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What are cyclotomic polynomials?

Definition 1. The nth cyclotomic polynomial, n(z), is the monic polynomial in Z[z] whose roots
are the ϕ(n) primitive roots of unity.

n(z) =
n−1
∏

d=0
gcd(d,n)=1

(1− zd)

Here are some basic properties of cyclotomic polynomials:

Lemma 1. If n > 1, then the coefficients of n(z) are palindromic. That is, for n(z) =
∑ϕ(n)

k=0
kzk, it

holds that j = ϕ(n)−j.

Lemma 2. If n is odd, then 2n(z) = n(−z).
Lemma 3. If p is a prime that divides n, then np(z) = n(zp).

Here are the first nine cyclotomic polynomials:

1(z) = z − 1 2(z) = z + 1 3(z) = z2 + z + 1
4(z) = z2 + 1 5(z) = z4 + z3 + z2 + z + 1 6(z) = z4 + z2 + 1
7(z) = z6 + z5 + z4 + z3 + z2 + z + 1 8(z) = z4 + 1 9(z) = z6 + z3 + 1

Observe that the coefficients are all 1 or −1. This holds for the first 104 cyclotomic polynomials; however,

105(z) = 1+ z+ z2+ z4− z5− z6−2z7− z8− z9+ z12+ z13+ z14+ z15+ z16+ z17− z20− z22− z24− z26−

z28 + z31 + z32 + z33 + z34 + z35 + z36 − z39 − z40 −2z41 − z42 − z43 + z46 + z47 + z48.

We say that 105(z) has height 2.

Definition 2. The height of n(z), A(n), is the maximum of the absolute values of the coefficients
of (n). That is, for n(z) =

∑ϕ(n)
k=0

kzk, A(n) = mx
1≤k≤ϕ(n)

|k|.

For cyclotomic polynomials n(z) that can be easily computed with most computer algebra systems, A(n)
is typically small. In fact, for n < 106, A(n) ≤ 60000. One might guess that A(n) is bounded by n. Erdõs,
however, proved the following:

Theorem 1. (Erdõs) [3] For all c > 0, there exists n such that A(n) > nc.

We aim is to answer the question: What is the smallest n such that A(n) is greater than n? n2?
n3? . . . . As far as we know, no one has previously calculated n(z) with n > A(n). Here is what we have
computed to date:

c min(n) for which A(n) > nc A(n)
1 1181895 14102773
2 43730115 31484567640915734941
3 416690995 80103182105128365570406901971
4 1880394945 64540997036010911566826446181523888971563

Table 1: Smallest n such that A(n) > nc, for 1 ≤ c ≤ 4.

To compute these results, we needed to develop faster algorithms to calculate n(z). We present two
such algorithms in this poster.

By lemmas 2 and 3, we know that if we introduce repeated factors or powers of 2 into n, that it will not
result in a cyclotomic polynomial n(z) of greater height; therefore, our algorithms are designed with
squarefree, odd n in mind.

The sparse power series algorithm

The following identity is well-known:

Lemma 4. [2] For n > 1, n(z) =
∏

d|n
(1− zd)μ(

n
d
) =









∏
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n
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)=1

(1− zd)
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÷
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
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n
d
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







,

where μ is the mobius function. (μ(n) = 1 for squarefree n with an even number of prime factors;
μ(n) = −1 for squarefree n with an odd number of prime factors; μ(n) = 0 for n not squarefree.)

For instance,

3·5·7(z) =
(1− z105)(1− z3)(1− z5)(1− z7)
(1− z35)(1− z21)(1− z15)(1− z)

Given a power series ƒ (z) =
∑∞

k=0
kzk, ƒ ∈ Z[[z]], we can retrieve the first m terms of the both the

product ƒ (z) · (1− zd) and quotient ƒ (z)
1−zd in O(m) operations in Z. This is seen in the algorithm described

hereafter:

Input: n = p1p2 · · ·pk, a product of k distinct primes.
Output: 0, 1, · · · , ϕ(n)

2 +1
, the first half of the coefficients of n(z)

M←
ϕ(n)

2
+ 1, (0)← 1, for 1 ≤  ≤ M do ()←− 0

for d|n, d > 0 do

if
n

d
has an even number of prime factors then

for k = 0 to M− d do M−k ← M−k − (M−k)−d (divide by 1− zd)
else

for k = d to M do k ← k + k−d (multiply by 1− zd)

Algorithm 1: Computing n(z) as a quotient of sparse power series

We only need to calculate half the terms of n(z), as the coefficients are palindromic by lemma 1. The
algorithm takes O(2kn) arithmetic operations in Z.

