}(a)$ than $M_{n}(a)$. Hence, we estimate that it would take $2 \times 16^{8}=8,589,934,592$ minutes to compute $M_{16}(a)$ - which is clearly not feasible.

In the talk I will describe in more detail our modular algorithm. The algorithm is embarassingly parallel so this is one way to try to speed it up. I will present the results we have computed so far for the sequence of minmial polynomials $M_{9}(a), M_{10}(a), M_{11}(a), \ldots$ One of the interesting aspects of the algorithm is that it uses automatic differentiation.

References

[1] David H. Bailey, Jonathan M. Borwein, Vishaal Kapoor, and Eric Weisstein. Ten Problems in Experimental Mathematics. (September 30, 2004). Lawrence Berkeley National Laboratory. Paper LBNL-57486. http://repositories.cdlib.org/lbnl/LBNL-57486
[2] I. Kotsirias and K. Karamanos. Exact computation of the bifurcation point B_{4} of the logistic map and the Bailey-Broadhurst conjectures. Int. J. Bifurcation and Chaos 14 (2004) 2417-2423.
[3] Michael B. Monagan. Probabilistic Algorithms for Resultants. Proceedings of ISSAC '2005, ACM Press, pp. 245-252, 2005.

