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Let p be a prime of the form p=𝜎 2k+1 with 𝜎 small and let 𝔽p denote the finite
field with p elements. Let P(z) be a polynomial of degree d in 𝔽p[z] with d distinct
roots in 𝔽p. For p=5 ⋅255+1 we can compute the roots of such polynomials of degree
109. We believe we are the first to factor such polynomials of size one billion. We used
a multi-core computer with two 10 core Intel Xeon E5 2680 v2 CPUs and 128 gigabytes
of RAM. The factorization takes just under 4,000 seconds on 10 cores and uses 121
gigabytes of RAM.

We used the tangent Graeffe root finding algorithm from [19, 27] which is a factor
of O(log d) faster than the Cantor–Zassenhaus algorithm. We implemented the tan-
gent Graeffe algorithm in C using our own library of 64 bit integer FFT based in-place
polynomial algorithms then parallelized the FFT and main steps using Cilk C.

In this article we discuss the steps of the tangent Graeffe algorithm, the sub-algo-
rithms that we used, how we parallelized them, and how we organized the memory
so we could factor a polynomial of degree 109. We give both a theoretical and practical
comparison of the tangent Graeffe algorithm with the Cantor–Zassenhaus algorithm for
root finding. We improve the complexity of the tangent Graeffe algorithm by a factor
of 2. We present a new in-place product tree multiplication algorithm that is fully
parallelizable. We present some timings comparing our software with Magma's poly-
nomial factorization command.

Polynomial root finding over smooth finite fields is a key ingredient for algorithms
for sparse polynomial interpolation that are based on geometric sequences. This appli-
cation was also one of our main motivations for the present work.

1. INTRODUCTION
Consider a polynomial function f : 𝕂n →𝕂 over a field 𝕂 given through a black box
capable of evaluating f at points in 𝕂n. The problem of sparse interpolation is to recover

∗. This paper is part of a project that has received funding from the French “Agence de l'innovation de défense”.
†. This article has been written using GNU TEXMACS [28].
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the representation of f ∈𝕂[x1, . . . ,xn] in its usual form, as a linear combination

f = �
1⩽i⩽t

ci𝒙𝒆i (1)

of monomials 𝒙𝒆i=x1
e1,1 ⋅ ⋅ ⋅ xn

e1,n. One popular approach to sparse interpolation is to eval-
uate f at points in a geometric progression. This approach goes back to work of Prony
in the eighteen's century [41] and became well known after Ben-Or and Tiwari's seminal
paper [2]. It has widely been used in computer algebra, both in theory [7, 30, 32, 33, 34,
35, 39] and in practice [11, 14, 24, 25, 29, 31]; see [43] for a nice survey.

More precisely, if a bound T for the number of terms t is known, then we first evaluate
f at 2T−1 pairwise distinct points 𝜶0,𝜶1,...,𝜶2T−2, where 𝜶=(𝛼1,...,𝛼n)∈𝕂n and 𝜶k≔(𝛼1k,...,
𝛼n

k) for all k∈ℕ. The generating function of the evaluations at 𝜶k satisfies the identity

�
k∈ℕ

f (𝜶k)zk= �
1⩽i⩽t

�
k∈ℕ

ci𝜶𝒆ik zk= �
1⩽i⩽t

ci
1−𝜶𝒆i z =

N(z)
Λ(z) ,

where Λ=(1− 𝜶𝒆1 z) ⋅ ⋅ ⋅ (1− 𝜶𝒆t z) and N ∈𝕂[z] is of degree <t. The rational function
N/Λ can be recovered from f (𝜶0), f (𝜶1), . . . , f (𝜶2T−2) using fast Padé approximation [6,
37]. For well chosen points 𝜶, it is often possible to recover the exponents 𝒆i from the
values 𝜶𝒆i∈𝕂. If the exponents 𝒆i are known, then the coefficients ci can also be recovered
using a transposed version of fast multipoint interpolation [5, 7]. This leaves us with the
question how to compute the roots 𝜶−𝒆i of Λ in an efficient way.

For practical applications in computer algebra, we usually have 𝕂=ℚ, in which case
it is most efficient to use a multi-modular strategy. This means that we rather work with
coefficients in a finite field 𝕂=𝔽p, where p is a prime number that we are free to choose.
It is well known that polynomial arithmetic over 𝔽p can be implemented most efficiently
using FFTs when the order p −1 of the multiplicative group is smooth. In practice, this
prompts us to choose p of the form s 2l + 1 for some small s and such that p fits into
a machine word.

The traditional way to compute roots of polynomials over finite fields is using Cantor
and Zassenhaus' method [8]. In [19, 20], alternative algorithms were proposed for our
case of interest when p−1 is smooth. The fastest algorithm was based on the tangent Gra-
effe transform and it gains a factor log t with respect to Cantor–Zassenhaus' method. The
aim of the present paper is to report on a parallel implementation of this new algorithm
and on a few improvements that allow for a further constant speed-up.

In section 2, we start by recalling generalities about the Graeffe transform and the
heuristic root finding method based on the tangent Graeffe transform from [19]. In sec-
tion 3, we present the main new theoretical improvements, which all rely on optimizations
in the FFT-model for fast polynomial arithmetic. Our contributions are threefold:

• In the FFT-model, one backward transform out of four can be saved for Graeffe
transforms of order two (see section 3.2).

