Optimizing and and Parallelizing the Modular GCD Algorithm

Michael Monagan

Centre for Experimental and Constructive Mathematics Simon Fraser University British Columbia

> PASCO 2015, Bath, England July 10, 2015

This is joint work with Matthew Gibson

Compute $G = \operatorname{GCD}(A, B)$ in $\mathbb{Z}[x_1, x_2, \dots, x_n]$.

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Compute $G = \operatorname{GCD}(A, B)$ in $\mathbb{Z}[x_1, x_2, \dots, x_n]$.

Compute G modulo primes p_1, p_2, \ldots and recover G using Chinese remaindering.

伺 ト く ヨ ト く ヨ ト

Compute $G = \operatorname{GCD}(A, B)$ in $\mathbb{Z}[x_1, x_2, \dots, x_n]$.

Compute G modulo primes p_1, p_2, \ldots and recover G using Chinese remaindering.

Let
$$\overline{A} = A/G$$
 and $\overline{B} = B/G$ be the cofactors.
Let $A = \sum_{i=0}^{d_a} a_i(x_2, ..., x_n) x_1^i$.
Let $B = \sum_{i=0}^{d_b} b_i(x_2, ..., x_n) x_1^i$.
Let $G = \sum_{i=0}^{d_g} g_i(x_2, ..., x_n) x_1^i$.
Let $t = \max_{i=0}^{d_g} \#terms g_i$.

Interpolate $g_i(x_2, ..., x_n)$ modulo p from $2t + \delta$ univariate images in $\mathbb{Z}_p[x_1]$ using smooth prime p.

回 と く ヨ と く ヨ と

Compute G = GCD(A, B) in $\mathbb{Z}[x_1, x_2, ..., x_n]$.

Compute $G \mod p_1, p_2, \ldots$ and recover G using Chinese remaindering.

Let $\bar{A} = A/G$ and $\bar{B} = B/G$ be the cofactors. Let $A = \sum_{i=0}^{da} a_i(x_2, ..., x_n) x_1^i$. $CA = GCD(a_i(x_2, ..., x_n))$. Let $B = \sum_{i=0}^{db} b_i(x_2, ..., x_n) x_1^i$. $CB = GCD(b_i(x_2, ..., x_n))$. Let $G = \sum_{i=0}^{dg} g_i(x_2, ..., x_n) x_1^i$. CG = GCD(CA, CB). Let $t = \max_{i=0}^{dg} \#terms g_i$. $\Gamma = GCD(a_{da}, b_{db})$.

Observation: Most of the time is recursive GCDs in n-1 variables and evaluation and interpolation not GCD in $\mathbb{Z}_p[x_1]$.

Compute G = GCD(A, B) in $\mathbb{Z}[x_1, x_2, ..., x_n]$.

Let $A = \sum_{i} a_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $B = \sum_{i} b_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $G = \sum_{i} g_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $s = \max_{i,j} \# terms g_{i,j}$.

 $CA = GCD(a_i(x_3, ..., x_n)).$ $CB = GCD(b_i(x_3, ..., x_n)).$ CG = GCD(CA, CB). $\Gamma = GCD(LC(A), LC(B)).$

Compute G = GCD(A, B) in $\mathbb{Z}[x_1, x_2, ..., x_n]$.

Let $A = \sum_{i} a_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $B = \sum_{i} b_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $G = \sum_{i} g_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $s = \max_{i,j} \# terms g_{i,j}$. $CA = GCD(a_i(x_3, ..., x_n)).$ $CB = GCD(b_i(x_3, ..., x_n)).$ CG = GCD(CA, CB). $\Gamma = GCD(LC(A), LC(B)).$

Interpolate $g_i(x_3, ..., x_n)$ modulo p from $2s + \delta$ bivariate images in $\mathbb{Z}_p[x_1, x_2]$ using smooth prime p – increased cost but

• Usually $s \ll t$ which reduces evaluation and interpolation cost.

Compute G = GCD(A, B) in $\mathbb{Z}[x_1, x_2, ..., x_n]$.

Let $A = \sum_{i} a_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $B = \sum_{i} b_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $G = \sum_{i} g_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $s = \max_{i,j} \# terms g_{i,j}$.

 $CA = GCD(a_i(x_3, ..., x_n)).$ $CB = GCD(b_i(x_3, ..., x_n)).$ CG = GCD(CA, CB). $\Gamma = GCD(LC(A), LC(B)).$

- Usually $s \ll t$ which reduces evaluation and interpolation cost.
- Usually CA, CB, Γ are smaller so easier to compute.

Compute G = GCD(A, B) in $\mathbb{Z}[x_1, x_2, ..., x_n]$.

