
Optimizing and and Parallelizing the Modular GCD
Algorithm

Michael Monagan

Centre for Experimental and Constructive Mathematics
Simon Fraser University

British Columbia

PASCO 2015, Bath, England
July 10, 2015

This is joint work with Matthew Gibson

Michael Monagan PASCO 2015, Bath, England

Problem

Compute G = GCD(A,B) in Z[x1, x2,, xn].

Compute G modulo primes p1, p2, . . . and recover G using Chinese
remaindering.

Let Ā = A/G and B̄ = B/G be the cofactors.
Let A =

∑da
i=0 ai (x2, ..., xn)x i1.

Let B =
∑db

i=0 bi (x2, ..., xn)x i1.

Let G =
∑dg

i=0 gi (x2, ..., xn)x i1.

Let t = maxdgi=0 #terms gi .

Interpolate gi (x2, ..., xn) modulo p from 2t + δ univariate images in
Zp[x1] using smooth prime p.

Michael Monagan PASCO 2015, Bath, England

Problem

Compute G = GCD(A,B) in Z[x1, x2,, xn].

Compute G modulo primes p1, p2, . . . and recover G using Chinese
remaindering.

Let Ā = A/G and B̄ = B/G be the cofactors.
Let A =

∑da
i=0 ai (x2, ..., xn)x i1.

Let B =
∑db

i=0 bi (x2, ..., xn)x i1.

Let G =
∑dg

i=0 gi (x2, ..., xn)x i1.

Let t = maxdgi=0 #terms gi .

Interpolate gi (x2, ..., xn) modulo p from 2t + δ univariate images in
Zp[x1] using smooth prime p.

Michael Monagan PASCO 2015, Bath, England

Problem

Compute G = GCD(A,B) in Z[x1, x2,, xn].

Compute G modulo primes p1, p2, . . . and recover G using Chinese
remaindering.

Let Ā = A/G and B̄ = B/G be the cofactors.
Let A =

∑da
i=0 ai (x2, ..., xn)x i1.

Let B =
∑db

i=0 bi (x2, ..., xn)x i1.

Let G =
∑dg

i=0 gi (x2, ..., xn)x i1.

Let t = maxdgi=0 #terms gi .

Interpolate gi (x2, ..., xn) modulo p from 2t + δ univariate images in
Zp[x1] using smooth prime p.

Michael Monagan PASCO 2015, Bath, England

Problem

Compute G = GCD(A,B) in Z[x1, x2,, xn].

Compute G mod p1, p2, . . . and recover G using Chinese
remaindering.

Let Ā = A/G and B̄ = B/G be the cofactors.
Let A =

∑da
i=0 ai (x2, ..., xn)x i1. CA = GCD(ai (x2, ..., xn)).

Let B =
∑db

i=0 bi (x2, ..., xn)x i1. CB = GCD(bi (x2, ..., xn)).

Let G =
∑dg

i=0 gi (x2, ..., xn)x i1. CG = GCD(CA,CB).

Let t = maxdgi=0 #terms gi . Γ = GCD(ada, bdb).

Observation: Most of the time is recursive GCDs in n − 1
variables and evaluation and interpolation not GCD in Zp[x1].

Michael Monagan PASCO 2015, Bath, England

Bivariate Images

Compute G = GCD(A,B) in Z[x1, x2,, xn].

Let A =
∑

i ai ,j(x3, ..., xn)x i1x
j
2. CA = GCD(ai (x3, ..., xn)).

Let B =
∑

i bi ,j(x3, ..., xn)x i1x
j
2. CB = GCD(bi (x3, ..., xn)).

Let G =
∑

i gi ,j(x3, ..., xn)x i1x
j
2. CG = GCD(CA,CB).

Let s = maxi ,j #terms gi ,j . Γ = GCD(LC (A), LC (B)).

Interpolate gi (x3, ..., xn) modulo p from 2s + δ bivariate images in
Zp[x1, x2] using smooth prime p – increased cost but

Usually s � t which reduces evaluation and interpolation cost.

Usually CA,CB, Γ are smaller so easier to compute.

Increases parallelism in interpolation.

1 Optimize serial bivariate Gcd computation.

2 For n > 2 parallelized (Cilk C) evaluation and interpolation.

3 Benchmark against Maple and Magma.

Michael Monagan PASCO 2015, Bath, England

Bivariate Images

Compute G = GCD(A,B) in Z[x1, x2,, xn].

Let A =
∑

i ai ,j(x3, ..., xn)x i1x
j
2. CA = GCD(ai (x3, ..., xn)).