• When composing a large number of Graeffe transforms of order two, “FFT
caching” [3] can be used to gain another factor of /3 2 (see section 3.3).

• All optimizations still apply in the TFT model, which can save a factor between
one and two, depending on the number of roots (see section 3.5).

In section 3.4 we also indicate how to generalize our methods to Graeffe transforms of
general orders. In section 3.7 we determine how much faster the tangent Graeffe algo-
rithm is than the Cantor–Zassenhaus algorithm. To do this, we determine the constant
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factors in the complexities of both algorithms, under the assumption that arithmetic
in 𝔽p[x] is done using FFT-based algorithms.

We first implemented a sequential version of the tangent Graeffe method in C, with
the optimizations from sections 3.2 and 3.3; see [27]. Section 4 is devoted to a more elabo-
rate parallel implementation in Cilk C. We detail how we parallelized the different steps
of the algorithm, and how we organized the memory so we could factor a polynomial
of degree 109 over 𝔽p, for p=5 ⋅ 255+1. We believe we are the first to factor such large
polynomials. Our code is available here

http://www.cecm.sfu.ca/CAG/code/TangentGraeffe

In the last section 5, we give timings. We used a multi-core computer with two 10 core
Intel Xeon E5 2680 v2 CPUs and 128 gigabytes of RAM. The above factorization of
a polynomial of degree 109 then takes just under 4,000 seconds on 10 cores and uses
121 gigabytes of RAM.

2. ROOT FINDING USING THE TANGENT GRAEFFE TRANSFORM

Let 𝕂 be an effective field. Throughout the paper, time complexities count arithmetic
operations in the field 𝕂 and space complexities are for elements of 𝕂. We use M(d) to
denote the time for multiplying two polynomials in 𝕂[z] of degree <d. We make the
customary assumption that M(n)/n is a non-decreasing function that tends to infinity.

We will chiefly be interested in the case when 𝕂=𝔽p, where p is a prime of the form
p=𝜎 2k+1 with 𝜎 small. We call primes of this form smooth Fourier primes. Some exam-
ples that we use and their bit lengths are as follows:

p 7 ⋅226+1 3 ⋅230+1 5 ⋅255+1 3 ⋅29 ⋅256+1 5 ⋅101 ⋅254+1
log2 p 28.8 31.6 57.3 62.4 62.98

For 𝕂=𝔽p and p=𝜎 2k+1 of this form and 2k>2d, we have M(d)=O(d log d), by using
FFT-multiplication.

Let P(z) be a polynomial of degree d in 𝔽p[z] which has d distinct roots in 𝔽p. The
tangent Graeffe algorithm computes the roots of P(z). The cost of the algorithm depends
on a parameter s=𝜎 2 j with 0⩽ j⩽k. The parameter s determines what proportion of the
roots are found in each iteration of the algorithm. The space complexity of the algorithm
is Θ(s+d) and the average time complexity is

O�M(d) log �p
s�+M(s)+M(d) log d�.

Theoretically, choosing s≍ d log p� yields the best time complexity. However, because
we want to factor polynomials with very large d, our implementation chooses a smaller s
in the interval [2d, 4d) to save space. For s∈[2d, 4d) the time complexity is

O�M(d) log �p
d�+M(d)+M(d) log d�=O(M(d) log p).

In this section, we recall the tangent Graeffe algorithm from [19]. In the next section, we
will analyze its complexity in the FFT-model and present several improvements.

2.1. Graeffe transforms
Let 𝕂 be a general field. The traditional Graeffe transform of a monic polynomial P∈𝕂[z]
of degree d is the unique monic polynomial G(P)∈𝕂[z] of degree d such that

G(P)(z2)=P(z)P(−z). (2)
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If P splits over 𝕂 into linear factors P=(z−𝛽1) ⋅ ⋅ ⋅ (z−𝛽d), then one has

G(P)=(z−𝛽1
2) ⋅ ⋅ ⋅ (z−𝛽d

2).

More generally, given r⩾2, we define the Graeffe transform of order r to be the unique
monic polynomial Gr(P)∈𝕂[z] of degree d such that

Gr(P)(z)=(−1)rdResu(P(u),ur −z)
If P=(z−𝛽1) ⋅ ⋅ ⋅ (z−𝛽d), then

Gr(P)=(z−𝛽1
r) ⋅ ⋅ ⋅ (z−𝛽d

r).

If 𝜔 is a primitive r-th root of unity in 𝕂, then we also have

Gr(P)(zr)=P(z)P(𝜔z) ⋅ ⋅ ⋅P(𝜔r−1z). (3)

If r, s⩾2, then we finally have
Grs=Gr∘Gs=Gs∘Gr. (4)

2.2. Root finding using tangent Graeffe transforms
Let 𝜖 be a formal indeterminate with 𝜖2=0. Elements in 𝕂[𝜖]/(𝜖2) are called tangent
numbers. They are of the form a+ b𝜖 with a,b∈𝕂 and basic arithmetic operations go as
follows:

(a+b𝜖)±(c+d𝜖) = (a± c)+(b±d)𝜖
(a+b𝜖)(c+d𝜖) = a c+(ad+bc)𝜖

Now let P∈𝕂[z] be a monic polynomial of degree d that splits over 𝕂:

P=(z−𝛼1) ⋅ ⋅ ⋅ (z−𝛼d),

where 𝛼1, . . . , 𝛼d∈𝕂 are pairwise distinct. Then the tangent deformation P̃(z)≔P(z+𝜀)
satisfies

P̃=P+P′ 𝜖=(z− (𝛼1−𝜖)) ⋅ ⋅ ⋅ (z− (𝛼d −𝜖)).
The definitions from the previous subsection readily extend to coefficients in𝕂[𝜖] instead
of 𝕂. Given r⩾2, we call Gr(P̃) the tangent Graeffe transform of P of order r. We have

Gr(P̃)=(z− (𝛼1−𝜖)r) ⋅ ⋅ ⋅ (z− (𝛼d −𝜖)r),
where

(𝛼k −𝜖)r=𝛼k
r − r𝛼k

r−1𝜖, k=1, . . . ,d.