Let $A = \sum_{i} a_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $B = \sum_{i} b_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $G = \sum_{i} g_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $s = \max_{i,j} \# terms g_{i,j}$. $CA = GCD(a_i(x_3, ..., x_n)).$ $CB = GCD(b_i(x_3, ..., x_n)).$ CG = GCD(CA, CB). $\Gamma = GCD(LC(A), LC(B)).$

- Usually $s \ll t$ which reduces evaluation and interpolation cost.
- Usually CA, CB, Γ are smaller so easier to compute.
- Increases parallelism in interpolation.

Compute $G = \operatorname{GCD}(A, B)$ in $\mathbb{Z}[x_1, x_2, ..., x_n]$.

Let $A = \sum_{i} a_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $B = \sum_{i} b_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $G = \sum_{i} g_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $s = \max_{i,j} \# terms g_{i,j}$. $CA = GCD(a_i(x_3, ..., x_n)).$ $CB = GCD(b_i(x_3, ..., x_n)).$ CG = GCD(CA, CB). $\Gamma = GCD(LC(A), LC(B)).$

- Usually $s \ll t$ which reduces evaluation and interpolation cost.
- Usually CA, CB, Γ are smaller so easier to compute.
- Increases parallelism in interpolation.
- Optimize serial bivariate Gcd computation.
- **2** For n > 2 parallelized (Cilk C) evaluation and interpolation.
- Senchmark against Maple and Magma.

Input $A, B \in \mathbb{Z}_{\rho}[y][x]$. Output G = GCD(A, B), \overline{A} and \overline{B} .

Trial division method. (Maple, Magma)

Interpolate y in G from univariate images in $\mathbb{Z}_p[x]$ incrementally until G(x, y) does not change.

Test if G|A and G|B. If yes output $G, \overline{A} = A/G, \overline{B} = B/G$.

Input $A, B \in \mathbb{Z}_{\rho}[y][x]$. Output G = GCD(A, B), \overline{A} and \overline{B} .

Trial division method. (Maple, Magma)

Interpolate y in G from univariate images in $\mathbb{Z}_p[x]$ incrementally until G(x, y) does not change.

Test if G|A and G|B. If yes output $G, \overline{A} = A/G, \overline{B} = B/G$.

Cofactor recovery method. (Brown 1971)

Interpolate y in $G, \overline{A}, \overline{B}$ from univariate images $g_i = G(\alpha_i, x), \overline{a}_i = A(\alpha_i, x)/g_i, \overline{b}_i = B(\alpha_i, x)/g_i$ in $\mathbb{Z}_p[x]$. After k images we have

 $A - G\bar{A} \equiv 0 \pmod{M} \text{ and } B - G\bar{B} \equiv 0 \pmod{M}$ where $M = (y - \alpha_1)(y - \alpha_2) \cdots (y - \alpha_k)$. Stop when $k > \max(\deg_y A, \deg_y B, \deg_y G\bar{A}, \deg_y G\bar{B})$.

Cofactor recovery method for $\mathbb{Z}_p[y][x]$

Interpolate y in $G, \overline{A}, \overline{B}$ from univariate images $g_i = G(\alpha_i, x), \overline{a}_i = A(\alpha_i, x)/g_i, \overline{b}_i = B(\alpha_i, x)/g_i$ in $\mathbb{Z}_p[x]$ in batches until one of $G, \overline{A}, \overline{B}$ stabilizes.

Case *G* **stabilizes**: obtain remaining images using univariate \div $g_i = G(\alpha_i, x), \bar{a}_i = A(\alpha_i, x)/g_i, \bar{b}_i = B(\alpha_i, x)/g_i$ thus replacing the Euclidean algorithm with an evaluation.

Cofactor recovery method for $\mathbb{Z}_p[y][x]$

Interpolate y in $G, \overline{A}, \overline{B}$ from univariate images $g_i = G(\alpha_i, x), \overline{a}_i = A(\alpha_i, x)/g_i, \overline{b}_i = B(\alpha_i, x)/g_i$ in $\mathbb{Z}_p[x]$ in batches until one of $G, \overline{A}, \overline{B}$ stabilizes.

Case *G* **stabilizes**: obtain remaining images using univariate \div $g_i = G(\alpha_i, x), \bar{a}_i = A(\alpha_i, x)/g_i, \bar{b}_i = B(\alpha_i, x)/g_i$ thus replacing the Euclidean algorithm with an evaluation.

Case \overline{A} **stabilizes**: obtain remaining images using univariate \div $\overline{a}_i = \overline{A}(\alpha_i, x), g_i = A(\alpha_i, x)/\overline{a}_i, \overline{b}_i = B(\alpha_i, x)/g_i$ thus replacing the Euclidean algorithm with an evaluation.

