
In-place Arithmetic for Univariate Polynomials over an
Algebraic Number Field

Seyed Mohammad Mahdi Javadi1∗, Michael Monagan2∗

1 School of Computing Science, Simon Fraser University,
Burnaby, B.C., V5A 1S6, Canada.

sjavadi@cs.sfu.ca

2 Department of Mathematics, Simon Fraser University,
Burnaby, B.C., V5A 1S6, Canada.

mmonagan@cecm.sfu.ca

Abstract

We present a C library of in-place subroutines for univariate polynomial multiplica-
tion, division and GCD over Lp where Lp is an algebraic number field L with multiple
field extensions reduced modulo a machine prime p. We assume elements of Lp and
L are represented using a recursive dense representation. The main feature of our
algorithms is that we eliminate the storage management overhead which is significant
compared to the cost of arithmetic in Zp by pre-allocating the exact amount of storage
needed for both the output and working storage. We give an analysis for the work-
ing storage needed for each in-place algorithm and provide benchmarks demonstrating
the efficiency of our library. This work improves the performance of polynomial GCD
computation over algebraic number fields.

1 Introduction

In 2002, van Hoeij and Monagan in [10] presented an algorithm for computing the monic
GCD g(x) of two polynomials f1(x) and f2(x) in L[x] where L = Q(α1, α2, . . . , αk) is an
algebraic number field. The algorithm is a modular GCD algorithm. It computes the GCD
of f1 and f2 modulo a sequence of primes p1, p2, . . . , pl using the monic Euclidean algo-
rithm in Lp[x] and it reconstructs the rational numbers in g(x) using Chinese remaindering
and rational number reconstruction. The algorithm is a generalization of earlier work of
Langymyr and MaCallum [5], and Encarnación [2] to treat the case where L has multiple
extensions (k > 1). It can be generalized to multivariate polynomials in L[x1, x2, . . . , xn]
using evaluation and interpolation (see [4, 11]).

Monagan implemented the algorithm in Maple in 2001 and in Magma in 2003 using
the recursive dense polynomial representation to represent elements of L, Lp, L[x1, . . . , xn]
and Lp[x1, . . . , xn]. This representation is generally more efficient than the distributed and
recursive sparse representations for sparse polynomials. See for example the comparison by
Fateman in [3]. And since efficiency in the recursive dense representation improves for dense
polynomials, and elements of L are often dense, it should be a good choice for implementing
arithmetic in L and also Lp.

However, we have observed that arithmetic in Lp is very slow when α1 has low degree.
Since this case often occurs in practical applications, and since over 90% of a GCD compu-
tation in L[x] is typically spent in the Euclidean algorithm in Lp[x], we sought to improve
the efficiency of the arithmetic in Lp. One reason why this happens is because the cost

∗Correspondence to: CECM, Simon Fraser University, Burnaby, BC, Canada. Tel: +1.778.782.5617

1

of storage management, allocating small arrays for storing intermediate polynomials of low
degree can be much higher than the cost of the actual arithmetic being done in Zp.

Our main contribution is a library of in-place algorithms for arithmetic in Lp and Lp[x]
where Lp has one or more extensions. The main idea is to eliminate all calls to the storage
manager by pre-allocating one large piece of working storage, and re-using parts of it in a
computation. In Section 2 we describe the recursive dense polynomial representation for
elements of Lp[x]. In Section 3 we present algorithms for multiplication and inversion in Lp

and multiplication, division with remainder and GCD in Lp[x] which are given one array
of storage in which to write the output and one additional array W of working storage for
intermediate results. In Section 4 we give formulae for determining the size of W needed
for each algorithm. In each case the amount of working storage is linear in d the degree
of L. We have implemented our algorithms in the C language in a library which includes
also algorithms for addition, subtraction, and other utility routines. In Section 5 we present
benchmarks demonstrating its efficiency by comparing our algorithms with the Magma ([1])
computer algebra system and we explain how to avoid most of the integer divisions by p
when doing arithmetic in Zp because this also significantly affects overall performance.

2 Polynomial Representation

Let Q(α1, α2, . . . , αr) be our number field L. We build L as follows. For 1 ≤ i ≤ r,
let mi(z1, . . . , zi) ∈ Q[z1, . . . , zi] be the minimal polynomial for αi, monic and irreducible
over Q[z1, . . . , zi−1]/ 〈m1, . . . ,mi−1〉. Let di = degzi

(mi). We assume di ≥ 2. Let L =
Q[z1, . . . , zr]/ 〈m1, . . . ,mr〉. So L is an algebraic number field of degree d =

∏
di over

Q. For a prime p for which the rational coefficients of mi exist modulo p, let Ri =
Zp[z1, . . . , zi]/ 〈m̄1, . . . , m̄i〉 where m̄i = mi mod p and let R = Rr = L mod p. We use
the following recursive dense representation for elements of R and polynomials in R[x] for
our algorithms. We view an element of Ri+1 as a polynomial with degree at most di+1 − 1
with coefficients in Ri.

