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A B S T R A C T

We examine critically the solutions for the hydrogen atom in momentum space. We demonstrate that the approach by Podolsky and Pauling (Physical Review 1928,
34, 109) to such a transformation was inconsistent with Podolsky's preceding analysis (Physical Review 1928, 32, 812) and yields functions that fail to utilize
quantum-mechanically acceptable variables in momentum space. This practice arose from the commonplace belief that functions in momentum space are Fourier
transforms of those in position space. We show that proper quantum–mechanical functions are obtainable through presentation of a clear definition of momentum
space based on DeWitt's transformation (Physical Review 1952, 85, 653). This method allows us to obtain proper wave functions for the hydrogen atom in mo-
mentum space.

1. Introduction

In this article we aim to examine the other half of wave mechanics.
The establishment of a wave function, which contains all information
about a system consistent with the uncertainty principle, is one goal of
quantum theory. This wave function is generally obtained on solving
the Schroedinger equation in terms of position variables in space of n
dimensions; n is the number of degrees of freedom available to the
system. This space is termed position space or the position re-
presentation. There is, however, an alternative representation, which is
most readily understood in terms of the commutation relations between
the position variables (qn) and the corresponding momentum variables
(pn). The fact that these variables are conjugate to each other implies an
equivalence between the wave function of the system in terms of the
position variables and that in terms of the momentum variables. Wave
functions in the latter space, the momentum space or momentum re-
presentation, also contain all information about a system consistent
with the uncertainty principle, but this momentum space has been, by
and large, neglected. The reasons for this practice are varied, but one
glaring reason is that a proper definition of momentum space is lacking.
Many scientists state that the connection between momentum space
and position space is expressed in terms of a Fourier transform. Except
in the case of Cartesian coordinates, this statement is incorrect; this
misunderstanding has led many scientists in the wrong direction, and
has led to many inconsistencies. Our intention here is to explore some
inconsistencies and to develop a definition of momentum space that is

quantum-mechanically consistent, so as to enable an establishment of
procedures to solve the Schroedinger equation in momentum space. We
then apply these ideas directly to a solution of the hydrogen atom in
momentum space. Some advantages and disadvantages of exploring this
half of wave mechanics are also examined.

The foundations of quantum mechanics were established nearly a
century ago. The amplitude functions, which are algebraic solutions of
the time-independent Schroedinger equation, are expressed explicitly in
terms of either spatial coordinates or momentum variables. These so-
lutions in position space were originally obtained for several simple but
important systems such as the harmonic oscillator (see Appendix A) and
the hydrogen atom (see below and Appendix B); these results laid the
foundation for the extension of wave mechanics and provided a basis of
our current knowledge and treatment of atomic and molecular struc-
ture. Much of that work involved obtaining valid functions that are
solutions to the differential equation and the matrix formulations of the
quantum theory. The fact that the momentum representation is totally
equivalent to the position representation should presage considerable
attention to the momentum functions, for the possibility that they could
provide some advantage over functions in position space for various
problems. This promise has not, however, been realised. We contend
that part of the reason for this imbalance lies in the difficulties in es-
tablishing the proper momentum variables as analogues of the position
coordinates. These difficulties stem from various misconceptions about
the nature of the relations between the two representations, and the
transformations used to generate them. For the particular case of the
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hydrogen atom, we investigate these difficulties in this article.
We first trace the development of the choice and use of variables

used in determining the momentum analogues of the variables in po-
sition space. We explore the difficulties encountered and the mis-
understandings that caused these problems. We then present a proper
definition of the momentum representation, and illustrate its applica-
tion to the foundational problem of the hydrogen, or one-electron,
atom.

2. Conjugate variables in multiple dimensions

In the particular case of a system involving only one spatial di-
mension, the displacement q and momentum p/h are directly conjugate
variables. For a system in three spatial dimensions other than for
Cartesian coordinates, a problem of the conjugacy of variables arises.
Because the commutator between displacement q and momentum p in
one spatial dimension in assumed Cartesian coordinates, i.e. [p,
q] = pq − qp, evaluates not to zero but to ih, products such as p2 and
q−1p q p are inequivalent. For variables (q1, q2, …, qn) in position space
in any set of n dimensions, the volume element is dV = g(q1, q2, …, qn)
dq1 dq2 … dqn, in which g(q1, q2, …qn) is the Jacobian of the trans-
formation between variables in the two sets. To each variable (q1, q2,
…, qn) in position space there is a corresponding variable (p1, p2, …, pn)
in momentum space such that each momentum variable is chosen
conjugate to a corresponding position space variable: [pk, qk] = ih.