Let B =
∑

i bi ,j(x3, ..., xn)x i1x
j
2. CB = GCD(bi (x3, ..., xn)).

Let G =
∑

i gi ,j(x3, ..., xn)x i1x
j
2. CG = GCD(CA,CB).

Let s = maxi ,j #terms gi ,j . Γ = GCD(LC (A), LC (B)).

Interpolate gi (x3, ..., xn) modulo p from 2s + δ bivariate images in
Zp[x1, x2] using smooth prime p – increased cost but

Usually s � t which reduces evaluation and interpolation cost.

Usually CA,CB, Γ are smaller so easier to compute.

Increases parallelism in interpolation.

1 Optimize serial bivariate Gcd computation.

2 For n > 2 parallelized (Cilk C) evaluation and interpolation.

3 Benchmark against Maple and Magma.

Michael Monagan PASCO 2015, Bath, England

Bivariate Images

Compute G = GCD(A,B) in Z[x1, x2,, xn].

Let A =
∑

i ai ,j(x3, ..., xn)x i1x
j
2. CA = GCD(ai (x3, ..., xn)).

Let B =
∑

i bi ,j(x3, ..., xn)x i1x
j
2. CB = GCD(bi (x3, ..., xn)).

Let G =
∑

i gi ,j(x3, ..., xn)x i1x
j
2. CG = GCD(CA,CB).

Let s = maxi ,j #terms gi ,j . Γ = GCD(LC (A), LC (B)).

Interpolate gi (x3, ..., xn) modulo p from 2s + δ bivariate images in
Zp[x1, x2] using smooth prime p – increased cost but

Usually s � t which reduces evaluation and interpolation cost.

Usually CA,CB, Γ are smaller so easier to compute.

Increases parallelism in interpolation.

1 Optimize serial bivariate Gcd computation.

2 For n > 2 parallelized (Cilk C) evaluation and interpolation.

3 Benchmark against Maple and Magma.

Michael Monagan PASCO 2015, Bath, England

Bivariate Images

Compute G = GCD(A,B) in Z[x1, x2,, xn].

Let A =
∑

i ai ,j(x3, ..., xn)x i1x
j
2. CA = GCD(ai (x3, ..., xn)).

Let B =
∑

i bi ,j(x3, ..., xn)x i1x
j
2. CB = GCD(bi (x3, ..., xn)).

Let G =
∑

i gi ,j(x3, ..., xn)x i1x
j
2. CG = GCD(CA,CB).

Let s = maxi ,j #terms gi ,j . Γ = GCD(LC (A), LC (B)).

Interpolate gi (x3, ..., xn) modulo p from 2s + δ bivariate images in
Zp[x1, x2] using smooth prime p – increased cost but

Usually s � t which reduces evaluation and interpolation cost.

Usually CA,CB, Γ are smaller so easier to compute.

Increases parallelism in interpolation.

1 Optimize serial bivariate Gcd computation.

2 For n > 2 parallelized (Cilk C) evaluation and interpolation.

3 Benchmark against Maple and Magma.

Michael Monagan PASCO 2015, Bath, England

Bivariate Images

Compute G = GCD(A,B) in Z[x1, x2,, xn].

Let A =
∑

i ai ,j(x3, ..., xn)x i1x
j
2. CA = GCD(ai (x3, ..., xn)).

Let B =
∑

i bi ,j(x3, ..., xn)x i1x
j
2. CB = GCD(bi (x3, ..., xn)).

Let G =
∑

i gi ,j(x3, ..., xn)x i1x
j
2. CG = GCD(CA,CB).

Let s = maxi ,j #terms gi ,j . Γ = GCD(LC (A), LC (B)).

Interpolate gi (x3, ..., xn) modulo p from 2s + δ bivariate images in
Zp[x1, x2] using smooth prime p – increased cost but

Usually s � t which reduces evaluation and interpolation cost.

Usually CA,CB, Γ are smaller so easier to compute.

Increases parallelism in interpolation.

1 Optimize serial bivariate Gcd computation.

2 For n > 2 parallelized (Cilk C) evaluation and interpolation.

3 Benchmark against Maple and Magma.

Michael Monagan PASCO 2015, Bath, England

Bivariate Gcd computation.

Input A,B ∈ Zp[y][x]. Output G = GCD(A,B), Ā and B̄.

Trial division method. (Maple, Magma)
Interpolate y in G from univariate images in Zp[x] incrementally
until G (x , y) does not change.
Test if G |A and G |B. If yes output G , Ā = A/G , B̄ = B/G .