Figure: Image Division Optimizations

Brown's AlgorithmClassical Division MethodMaple 18--- Early G and \overline{B} stabilization

For dense A, B in $\mathbb{Z}_p[x_3][x_1, x_2]$ we parallelize evaluation of A and B in blocks of size j using a FFT of size j, run the bivariate GCDs in parallel, and parallelize interpolation of $G, \overline{A}, \overline{B}$ in batches of coefficients.

For dense A, B in $\mathbb{Z}_p[x_3][x_1, x_2]$ we parallelize evaluation of A and B in blocks of size j using a FFT of size j, run the bivariate GCDs in parallel, and parallelize interpolation of $G, \overline{A}, \overline{B}$ in batches of coefficients.

The algorithm is recursive and needs a lot of pieces of memory. We allocate large blocks of memory and use it as a stack. Memory for each bivariate Gcd is all preallocated. Benchmarks $A, B \in \mathbb{Z}_p[x_1, x_2, x_3]$, deg $A = \deg B = 200$. jude 2 x E5-2680 v2 CPUs, 10 cores, 2.8 GHz (3.6 GHz turbo).

Table: Real times in seconds, $p = 2^{62} - 57$, 1373701 terms

deg(G)	$deg(\bar{A})$	-opt	EA%	1	8	16	20	Conv
10	190	13.10	11.9	4.79	0.84	0.54	0.48	0.37
40	160	12.39	28.8	5.79	0.92	0.55	0.49	0.27
70	130	11.29	36.9	6.47	0.99	0.56	0.49	0.21
100	100	9.93	41.0	6.72	1.00	0.57	0.50	0.18
130	70	8.38	27.5	5.29	0.80	0.46	0.40	0.18
160	40	6.52	14.4	4.16	0.66	0.39	0.34	0.20
190	10	4.50	1.8	3.44	0.58	0.37	0.33	0.25

Benchmarks $A, B \in \mathbb{Z}_p[x_1, x_2, x_3]$, deg $A = \deg B = 200$. gaby two E5-2660 CPUs, 8 cores at 2.2 GHz (3.0 GHz turbo).

Table: Real times in seconds, $p = 2^{62} - 57$, inputs have 1373701 terms

Deg Maple		ple	Mag	maR	MGCD, #CPUs				POLY	
G	Ā	$A \times B$	GCD	$A \times B$	GCD	1	4	8	16	Conv
10	190	2.22	70.98	77.22	33.34	6.35	1.83	1.06	0.71	0.47
40	160	25.65	267.16	920.48	159.71	7.75	2.13	1.18	0.75	0.35
70	130	25.62	439.80	1624.6	462.09	8.72	2.35	1.27	0.75	0.28
100	100	25.43	453.27	1526.2	900.65	9.11	2.43	1.32	0.79	0.24
130	70	25.69	436.11	1559.2	14254.	7.11	1.92	1.04	0.62	0.23
160	40	25.44	282.04	934.45	7084.3	5.63	1.52	0.83	0.51	0.26
190	10	2.23	77.28	90.30	2229.8	4.69	1.29	0.74	0.47	0.32

Let
$$G = \sum_{i=0}^{dg} g_i(x_2, ..., x_n) x_1^i$$
.
Let $t = \max_i \# g_i$.

< 口 > < 同

▶ < ≣ ▶ <</p>

æ

Э

Let
$$G = \sum_{i=0}^{dg} g_i(x_2, ..., x_n) x_1^i$$
.
Let $t = \max_i \# g_i$.

• Most of the time is evaluation: O((#A + #B)t).

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

э

Let
$$G = \sum_{i=0}^{dg} g_i(x_2, ..., x_n) x_1^i$$
.
Let $t = \max_i \# g_i$.

- Most of the time is evaluation: O((#A + #B)t).
- Have parallelized evaluation in batches of points.

Let
$$G = \sum_{i=0}^{dg} g_i(x_2, \dots, x_n) x_1^i$$
.
Let $t = \max_i \# g_i$.

- Most of the time is evaluation: O((#A + #B)t).
- Have parallelized evaluation in batches of points.
- Have parallelized on *i* sparse interpolation of $g_i(x_2, \ldots, x_n)$.

Let
$$G = \sum_{i=0}^{dg} g_i(x_2, \dots, x_n) x_1^i$$
.
Let $t = \max_i \# g_i$.

- Most of the time is evaluation: O((#A + #B)t).
- Have parallelized evaluation in batches of points.
- Have parallelized on *i* sparse interpolation of $g_i(x_2, \ldots, x_n)$.
- Need to switch to bivariate images.

Let
$$G = \sum_{i=0}^{dg} g_i(x_2, ..., x_n) x_1^i$$
.
Let $t = \max_i \# g_i$.

- Most of the time is evaluation: O((#A + #B)t).
- Have parallelized evaluation in batches of points.
- Have parallelized on *i* sparse interpolation of $g_i(x_2, \ldots, x_n)$.
- Need to switch to bivariate images.

Thank you for attending my talk. Questions?