
Parallel Algorithms for Factoring Multivariate
Polynomials Represented by Black Boxes

Tian Chen and Michael Monagan

Department of Mathematics, Simon Fraser University,
Burnaby, British Columbia, V5A 1S6, CANADA

tca71@sfu.ca, mmonagan@sfu.ca

Abstract. Our goal is to develop fast parallel algorithms to factor mul-
tivariate polynomials with integer coefficients. The authors recently con-
tributed a parallel sparse Hensel lifting algorithm (CMSHL) to factor
multivariate polynomials in their sparse representations (Chen and Mon-
agan (2020)). The dominating cost of CMSHL is polynomial evaluations.
To reduce this cost, in this work, we represent the polynomial to be fac-
tored by a black box. Instead of first getting the evaluations of the factors
and then performing a sparse interpolation (Kaltofen and Trager (1990)),
we give a parallel algorithm that computes the factors in their sparse
representation directly using our modified CMSHL algorithm. Our new
algorithm requires fewer probes to the black box. We show the complex-
ity for both algorithms. We have implemented our algorithm in Maple
and are currently implementing parts of it in C.

Keywords: Sparse Hensel Lifting, Sparse Interpolation, Multivariate
Polynomial Factorization, Black Box Representation

1 Two algorithms for black box factorization

Polynomial factorization has been a central topic in computer algebra. It has ap-
plications in diverse fields such as algebraic coding theory, cryptography, number
theory, algebraic geometry and biological modelling [3]. Our work focuses on de-
signing and implementing parallel algorithms to factor multivariate polynomials
with integer coefficients. In 2020, Chen and Monagan [1] developed a parallel
sparse Hensel lifting algorithm (CMSHL) to factor multivariate polynomials in-
put in the sparse representation. The dominating cost of CMSHL is polynomial
evaluations. To reduce this cost, we represent the polynomial to be factored by
a black box and aim to compute its factors in their sparse representation. An ex-
ample is to factor the determinant of a matrix A with multivariate polynomial
entries. Usually the factors of a = detA ∈ Z[x1, . . . , xn] have a lot fewer terms
than a. We save the cost of evaluating a as well as the memory space needed to
store a in its sparse representation.

The black box representation of a polynomial f ∈ Z[x1, · · · , xn] is a program
which accepts a prime p and an evaluation point ααα ∈ Zn

p as inputs and outputs
f(ααα) mod p. It is one of the most space efficient implicit representations [5]. On

the other hand, the sparse representation of f is explicit. It consists of a list of
coefficients ak and exponents (ek1

, · · · , ekn) such that f =
∑t

k=1 ak ·x
ek1
1 · · ·xeknn ,

where ak 6= 0 and t is the number of non-zero terms of f (Chap. 16 of [4]).

f1(ααα), ..., fr(ααα)
ααα ∈ Zn

p

p

a ∈ Z[x1, ..., xn] f1, ..., fr ∈ Z[x1, ..., xn]

Sparse representation Sparse representation

Sparse interpolation Sparse interpolation

Kaltofen and Trager (1990)

Algorithm CMSHL

Chen and Monagan (2020)

FOXBOX (written in C++)

Modified CMSHL

Black box representation of a
Evaluations of the factors

Method I:
Method II:

Method 0:

Fig. 1. Factoring a ∈ Z[x1, ..., xn] given by a black box.

Given a ∈ Z[x1, · · · , xn] represented by a black box B, three ways to compute
its factors in the sparse representation are shown in Figure 1. Method 0 first
interpolates the sparse representation of a then factors it using a sparse Hensel
lifting algorithm [1]. Method I adapts Kaltofen and Trager’s algorithm [5] to
first get black boxes for the factors and then performs sparse interpolation. This
algorithm was implemented in FOXBOX [2] in C++. As far as we know, there
has not been any black box factorization algorithm developed since Kaltofen and
Trager [5] in 1990. We contribute Method II a parallel algorithm which uses a
modified CMSHL to output the factors in their sparse representations directly.
We have modified algorithm CMSHL in [1] to replace the evaluations of a with
probes to the black box and have extended it to multi-factors (still monic). The
jth Hensel lifting step is shown in Algorithm 1.