Cofactor recovery method. (Brown 1971)

Interpolate y in G , Ā, B̄ from univariate images
gi = G (αi , x), āi = A(αi , x)/gi , b̄i = B(αi , x)/gi in Zp[x].
After k images we have

A− GĀ ≡ 0 (mod M) and B − GB̄ ≡ 0 (mod M)

where M = (y − α1)(y − α2) · · · (y − αk).
Stop when k > max(degy A, degy B, degy GĀ, degy GB̄).

Michael Monagan PASCO 2015, Bath, England

Bivariate Gcd computation.

Input A,B ∈ Zp[y][x]. Output G = GCD(A,B), Ā and B̄.

Trial division method. (Maple, Magma)
Interpolate y in G from univariate images in Zp[x] incrementally
until G (x , y) does not change.
Test if G |A and G |B. If yes output G , Ā = A/G , B̄ = B/G .

Cofactor recovery method. (Brown 1971)

Interpolate y in G , Ā, B̄ from univariate images
gi = G (αi , x), āi = A(αi , x)/gi , b̄i = B(αi , x)/gi in Zp[x].
After k images we have

A− GĀ ≡ 0 (mod M) and B − GB̄ ≡ 0 (mod M)

where M = (y − α1)(y − α2) · · · (y − αk).
Stop when k > max(degy A, degy B, degy GĀ, degy GB̄).

Michael Monagan PASCO 2015, Bath, England

Bivariate Gcd optimization.

Cofactor recovery method for Zp[y][x]

Interpolate y in G , Ā, B̄ from univariate images
gi = G (αi , x), āi = A(αi , x)/gi , b̄i = B(αi , x)/gi in Zp[x]
in batches until one of G , Ā, B̄ stabilizes.

Case G stabilizes: obtain remaining images using univariate ÷
gi = G (αi , x), āi = A(αi , x)/gi , b̄i = B(αi , x)/gi
thus replacing the Euclidean algorithm with an evaluation.

Case Ā stabilizes: obtain remaining images using univariate ÷
āi = Ā(αi , x), gi = A(αi , x)/āi , b̄i = B(αi , x)/gi
thus replacing the Euclidean algorithm with an evaluation.

Michael Monagan PASCO 2015, Bath, England

Bivariate Gcd optimization.

Cofactor recovery method for Zp[y][x]

Interpolate y in G , Ā, B̄ from univariate images
gi = G (αi , x), āi = A(αi , x)/gi , b̄i = B(αi , x)/gi in Zp[x]
in batches until one of G , Ā, B̄ stabilizes.

Case G stabilizes: obtain remaining images using univariate ÷
gi = G (αi , x), āi = A(αi , x)/gi , b̄i = B(αi , x)/gi
thus replacing the Euclidean algorithm with an evaluation.

Case Ā stabilizes: obtain remaining images using univariate ÷
āi = Ā(αi , x), gi = A(αi , x)/āi , b̄i = B(αi , x)/gi
thus replacing the Euclidean algorithm with an evaluation.

Michael Monagan PASCO 2015, Bath, England

Figure: Image Division Optimizations

0 100 200 300 400 500 600
0

2

4

6

8

deg(G)

T
im

e
(s

ec
)

Brown’s Algorithm Classical Division Method

Maple 18 Early G and B̄ stabilization

Michael Monagan PASCO 2015, Bath, England

Parallel experiments in Cilk C

For dense A,B in Zp[x3][x1, x2] we parallelize evaluation of A and
B in blocks of size j using a FFT of size j , run the bivariate GCDs
in parallel, and parallelize interpolation of G , Ā, B̄ in batches of
coefficients.

The algorithm is recursive and needs a lot of pieces of memory.
We allocate large blocks of memory and use it as a stack.
Memory for each bivariate Gcd is all preallocated.

Michael Monagan PASCO 2015, Bath, England

Parallel experiments in Cilk C

For dense A,B in Zp[x3][x1, x2] we parallelize evaluation of A and
B in blocks of size j using a FFT of size j , run the bivariate GCDs
in parallel, and parallelize interpolation of G , Ā, B̄ in batches of
coefficients.

The algorithm is recursive and needs a lot of pieces of memory.
We allocate large blocks of memory and use it as a stack.
Memory for each bivariate Gcd is all preallocated.

Michael Monagan PASCO 2015, Bath, England

Benchmarks A,B ∈ Zp[x1, x2, x3], degA = degB = 200.
jude 2 x E5-2680 v2 CPUs, 10 cores, 2.8 GHz (3.6 GHz turbo).