To represent a non-zero element β1 = a0 +a1z1 + · · ·+ad1−1z
d1−1
1 ∈ R1 we use an array

A1 of size S1 = d1 + 1 indexed from 0 to d1, of integers (modulo p) to store β1. We store
A1[0] = degz1

(α1) and, for 0 ≤ i < d1 : A1[i + 1] = ai. Note that if degz1
(α1) = d̄ < d1 − 1

then for d̄ + 1 < j ≤ d1, A1[j] = 0. To represent the zero element of R1 we use A[0] = −1.
Now suppose we want to represent an element β2 = b0 + b1z2 + · · · + bd2−1z

d2−1
2 ∈ R2

where bi ∈ R1 using an array A2 of size S2 = d2S1 + 1 = d2(d1 + 1) + 1. We store
A2[0] = degz2

(β2) and for 0 ≤ i < d2

A2[i(d1 + 1) + 1 . . . (i + 1)(d1 + 1)] = Bi[0 . . . d1]

where Bi is the array which represents bi ∈ R1. Again if β2 = 0 we store A2[0] = −1.

Similarly, we recursively represent βr = c0 + c1zr + · · · + cdr−1z
dr−1
r ∈ Rr based on the

representation of ci ∈ Rr−1. Let Sr = drSr−1 + 1 and suppose Ar is an array of size Sr

such that Ar[0] = degzr
(βr) and for 0 ≤ i < dr

Ar[i(dr−1) + 1 . . . (i + 1)(dr−1 + 1)] = Ci[0 . . . Sr−1 − 1].

Note, we store the degrees of the elements of Ri in Ai[0] simply to avoid re-computing them.
We have

r∏

i=1

di < Sr <

r∏

i=1

(di + 1), Sr ∈ O(

r∏

i=1

di).

2

Now suppose we use the array C to represent a polynomial f ∈ Ri[x] of degree dx in
the same way. Each coefficient of f in x is an element of Ri which needs an array of size
Si, hence C must be of size

P (dx, Ri) = (dx + 1)Si + 1.

Example 1. Let r = 2 and p = 17. Let m̄1 = z3
1 +3, m̄2 = z2

2 +5z1z2 +4z2 +7z2
1 +3z1 +6,

and f = 3 + 4z1 + (5 + 6z1)z2 + (7 + 8z1 + 9z2
1 + (10z1 + 11z2

1)z2)x + 12x2.
The representation for f is

C = 2 1 1 3 4 0 1 5 6 0
︸ ︷︷ ︸

3+4z1+(5+6z1)z2

1 2 7 8 9 2 0 10 11
︸ ︷︷ ︸

10z1+11z2

1

0 0 12 0 0 −1 0 0 0

Here dx = 2, d1 = 3, d2 = 2, S1 = d1 + 1 = 4, S2 = d2S1 + 1 = 9 and the size of the array A
is P (dx, R2) = (dx + 1)S2 + 1 = 28.

We also need to represent the minimal polynomial m̄i. Let m̄i = a0 + a1zi + . . . adi
zdi

i

where aj ∈ Ri−1. We need an array of size Si−1 to represent aj so to represent m̄i in
the same way we described above, we need an array of size S̄i = 1 + (di + 1)Si−1 =
diSi−1 + 1 + Si−1 = Si + Si−1. We define S0 = 1.

We represent the set of minimal polynomials {m̄1, . . . , m̄r} as an Array E of size
∑r

i=1 S̄i =
∑r

i=1 (Si + Si−1) = 1 + Sr + 2
∑r−1

i=1 Si such that E[Mi . . . Mi+1 − 1] repre-
sents mr−i where M0 = 0 and Mi =

∑r

i=r−i+1 S̄i. The minimal polynomials in Example 1
will be represented in the following figure where E[0 . . . 12] represents m̄2 and E[13 . . . 17]
represents m̄1.

E = 2 2 6 3 7 1 4 5 0 0 1 0 0
︸ ︷︷ ︸

m̄2

3 3 0 0 1
︸ ︷︷ ︸

m̄1

3 In-place Algorithms

In this section we design efficient in-place algorithms for multiplication, division and GCD
computation of two univariate polynomials over R. We will also give an in-place algorithm
for computing the inverse of an element α ∈ R, if it exists. This is needed for making
a polynomial monic for the monic Euclidean algorithm in R[x]. We assume the following
utility operations are implemented.

• IP ADD(N, A, B) and IP SUB(N, A, B) are used for in-place addition and subtraction of
two polynomials a, b ∈ RN [x] represented in arrays A and B.

• IP MUL NO EXT is used for multiplication of two polynomials over Zp. A description of
this algorithm is given in Section 5.1.

• IP REM NO EXT is used for computing the quotient and the remainder of dividing two
polynomials over Zp.

• IP INV NO EXT is used for computing the inverse of an element in Zp[z] modulo a minimal
polynomial m ∈ Zp[z].

• IP GCD NO EXT is used for computing the GCD of two univariate polynomials over Zp

(the Euclidean algorithm, See [7]).