Now assume that we have an efficient way to determine the roots 𝛼1r, . . . , 𝛼d
r of Gr(P). For

some polynomial T∈𝕂[z], we may decompose

Gr(P̃)=Gr(P)+T𝜖
For any root 𝛼k

r of Gr(P), we then have

Gr(P̃)(𝛼k
r − r𝛼k

r−1𝜖) = Gr(P)(𝛼k
r)+(T(𝛼k

r)−Gr(P)′(𝛼k
r) r𝛼k

r−1)𝜖
= (T(𝛼k

r)−Gr(P)′(𝛼k
r) r𝛼k

r−1)𝜖
= 0.

Whenever 𝛼k
r happens to be a single root of Gr(P), it follows that

r𝛼k
r−1= T(𝛼k

r)
Gr(P)′(𝛼k

r).
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If 𝛼k
r≠0, this finally allows us to recover 𝛼k as

𝛼k= r 𝛼k
r

r𝛼k
r−1 .

2.3. Heuristic root finding over smooth finite fields
Assume now that𝕂=𝔽p is a finite field, where p is a prime number of the form p=𝜎2m+1
for some small 𝜎. Assume also that 𝜂∈𝔽p is a primitive element of order p − 1 for the
multiplicative group of 𝔽p.

Let P=(z−𝛼1) ⋅⋅⋅ (z−𝛼d)∈𝔽p[z] be as in the previous subsection. The tangent Graeffe
method can be used to efficiently compute those 𝛼k of P for which 𝛼k

r is a single root of
Gr(P). In order to guarantee that there are a sufficient number of such roots, we first
replace P(z) by P(z+𝜏) for a random shift 𝜏∈𝔽p, and use the following heuristic:

H. For any subset {𝛼1, . . .,𝛼d}⊆𝔽p of cardinality d and any r⩽(p−1)/(4d), there exist
at least p/2 elements 𝜏∈𝔽p such that {(𝛼1−𝜏)r, . . ., (𝛼d−𝜏)r} contains at least 2d/3
elements.

For a random shift 𝜏∈𝔽p and any r⩽(p−1)/(4d), the assumption ensures with proba-
bility at least 1/2 that Gr(P(z+𝜏)) has at least d/3 single roots.

Now take r to be the largest power of two such that r⩽(p−1)/(4d) and let s=(p−1)/r.
By construction, note that s=O(d). The roots 𝛼1r, . . . , 𝛼d

r of Gr(P) are all s-th roots of unity
in the set {1, 𝜔, . . . , 𝜔s−1}, where 𝜔=𝜂r. We may thus determine them by evaluating
Gr(P) at 𝜔i for i=0, . . . , s − 1. Since s=O(d), this can be done efficiently using a dis-
crete Fourier transform. Combined with the tangent Graeffe method from the previous
subsection, this leads to the following probabilistic algorithm for root finding:

Algorithm 1
Input: P∈𝔽p[z] of degree d and only order one factors, p=𝜎 2m+1

Output: the set {𝛼1, . . . , 𝛼d} of roots of P
Note: time complexities for the main steps are indicated on the right

1. If d=0 then return ∅

2. Let r=2N∈2ℕ be largest such that r⩽(p−1)/(4d) and let s≔(p−1)/r

3. Pick 𝜏∈𝔽p at random and compute P∗≔P(z+𝜏)∈𝔽p[z] . . . . . O(M(d))

4. Compute P̃(z)≔P∗(z+𝜖)=P∗(z)+P∗(z)′𝜖∈(𝔽p[𝜖]/(𝜖2))[z]

5. For i=1, . . . ,N, set P̃≔G2(P̃)∈(𝔽p[𝜖]/(𝜖2))[z] . . . . . . . . O�M(d) log �p
s��

6. Let 𝜔∈𝔽p
∗ be of order s and write P̃=A+B𝜖

Compute A(𝜔i), A′(𝜔i), and B(𝜔i) for i=0, . . . , s−1 . . . . . . . . . . . . O(M(s))

7. If P(𝜏)=0, then set S≔{𝜏}, else set S≔∅
8. For 𝛽∈{1,𝜔, . . . ,𝜔s−1} do.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(s)

If A(𝛽)=0 and A′(𝛽)≠0, then set S≔S∪{r𝛽A′(𝛽)/B(𝛽)+𝜏}
9. Compute Q≔∏𝛼∈S (z−𝛼) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(M(d) log d)

10. Compute R≔P/Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(M(d))

11. Recursively determine the set of roots S′ of R and return S∪S′
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Remark 1. To compute G2(P̃) = G2(A + B 𝜖) we may use G2(P̃(z2)) = A(z) A(−z) +
(A(z)B(−z)+B(z)A(−z))𝜖, which requires three polynomial multiplications in 𝔽p[z] of
degree d. In total, step 5 therefore performs O(N)=O(log (p/s)) such multiplications.
We discuss how to perform step 5 efficiently in the FFT model in section 3.