In 1928, Podolsky [1] derived the quantum-mechanically correct
form of the Hamiltonian for conservative systems. In that work, he
began with the Schroedinger equation in Cartesian coordinates, and
converted it to spherical polar coordinates. He then utilized the trans-
formation that, for each momentum variable pk (=pr, θp, φp), there
exists an expression pk = −i ( / qk). He showed that, with such a
transformation, an equation is obtained that differs from the correct
Hamiltonian, and that hence cannot truly represent the momentum
equation. To overcome this impediment, he introduced an arbitrary n-
dimensional coordinate transformation such that the element of length
is

=
= =

ds g du du
r

n

s

n

rs r s
2

1 1 (1)

in which =g grs sr are elements of the Jacobean of transformation g. He
introduced also the notation grs = (minor of grs)/g. Letting V be the
potential energy, he then obtained the quantum-mechanically correct
form of the Hamiltonian as
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This formulation preserves the presumption that pk = −i h ( / qk).
When the representation for the position space is in Cartesian co-
ordinates, g = 1, as for the harmonic oscillator presented in Appendix
A.

3. Derivation of Podolsky and Pauling for the one-electron atom

In 1929, Podolsky and Pauling [2] derived what they claimed to be
a momentum distribution for hydrogen-like atoms. They abandoned
Podolsky's promising approach of adopting a quantum-mechanically
correct Hamiltonian in favor of the utilization of a method resembling a
Fourier transform. They chose a momentum coordinate system (pr, θp,
ϕp) in which pr represents the magnitude of the total momentum as pr =
(px2 + py2 + pz2)½; θp and ϕp denote angles that specify the orientation
of the momentum vector relative to the Cartesian coordinate axes. They
then obtained momentum eigenfunctions by means of a transformation
of amplitude functions in position space to a momentum space con-
sisting of variables (pr, θp, ϕp). The resulting functions became products
of spherical harmonics of (θp, ϕp), i.e. Ym

ℓ (θp, ϕp) = Pmℓ(θp) eim p, with

Gegenbauer polynomials Cr
v(pr) in the radial component. In the de-

tailed description that follows, we apply a consistent notation, even
though somewhat different from that of the original authors.

In three spatial dimensions, the Fourier transform of amplitude
function x y z( , , )n l m, , in Cartesian coordinates to a corresponding am-
plitude function in momentum variable p with components (px, py, pz) is

=
+

+ +

p p p
h

x y z e dxdydz( , , ) 1 ( , , )n l m x y z n l m
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h
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Podolsky and Pauling [2] applied standard relations between Car-
tesian and spherical polar coordinates,

= = =x r y r z rsin ( ) cos ( ), sin( ) sin ( ), cos( ) (4)

and assumed the analogous relations, despite Podolsky’s previous re-
cognition of the necessity of conjugate relations between the coordinate
and momentum variables [1]. Instead they chose for the components of
linear momentum:

= = =p p sin( )cos( ), p p sin( )sin( ), p p cos( )x r p p y r p p z r p (5)

According to this equation for the transformation between co-
ordinate space with ψn,l,m(r, θ, ϕ) = Rn,l(r) l,m(θ) φm(ϕ) and momentum
space,
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Podolsky and Pauling proceeded to generate an expression for am-
plitude functions in their presumed momentum space of an atom of
atomic number Z with one electron of this form,
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in which appear associated Legendre functions P (l, |m|, cos(θp)) of the
first kind and Gegenbauer [or ultraspherical functions C (n − l − 1,
l + 1, …). The atomic unit of momentum denoted p0 is defined as
p0 = h/a0 in terms of Bohr radius a0. For all allowed values of quantum
numbers n for energy and l and m for angular momentum, and for
atomic number Z, this amplitude function is fully normalized according
to this integral:

=p p p d dp( , , ) ( , , ) sin( ) 1n l m r p p n l m r p p r p p r
0 0 0

2

, , , ,
2

(8)