3

3.1 In-place Multiplication

Suppose we have a, b ∈ R[x] where R = Rr−1[zr]/〈mr(zr)〉. Let a =
∑da

i=0 aix
i and b =

∑db

i=0 bix
i where da = degx(a) and db = degx(b) and Let c = a × b =

∑dc

i=0 cix
i where

dc = degx(c) = da + db. To reduce the number of divisions by mr(zr) when multiplying
a × b, we use the Cauchy product rule to compute ck as suggested in [7], that is,

ck =

min(k,da)
∑

i=max(0,k−db)

ai × bk−i

 mod mr(zr).

Thus the number of multiplications in Rr−1[zr] (in line 11) is (da + 1) × (db + 1) and the
number of divisions in Rr−1[zr] (in line 15) is da + db + 1. Asymptotically, this saves about
half the work.

Algorithm IP MUL: In-place Multiplication

Input: • N the number of field extensions.

• Arrays A[0 . . . ā] and B[0 . . . b̄] representing univariate polynomials a, b ∈ RN [x] (RN =
Zp[z1, . . . , zN]/ 〈m̄1, . . . , m̄N 〉). Note that ā = P (da, RN) − 1 and b̄ = P (db, RN) − 1
where da = degx(a) and db = degx(b).

• Array C[0 . . . c̄]: Space needed for storing c = a × b =
Pdc

i=0
cix

i where c̄ = P (degx(a) +
degx(b), RN) − 1.

• E[0 . . . eN] : representing the set of minimal polynomials where eN = SN + 2
PN−1

i=1
Si.

• W [0 . . . wN] : the working storage for the intermediate operations.
Output: For 0 ≤ k ≤ dc, ck will be computed and stored in C[k].
1: Set da := A[0] and db := B[0].
2: if da = −1 or db = −1 then Set C[0] := −1 and return.

3: if N = 0 then Call IP MUL NO EXT on inputs A, B and C and return.

4: Let M = E[0 . . . S̄N − 1] and E′ = E[S̄N . . . eN] (M points to m̄N in E[0 . . . eN]).
5: Let T1 = W [0 . . . t − 1] and T2 = W [t . . . 2t − 1] and W ′ = W [2t . . . wN] where t = P (2dN −

2, RN−1) and dN = M [0] = degzN
(m̄N).

6: Set dc := da + db and sc := 1.
7: for k from 0 to dc do

8: Set sa := 1 + iSN and sb := 1 + (k − i)SN .
9: Set T1[0] := −1 (T1 = 0).

10: for i from max(0, k − db) to min(k, da) do

11: Call IP MUL(N − 1, A[sa . . . ā], B[sb . . . b̄], T2, E
′, W ′).

12: Call IP ADD(N − 1, T1, T2) (T1 := T1 + T2)
13: Set sa := sa + SN and sb := sb − SN .
14: end for

15: Call IP REM(N − 1, T1, M, E′, W ′). (Reduce T1 modulo M = m̄N).
16: Copy C[sc . . . c̄] into T1.
17: end for

18: Determine degx(a × b): (There might be zero-divisors).
19: Set i := dc and sc := sc − SN .
20: while i ≥ 0 and C[sc] = −1 do Set i := i − 1 and sc := sc − SN .
21: Set C[0] := i.

The temporary variables T1 and T2 must be big enough to store the product of two
coefficients in a, b ∈ RN [x]. Coefficients of a and b are in RN−1[zN] with degree (in zN)
at most dN − 1. Hence these temporaries must be of size P (dN − 1 + dN − 1, RN−1) =
P (2dN − 2, RN−1).

4

3.2 In-place Division

The following algorithm divides a polynomial a ∈ RN [x] by a monic polynomial b ∈ RN [x].
The remainder and the quotient of a divided by b will be stored in the array representing
a hence a is destroyed by the algorithm. The division algorithm is organized differently
from the normal long division algorithm which does db × (da − db + 1) multiplications and
divisions in RN−1[zr]. The number of divisions by M in RN−1[zr] in line 16 is reduced to
da + 1 (see line 8). Asymptotically this saves half the work.

Algorithm IP REM: In-place Remainder

Input: • N the number of field extensions.

• Arrays A[0 . . . ā] and B[0 . . . b̄] representing univariate polynomials a, b 6= 0 ∈ RN [x]
(RN = Zp[z1, . . . , zN]/ 〈m̄1, . . . , m̄N 〉) where da = degx(a) ≥ da = degx(b). Note b must
be monic and ā = P (da, RN) − 1 and b̄ = P (db, RN) − 1.

• E[0 . . . eN] : representing the set of minimal polynomials where eN = SN + 2
PN−1

i=1
Si.

• W [0 . . . wN] : the working storage for the intermediate operations.
Output: The remainder R̄ of a divided by b will be stored in A[0 . . . r̄] where r̄ = P (D, RN) − 1

and D = degx(R̄) ≤ db − 1. Also let Q represent the quotient Q̄ of a divided by b. Q[1 . . . q̄]
will be stored in A[1 + dbSN . . . ā] where q̄ = P (da − db, RN) − 1.

1: Set da := A[0] and db := B[0].
2: if da < db then return.
3: if N = 0 then Call IP REM NO EXT on inputs A and B and return.