2 Complexity analysis for both algorithms

To analyze black box algorithms we are mostly interested in the number of probes
to the black box. The following estimates show that our new algorithm (Method
II) requires fewer probes to the black box than Method I since s � #fmax [1].
The quantity s is the number of bivariate images needed in algorithm CMSHL
which is max #ai,j,k where the fi =

∑
j,k ai,j,k(x3, . . . , xn)xj1x

k
2 are the factors

of a and #fmax is the maximum number of terms of the factors of a.

– Method I: O(nd1dmax#fmax) probes to the black box B, plus
O(ndmax#fmax) times the cost of univariate polynomial factorization.

– Method II: O(nd1dmaxs) probes to the black box B.

2

In the above, n is the number of variables of a, d1 = deg(a, x1), dmax =
max1≤j≤n(dj). For Method I, we use Zippel’s sparse interpolation [7]. Also, we
use integer substitutions for each variable x2, · · · , xn and factor univariate poly-
nomials instead of bivariate polynomials in [5]. Since our polynomials have co-
efficients in the ring of integers, by virtue of the Hilbert irreducibility theorem,
the resulting univariate polynomial has the same number of factors as a with
high probability. For Method II, Step 10 of Algorithm 1 is the only step to probe
the black box B hence the total number of probes is O(nd1dmaxs). There are
several places where Algorithm 1 can fail (Step 6, 12 and 24) and we still need
to quantify the failure probabilities. The failure probability analysis will be sim-
ilar to the analysis of CMSHL in [1] except Algorithm 1 has been extended to
multi-factors.

As an example consider factoring the determinant of Tn the n×n symmetric
Toeplitz matrix shown below. The table shows the number of terms of detTn,
it’s two factors, and the parameter s. The data shows that the number of terms
of detTn is much larger than the largest factor which justifies the black box
approach. Also s is significantly smaller than #fmax.


x1 x2 x3 · · · xn
x2 x1 x2
x3 x2 x1
...

. . .
...

xn · · · x1


Symmetric Toeplitz matrix Tn.

n # det(Tn) #fi s

7 427 30, 56 8
8 1628 167, 167 38
9 6090 294, 153 50
10 23797 931, 931 229
11 90296 1730, 849 337
12 350726 5579, 5579 1465
13 1338076 10611, 4983 2297
14 5165957 34937, 34937 9705

3 Implementation

We aim to make a hybrid Maple + C implementation for our new algorithm
(Method II). The major subroutines of Algorithm 1 are Step 10 (probes to the
black box), Step 13 (bivariate Hensel lift), and Step 19 (Vandermonde solve).
The main program has already been constructed (in Maple) with the black box
subroutine computed in C (the determinant is computed in Zp via Gaussian
elimination). Vandermonde solve has already been successfully linked with the
C program. The subroutine Bivariate Hensel lift is currently coded in Maple. We
are integrating Garrett Paluck’s C implementation of BHL into our software.

For Method I, we need to input the evaluations of the factors into a sparse
interpolation procedure. The sparse interpolation procedure has already been
implemented in Maple for a single polynomial represented by a black box. It is
not difficult to extend it to the multi-factor case. One of the issues that we are
still seeking an efficient solution is how to order the factors with identical degree
patterns. We plan to implement Method I in Maple, and to compare the number
of probes to the black box with Method II.

3

Algorithm 1 CMSHL for black box: Hensel lifting xj (multi-factors).

1: Input: A prime p, αj ∈ Zp, B (black box representation of a ∈ Z[x1, · · · , xn] monic
in x1), f1,j−1, · · · , fr,j−1 ∈ Zp[x1, · · · , xj−1] s.t. aj(xj = αj) =

∏r
ρ=1 fρ,j−1 with j > 2.