With this amplitude function Podolsky and Pauling calculated both
the probability of an electron having momentum between pr and
pr + dpr and the expectation value < pr2 > ; as these quantities have no
angular dependence, there is no test of the angular dependence of their
momentum function involving θp and ϕp. The expectation value of
momentum squared, valid for all values of l, m:

=p Z p n/r
2 2

0
2 2 (9)

agrees with the corresponding result in coordinate space. A textbook by
Bransden and Joachain [3] presents a similar derivation of the radial
dependence of the amplitude function, again yielding Gegenbauer
polynomials, but ignores the angular dependence.
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Hylleraas [4] solved a differential equation to obtain similar results.
He recognized that radial variable r in position space is expressed as a
differential operator in momentum space, assumed to be i h d/dpr,

l l+ + +
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2 2 8 0

r
r r r r

r

r
r

2 2
2

2 2
2

(10)

containing electronic mass m, energy E and Rydberg constant R. With
the appropriate substitution

= +p mE2 (1 )
1r (11)

the resulting equation had solutions of Gegenbauer polynomials
l

l+C ( )n 1
1 , the same as obtained by Podolsky and Pauling. Hylleraas

converted those Gegenbauer polynomials to Legendre functions so as to
generate a product of Legendre functions of two variables. The equa-
tions for θp and ϕp were treated in the same manner. The final result,
not normalized, is expressible as
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In contrast, Fock [5] adopted an integral-equation approach for the
eigenfunctions of the total momentum variable (pr). He recognized that,
if r had an analogue −i h d/dpr in momentum space, the inverse op-
erator (1/r) associated with the Coulombic potential energy should be
expressed as an integral operator. This treatment led to the integral
equation

=p p mZe
h
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r r

r r
r

2
2

2 2 (13)

for the solution of which he resorted to a four-dimensional hyper-
spherical polar-coordinate scheme. He then obtained:

= n Y( , , ) ( , ) ( , )n l m l l m, , , (14)

Therein angles α, θ, ϕ are spherical coordinates of a point on a
hypersphere, but at the same time angles θ and ϕ are ordinary spherical
coordinates characterizing the momentum direction. On projection
back to three-dimensional space, he apparently recovered the results of
Hylleraas. The radial function ∏l(n, α) that appears as a product with
the spherical harmonics, Yl,m(θ,ϕ), as in preceding work, was not ela-
borated explicitly.

4. Deficiencies of the derivation by Podolsky and Pauling

The above approach presents several important difficulties. We note
first that variable pr represents the magnitude of the total momentum,
and is not chosen conjugate to any variable in position space; no valid
commutation relation is given for pr. Uncertainty relations with a cor-
responding coordinate in position space are not presented. Although pr
has units of momentum, and represents a measurable quantity, it re-
presents no proper quantum–mechanical variable that can serve as a
foundation of a true momentum representation; the reason is that op-
erator pr = −ih / r is not Hermitian [6]. The supposition that mo-
mentum space consists of functions that are the Fourier transform of a
set of variables (q1, q2, … qn) in coordinate space implies a definition of
the momentum representation as (p1, p2,…pn) in which pk = −ih / qk
for every k. Dirac showed that, for example, with spherical polar co-
ordinates this definition leads to a recognition that pr is not real [7]. To
find an expression that is real, the canonical coordinate must be written
as pr = −ih ( / q r1/r ). The correct momentum space can thus not

be connected to position space, in other than Cartesian coordinates,
with a simple Fourier transform.

The angular-momentum variables (θp, ϕp) present additional diffi-
culties; they were defined in terms of “spatial polar coordinates of the
total momentum vector referred to the same axes as the coordinates (r,
θ, ϕ) of the electron” [2]. These variables should hence be regarded as
properties of position space, rather than being termed variables in
momentum space; they are defined as the angles connecting the radial
momentum vector pr to the Cartesian spatial axes (x, y, z). No com-
mutation relations between the momentum variables (θp, ϕp) and the
corresponding position variables (θ,ϕ) were presented, nor were valid
uncertainty relations derived. Furthermore, one can readily show that
the Fourier transform of the function eimϕp is a Dirac -function, not
eimϕp as given by Podolsky and Pauling. Similarly, the Fourier trans-
form of associated Legendre polynomials can be shown to be Bessel
functions to various integer and half-integer orders, not associated Le-
gendre polynomials of cosθp as given by Podolsky and Pauling. The
procedure of Podolsky and Pauling leads to the conclusion that, for the
angular parts, the wave functions in momentum space have a form
identical with that in wave functions in coordinate space. The only
Hamiltonian for which the wave functions in position and momentum
space have identical forms is that of the harmonic oscillator [See
Appendix A]. The inevitable conclusion is that, despite their claim,
Podolsky and Pauling failed to derive quantum-mechanically accep-
table eigenfunctions for the hydrogen atom in the momentum re-
presentation. Hylleraas and Fock, separately, adopted the angular parts
of position space for their variables in momentum space, and likewise
failed to derive their sought eigenfunctions in a form that is quantum-
mechanically acceptable.

