Optimizing and and Parallelizing the Modular GCD Algorithm

Michael Monagan

Centre for Experimental and Constructive Mathematics Simon Fraser University

British Columbia

PASCO 2015, Bath, England
July 10, 2015

This is joint work with Matthew Gibson

Problem

Compute $G=\operatorname{GCD}(A, B)$ in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots ., x_{n}\right]$.

Problem

Compute $G=\operatorname{GCD}(A, B)$ in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots ., x_{n}\right]$.
Compute G modulo primes p_{1}, p_{2}, \ldots and recover G using Chinese remaindering.

Compute $G=\operatorname{GCD}(A, B)$ in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
Compute G modulo primes p_{1}, p_{2}, \ldots and recover G using Chinese remaindering.

Let $\bar{A}=A / G$ and $\bar{B}=B / G$ be the cofactors.
Let $A=\sum_{i=0}^{d a} a_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{\dot{j}}$.
Let $B=\sum_{i=0}^{d b} b_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i}$.
Let $G=\sum_{i=0}^{d g} g_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i}$.
Let $t=\max _{i=0}^{d g} \#$ terms g_{i}.
Interpolate $g_{i}\left(x_{2}, \ldots, x_{n}\right)$ modulo p from $2 t+\delta$ univariate images in $\mathbb{Z}_{p}\left[x_{1}\right]$ using smooth prime p.

Compute $G=\operatorname{GCD}(A, B)$ in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
Compute $G \bmod p_{1}, p_{2}, \ldots$ and recover G using Chinese remaindering.

Let $\bar{A}=A / G$ and $\bar{B}=B / G$ be the cofactors.
Let $A=\sum_{i=0}^{d a} a_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i} . \quad C A=G C D\left(a_{i}\left(x_{2}, \ldots, x_{n}\right)\right)$.
Let $B=\sum_{i=0}^{d b} b_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i} . \quad C B=G C D\left(b_{i}\left(x_{2}, \ldots, x_{n}\right)\right)$.
Let $G=\sum_{i=0}^{d g} g_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i} . \quad C G=G C D(C A, C B)$.
Let $t=\max _{i=0}^{d g} \#$ terms $g_{i} . \quad \Gamma=G C D\left(a_{d a}, b_{d b}\right)$.
Observation: Most of the time is recursive GCDs in $n-1$ variables and evaluation and interpolation not GCD in $\mathbb{Z}_{p}\left[x_{1}\right]$.

Bivariate Images

Compute $G=\operatorname{GCD}(A, B)$ in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Let $A=\sum_{i} a_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C A=G C D\left(a_{i}\left(x_{3}, \ldots, x_{n}\right)\right)$. Let $B=\sum_{i} b_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C B=G C D\left(b_{i}\left(x_{3}, \ldots, x_{n}\right)\right)$.
Let $G=\sum_{i} g_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C G=G C D(C A, C B)$.
Let $s=\max _{i, j} \#$ terms $g_{i, j} . \quad \Gamma=G C D(L C(A), L C(B))$.
Interpolate $g_{i}\left(x_{3}, \ldots, x_{n}\right)$ modulo p from $2 s+\delta$ bivariate images in $\mathbb{Z}_{p}\left[x_{1}, x_{2}\right]$ using smooth prime p-increased cost but

Bivariate Images

Compute $G=\operatorname{GCD}(A, B)$ in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
Let $A=\sum_{i} a_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C A=G C D\left(a_{i}\left(x_{3}, \ldots, x_{n}\right)\right)$.
Let $B=\sum_{i} b_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C B=G C D\left(b_{i}\left(x_{3}, \ldots, x_{n}\right)\right)$.
Let $G=\sum_{i} g_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C G=G C D(C A, C B)$.
Let $s=\max _{i, j} \#$ terms $g_{i, j} . \quad \Gamma=G C D(L C(A), L C(B))$.
Interpolate $g_{i}\left(x_{3}, \ldots, x_{n}\right)$ modulo p from $2 s+\delta$ bivariate images in $\mathbb{Z}_{p}\left[x_{1}, x_{2}\right]$ using smooth prime p-increased cost but

- Usually $s \ll t$ which reduces evaluation and interpolation cost.