2: Output: f1,j, · · · , fr,j ∈ Zp[x1, · · · , xj] s.t. aj =
∏r
ρ=1 fρ,j where fρ,j(xj =αj) = fρ,j−1 for

1 ≤ ρ ≤ r; Otherwise, return FAIL.
3: Let fρ,j−1 = x

dfρ
1 +

∑dfρ−1

i=0 σρ,i(x2, ..., xj−1)x
i
1 where σρ,i =

∑sρ,i
k=1 cρ,ikMρ,ik and Mρ,ik

are the monomials in σρ,i for 1 ≤ ρ ≤ r.
4: Pick βββ = (β2, · · · , βj−1) ∈ Zj−2

p at random.
5: Evaluate: {Sρ = {Sρ,i = {mρ,ik = Mρ,ik(βββ), 1 ≤ k ≤ sρ,i}, 0 ≤ i ≤ dfρ − 1}, 1 ≤ ρ ≤ r}.
6: if any |Sρ,i| 6= sρ,i then return FAIL end if
7: Let s be the maximum of sρ,i.
8: for k from 1 to s in parallel do
9: Let Yk = (x2 = βk

2 , · · · , xj−1 = βk
j−1).

10: Ak ← aj(x1,Yk, xj). // via probes to B and interpolation .O(sd1dj · C(probe B))
11: F1,k, · · · ,Fr,k ← f1,j−1(x1,Yk), · · · , fr,j−1(x1,Yk). O(s(#f1 + · · ·+ #fr))
12: if gcd(Fρ,k,Fφ,k) 6= 1 for any ρ 6= φ (1 ≤ ρ, φ ≤ r) then return FAIL end if
13: f1,k, · · · fr,k ← BivariateHenselLift(Ak,F1,k, · · · ,Fr,k, αj, p).O(d1d

2
j + d21dj)

14: end for
15: Let fρ,k = x

dfρ
1 +

∑µρ
l=1 αρ,klM̃ρ,l(x1, xj) for 1 ≤ k ≤ s where µρ ≤ d1dj for 1 ≤ ρ ≤ r.

16: for ρ from 1 to r do
17: for l from 1 to µρ in parallel do
18: i← deg(M̃ρ,l, x1).
19: Solve the linear system for cρ,lk:

{∑sρ,i
k=1 m

n
ρ,ikcρ,lk = αρ,nl for 1 ≤ n ≤ sρ,i

}
.

20: end for .O(sdj(#f1 + · · ·+ #fr))

21: Construct fρ,j ← x
dfρ
1 +

∑µρ
l=1

(∑sρ,i
k=1 cρ,lkMρ,ik(x2, ..., xj−1)

)
M̃ρ,l(x1, xj).

22: end for
23: Pick βββ ∈ Zjp at random.
24: if B(βββ, αj+1, · · · , αn) =

∏r
ρ=1 fρ,j(βββ) then return f1,j · · · , fr,j else return FAIL

end if

References

1. Chen, T., Monagan, M.: The complexity and parallel implementation of two sparse
multivariate Hensel lifting algorithms for polynomial factorization. In Proceedings
of CASC 2020, LNCS 12291, 150–169. Springer (2020)

2. Diaz, A., Kaltofen E.: FOXBOX: A system for manipulating symbolic objects in
black box representation. In Proceedings of ISSAC ’98, pp. 30–37. ACM (1998)

3. Geddes, K.O., Czapor, S.R. and Labahn, G.: Algorithms for Computer Algebra.
Kluwer Acad. Publ (1992)

4. Von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press (2013)

5. Kaltofen E., Trager, B.M.: Computing with polynomials given by black boxes for
their evaluations: Greatest common divisors, factorization, separation of numerators
and denominators. J. Symb. Cmpt. 9(3), 301–320. Elsevier (1990)

6. Wang, P.S.: An improved multivariate polynomial factoring algorithm. Math. Comp.
32, 1215–1231 (1978)

7. Zippel, R.E.: Interpolating polynomials from their values. J. Symb. Comput. 9(3),
375–403 (1990)

4

