The F4 and F5 Algorithms for Computing Gröbner Bases

Roman Pearce Simon Fraser University

November 18th, 2005

Introduction: Gröbner Bases

- Gröbner bases are a type of canonical basis for polynomial system
- They have a nice division property w.r.t. a *monomial order*
 - *lexicographic* (dictionary) order: used for elimination
 - graded (total degree) orders: fast!

Example
$$\{x^2 + y - z, 2xy - z, xz - 5\} \subset \mathbb{Q}[x, y, z]$$

• with graded lex order (x > y > z): $\{z^2 - 10y, yz + 5x - 10y, 2y^2 + 10x - 20y + 5, xz - 5, 2xy - z, x^2 + y - z\}$

• with lex order
$$(x > y > z)$$
:
 $\{z^4 - 10z^3 + 250, 10y - z^2, 50x + z^3 - 10z^2\}$

Timeline

- (1965) Buchberger's original algorithm
- (1979) Improved versions of Buchberger's algorithm
- (1988) Nearly optimal version of Buchberger's algorithm
- (1993) FGLM conversion method (f.d. systems only)
- (1997) Gröbner Walk conversion method
- (1999) F4 algorithm
- (2002) F5 algorithm

Buchberger's Algorithm

• select pairs of polynomials and compute a *syzygy*:

$$(x^2 - 1, xy - 1) \longrightarrow y(x^2 - 1) - x(xy - 1) = x - y$$

- reduce each syzygy using the current basis
- if non-zero, add the result to the current basis (\rightarrow more syzygies)

Improvements:

- many syzygies are redundant (*criterion*)
- what syzygies should be reduced first? (*selection strategy*)
- some basis elements may become redundant (*minimality*)

Reductions in the Buchberger Algorithm

• like univariate division, but some terms may not reduce

Example Divide $x^2y + y^3$ by $G = [x^2 + y, xy^2 - xy, y^3 - 1]$ (grlex x > y) $x^2y + y^3 \rightarrow [x^2y - yG_1] + y^3 = y^3 - y^2$ $\rightarrow [y^3 - G_3] - y^2 = -y^2 + 1$

- most time spent reducing syzygies to zero (wasted effort)
- equivalent to a matrix triangularization

	$ x^2y $	y^{3}	y^2	1			x^2y	y^{3}	y^2	1
S ₁₂	1	1	0	0	\longrightarrow	S ₁₂	1	1	0	0
$-yG_1$	1	0	1	0		$-yG_1$	0	1	-1	0
$-G_3$	0	1	0	-1		$-G_3$	0	0	1	-1

The F4 Algorithm - 1

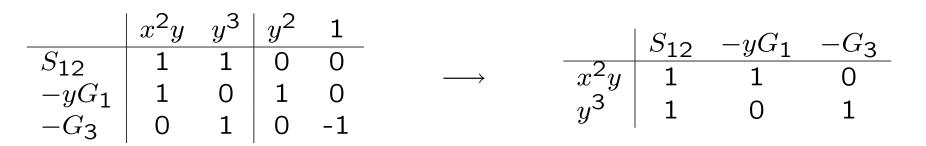
- put multiple syzygies into one matrix
- cost of all reductions decreases by two orders of magnitude
- exploit strategies for sparse linear algebra
- (!) modular algorithm: reduce mod p, extract only new rows

The F4 Algorithm - 2

- put multiple syzygies into one matrix
- cost of all reductions decreases by two orders of magnitude
- exploit strategies for sparse linear algebra
- (!) modular algorithm: reduce mod p, extract only new rows
- matrices are big, with many more columns than rows
- must do (slower) multi-modular lifting
- unable to easily express Gröbner basis in terms of generators

More Efficient Reductions

Conversion to Nullspace Problem:



Conversion to Linear System:

- row reduce mod p to determine dependent columns
- stick those columns in the right hand side
- use p-adic lifting to recover solution
- solutions are syzygies: can express GB in terms of input

Reductions to Zero

Recall: solution of $AX = B \rightarrow$ nullspace elements \rightarrow new polynomials

Problem: what if the "new polynomial" is zero ?

• redundant rows in the original matrix (mg_i)

Reductions to Zero

Recall: solution of $AX = B \rightarrow$ nullspace elements \rightarrow new polynomials

Problem: what if the "new polynomial" is zero ?

• redundant rows in the original matrix (mg_i)

Faugère's insight:

• $m \in \langle g_1, \ldots, g_{i-1} \rangle$

F5 Algorithm

• compute Gröbner bases incrementally:

```
\{f_1\}, \{f_1, f_2\}, \{f_1, f_2, f_3\}, \ldots
```

- no Buchberger criterion, account only for:
 - 1) $f_i f_j f_j f_i = 0$ (trivial syzygies)
 - 2) $m \in \langle f_1, \ldots, f_{i-1} \rangle$
- assigns a *signature* to leading monomials to efficiently check 2)
- no reductions to zero if $f_i \not\equiv 0 \mod \langle f_1, \dots, f_{i-1} \rangle$ (regular sequence)