5. Definition of momentum space

In Cartesian space, variables p, q range from [-∞,∞]. For a single
particle in one dimension, the Hamiltonian is typically written as

= +H p q p m V q( , ) /2 ( )2 (15)

in which μ is the mass of the particle and V(q) is the potential-energy
function. To convert this classical Hamiltonian function to a quan-
tum–mechanical operator, we express the momentum as an operator,

p th d dq/ (16)

We seek solutions of the resulting differential equation for the ei-
genvalues represented by E:

= E qH (q) ( ) (17)

Ψ(q)are the eigen functions, expressed as functions of the position
of the particle. One can easily show that a commutation expression
between the conjugate operators can be written

=p q ih[ , ] (18)

leading to an uncertainty relation of the form,

p q h1/2 (19)

The transformed functions in momentum space are connected to the
functions in position space through the transform:

=p S p q q dq( ) 1
2

( , ) ( ) (20)

Textbooks on quantum mechanics commonly state that this trans-
form is the Fourier transform [8] as exemplified for the harmonic os-
cillator (Appendix A), in which case we can write simply

=S p q e( , ) i qp( / ) (21)

As pointed out above, this relation is correct only for Cartesian
coordinates. For curvilinear coordinates, one must choose a transform
that preserves the proper conjugate relations between variables in
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momentum space and those in position space. The general form that
DeWitt [9] obtained holds for all transformations between a Cartesian
space (x1, x2, …xn) in n dimensions and an arbitrary coordinate system
(q1,q2…qn) such that volume element dV = dx1dx2…dxn is transformed
into dV = g dq1 dq2…dqn; here g is the Jacobian of the transformation
[10]. Under these circumstances, the most general transform between
amplitude functions q q( )n1 inposition space and amplitude functions

p p( )n1 in momentum space is

=p p S p p q q q q gdq dq( ) 1
2

( , ) ( )n n n n n1 1 1 1 1 (22)

in which

… … =S p p q q
g

e( , ) 1 q p
n n

i h
1 1

( / )

(23)

We take as the definition of n-dimensional momentum space that set
of n momentum variables (p1,p2,…pn), each chosen properly conjugate
to the corresponding variables (q1, q2, …qn) in position space. Due to
DeWitt's contributions to our understanding of this transformation, we
suggest calling this the DeWitt transformation. The correct Hermitian
form of each momentum space variable is then

+p i
q g

g
q

1
2k

k k (24)

6. The function for the hydrogen atom in momentum space

We proceed to develop an amplitude function for the hydrogen
atom in the momentum representation based on DeWitt's formulation of
momentum variables in spherical polar coordinates [8]. We consider
three momentum variables (pr, θp, ϕp), which must be chosen as con-
jugates to the corresponding position variables (r, θ, ϕ) [11]. As the
hydrogen atom is separable in the position representation, we trans-
form separately the radial equation for R(r) and the angular equations
for Θ(θ) and Φ(ϕ). In this product for the momentum functions

=p p( , , ) ( ) ( ) ( )r p p r p p (25)

the eigenfunctions in the momentum representation corresponding to R
(r) are called); the eigenfunctions in the momentum representation
corresponding to Θ (θ) and ϕ(ϕ) become β (θp) and ρ(ϕp), respectively.
Recalling that the eigenfunctions of angular momentum operators L2

and Lz in position space are spherical harmonics, Yl,m(θ,φ), with ei-
genvalues l (l + 1) and m, respectively, the corresponding eigenfunc-
tions in the momentum representation must satisfy these expressions:

= +L l l h( ) ( ) ( 1) ( ) ( )p p p p
2 2 (26)