Bivariate Images

Compute $G=\operatorname{GCD}(A, B)$ in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
Let $A=\sum_{i} a_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C A=G C D\left(a_{i}\left(x_{3}, \ldots, x_{n}\right)\right)$.
Let $B=\sum_{i} b_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C B=G C D\left(b_{i}\left(x_{3}, \ldots, x_{n}\right)\right)$.
Let $G=\sum_{i} g_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C G=G C D(C A, C B)$.
Let $s=\max _{i, j} \#$ terms $g_{i, j} . \quad \Gamma=G C D(L C(A), L C(B))$.
Interpolate $g_{i}\left(x_{3}, \ldots, x_{n}\right)$ modulo p from $2 s+\delta$ bivariate images in $\mathbb{Z}_{p}\left[x_{1}, x_{2}\right]$ using smooth prime p-increased cost but

- Usually $s \ll t$ which reduces evaluation and interpolation cost.
- Usually $C A, C B, \Gamma$ are smaller so easier to compute.

Bivariate Images

Compute $G=\operatorname{GCD}(A, B)$ in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
Let $A=\sum_{i} a_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C A=G C D\left(a_{i}\left(x_{3}, \ldots, x_{n}\right)\right)$.
Let $B=\sum_{i} b_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C B=G C D\left(b_{i}\left(x_{3}, \ldots, x_{n}\right)\right)$.
Let $G=\sum_{i} g_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C G=G C D(C A, C B)$.
Let $s=\max _{i, j} \#$ terms $g_{i, j} . \quad \Gamma=G C D(L C(A), L C(B))$.
Interpolate $g_{i}\left(x_{3}, \ldots, x_{n}\right)$ modulo p from $2 s+\delta$ bivariate images in $\mathbb{Z}_{p}\left[x_{1}, x_{2}\right]$ using smooth prime p-increased cost but

- Usually $s \ll t$ which reduces evaluation and interpolation cost.
- Usually $C A, C B, \Gamma$ are smaller so easier to compute.
- Increases parallelism in interpolation.

Bivariate Images

Compute $G=\operatorname{GCD}(A, B)$ in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots ., x_{n}\right]$.
Let $A=\sum_{i} a_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C A=G C D\left(a_{i}\left(x_{3}, \ldots, x_{n}\right)\right)$.
Let $B=\sum_{i} b_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C B=G C D\left(b_{i}\left(x_{3}, \ldots, x_{n}\right)\right)$.
Let $G=\sum_{i} g_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C G=G C D(C A, C B)$.
Let $s=$ max $_{i, j} \#$ terms $g_{i, j} . \quad \Gamma=G C D(L C(A), L C(B))$.
Interpolate $g_{i}\left(x_{3}, \ldots, x_{n}\right)$ modulo p from $2 s+\delta$ bivariate images in $\mathbb{Z}_{p}\left[x_{1}, x_{2}\right]$ using smooth prime p-increased cost but

- Usually $s \ll t$ which reduces evaluation and interpolation cost.
- Usually $C A, C B, \Gamma$ are smaller so easier to compute.
- Increases parallelism in interpolation.
(1) Optimize serial bivariate Gcd computation.
(2) For $n>2$ parallelized (Cilk C) evaluation and interpolation.
(3) Benchmark against Maple and Magma.

Bivariate Gcd computation.

Input $A, B \in \mathbb{Z}_{p}[y][x]$. Output $G=G C D(A, B), \bar{A}$ and \bar{B}.
Trial division method. (Maple, Magma)
Interpolate y in G from univariate images in $\mathbb{Z}_{p}[x]$ incrementally until $G(x, y)$ does not change.
Test if $G \mid A$ and $G \mid B$. If yes output $G, \bar{A}=A / G, \bar{B}=B / G$.

Bivariate Gcd computation.