Remark 2. For practical implementations, one may vary the threshold r⩽(p − 1)/(4d)
for r and the resulting threshold s⩾4d for s. For larger values of s, the computations of
the DFTs in step 6 get more expensive, but the proportion of single roots goes up, so more
roots are determined at each iteration. From an asymptotic complexity perspective, it
would be best to take s≍ d log p� . In practice, we actually preferred to take the lower
threshold s⩾2d, because the constant factor of our implementation of step 6 (based on
Bluestein's algorithm [4]) is significant with respect to our highly optimized implemen-
tation of the tangent Graeffe method. A second reason we prefer s of size O(d) instead
of O(d log p� ) is that the total space used by the algorithm is linear in s.

Remark 3. For the application to sparse interpolation, it is possible to further speed up
step 5 for the top-level iteration, which is the most expensive step. More precisely, for
a polynomial with t terms, the idea is to take 𝜏=0 and 𝜂 of order ≈tc instead of p−1 for
some constant c with 1<c<3. This reduces log r (and the cost of the top-level iteration)
by a factor of Θ(log p/log t). For the recursive calls, we still need to work with a primi-
tive root of unity 𝜂′ of order p−1 and random shifts.

3. COMPUTING GRAEFFE TRANSFORMS

3.1. Reminders about discrete Fourier transforms
Assume that n∈ℕ is invertible in 𝕂 and let 𝜔∈𝕂 be a primitive n-th root of unity.
Consider a polynomial A= a0+ a1 z+ ⋅ ⋅ ⋅ + an−1 zn−1∈𝕂[z]. Then the discrete Fourier
transform (DFT) of order n of the sequence (ai)0⩽i<n is defined by

DFT𝜔((ai)0⩽i<n)≔(âk)0⩽k<n, âk≔A(𝜔k).

We will write F(n) for the cost of one discrete Fourier transform in terms of the number
of operations in 𝕂. We assume that n=o(F(n)). For any i∈{0, . . . ,n−1}, we have

DFT𝜔−1((âk)0⩽k<n)i = �
0⩽k<n

âk𝜔−ik = �
0⩽ j<n

aj �
0⩽k<n

𝜔(j−i)k = nai. (5)

If n is invertible in 𝕂, then it follows that DFT𝜔−1= n−1DFT𝜔−1. The costs of direct and
inverse transforms therefore coincide up to a factor O(n).

If n=n1n2 is composite, 0⩽k1<n1, and 0⩽k2<n2, then we have

âk2n1+k1 = �
0⩽i2<n2

�
0⩽i1<n1

ai1n2+i2𝜔(i1n2+i2)(k2n1+k1)

= �
0⩽i2<n2

𝜔i2k1[[[[[[[[[[[[[[ �
0⩽i1<n1

ai1n2+i2𝜔i1n2k1]]]]]]]]]]]]]]𝜔i2k2n1

= �
0⩽i2<n2

[𝜔i2k1DFT𝜔n2((ai1n2+i2)0⩽i1<n1)k1]𝜔i2(k2n1+k1)

= DFT𝜔n1((𝜔i2k1DFT𝜔n2((ai1n2+i2)0⩽i1<n1)k1)0⩽i2<n2)k2. (6)
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This shows that a DFT of length n reduces to n1 transforms of length n2 plus n2 trans-
forms of length n1 plus n multiplications in 𝕂:

F(n1n2)⩽n1F(n2)+n2F(n1)+O(n).

In particular, if r=O(1), then F(rn)∼ rF(n).
It is sometimes convenient to apply DFTs directly to polynomials as well; for this

reason, we also define DFT𝜔(A)≔ (âk)0⩽k<n. Given two polynomials A,B∈𝕂[z] with
deg(AB)<n, we may then compute the product AB using

AB = DFT𝜔−1(DFT𝜔(A)DFT𝜔(B)).

In particular, we obtain M(n)∼3F(2n)∼6F(n), where we recall that M(n) stands for the
cost of multiplying two polynomials of degree <n.

Remark 4. In Algorithm 1, we note that step 6 comes down to the computation of three
DFTs of length s. Since r is a power of two, this length is of the form s=𝜎 2k for some
k∈ℕ. In view of (6), we may therefore reduce step 6 to 3𝜎 DFTs of length 2k plus 3 ⋅ 2k

DFTs of length 𝜎. If 𝜎 is very small, then we may use a naive implementation for DFTs of
length 𝜎. In general, one may use Bluestein's algorithm [4] to reduce the computation of
a DFT of length 𝜎 into the computation of a product in 𝕂[z]/(z𝜎 −1), which can in turn
be computed using FFT-multiplication and three DFTs of length a larger power of two.