4: Set Dq := da − db and Dr := db − 1.
5: Let M = E[0 . . . S̄N − 1] and E′ = E[S̄N . . . eN] (M points to m̄N in E[0 . . . eN]).
6: Let T1 = W [0 . . . t − 1] and T2 = W [t . . . 2t − 1] and W ′ = W [2t . . . wN] where t = P (2dN −

2, RN−1) and dN = M [0] = degzN
(m̄N).

7: Set sc := 1 + daSN

8: for k = da to 0 by −1 do

9: Copy C[sc . . . c̄] into T1.
10: Set i := max(0, k − Dq), sb := 1 + iSN and sa := 1 + (k − i + db)SN .
11: while i ≤ min(Dr, k) do

12: Call IP MUL(N − 1, A[sa . . . ā], B[sb . . . b̄], T2, E′, W ′).
13: Call IP SUB(N − 1, T1, T2) (T1 := T1 − T2).
14: Set sb := sb + SN and sa := sa − SN .
15: end while

16: Call IP REM(N − 1, T1, M , E′, W ′) (Reduce T1 modulo M = m̄N).
17: Copy A[sc . . . c̄] into T1.
18: Set sc := sc − SN .
19: end for

20: Set i := Dr and sc := 1 + DrSN .
21: while i ≥ 0 and A[sc] = −1 do Set i := i − 1 and sc := sc − SN .
22: Set A[0] := i.

Let arrays A and B represent polynomials a and b respectively. Let da = degx(a) and
db = degx(b). Array A has enough space to store da + 1 coefficients in RN plus one unit
of storage to store da. Hence the total storage is (da + 1)SN + 1. The remainder R̄ is of
degree at most db − 1 in x, i.e. R̄ needs storage for db coefficients in RN and one unit for
the degree. Similarly the quotient Q̄ is of degree da −db, hence needs storage for da −db +1
coefficients and one unit for the degree. This the remainder and the quotient together need
dbSN +1+(da−db +1)SN +1 = (da +1)SN +2. This means we are one unit of storage short
if we want to store both R̄ and Q̄ in A. This is because this time we are storing two degrees
for Q̄ and R̄. Our solution is that we will not store the degree of Q̄. Any algorithm that

5

calls IP REM and needs both the quotient and the remainder must use degx(a) − degx(b)
for the degree of Q̄.

After applying this algorithm the remainder R̄ will be stored in A[0 . . . dbSN] and the
quotient Q̄ minus the degree will be stored in A[dbSN . . . (da + 1)SN]. Similar to IP MUL,
the remainder operation in line 16 has been moved to outside of the main loop to let the
values accumulate in T1.

3.3 Computing (In-place) the inverse of an element in RN

In this algorithm we assume the following in-place function:

• IP SCAL MUL(N, A, C, E, W): This is used for multiplying a polynomial a ∈ RN [x] (repre-
sented by array A) by a scalar c ∈ RN (represented by array C). The algorithm will multiply
every coefficient of a in x by c and reduce the result modulo the minimal polynomials. It
can easily be implemented using IP MUL and IP REM.

The algorithm computes the inverse of an element a in RN . If the element is not
invertible, then the Euclidean algorithm will compute a proper divisor of some minimal
polynomial mi(zi), a zero divisor in Ri. The algorithm will store that zero-divisor in the
space provided for the inverse and return the index i of the minimal polynomial which is
reducible and has caused the zero-divisor.

Algorithm IP INV: In-place inverse of an element in RN

Input: • N the number of field extensions.

• Array A[0 . . . ā] representing the univariate polynomial a ∈ RN . Note that N ≥ 1 and
ā = SN − 1.

• Array I[0 . . . ī]: Space needed for storing the inverse a−1 ∈ RN . Note that ī = SN − 1.

• E[0 . . . eN] : representing the set of minimal polynomials. Note that eN = SN +
2

PN−1

i=1
Si.

• W [0 . . . wN] : the working storage for the intermediate operations.
Output: The inverse of a (or a zero-divisor, if there exists one) will be computed and stored in

I. If there is a zero-divisor, the algorithm will return the index k where m̄k is the reducible
minimal polynomial, otherwise it will return 0.

1: Let M = E[0 . . . S̄N − 1] and E′ = E[S̄N . . . eN] (M = m̄N).
2: if N = 1 then Call IP INV NO EXT on inputs A, I, E, M and W and return.

3: if A[i] = 0, for all 0 ≤ i < N and A[N] = 1 (Test if a = 1) then

4: Copy A into I and return 0.

5: end if

6: Let r1 = W [0 . . . t − 1], r2 = W [t . . . 2t − 1], s1 = I, s2 = W [2t . . . 3t − 1], T = W [3t . . . 4t − 1],
T ′ = W [4t . . . 4t + t′ − 1] and W ′ = W [4t + t′ . . . wN] where t = P (dN , RN−1) − 1 = S̄N − 1,
t′ = P (2dN − 2, RN−1) and dN = M [0] = degzN

(m̄N).
7: Copy A and M into r1 and r2 respectively.
8: Set s2[0] := −1 (s2 represents 0).
9: Let Z ∈ Z := IP INV(N − 1, A[DaSN−1 + 1 . . . ā], T, E′, W ′) where Da = A[0] = degzN

(a).

(A[DaSN−1 + 1 . . . ā] represents l = lczN
(a) and T represents l−1.)