=L mh( ) ( )z p p (27)

We examine first momentum space variable pr, which is conjugate
to position space radial variable r. The value of g for the transformation
from R(r) to α (pr) is r2. As suggested in Eq. (24) above, we obtain the
real conjugate momentum variable to be expressed as [7]

+p ih r(( / ) 1/r)r (28)

The corresponding expressions for the position space variables are

r ih r i h f p dp( / ) ( ) I
pr

r r
1

(29)

In the latter expression for r−1 the path of integration is along the
real axis from −∞ to pr. The radial part of the Hamiltonian is written in
position space as

l l= + + +H
µ r r r r

Ze
r2

2 ( 1
4

2 2

2 2

2

0 (30)

in which l is the quantum number for total angular momentum, ob-
tained from the solution of the angular problem. With the radial

eigenfunction in momentum space as α (pr), we write

=H p E p( ) ( )r r (31)

On substituting, we obtain the following integral equation for the
momentum representation:

+ + + =I Ip µ l l µZe p( 2 E ( 1) 2 ) ( ) 0r r
2 2 2 (32)

This second-order integral equation in pr is readily solved for α (pr)
with standard techniques [12]. On taking the second derivative of
equation (32) to eliminate the integral operators and solving the re-
sulting rather simple differential equation (see Eqs. (11)–(15) of Ref.
[11]), this procedure yields this general result for all n and l.
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This function α n,l(pr) is fully normalised for all n,l such that:

=p p dp( ) ( ) 1n l r n l r r, , (34)

This function α n,l(pr) is also generated directly with this quasi-
Fourier or DeWitt transform,

=p R r e rdr( ) ( )n l r
irp

, 0
r (35)

in which factor r in the integrand results from the appropriate
Jacobean of the transformation. In the interest of space, we present in
Appendix B the solution to the parts of the momentum functions cor-
responding to the angular parts in coordinate space. In brief, the
functions β l,m(θp) are found to be sums of Bessel functions of half-in-
teger order; the function ( )p is represented as a complex exponential
function.

Although these functions α n,l(pr) and β l,m(θp) seem complicated, we
present a few amplitude functions χn,l,m(pr, θp, ϕp) for hydrogen in the
momentum representation to illustrate the simplicity of these results,
recalling that the total functions are products as defined in Eq. (27). For
n = 1 and 2 we obtain these expressions, which are fully normalised.
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Expectation values of observable quantities are readily calculated
with these amplitude functions. For instance, for functions α n,l(pr) with
l = 0, the calculations yield < pr > = 0, < pr2 > = p0

2/n2. Expectation
values < rj > calculated with α n,l(pr) reproduce exactly the corre-
sponding values calculated with R(r) in coordinate space.

7. Discussion

We present some graphical properties of the quantum-mechanically
correct amplitude functions in momentum space. Fig. 1 presents the
squares of the amplitude functions of pr according to Eq. (33). In con-
trast to the radial eigenfunctions in space coordinates (r, θ, ϕ), these
functions become narrower as n increases. Whereas the radial functions
(not shown) of Podolsky and Pauling [2] have n − 1 nodes along the
momentum axis between pr = 0 and ∞ at which the squared radial
momentum equals zero, the functions of Lombardi [11] lack such
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nodes. Both kinetic energy (relative to the centre of mass), which is
proportional to the squared momentum, and potential energy vary
continuously; their sum as the total energy of the hydrogen atom is
subject to discrete values.

Fig. 2 shows the real parts of functions β l,0(θp) for l = 0,1,2, which
are oscillatory curves with amplitudes decaying as θp increases across
its domain 0 to ∞; the corresponding curves for the imaginary parts are
similar in each case. The squares of functions β l,0(θp) show that the
oscillations of these functions decay rapidly with increasing θp.

Fig. 3 shows the variation of ρ m(ϕp)2 with ϕp for m = − 1, 0, 1,
which reveals the resemblance of these curves to the squares of sinc
functions, of form sin(x)/x.

Fig. 4 displays a surface of | χ 1,0,0(pr, θp, ϕp)|2 = | α 1,0(pr) β 0,0(θp)
ρ 0(ϕp)|2 = 0.001 with pr in unit p0. A sequence of figures resembling

prolate spheroids occurs along both axes θp and ϕp, with sizes gradually
decreasing away from the origin; the major axis of each ellipsoid is
parallel to axis pr.