3.2. Graeffe transforms of order two
Let 𝕂 be a field with a primitive (2n)-th root of unity 𝜔. Let P∈𝕂[z] be a polynomial
of degree d=deg P<n. Then the relation (2) yields

G(P)(z2)=DFT𝜔−1(DFT𝜔(P(z))DFT𝜔(P(−z))). (7)

For any k∈{0, . . . , 2n−1}, we further note that

DFT𝜔(P(−z))k=P(−𝜔k)=P(𝜔(k+n)rem2n)=DFT𝜔(P(z))(k+n)rem2n , (8)

so DFT𝜔(P(−z)) can be obtained from DFT𝜔(P) using n transpositions of elements in 𝕂.
Concerning the inverse transform, we also note that

DFT𝜔(G(P)(z2))k=G(P)(𝜔2k)=DFT𝜔2(G(P))k,

for k=0, . . . ,n−1. Plugging this into (7), we conclude that

G(P)=DFT𝜔2
−1((DFT𝜔(P)kDFT𝜔(P)k+n)0⩽k<n).

This leads to the following algorithm for the computation of G(P):

Algorithm 2
Input: P∈𝕂[z] with deg P<n and a primitive (2n)-th root of unity 𝜔∈𝕂

Output: G(P)

1. Compute (P̂k)0⩽k<2n≔DFT𝜔(P)

2. For k=0, . . . ,n−1, compute Ĝk≔ P̂k P̂k+n

3. Return DFT𝜔2
−1((Ĝk)0⩽k<n)

JORIS VAN DER HOEVEN, MICHAEL MONAGAN 7



PROPOSITION 5. Let𝜔∈𝕂 be a primitive 2n-th root of unity in𝕂 and assume that 2 is invertible
in 𝕂. Given a monic polynomial P∈𝕂[z] with deg P<n, we can compute G(P) in time

G2(n)∼3F(n).

Proof. We have already explained the correctness of Algorithm 2. Step 1 requires one
forward DFT of length 2n and cost F(2n)=2F(n)+O(n). Step 2 can be done in linear
time O(n). Step 3 requires one inverse DFT of length n and cost F(n)+O(n). The total
cost of Algorithm 2 is therefore 3F(n)+O(n)∼3F(n). □

Remark 6. In terms of the complexity of multiplication, we obtain G2(n)∼ /1 2M(n). This
gives a 33.3% improvement over the previously best known bound G2(n)∼ /2 3M(n) that
was used in [19]. Note that the best known algorithm for computing squares of polyno-
mials of degree<n is∼ /2 3M(n). It would be interesting to know whether squares can also
be computed in time ∼ /1 2M(n).

3.3. Graeffe transforms of power of two orders
In view of (4), Graeffe transforms of power of two orders 2m can be computed using

G2m(P)=(G∘ . . .m× ∘G)(P). (9)

Now assume that we computed the first Graeffe transform G(P) using Algorithm 2 and
that we wish to apply a second Graeffe transform to the result. Then we note that

DFT𝜔(G(P))2k=DFT𝜔2(G(P))k= Ĝk (10)

is already known for k=0, . . . ,n − 1. We can use this to accelerate step 1 of the second
application of Algorithm 2. Indeed, in view of (6) for n1=2 and n2=n, we have

DFT𝜔(G(P))2k+1=DFT𝜔2((𝜔i G(P)i)0⩽i<n)k (11)

for k=0,.. .,n−1. In order to exploit this idea in a recursive fashion, it is useful to modify
Algorithm 2 so as to include DFT𝜔2(P) in the input and DFT𝜔2(G(P)) in the output. This
leads to the following algorithm:

Algorithm 3
Input: P∈𝕂[z] with deg P<n, a primitive (2n)-th root of unity 𝜔∈𝕂,

and (Q̂k)0⩽k<n=DFT𝜔2(P)
Output: G(P) and DFT𝜔2(G(P))

1. Set (P̂2k)0⩽k<n≔(Q̂k)0⩽k<n

2. Set (P̂2k+1)0⩽k<n≔DFT𝜔2((𝜔i Pi)0⩽i<n)

3. For k=0, . . . ,n−1, compute Ĝk≔ P̂k P̂k+n

4. Return DFT𝜔2
−1((Ĝk)0⩽k<n) and (Ĝk)0⩽k<n

PROPOSITION 7. Let𝜔∈𝕂 be a primitive 2n-th root of unity in𝕂 and assume that 2 is invertible
in 𝕂. Given a monic polynomial P∈𝕂[z] with degP<n and m⩾1, we can compute G2m(P) in
time

G2m(n)∼(2m+1)F(n).
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Proof. It suffices to computeDFT𝜔2(P) and then to apply Algorithm 3 recursively, m times.
Every application of Algorithm 3 now takes 2 F(n)+ O(n)∼2 F(n) operations in 𝕂,
whence the claimed complexity bound. □

Remark 8. In [19], Graeffe transforms of order 2m were directly computed using the
formula (9), using ∼4mF(n) operations in 𝕂. The new algorithm is twice as fast for
large m.

3.4. Graeffe transforms of arbitrary smooth orders
The algorithms from subsections 3.2 and 3.3 readily generalize to Graeffe transforms
of order rm for arbitrary r⩾2, provided that we have an (r n)-th root of unity 𝜔∈𝕂.
For convenience of the reader, we specified the generalization of Algorithm 3 below,
together with the resulting complexity bounds.