10: if Z > 0 then Copy T into I and return Z.
11: Copy T into s1.
12: Call IP SCAL MUL(N, r1, T, E′, W ′) (r1 is made monic).
13: while r2[0] 6= −1 do

14: Set Z = IP INV(N − 1, r2[Dr2
SN−1 + 1 . . . ā], T, E′, W ′) where Dr2

= r2[0] = degzN
(r2).

15: if Z > 0 then Copy T into I and return Z.
16: Call IP SCAL MUL(N, r2, T, E′, W ′) (r2 is made monic).

6

17: Call IP SCAL MUL(N, s2, T, E′, W ′).
18: Set Dq := max(−1, r1[0] − r2[0]).
19: Call IP REM(N, r1, r2, E

′, W ′).
20: Swap the arrays r1 and r2. (Interchange only the pointers).
21: Set t1 := r2[r1[0]SN−1] and set r2[r1[0]SN−1] := Dq.
22: Call IP MUL(N − 1, q, s2, T

′, E′, W ′) where q = r2[r1[0]SN−1 . . . ā].
23: Call IP REM(N − 1, T ′, M, E′, W ′) and then IP SUB(N − 1, s1, T

′). (s1 := s1 − qs2.)
24: Set r2[r1[0]SN−1] := t1.
25: Swap the arrays s1 and s2. (Interchange only the pointers).
26: end while

27: if r1[i] = 0 for all 0 ≤ i < N and r1[N] = 1 then

28: Copy s1 into I (r1 = 1 and s1 is the inverse) and return 0.
29: else

30: Copy r1 into R (r1 6= 1 is the zero-divisor) and return N − 1 (m̄N−1 is reducible).
31: end if

As discussed in Section 3.2, IP REM will not store the degree of the quotient of a divided
by b hence in line 21 we explicitly compute and set the degree of the quotient before using
it to compute s1 := s1 − qs2 in lines 22 and 23. Here r2[r1[0]SN−1 . . . ā] is the quotient of
dividing r1 by r2 in line 19.

3.4 In-place GCD Computation

In the following algorithm we compute the GCD of a, b ∈ RN [x] using the monic Euclidean
algorithm. This is the main subroutine used to compute univariate images of a GCD in
L[x] for the algorithm in [10] and images of a multivariate GCD over an algebraic function
field for our algorithm in [4]. Note, since mi(zi) may be reducible modulo p, RN is is not
necessarily a field, and therefore, the monic Euclidean algorithm may encounter a zero-
divisor in RN when calling subroutine IP INV.

Algorithm IP GCD: In-place GCD Computation

Input: • N the number of field extensions.

• Arrays A[0 . . . ā] and B[0 . . . b̄] representing univariate polynomials a, b 6= 0 ∈ RN [x]
(RN = Zp[z1, . . . , zN]/ 〈m̄1, . . . , m̄N 〉) where da = degx(a) ≥ da = degx(b) and A, B 6= 0.
Note that b is monic and ā = P (da, RN) − 1 and b̄ = P (db, RN) − 1.

• E[0 . . . eN] : representing the set of minimal polynomials where eN = SN + 2
PN−1

i=1
Si.

• W [0 . . . wN] : the working storage for the intermediate operations.
Output: If there exist a zero-divisor, it will be stored in A and the index of the reducible minimal

polynomial will be returned. Otherwise the monic GCD g = gcd(a, b) will be stored in A and
0 will be returned.

1: if N = 0 then CALL IP GCD NO EXT on inputs A and B and return 0.

2: Set da := A[0] and db := B[0].
3: Let r1 and r2 point to A and B respectively.
4: Let I = W [0 . . . t − 1] and W ′ = W [t . . . wN] where t = S̄N − 1 = SN + SN−1 − 1.
5: Let Z be the output of IP INV(N, r1[1 + r1[0]SN . . . ā], I, E, W ′).
6: if Z > 0 then Copy I into A and return Z.
7: Call IP SCAL MUL(N, r1, I, E, W ′).
8: while r2[0] 6= −1 do

9: Let Z be the output of IP INV(N, r2[1 + r2[0]SN . . . b̄], I, E, W ′).
10: if Z > 0 then Copy I into A and return Z.
11: Call IP SCAL MUL(N, r2, I, E, W ′).
12: Call IP REM(N, r1, r2, E, W ′).

7

13: Swap r1 and r2 (interchange pointers).
14: end while

15: Copy r1 into A.
16: return 0.

Similar to the algorithm IP INV, if there exists a zero-divisor, i.e. the leading coefficient
of one of the polynomials in the polynomial remainder sequence is not invertible, in steps 6
and 10 the algorithm stores the zero-divisor in the space provided for a and returns Z the
index of the minimal polynomial which is reducible and has caused the zero-divisor.

4 Working Space

In this section we will determine recurrences for the exact amount of working storage wN

needed for each operation introduced in the previous section. Recall that di = degzi
(m̄i) is

the degree of the ith minimal polynomial which we may assume is at least 2. Also Si is the
space needed to store an element in Ri and we have Si+1 = di+1Si + 1 and S1 = d1 + 1.

Lemma 2. SN > 2SN−1 for N > 1.