Table: Real times in seconds, p = 262 − 57, 1373701 terms

deg(G) deg(Ā) −opt EA% 1 8 16 20 Conv
10 190 13.10 11.9 4.79 0.84 0.54 0.48 0.37
40 160 12.39 28.8 5.79 0.92 0.55 0.49 0.27
70 130 11.29 36.9 6.47 0.99 0.56 0.49 0.21

100 100 9.93 41.0 6.72 1.00 0.57 0.50 0.18
130 70 8.38 27.5 5.29 0.80 0.46 0.40 0.18
160 40 6.52 14.4 4.16 0.66 0.39 0.34 0.20
190 10 4.50 1.8 3.44 0.58 0.37 0.33 0.25

Michael Monagan PASCO 2015, Bath, England

Benchmarks A,B ∈ Zp[x1, x2, x3], degA = degB = 200.
gaby two E5-2660 CPUs, 8 cores at 2.2 GHz (3.0 GHz turbo).

Table: Real times in seconds, p = 262 − 57, inputs have 1373701 terms

Deg Maple MagmaR MGCD, #CPUs POLY

G Ā A× B GCD A× B GCD 1 4 8 16 Conv

10 190 2.22 70.98 77.22 33.34 6.35 1.83 1.06 0.71 0.47
40 160 25.65 267.16 920.48 159.71 7.75 2.13 1.18 0.75 0.35
70 130 25.62 439.80 1624.6 462.09 8.72 2.35 1.27 0.75 0.28

100 100 25.43 453.27 1526.2 900.65 9.11 2.43 1.32 0.79 0.24
130 70 25.69 436.11 1559.2 14254. 7.11 1.92 1.04 0.62 0.23
160 40 25.44 282.04 934.45 7084.3 5.63 1.52 0.83 0.51 0.26
190 10 2.23 77.28 90.30 2229.8 4.69 1.29 0.74 0.47 0.32

Michael Monagan PASCO 2015, Bath, England

Current work

Let G =
∑dg

i=0 gi (x2, . . . , xn)x i1.
Let t = maxi #gi .

Most of the time is evaluation: O((#A + #B)t).

Have parallelized evaluation in batches of points.

Have parallelized on i sparse interpolation of gi (x2, . . . , xn).

Need to switch to bivariate images.

Thank you for attending my talk. Questions?

Michael Monagan PASCO 2015, Bath, England

Current work

Let G =
∑dg

i=0 gi (x2, . . . , xn)x i1.
Let t = maxi #gi .

Most of the time is evaluation: O((#A + #B)t).

Have parallelized evaluation in batches of points.

Have parallelized on i sparse interpolation of gi (x2, . . . , xn).

Need to switch to bivariate images.

Thank you for attending my talk. Questions?

Michael Monagan PASCO 2015, Bath, England

Current work

Let G =
∑dg

i=0 gi (x2, . . . , xn)x i1.
Let t = maxi #gi .

Most of the time is evaluation: O((#A + #B)t).

Have parallelized evaluation in batches of points.

Have parallelized on i sparse interpolation of gi (x2, . . . , xn).

Need to switch to bivariate images.

Thank you for attending my talk. Questions?

Michael Monagan PASCO 2015, Bath, England

Current work

Let G =
∑dg

i=0 gi (x2, . . . , xn)x i1.
Let t = maxi #gi .

Most of the time is evaluation: O((#A + #B)t).

Have parallelized evaluation in batches of points.

Have parallelized on i sparse interpolation of gi (x2, . . . , xn).

Need to switch to bivariate images.

Thank you for attending my talk. Questions?

Michael Monagan PASCO 2015, Bath, England

Current work

Let G =
∑dg

i=0 gi (x2, . . . , xn)x i1.
Let t = maxi #gi .

Most of the time is evaluation: O((#A + #B)t).

Have parallelized evaluation in batches of points.

Have parallelized on i sparse interpolation of gi (x2, . . . , xn).

Need to switch to bivariate images.

Thank you for attending my talk. Questions?

Michael Monagan PASCO 2015, Bath, England

Current work

Let G =
∑dg

i=0 gi (x2, . . . , xn)x i1.
Let t = maxi #gi .

Most of the time is evaluation: O((#A + #B)t).

Have parallelized evaluation in batches of points.

Have parallelized on i sparse interpolation of gi (x2, . . . , xn).

Need to switch to bivariate images.

Thank you for attending my talk. Questions?

Michael Monagan PASCO 2015, Bath, England