Input $A, B \in \mathbb{Z}_{p}[y][x]$. Output $G=G C D(A, B), \bar{A}$ and \bar{B}.
Trial division method. (Maple, Magma)
Interpolate y in G from univariate images in $\mathbb{Z}_{p}[x]$ incrementally until $G(x, y)$ does not change.
Test if $G \mid A$ and $G \mid B$. If yes output $G, \bar{A}=A / G, \bar{B}=B / G$.
Cofactor recovery method. (Brown 1971)
Interpolate y in G, \bar{A}, \bar{B} from univariate images
$g_{i}=G\left(\alpha_{i}, x\right), \bar{a}_{i}=A\left(\alpha_{i}, x\right) / g_{i}, \bar{b}_{i}=B\left(\alpha_{i}, x\right) / g_{i}$ in $\mathbb{Z}_{p}[x]$.
After k images we have

$$
A-G \bar{A} \equiv 0 \quad(\bmod M) \text { and } B-G \bar{B} \equiv 0 \quad(\bmod M)
$$

where $M=\left(y-\alpha_{1}\right)\left(y-\alpha_{2}\right) \cdots\left(y-\alpha_{k}\right)$.
Stop when $k>\max \left(\operatorname{deg}_{y} A, \operatorname{deg}_{y} B, \operatorname{deg}_{y} G \bar{A}, \operatorname{deg}_{y} G \bar{B}\right)$.

Bivariate Gcd optimization.

Cofactor recovery method for $\mathbb{Z}_{p}[y][x]$
Interpolate y in G, \bar{A}, \bar{B} from univariate images $g_{i}=G\left(\alpha_{i}, x\right), \bar{a}_{i}=A\left(\alpha_{i}, x\right) / g_{i}, \bar{b}_{i}=B\left(\alpha_{i}, x\right) / g_{i}$ in $\mathbb{Z}_{p}[x]$ in batches until one of G, \bar{A}, \bar{B} stabilizes.

Case G stabilizes: obtain remaining images using univariate \div $g_{i}=G\left(\alpha_{i}, x\right), \bar{a}_{i}=A\left(\alpha_{i}, x\right) / g_{i}, \bar{b}_{i}=B\left(\alpha_{i}, x\right) / g_{i}$ thus replacing the Euclidean algorithm with an evaluation.

Bivariate Gcd optimization.

Cofactor recovery method for $\mathbb{Z}_{p}[y][x]$
Interpolate y in G, \bar{A}, \bar{B} from univariate images $g_{i}=G\left(\alpha_{i}, x\right), \bar{a}_{i}=A\left(\alpha_{i}, x\right) / g_{i}, \bar{b}_{i}=B\left(\alpha_{i}, x\right) / g_{i}$ in $\mathbb{Z}_{p}[x]$ in batches until one of G, \bar{A}, \bar{B} stabilizes.

Case G stabilizes: obtain remaining images using univariate \div $g_{i}=G\left(\alpha_{i}, x\right), \bar{a}_{i}=A\left(\alpha_{i}, x\right) / g_{i}, \bar{b}_{i}=B\left(\alpha_{i}, x\right) / g_{i}$ thus replacing the Euclidean algorithm with an evaluation.

Case \bar{A} stabilizes: obtain remaining images using univariate \div $\bar{a}_{i}=\bar{A}\left(\alpha_{i}, x\right), g_{i}=A\left(\alpha_{i}, x\right) / \bar{a}_{i}, \bar{b}_{i}=B\left(\alpha_{i}, x\right) / g_{i}$ thus replacing the Euclidean algorithm with an evaluation.

Figure: Image Division Optimizations

——Brown's Algorithm - Classical Division Method Maple 18 --- Early G and \bar{B} stabilization

Parallel experiments in Cilk C

For dense A, B in $\mathbb{Z}_{p}\left[x_{3}\right]\left[x_{1}, x_{2}\right]$ we parallelize evaluation of A and B in blocks of size j using a FFT of size j, run the bivariate GCDs in parallel, and parallelize interpolation of G, \bar{A}, \bar{B} in batches of coefficients.

Parallel experiments in Cilk C

For dense A, B in $\mathbb{Z}_{p}\left[x_{3}\right]\left[x_{1}, x_{2}\right]$ we parallelize evaluation of A and B in blocks of size j using a FFT of size j, run the bivariate GCDs in parallel, and parallelize interpolation of G, \bar{A}, \bar{B} in batches of coefficients.