Proof. We have SN = dNSN−1 + 1 where dN = degzN
(m̄N). Since dN ≥ 2 we have

SN ≥ 2SN−1 + 1 ⇒ SN > 2SN−1.

Lemma 3.
∑N−1

i=1 Si < SN for N > 1.

Proof. (by induction on N). For N = 2 we have
∑1

i=1 Si = S1 < S2. For N = k + 1 ≥ 2

we have
∑k

i=1 Si = Sk +
∑k−1

i=1 Si. By induction we have
∑k−1

i=1 Si < Sk hence
∑k

i=1 Si <

Sk + Sk = 2Sk. Using Lemma 2 we have 2Sk < Sk+1 hence
∑k

i=1 Si < 2Sk < Sk+1 and the
proof is complete.

Corollary 4.
∑N

i=1 Si < 2SN for N > 1.

Lemma 5. P (2dN − 2, RN−1) = 2SN − SN−1 − 1 for N > 1.

Proof. We have P (2dN − 2, RN−1) = (2dN − 1)SN−1 + 1 = 2dNSN−1 − SN−1 + 1 =
2(dNSN−1 + 1) − SN−1 − 1 = 2SN − SN−1 − 1.

4.1 Multiplication and Division Algorithms

Let M(N) be the amount of working storage needed to multiply a, b ∈ RN [x] using the
algorithm IP MUL. Similarly let Q(N) be the amount of working storage needed to divide
a by b using the algorithm IP REM. The working storage used in lines 5,11 and 15 of
algorithm IP MUL and lines 6,12 and 16 of algorithm IP REM is

M(N) = 2P (2dN − 2, RN−1) + max(M(N − 1), Q(N − 1)) and (1)

Q(N) = 2P (2dN − 2, RN−1) + max(M(N − 1), Q(N − 1)). (2)

Comparing equations (1) and (2) we see that M(N) = Q(N) for any N ≥ 1. Hence

M(N) = 2P (2dN − 2, RN−1) + M(N − 1). (3)

Simplifying (3) gives M(N) = 2SN − 2N + 2
∑N

i=1 Si. Using Corollary 4 we have

8

Theorem 6. M(N) = Q(N) = 2SN − 2N + 2
∑N

i=1 Si < 6SN .

Remark 7. When calling the algorithm IP MUL to compute c = a×b where a, b ∈ R[x], we
should use a working storage array W [0 . . . wn] such that wn ≥ M(N). Since M(N) < 6SN ,
the working storage must be big enough to store only six coefficients in Lp.

Let C(N) denote the working storage needed for the operation IP SCAL MUL. It is
easy to show that C(N) = M(N − 1) + P (2dN − 2, RN−1) < M(N).

4.2 Inversion

Let I(N) denote the amount of working storage needed to invert c ∈ RN . In lines 6, 9, 12,
14, 16, 17, 19 , 22 and 23 of algorithm IP INV we use the working storage. We have

I(N) = 4P (dN , RN−1) + P (2dN − 2, RN−1) + max(I(N − 1),M(N − 1), Q(N − 1)). (4)

But we have M(N − 1) = Q(N − 1), hence

I(N) = 4P (dN , RN−1) + P (2dN − 2, RN−1) + max(I(N − 1),M(N − 1)). (5)

Lemma 8. For N ≥ 1, we have M(N) < I(N).

Proof. (by contradiction) Assume M(N) ≥ I(N). Using (5) we have I(N) = 4P (dN , RN−1)
+P (2dN − 2, RN−1)+M(N − 1). On the other hand using (3) we have M(N) = 2P (2dN −
2, RN−1)+M(N −1). We assumed I(N) ≤ M(N) hence we have 4P (dN , RN−1)+P (2dN −
2, RN−1) + M(N − 1) ≤ 2P (2dN − 2, RN−1) + M(N − 1) thus 4P (dN , RN−1) + P (2dN −
2, RN−1) ≤ 2P (2dN − 2, RN−1) ⇒ 6SN + 3SN−1 − 1 ≤ 4SN − 2SN−1 − 2 which is a
contradiction. Thus I(N) > M(N).

Using Equation (4) and Lemma 8 we conclude that I(N) = 4P (dN , RN−1) + P (2dN −
2, RN−1) + I(N − 1). Simplifying this yields:

Theorem 9. I(N) = 4
∑N

i=1 P (di, Ri−1) +
∑N

i=1 P (2di − 2, Ri−1) = 4
∑N

i=1 (Si + Si−1) +
∑N

i=1 (2Si − Si−1 − 1) = 6SN + 9
∑N−1

i=1 Si − N.

Using Lemma 2 an upper bound for I(N) is I(N) < 6SN + 9SN = 15SN .

4.3 GCD Computation

Let G(N) denote the working storage needed to compute the GCD of a, b ∈ RN [x]. In
lines 4,5,7,9,11 and 12 of algorithm IP GCD we use the working storage. We have G(N) =
S̄N +max(I(N), C(N), Q(N)). Lemma 8 states that I(N) > M(N) = C(N) = Q(N) hence

G(N) = S̄N + I(N) = SN + SN−1 + 6SN + 9
N−1∑

i=1

Si − N = 7SN + SN−1 + 9
N−1∑

i=1

Si − N.