Fig. 5 shows an analogous surface of |χ 2,1,0(pr, θp, ϕp)|2 = 0.001
with pr in unit p0, which exhibits two columns of spheroids, one on
either side of axis θp and parallel to that axis, and subsidiary spheroids
gradually contracting in four other columns. Surfaces of |χ2,0,0(pr, θp,

Fig. 1. Squared radial momentum | α n,0(pr)|2 as a function of pr/p0 from − 3 to
3 for states with n = 1 (red), n = 2 (blue), n = 3 (green).

Fig. 2. Real parts of functions β l,0(θp) for l = 0 (red), l = 1 (blue), l = 2 (green)
vs θp from 0 to 25.

Fig. 3. Plots of ρ m(ϕp)2 as a function of −5 ≤ ϕp ≤ 5for m = 0 (red), m = 1
(blue), m = −1 (green).

Fig. 4. Surface of |χ1,0,0(pr, θp, ϕp)|2 = 0.001 with pr in unit p0.
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ϕp)|2 and |χ 2,1,1(pr, θp, ϕp)|2 resemble that of |χ 1,0,0(pr, θp, ϕp)|2 except
with additional small ellipsoids in subsidiary columns. This behaviour
is expected on the basis of β l,0(θp) in Fig. 2 and ρm(ϕp) in Fig. 3 that
exhibit an oscillatory character. These shapes indicate that regions of
momentum space in which the probability of the momentum function,
indicated by its square, has a significant magnitude exist over appre-
ciable ranges of θp and ϕp according to the oscillatory nature of both β
l,m(θp) and ρ m(ϕp) as shown in Figs. 2 and 3.

8. Conclusion

A great mystery of this rather complicated history of the mo-
mentum-space formulation of the hydrogen atom is that Podolsky, in
his 1928 paper [1], was on the verge of obtaining the correct solution.
He derived a correct expression for the Hamiltonian (see Eq. (2)), and,
with the proper definition of the momentum variables, could easily
have solved the eigenvalue problem with simple differential or integral
equations. Instead, discarding this promising approach, the very next
year he collaborated with Pauling to attempt a direct transform of the
solution in position space [2]; they did not even cite Podolsky’s pre-
vious article [1]. No attempt was made to define the momentum-space
variables in terms of the appropriate position variables, despite the fact
that it was well known, for instance, from Weyl's work [13] cited by
Podolsky and Pauling [2], that they should be related by appropriate
commutation relations. Nor was any account taken of the required
uncertainty relations between position and momentum. Although their
results for the radial momentum function, expressed as sums of Ge-
genbauer functions, yielded a representation in terms of a momentum
variable, the radial momentum variable was not chosen properly con-
jugate to position variable r. Regarding the angular variables, a long
and rather convoluted derivation yielded eigenfunctions of which the
forms were identical to those of the position eigenfunctions, despite the
fact that the βl,m functions (see Appendix B, Eqs. (B9) and (B10)) are the
quasi-Fourier transform of the associated Legendre polynomials. No-
body seemed to notice; both Hylleraas [4] and Fock [5] accepted these
results uncritically. Even today, the functions of Podolsky and Pauling
are taught in courses on quantum physics [3] as analogues in the mo-
mentum representation of the functions of the hydrogen atom in posi-
tion space. It is also taught that momentum space functions are the
Fourier transform of position space, which is true only for Cartesian
coordinates.

In this article our purpose is to place our understanding of mo-
mentum space on a firm foundation. We call attention to the problems
associated with the conventional approach of Podolsky and Pauling [2],
and the misunderstandings that they have engendered. We point in-
stead to an article by one of us [11] in which care was taken to ensure
the proper choice of momentum-space variables for solutions to the
differential and integral equations for the amplitude function of the
hydrogen atom. We applied the formulation of DeWitt [9] to obtain a
correct transformation of the functions. A transformation of amplitude
functions from paraboloidal coordinates to the corresponding mo-
mentum representation [14] also conforms to DeWitt's formulation. The
solutions for the hydrogen atom in position space form the basis for an
understanding of much of atomic and molecular physics. As we de-
monstrate above, the resulting functions in momentum space have
simple forms and are readily subject to derivatives and integrals, in
calculations of expectation values or otherwise.