The "big prime" algorithm

Calculating cyclotomic polynomials of very large degree using algorithm 1 can bode problematic, as
oftentimes n(z) will not fit in main memory. In such a case, there are a variety of approaches to
calculate n(z).

One approach is to calculate n(z) modulo primes p sufficiently small that we can fit n(z) in memory
and write the images to hard disk. We then use Chinese remaindering to reconstruct the coefficients of
n(z) sequentially from the images of n(z) mod p. This minimizes the amount of computation we have
to do on the hard disk.

For yet larger cyclotomic polynomials, we may not even be able to store the coefficients modulo a prime
in memory. In which case we may be forced to write n(z) and our intermediate work to disk. This proves
most costly, as the hard disk bottlenecks the algorithm. In such instances, we need a low-memory
algorithm to calculate n(z). Our low-memory approach requires the following definition and lemma:

Definition 3. For notational convenience, we define Ψn(z) =
1− zn

n(z)
.

Lemma 5. Let p be a prime such that p -m, then mp(z) =
m(zp)

m(z)
= m(zp) ·

�

Ψm(z) ·
1

1− zm

�

.

Given n = mp, our approach to compute n(z) is roughly as follows: We first calculate m(z) and Ψm(z).
We can very easily calculate Ψm(z) in a manner similar to algorithm 1. We then multiply m(zp) by the
power series of Ψm(z)1−zm in a "forgetful" manner.

If we write

m(z) = b0 + b1z + . . .+ bϕ(m)zϕ(m), and Ψm(z) = c0 + c1z + . . .+ cm−ϕ(m)zm−ϕ(m),

then it follows from lemma 5 that

n(z) =





∑

=p+j

bcj · z




�

1+ zm + z2m + z3m + . . .

�

=
∑

≡p+j mod m

bcj · z.

Thus, if we write n(z) = 0 + 1z + . . .+ ϕ(n)zϕ(n), we get the recurrence:

 = −m +
∑

=p+j

bcj.

Using this recursion we compute the coefficients of n(z) sequentially, while storing only m coefficients.

Input: n = p1p2 · · ·pk, a product of k distinct primes.
̄0, ̄1, . . . , ̄m, an array
Output: A, the height of n(z)
m← p1p2 . . . pk−1, A← 0

b0, b1, . . . , bϕ(m)← the coefficients of m(z), c0, c1, . . . , cm−ϕ(m)← the coefficients of

�

zm − 1
m(z)

�

̄0, ̄1 . . . , ̄m−1← 0,0, . . . ,0
← 0, ← 0

while  ≤
ϕ(n)

2
do

for j = 0 to m− ϕ(m) do
̄(+j mod m)← ̄(+j mod m) + b · cj, if j < pk and |̄(+j mod m)| > A then A← |̄(+j mod m)|

← + 1, ← + pk
return A

Algorithm 2: A low-memory algorithm to obtain the height of n(z)

We temporarily store the th coefficient of n(z), , in the ( mod m)th location in our array, ̄ mod m.

Algorithm 2 takes O
�
�

n
pk

�2�

arithmetic operations in Z. The space complexity is O
�

n
pk

�

. Clearly, the
algorithm works best for n with a large prime divisor pk. As such, we call it the "big prime" algorithm.

