|
How to factor a polynomial over a number field
Michael Monagan, CECM
Let k be an algebraic number field and let f(x) be a polynomial in k[x].
How can we factor f(x) into irreducible factors over k?
For example, how would we factor the polynomial
5 4 1/2 3 1/2
f(x) = x - x 2 - 2 x + 3 x + 2
where k = Q(sqrt(2)). I will explain the idea behind an algorithm of
Barry Trager from 1976. The algorithm reduces factorization over k to
factorization of a polynomial g over Q where the deg[x](g) = deg[x](f)*deg(k:Q).
I will develop Trager's algorithm from properties of resultants and talk about
the complexity of each of the three main steps in the algorithm, namely:
(i) computing resultants in Q[x,y],
(ii) factoring polynomials over Q, and
(iii) computing polynomial GCDs in k[x].
|