There are many problems in atomic and molecular physics that
might benefit from an understanding of the correct functions in mo-
mentum space. There is a vast literature invoking various experimental
techniques such as Compton scattering and (e, 2e) scattering [15,16].
The latter technique is a form of coincidence spectroscopy in which an
electron collides with a target molecule or atom; the cross section for
ionization is measured as a function of the momenta of the incident and
two scattered electrons. Despite the difficulties with the momentum
distribution obtained by Podolsky and Pauling, excellent fits have been
obtained for the experimental results in hydrogen [17]. Satisfactory
results have also been observed in noble gases [18]. One reason is that
in their theory the angular functions are expressed in terms of variables
in position space. As discussed in section 4 above, we treated this
condition as disqualifying their claim to be a true momentum re-
presentation, but it appears useful for a purpose of comparison of the
results with (e,2e) spectra with the same angular coordinates applied,
enabling direct observation of the total momentum distribution of Po-
dolsky and Pauling. To investigate the applicability of our results in an
interpretation of electron-scattering experiments would be of con-
siderable interest.

Further theoretical work has been undertaken using the momentum
functions of Podolsky and Pauling to examine the momentum analo-
gues of Hartree-Fock position space functions [19], as well as extension
to molecular systems [20]. To our knowledge, no attempt has been
made to explore the applicability of the momentum functions deli-
neated here (see Eq. (33) and Appendix B) or previously [11]. Once
again comparison of the two interpretations of momentum space would
be definitely of interest.

In a comprehensive review, Thakkar [21] discussed much experi-
mental and theoretical work in this field. Most pertinent to the dis-
cussion presented here, Thakkar obtained the radial momentum func-
tions of Podolsky and Pauling as a Hankel transformation [22] over
Bessel functions of half-integer order. Although this procedure pro-
duced a radial momentum distribution that seemed to fit the experi-
mental data satisfactorily, it relies on angular functions that, although
enabling those experimental fits, do not represent the properly chosen
momentum variables. To test the observations presented here, it will be
of considerable interest to develop experimental techniques to measure
and to test the wave functions resulting from the viewpoint of mo-
mentum variables introduced here.

It is safe to say that, of the wave functions of atoms and molecules
that have been obtained, the vast majority have been derived in posi-
tion space. The explosion of interest in harnessing modern computers,
coupled with advances in density-functional theory, have vastly in-
creased the wealth of data that we have available on atoms and mo-
lecules through quantum calculations. These powerful techniques have,
however, yet to be applied to momentum space as defined here. Even
for the hydrogen atom, discussed here, considerable simplification of
the expression and calculations of expectation values can be obtained.
For example, in position space, the radial functions are expressed in

Fig. 5. Surface of | χ 2,1,0(pr, θp, ϕp)|2 = 0.001 with pr in unit p0,
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terms of Laguerre polynomials, whereas the corresponding functions in
momentum space are simple sums over poles to varying orders. The
latter have the advantage that integrals over these functions can be
vastly simplified through the use of Cauchy’s theorem [23]. Another
simplification can occur on observing that the term for electro-
n–electron repulsion, encountered in all multi-electron problems, be-
comes a momentum exchange operator in momentum space. The im-
plications of this correspondence have yet to be explored. Furthermore,
when effective functions in momentum space are obtained with modern
techniques available through intensive computations, it is entirely

possible that a vast simplification of the functions might also be
achievable. It might also be considered of some value to understand the
other half of wave mechanics.
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Appendix A

The harmonic oscillator in momentum space

We introduce the concepts with a simple and prototypical system, a canonical linear harmonic oscillator of mass μ and force coefficient k; the
amplitude function from a direct solution of the time-independent Schroedinger equation in terms of displacement coordinate q is expressed ex-
plicitly in this form containing Hermite polynomials H, with Planck constant h,

=

+ ( )( )
q

kµ H n kµ q e

n h
( )

2 ( ) , ( )

!n
h

1/8 2 1/2

1/4

n q kµ
h

2 1
4

2

(A1)

whereas the amplitude function from a direct solution of the time-independent Schroedinger equation in terms of momentum p has this explicit form
of amplitude function, likewise containing Hermite polynomials,

=

+ ( )( )
p

H n kµ p e

n h kµ
( )

2 , ( )