Since I(N) < 15SN , we have an upper bound on G(N) :

Theorem 10. G(N) = SN + SN−1 + I(N) < SN + SN−1 + 15SN < 17SN .

Remark 11. The constants 6, 15 and 17 appearing in Theorems 6, 9 and 10 respectively,
are not the best possible. One can reduce the constant 6 for algorithm IP MUL if one also
uses the space in the output array C for working storage. We did not do this because it
complicates the description of the algorithm and yields no significant performance gain.

9

5 Benchmarks

We have compared our C library with the Magma (see [1]) computer algebra system. The
results are reported in Table 1. For our benchmarks we used p = 3037000453, two field
extensions with minimal polynomials m̄1 and m̄2 of varying degrees d1 and d2 but with d =
d1×d2 = 60 constant so that we may compare the overhead for varying d1. We choose three
polynomials a, b, g of the same degree dx in x with coefficients chosen from R at random.
The data in the fifth and sixth columns are the times (in CPU seconds) for computing both
f1 = a × g and f2 = b × g using IP MUL and Magma version 2.15 respectively. Similarly,
the data in the seventh and eighth columns are the times for computing both quo(f1, g) and
quo(f2, g) using IP REM and Magma respectively. Finally the data in the ninth and tenth
columns are the times for computing gcd(f1, f2) using IP GCD and Magma respectively.
The data in the column labeled #fi is the number of terms in f1 and f2.

Table 1: Timings in CPU seconds on an AMD Opteron 254 CPU running at 2.8 GHz

d1 d2 dx #fi IP MUL MAG MUL IP REM MAG REM IP GCD MAG GCD
2 30 40 2460 0.124 0.050 0.123 0.09 0.384 2.26
3 20 40 2460 0.108 0.054 0.106 0.11 0.340 2.35
4 15 40 2460 0.106 0.056 0.106 0.10 0.327 2.39
6 10 40 2460 0.106 0.121 0.105 0.14 0.328 5.44
10 6 40 2460 0.100 0.093 0.100 0.37 0.303 7.84
15 4 40 2460 0.097 0.055 0.095 0.17 0.283 3.27
20 3 40 2460 0.092 0.046 0.091 0.14 0.267 2.54
30 2 40 2460 0.087 0.038 0.087 0.10 0.242 1.85
2 30 80 4860 0.477 0.115 0.478 0.27 1.449 9.41
3 20 80 4860 0.407 0.127 0.409 0.27 1.304 9.68
4 15 80 4860 0.404 0.132 0.406 0.28 1.253 9.98
6 10 80 4860 0.398 0.253 0.400 0.35 1.234 22.01
10 6 80 4860 0.380 0.197 0.381 0.86 1.151 31.57
15 4 80 4860 0.365 0.127 0.364 0.40 1.081 13.49
20 3 80 4860 0.353 0.109 0.353 0.33 1.030 10.59
30 2 80 4860 0.336 0.086 0.337 0.26 0.932 7.83

The timings in Table 1 for in-place routines show that as the degree dx doubles from
40 to 80, the time consistently goes up by a factor of 4 indicating that the underlying
algorithms are all quadratic in dx. This is not the case for Magma because Magma is
using a sub-quadratic algorithm for multiplication. We describe the algorithm used by
Magma ([9]) briefly. To multiply two polynomials a, b ∈ Lp[x] Magma first multiplies
a and b as polynomials in Z[x, z1, . . . , zr]. It then reduces their product modulo the ideal
〈m1, . . . ,mr, p〉. To multiply in Z[x, z1, . . . , zr], Magma evaluates each variable successively,
beginning with zr then ending with x, at integers kr, . . . , k1, k0 which are powers of the
base of the integer representation which are sufficiently large so that that the product of
the two polynomials a(x, z1, . . . , zr) × b(x, z1, . . . , zr) can be recovered from the product of
the two (very) large integers a(k0, k1, . . . , kr) × b(k0, k1, . . . , kr). The reason to evaluate at
a power of the integer base is so that evaluation and recovery can be done in linear time.
In this way polynomial multiplication in Z[x, zr, . . . , z1] is reduced to a single (very) large
integer multiplication which is done using the FFT. This, note, may not be efficient if the
polynomials a(x, z1, . . . , zr) and b(x, z1, . . . , zr) are sparse.

10

Table 1 shows that our in-place GCD algorithm is a factor of 6 to 27 times faster than
Magma’s GCD algorithm. Since both algorithms use the Euclidean algorithm, this shows
that our in-place algorithms for arithmetic in Lp are efficient. This is the gain we sought
to achieve. The reader can observe that as d1 increases, the timings for IP MUL decrease
which shows there is still some overhead for α1 of low degree.

5.1 Optimizations in the implementation

In modular algorithms, multiplication in Zp needs to be coded carefully. This is because
hardware integer division (%p in C) is much slower than hardware integer multiplication.
One can use Peter Montgomery’s trick (see [8]) to replace all divisions by p by several
cheaper operations for an overall gain of typically a factor of 2. Instead, we use the following
scheme which replaces most divisions by p in the multiplication subroutine for Zp[x] by at
most one subtraction. We use a similar scheme for the division in Zp[x]. This makes GCD
computation in Lp[x] more efficient as well. We observed a gain of a factor of 5 on average
for the GCD computations in our benchmarks.