Algorithm 4
Input: P∈𝕂[z] with deg P<n, r⩾2, a primitive (rn)-th root of unity 𝜔∈𝕂,

and (Q̂k)0⩽k<n=DFT𝜔r(P)
Output: Gr(P) and DFT𝜔r(Gr(P))

1. Set (P̂kr)0⩽k<n≔(Q̂k)0⩽k<n

2. For j=1, . . . , r−1, set (P̂kr+ j)0⩽k<n≔DFT𝜔r((𝜔ij Pi)0⩽i<n)

3. For k=0, . . . ,n−1, compute Ĝk≔ P̂k P̂k+n ⋅ ⋅ ⋅ P̂k+(r−1)n

4. Return DFT𝜔r−1((Ĝk)0⩽k<n) and (Ĝk)0⩽k<n

PROPOSITION 9. Let 𝜔∈𝕂 be a primitive (r n)-th root of unity in 𝕂, where r⩾2 is invertible
in 𝕂. Given a monic polynomial P∈𝕂[z] with degP<n and m⩾1, we can compute Grm(P) in
time

Grm(n)∼(rm+1)F(n).

Proof. Straightforward generalization of Proposition 7. □

COROLLARY 10. Let 𝜔∈𝕂 be a primitive (r1 ⋅ ⋅ ⋅ r𝜏n)-th root of unity in 𝕂, where r1⩾2, . . . ,
r𝜏⩾2 are invertible in𝕂. Given a monic polynomial P∈𝕂[z] with degP<n and m1,...,m𝜏∈ℕ,
we can compute Gr1

m1⋅ ⋅ ⋅r𝜏m𝜏(P) in time

Gr1
m1⋅ ⋅ ⋅r𝜏m𝜏(n)∼(r1m1+ ⋅ ⋅ ⋅ + r𝜏m𝜏+𝜏)F(n).

Proof. Direct consequence of (4). □

Remark 11. In our application to root finding, we are interested in the efficient com-
putation of Graeffe transforms of high order rm. In terms of the size log rm of rm, it is
instructive to observe that the “average cost”

Arm(n)= Grm(n)
log rmF(n) ∼

r
log r
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is minimal for r=3. This suggests that it might be interesting to use Graeffe transforms of
order three whenever possible. In the application of Algorithm 1, this would lead us to
take primes of the form p=𝜎 ⋅2m ⋅3l+1, with 𝜎 small and 𝜎 ⋅2m close to d. This still allows
us to use radix 2 FFTs, while at the same time benefitting from radix 3 Graeffe transforms.

3.5. Truncated Fourier transforms
If 𝕂=𝔽q is a fixed finite field, then DFTs are most efficient for sizes n that divide q−1. For
our root finding application, it is often convenient to take q=3 ⋅ 230+1, in which case n
should be a power of two or three times a power of two. The truncated Fourier transform
was developed for the multiplication of polynomials such that the degree of the product
does not have a nice size n of this type. It turns out that we may also use it for the efficient
computation of Graeffe transforms of polynomials of arbitrary degrees. Moreover, the
optimizations from the previous subsections still apply.

Let us briefly describe how the truncated Fourier transform can be used for the
computation of Graeffe transforms of power of two orders. With the notations from sub-
sections 3.2 and 3.3, we assume that 2n=2𝛽 is a power of two as well and that we wish
to compute the Graeffe transform of a polynomial P of degree deg P< t with n/2⩽ t<n.
Let [i]𝛽 denote the reversal of a binary number i∈{0, . . . , 2n −1} of 𝛽 bits. For instance,
[3]4=12 and [5]6=40. Then the truncated Fourier of P at order T⩾ t is defined by

TFT𝜔,T(P)≔�P�𝜔[0]𝛽�,P�𝜔[1]𝛽�, . . . ,P�𝜔[T−1]𝛽��.

It has been shown in [22] that P̃≔TFT𝜔,T(P) and P=TFT𝜔,T
−1 (P̃) can both be computed in

time ∼(T/n)F(n). More generally, for direct transforms, one may compute

TFT𝜔,Δ,T(P)≔�P�𝜔[Δ]𝛽�,P�𝜔[Δ+1]𝛽�, . . . ,P�𝜔[Δ+T−1]𝛽��

in time ∼(T/n)F(n), whenever 0⩽Δ<Δ+T⩽n. For generalizations to arbitrary radices,
we refer to [36].

Taking T=2 t, we note that

P�𝜔[2k+1]𝛽�=P�𝜔[2k]𝛽+n/2�=P�−𝜔[2k]𝛽�

for k=0, . . . , t − 1. This provides us with the required counterpart of (8) for retrieving
TFT𝜔,2t(P(−x)) efficiently from TFT𝜔,2t(P). The relation (10) also has a natural counter-
part:

TFT𝜔,2t(G(P))k=G(P)�𝜔[k]𝛽�=G(P)�𝜔2[k]𝛽−1�=TFT𝜔2,t(G(P))k,

for k=0, . . . , t−1. This leads to the following refinement of Algorithm 3:

Algorithm 5
Input: P∈𝕂[z] with deg P< t⩽n=2𝛽−1,

a primitive (2n)-th root of unity 𝜔∈𝕂, and (Q̂k)0⩽k<t=TFT𝜔2,t(P)
Output: G(P) and TFT𝜔2,t(G(P))

1. Set (P̂k)0⩽k<t≔(Q̂k)0⩽k<t

2. Set (P̂k+t)0⩽k<t≔TFT𝜔,t,t(P)

3. For k=0, . . . , t−1, compute Ĝ2k≔ P̂2k P̂2k+1

4. Return TFT𝜔2,t
−1 ((Ĝ2k)0⩽k<t) and (Ĝ2k)0⩽k<t

10 COMPUTING ONE BILLION ROOTS USING THE TANGENT GRAEFFE METHOD



PROPOSITION 12. Let 𝜔∈𝕂 be a primitive 2n-th root of unity in 𝕂, where 2n=2𝛽, and assume
that 2 is invertible in 𝕂. Given a monic polynomial P∈𝕂[z] with n/2⩽degP<t⩽n and m⩾1,
we can compute G2m(P) in time

G2m(t;n)∼ t
n (2m+1)F(n).