! ( )n
h

p h kµ2 1/2 /

1/4 1/8

n2 1
4

2

(A2)

To convert amplitude functions ψn(q) in coordinate space into amplitude functions χn(p) in momentum space, one applies a Fourier transfor-
mation according to this relation,

=
( )

p q e
h

dq( ) ( )
n

n
iqp
h

2

(A3)

which takes into account that the variable conjugate to q is not p but p/h; the inverse Fourier transform, again with integration over all space of the
system, is expressed as

=
( )

q
p e

h
dp( )

( )
n

n

iqp
h

2

(A4)

An extra factor in appears in amplitude functions transformed from relative to solved directly from Schroedinger's equation above; for appli-
cations this phase factor is inconsequential. These results constitute proof that a Fourier transform of an amplitude function in position space
generates an amplitude function in momentum space, and vice versa. This symmetry between the solutions in position space and the solutions in
momentum space arises from the nature of the Hamiltonian function in which terms in both momentum and position contribute quadratically to the
energy. An observable property of a quantum–mechanical system is generated from an expectation value of the appropriate operator, such as o,
calculated as an integral over the domain of the applicable variable, such as q or p, as

= =o q o q dq o p o p dp( ) ( ) or ( ) ( )n n n
*

(A5)

Appendix B

The angular part of the hydrogen atom in momentum space

We direct attention to the momentum analogues of the angular functions in position space. To maintain the correct uncertainty relations, we
refine our selections of the conjugate variables, because the momentum variables corresponding to the angular variables (θp, ϕp) are Hermitian only
in a space of functions with periods π, 2 π, respectively. (θp, ϕp) are not, however, periodic; their domains are between 0 or −∞ and ∞. If we restrict
θ and φ to run over (0,π) and (0,2 π), it is difficult to obtain physically meaningful uncertainty relations. This difficulty has been treated by several
authors. [24–28] The problem becomes solvable on regarding variable θp to be conjugate to u (=cos(θ)) and ϕp conjugate to v (=eiφ) instead of (θ,
φ). We thus consider variables (pr, θp, ϕp) to be chosen conjugate to variables in the set (r, u, v) [11]. The square of the angular-momentum operator
in position space is rewritten as

= + +L u
u

u
u u

v
v

v
v

(1 ) 2 1
1

2 2
2

2 2
2

2

2 (B1)

We proceed with
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= =i
u

i
v

andp p (B2)

= =u i v iand
p p (B3)

Recalling that the angular eigenfunctions in the momentum representation are β (θp) ρ (ϕp),

= +L l l( ) ( ) ( 1) ( ) ( )p p p p
2 2 (B4)

Separating variables, we obtain an equation for ρ as a quasi-Fourier transform,

= e d( ) ( )m p m
i

0

2
p

(B5)

This equation has a complex solution,

=
+
+i e

m
( ) ( 1)

2 ( )m p

i m

p

(2 ( ))p

(B6)

of which the real part is simply a sinc function, and is normalised such that

=d( ) ( ) 1m p m p p (B7)

m must be an integer (positive, negative or zero).
With g = θp for the transformation from Θ(θ), we solve the equation for β on defining function ω such that

= = +u( ) (1 ) ( ) 1 ( )p l m p
p

l m p
2

,

2

2 ,
m

m

2

2

(B8)

Using the transformation of Eqs. (26) and (27) we find

+ + + + + = +m m m l l( 2( 1) ( 1) ( ) ( 1) ( )
p

p p
p

p l m p l m p
2

2

2
2

, ,
(B9)

The solution to this equation is expressed separately for l − |m| = 2 k, with k integer, so even,

= + ++
+

+

=

+ + + +

+ + + + +

+ + + + +
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(B10)

whereas for l − |m| = 2 k + 1, so an odd integer;

= + +
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+
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+
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These formulae that contain Bessel function J and Pochhammer function ph (expressed here as ph(x,y) but commonly written (x)y, equal to
Γ(x + y)/Γ(y) in either case) are fully normalised according to

=d( ) ( ) 1l m p l m p p
0

,
*

, (B12)

These solutions are also obtainable directly from this quasi-Fourier transform,

= +i x e dx( ) 1
2

( )l m p
ix

,
1

1
p

(B13)

in which x = cos (θ); the quantity +i 1
2

is a normalising factor.
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