The algorithm is recursive and needs a lot of pieces of memory. We allocate large blocks of memory and use it as a stack. Memory for each bivariate Gcd is all preallocated.

Benchmarks $A, B \in \mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right], \operatorname{deg} A=\operatorname{deg} B=200$. jude $2 \times$ E5-2680 v2 CPUs, 10 cores, 2.8 GHz (3.6 GHz turbo).

Table: Real times in seconds, $p=2^{62}-57,1373701$ terms

$\operatorname{deg}(G)$	$\operatorname{deg}(\bar{A})$	- opt	$E A^{\%}$	1	8	16	20	Conv
10	190	13.10	11.9	4.79	0.84	0.54	0.48	0.37
40	160	12.39	28.8	5.79	0.92	0.55	0.49	0.27
70	130	11.29	36.9	6.47	0.99	0.56	0.49	0.21
100	100	9.93	41.0	6.72	1.00	0.57	0.50	0.18
130	70	8.38	27.5	5.29	0.80	0.46	0.40	0.18
160	40	6.52	14.4	4.16	0.66	0.39	0.34	0.20
190	10	4.50	1.8	3.44	0.58	0.37	0.33	0.25

Benchmarks $A, B \in \mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right], \operatorname{deg} A=\operatorname{deg} B=200$. gaby two E5-2660 CPUs, 8 cores at 2.2 GHz (3.0 GHz turbo).

Table: Real times in seconds, $p=2^{62}-57$, inputs have 1373701 terms

Deg		Maple		MagmaR				MGCD, \#CPUs				POLY
G	A	$A \times B$	GCD	$A \times B$	GCD	1	4	8	16	Conv		
10	190	2.22	70.98	77.22	33.34	6.35	1.83	1.06	0.71	0.47		
40	160	25.65	267.16	920.48	159.71	7.75	2.13	1.18	0.75	0.35		
70	130	25.62	439.80	1624.6	462.09	8.72	2.35	1.27	0.75	0.28		
100	100	25.43	453.27	1526.2	900.65	9.11	2.43	1.32	0.79	0.24		
130	70	25.69	436.11	1559.2	14254.	7.11	1.92	1.04	0.62	0.23		
160	40	25.44	282.04	934.45	7084.3	5.63	1.52	0.83	0.51	0.26		
190	10	2.23	77.28	90.30	2229.8	4.69	1.29	0.74	0.47	0.32		

Current work

Let $G=\sum_{i=0}^{d g} g_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i}$.
Let $t=\max _{i} \# g_{i}$.

Current work

Let $G=\sum_{i=0}^{d g} g_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i}$.
Let $t=\max _{i} \# g_{i}$.

- Most of the time is evaluation: $O((\# A+\# B) t)$.

Current work

Let $G=\sum_{i=0}^{d g} g_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i}$.
Let $t=\max _{i} \# g_{i}$.

- Most of the time is evaluation: $O((\# A+\# B) t)$.
- Have parallelized evaluation in batches of points.

Current work

Let $G=\sum_{i=0}^{d g} g_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i}$.
Let $t=\max _{i} \# g_{i}$.

- Most of the time is evaluation: $O((\# A+\# B) t)$.
- Have parallelized evaluation in batches of points.
- Have parallelized on i sparse interpolation of $g_{i}\left(x_{2}, \ldots, x_{n}\right)$.

Current work

Let $G=\sum_{i=0}^{d g} g_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i}$.
Let $t=\max _{i} \# g_{i}$.

- Most of the time is evaluation: $O((\# A+\# B) t)$.
- Have parallelized evaluation in batches of points.
- Have parallelized on i sparse interpolation of $g_{i}\left(x_{2}, \ldots, x_{n}\right)$.
- Need to switch to bivariate images.

Current work

Let $G=\sum_{i=0}^{d g} g_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i}$.
Let $t=\max _{i} \# g_{i}$.

- Most of the time is evaluation: $O((\# A+\# B) t)$.
- Have parallelized evaluation in batches of points.
- Have parallelized on i sparse interpolation of $g_{i}\left(x_{2}, \ldots, x_{n}\right)$.
- Need to switch to bivariate images.

Thank you for attending my talk. Questions?