Proof. Straightforward adaptation of the proof of Proposition 7, while using [22]. □

3.6. Taylor shifts
In step 3 of Algorithm 1, we still need an algorithm to compute the Taylor shift P(z+𝜏).
If the characteristic of 𝕂 exceeds d, then it is (not so) well known [1, Lemma 3] that this
can be done in time M(d)+O(n), using the following reduction to a single polynomial
multiplication of degree d:

Algorithm 6
Input: P∈𝕂[z] of degree d<char𝕂 and 𝜏∈𝕂

Output: P(z+𝜏)

1. L≔0!P0+1!P1z+ ⋅ ⋅ ⋅ +d!Pd zd

2. L̃≔zd L(1/z)

3. E≔1+𝜏 z+ 1
2! 𝜏

2z2+ ⋅ ⋅ ⋅ + 1
d! 𝜏

d zd

4. Π̃≔ L̃E rem zd+1

5. Π≔zdΠ̃(1/z)

6. Return 1
0! Π0+

1
1! Π1z+ ⋅ ⋅ ⋅ + 1

d! Πd zd

It is interesting to observe that Taylor shifts can still be computed in time O(M(d)) in
small characteristic, as follows:

Algorithm 7
Input: P∈𝕂[z] of degree d⩾p=char𝕂>0 and 𝜏∈𝕂

Output: P(z+𝜏)

1. Define zi=zp i
for i=0, . . . ,k where k=⌊log d/log p⌋

2. Rewrite P= P̂(z0, . . . ,zk)∈𝕂[z0, . . . ,zk] with degzi P<p for i=0, . . . ,k−1

3. For i=0, . . . ,k, replace P̂≔ P̂�z0, . . . ,zi−1,zi+𝜏pi
,zi+1, . . . ,zk�

4. Return P̂�z,zp, . . . ,zpk
�

3.7. Comparison with Cantor–Zassenhaus' algorithm
We give a theoretical comparison of Algorithm 1 with the Cantor–Zassenhaus algo-
rithm [8], where both algorithms have been optimized in the “FFT model” [44]. For this
comparison, it is convenient to replace the “worst case” heuristic H by a more empir-
ical assumption. More precisely, if we take s⩾𝜆d for 𝜆⩾1, then the expected proportion
of single roots is e−1/𝜆 (see e.g. [23]). This expected proportion is indeed observed in
practice: see Table 3. In Algorithm 1, we took 𝜆=4.
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PROPOSITION 13. Consider Algorithm 1 with the modification that we take s⩾𝜆 d instead of
s⩾4d for some fixed 𝜆⩾1. Then the expected cost of Algorithm 1 is bounded by

� /1 3e1/𝜆 log2�
p
s�+ /1 4 log2 d+O(1)�M(d). (12)

Proof. We first analyze the cost of step 9. Let T(k) be the cost of the polynomial mul-
tiplications in the product tree algorithm, where k is the size of S. Exercise 10.3 of [17]
shows that T(k)< /1 2M(k) log k+O(k log k). The recurrence for T(k) is T(k)=2T(k/2)+
M(k/2) for k>1 and T(1)=0. Solving this recurrence while using the assumption that
M(k)/(k log k) is non-decreasing yieldsT(k)= /1 4M(k)log2 k+O(M(k)). Now let k1,...,kℓ be
the successive sizes of S for the recursive calls of the algorithm, so that k1+⋅⋅⋅+kℓ=d. Thus
the cost of all executions of step 9 is T(k1)+ ⋅ ⋅ ⋅ +T(kℓ). Using again that M(k)/(k log k)
is non-decreasing, we have T(k1)+ ⋅ ⋅ ⋅ +T(kℓ)⩽T(d)= /1 4M(d) log2 d+O(M(d)).

Let us next analyze the cost of the other steps until step 10 inclusive, but without the
recursive calls in step 11. Set N≔log2 ((p−1)/s).

• To compute P(z+𝜏) in step 3 costs O(M(d)); using [1, Lemma 3].

• Step 4 takes O(d) to compute (P∗)′(z).

• By Proposition 7, step 5 costs (2N+1)F(d)+O(d), which is equivalent to /1 3NM(d).

• Step 6 is O(M(s))=O(M(d)) using [4].

• The division P/Q in step 10 is O(M(d)) using fast division [17].

Altogether, the cost of these steps is � /1 3 log2�
p
s�+O(1)�M(d).

We now need to account for the cost of the recursive calls in step 11. For s⩾𝜆d the
tangent Graeffe algorithm will, under our hypothesis, on average, obtain at least e−1/𝜆 of
the roots in each recursive call, leaving slightly less than 𝜀≔1−e−1/𝜆 of them to be found.
Since ∑i=0

∞ 𝜀 i= 1
1−𝜀 =e1/𝜆 and M(d) log d is non-decreasing, the total cost of Algorithm 1

is therefore as claimed. □

Remark 14. In the asymptotic region where log d= o(log p), the bound (12) reduces to
( /1 3e1/𝜆+o(1)) log2�

p
s�M(d). Since we may pick 𝜆 as large as we want, the complexity of

Algorithm 1 is then bounded by ( /1 3+𝜖) log2�
p
2d�M(d) for any 𝜖>0.