Computational Results

Cyclotomic Polynomials of Large Height

We have computed a library of data on the heights and lengths of cyclotomic polynomials. This data is
available at http://www.cecm.sfu.ca/~ada26/cyclotomic/. Table 2, below, shows n(z) of increasing
height:

n A(n)
1 1

105 2
385 3

1365 4
1785 5
2805 6
3135 7
6545 9

10465 14
11305 23
17255 25

n A(n)
20615 27
26565 59
40755 359

106743 397
171717 434
255255 532
279565 1182
327845 31010
707455 35111
886445 44125
983535 59815

n A(n)
1181895 14102773
1752465 14703509
3949491 56938657
8070699 74989473

10163195 1376877780831
13441645 1475674234751
15069565 1666495909761
30489585 2201904353336
37495115 2286541988726
40324935 2699208408726
43730115 862550638890874931

n factorization of n A(n)
169828113 (3)(7)(13)(17)(23)(37)(43) 31484567640915734941
185626077 (3)(7)(13)(17)(23)(37)(47) 42337944402802720258
416690995 (5)(7)(17)(19)(29)(31)(41) 80103182105128365570406901971
437017385 (5)(7)(17)(19)(29)(31)(43) 86711753206816303264095919005
712407185 (5)(7)(17)(19)(29)(41)(53) 111859370951526698803198257925

1250072985 (3)(5)(7)(17)(19)(29)(31)(41) 137565800042644454188531306886
1311052155 (3)(5)(7)(17)(19)(29)(31)(43) 192892314415997583551731009410
1880394945 (3)(5)(11)(13)(19)(29)(37)(43) 64540997036010911566826446181523888971563
2317696095 (3)(5)(11)(13)(19)(29)(37)(53) 67075962666923019823602030663153118803367

Table 2: n such that A(n) > A(m) for m< n.

We are currently computing n(z), for n = 99660932085 = 3 · 5 · 11 · 13 · 19 · 29 · 37 · 43 · 53, to 192-bit
precision using algorithm 1. We expect it to have a greater height than that of any previously computed
cyclotomic polynomial.

Flat cyclotomic polynomials

Definition 4. A polynomial is flat if it has height one.

Definition 5. The order of a cyclotomic polynomial n(z) is the number of distinct odd prime
factors that divide n.

A question we are currently researching is: Are there flat cyclotomic polynomials of order five?
It holds that A(p) = 1 for all primes p and A(pq) = 1 for all primes p,q. There are also infinitely many
flat cyclotomic polynomials of order three [1][4], and we have computed flat cyclotomic polynomials of
order four (3·5·29·1741(z), is the first such example). To our knowledge, however, no one has yet found
a flat cyclotomic polynomial of order five. We are using a two-pronged search: calculation of select
examples of n(z) of order five, for which we expect A(n) to be small (typically for very large n), and
an exhaustive computation of cyclotomic polynomials n(z) of order five, for small n. To date, we have
calculated every cyclotomic polynomial n(z) of order five for squarefree, odd n < 2 · 108. Here are the
cyclotomic polynomials of smallest height that we have computed:

n factorization of n A(n)
48713385 (3)(5)(7)(47)(9871) 5
61944015 (3)(5)(7)(53)(11131) 5
76762245 (3)(5)(7)(59)(12391) 4
82041645 (3)(5)(7)(61)(12809) 5
97411965 (3)(5)(7)(47)(19739) 5

117496785 (3)(5)(7)(73)(15329) 5
117512115 (3)(5)(7)(73)(15331) 5
123871335 (3)(5)(7)(53)(22259) 5

n factorization of n A(n)
146130285 (3)(5)(7)(47)(29611) 5
151911165 (3)(5)(7)(83)(17431) 5
153518295 (3)(5)(7)(59)(24781) 4
164102505 (3)(5)(7)(61)(25621) 5
185820915 (3)(5)(7)(53)(33391) 5

746443728915 (3)(5)(31)(929)(1727939) 3
1147113361785 (3)(5)(29)(1741)(1514671) 2
2576062979535 (3)(5)(29)(2609)(2269829) 2

Table 3: Computed cyclotomic polynomials of order five with height ≤ 5.

Future work

Another unanswered problem we would like to investigate is:

Is A(np) ≥ A(n) for every integer n > 0 and for every prime p?
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