The following C code explains the idea. Suppose we have two polynomials a, b ∈ Zp[x]

where a =
∑da

i=0 aix
i and b =

∑db

j=0 bjx
j where ai, bj ∈ Zp. Suppose the coefficients ai

and bi are stored in two Arrays A and B indexed from 0 to da and 0 to db respectively.
We assume elements of Zp are stored as signed integers and an integer x in the range

−p2 < x < p2 fits in a machine word. The following computes c = a × b =
∑da+db

k=0 ckxk.

M = p*p;

d_c = d_a+d_b;

for(k=0; k<=d_c; k++) {

t = 0;

for(i=max(0,k-d_b); i <= min(k,d_a); i++)

{

if(t<0); else t = t-M;

t = t+A[i]*B[k-i];

}

t = t % p;

if(t<0) t = t+p;

C[k] = t;

}

The trick here is to put t in the range −p2 < t ≤ 0 by subtracting p2 from it when it
is positive so that we can add the product of two integers 0 ≤ ai, bk−i < p to t without
overflow. Thus the number of divisions by p is linear in dc, the degree of the product. One
can further reduce the number of divisions by p. In our implementation, when multiplying
elements a, b ∈ Zp[z][x]/ 〈m(z)〉 we multiply a, b ∈ Zp[z][x] without division by p before
dividing by m(z).

Note that the statement if(t<0); else t = t-M; is done this way rather than the
more obvious if(t>0) t = t-M; because it is faster. The reason is that t < 0 holds
about 75% of the time and the code generated by the newer compilers is optimized for the
case the condition of an if statement is true. If one codes the if statement using if(t>0

) t = t-M; instead, we observe a loss of a factor of 2.6 on an Intel Core i7, 2.3 on an Intel
Core 2 duo, and 2.2 on an AMD Opteron for the above code.

11

6 Concluding Remarks

Our C library of in-place routines has been integrated into Maple 14 for use in the GCD algo-
rithms in [11] and [4]. These algorithms compute GCDs of polynomials in K[x1, x2, . . . , xn]
over an algebraic function field K in parameters t1, t2, . . . , tk by evaluating the parameters
and variables except x1 and using rational function interpolation to recover the GCD. This
results in many GCD computations in Lp[x1]. In many applications, K has field extensions
of low degree, often quadratic or cubic. Our C library is available on our website at

http://www.cecm.sfu.ca/CAG/code/ASCM09/inplace.c

The code used to generate the Magma timings in Section 5 is available in the file
http://www.cecm.sfu.ca/CAG/code/ASCM09/magma.txt

In [6], Xin, Moreno Maza and Schost develop asymptotically fast algorithms for mul-
tiplication in Lp based on the FFT and use their algorithms to implement the Euclidean
algorithm in Lp[x] for comparison with Magma and Maple. The authors obtain a speedup
for L of sufficiently large degree d. Our results in this paper are complementary in that we
sought to improve arithmetic when L has relatively low degree.

Acknowledgments

This work was supported by the MITACS NCE of Canada.

References and Notes

[1] Wieb Bosma, John J. Cannon, and Catherine Playoust. The Magma algebra system. I. The
user language. J. Symbolic Comput., 24(3–4):235–266, 1997.

[2] Mark J. Encarnación. Computing gcds of polynomials over algebraic number fields. J. Symb.

Comp., 20(3):299–313, 1995.

[3] Richard Fateman. Comparing the speed of programs for sparse polynomial multiplication.
SIGSAM Bulletin, 37(1):4–15, ACM Press, 2003.

[4] S. M. M. Javadi and M. B. Monagan. A sparse modular gcd algorithm for polynomials over
algebraic function fields. Proceedings of ISSAC ’07, pp. 187–194, ACM Press, 2007.

[5] Lars Langemyr and Scott McCallum. The computation of polynomial greatest common divi-
sors over an algebraic number field. J. Symbolic Comput., 8(5):429–448, 1989.

[6] Xin Li, Marc Moreno Maza, and Éric Schost. Fast arithmetic for triangular sets: from theory
to practice. Proceedings of ISSAC ’07, pp. 269–276, ACM Press, 2007.

[7] Michael B. Monagan. In-place arithmetic for polynomials over Zn. Proceedings of DISCO ’92,
pp. 22–34, Springer-Verlag, 1993.

[8] Peter Montgomery. Modular multiplication without trial division. Math. Comp., 44(70):519–
521, 1985.

[9] Allan Steel. Multiplication in Lp[x] in Magma. Private communication, 2009.

[10] Mark van Hoeij and Michael Monagan. A modular gcd algorithm over number fields presented
with multiple extensions. Proceedings of ISSAC ’02, ACM Press, pp.109–116, 2002.

[11] Mark van Hoeij and Michael Monagan. Algorithms for polynomial gcd computation over
algebraic function fields. Proceedings of ISSAC ’04, ACM Press, pp. 297–304, 2004.

12