Assume from now on that we are in the asymptotic region where log d=o(log p). Then
Remark 14 shows that the cost of the tangent Graeffe method is ( /1 3+𝜖) log2�

p
2d�M(d)

for any 𝜖> 0. The bottleneck of Cantor–Zassenhaus' algorithm in this region is mod-
ular exponentiation, which accounts for a total cost of O(M(d) log p log d) [17]. We wish
to determine the constant factor in order to give an accurate comparison between the
two algorithms. Given polynomials S, P∈𝔽p[z] with deg S<deg P= d, one modular
exponentiation does log2(p/2) modular squarings

R≔S2 rem P
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in a loop. However, in the first few iterations, the degree of S2 is less then P so no
division is needed. The number of steps with divisions is log2 (p/(2d)). Using fast divi-
sion [17], the remainder R can be computed with two multiplications of size d assuming
the required inverse of P̃, the reciprocal of P, is precomputed. In the FFT model, one for-
ward transform of S may be saved and the forward transform of the inverse of P̃ may be
cached [44]. This costs 7F(n)+O(n), i.e. at least∼/7 3M(d)+O(d), since n⩾2d−1. The cost
of the top-level modular exponentiation is therefore equivalent to /7 3M(d) log2 (p/(2d)).
Using a similar recursion as for T in the proof of Proposition 13, the total cost of all mod-
ular compositions in CZ is equivalent to /7 6M(d) log2 (p/(2d)) log2 d (strictly speaking,
this is really an upper bound; but we indeed obtain an equivalence for common values
of M(d), such as c d log d or c d log d log log d). Altogether, this means that the tangent
Graeffe algorithm is about /7 2 log2 t times faster than Cantor–Zassenhaus.

Remark 15. In practice, we often have log p≍log d, and the complexity of Cantor–Zassen-
haus also involves another O(M(d) log2 d) term due to gcd computations. The corre-
sponding constant factor is fairly high, which makes the tangent Graeffe algorithm even
more favorable in this asymptotic region.

4. IMPLEMENTING THE TANGENT GRAEFFE ALGORITHM

For our implementation, we have been pursuing three goals. We first wanted to reimple-
ment the tangent Graeffe algorithm from scratch using FFT-based polynomial arithmetic
and compare it with a good implementation of the Cantor–Zassenhaus algorithm. Second,
we wanted to factor a polynomial of degree 109. For this, it is important to consider space
efficiency. Third, we wanted to parallelize the tangent Graeffe algorithm for a multi-
core computer. Unlike the Cantor–Zassenhaus algorithm, the tangent Graeffe algorithm
is gcd-free which makes it easier to parallelize. We first tried parallelizing only the FFTs
that appear in steps 3, 5, 6, 9, and 10 of Algorithm 1 to see if this alone is sufficient to
obtain good parallel speedup. It isn't.

Our main practical challenge is, however, space, not time. For a 64 bit prime p, and
an input polynomial of degree 109, the input polynomial and output roots alone need
16 gigabytes of storage. Our first implementation exceeded the virtual memory of our
machine which has 128 gigabytes of RAM plus 240 gigabytes of SSD swap space.

To reduce space we use in-place algorithms. In-place algorithms do not allocate new
space (memory). They work in the input and output space and we allow them to be given
additional working space. To parallelize a recursive in-place algorithm, we must par-
tition the input, output and the temporary memory (if any) for recursive parallel calls.
Our design is such that the space used does not increase with more cores. We refer the
reader to Giorgi, Grene and Roche [18] for examples of in-place serial algorithms in com-
puter algebra and a bibliography.

4.1. Parallelizing the FFTs

Number theoretic FFTs over 𝔽p were first introduced by Pollard [40]. Let us first explain
how we parallelized such FFTs using Cilk C. The strategy is classical, but it is conve-
nient to detail it here, since we use the same strategy for parallelizing the other steps in
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void fft1( LONG *A, LONG n, void fft2( LONG *A, LONG n,
LONG *W, LONG p ) { LONG *W, LONG p ) {

LONG i,n2,s,t; LONG i,n2,s,t;
if( n==1 ) return; if( n==1 ) return;
if( n==2 ) { if( n==2 ) {

s = addmod(A[0],A[1],p); s = addmod(A[0],A[1],p);
t = submod(A[0],A[1],p); t = submod(A[0],A[1],p);
A[0] = s; A[1] = t; A[0] = s; A[1] = t;
return; return;

} }
n2 = n/2; n2 = n/2;
fft1( A, n2, W+n2, p ); for( i=0; i<n2; i++ ) {
fft1( A+n2, n2, W+n2, p ); s = addmod(A[i],A[n2+i],p);
for( i=0; i<n2; i++ ) { t = submod(A[i],A[n2+i],p);

s = A[i]; A[ i] = s;
t = mulmod(W[i],A[n2+i],p); A[n2+i] = mulmod(t,W[i],p);
A[ i] = addmod(s,t,p); }
A[n2+i] = submod(s,t,p); fft2( A, n2, W+n2, p );

} fft2( A+n2, n2, W+n2, p );
return; return;

} }

Figure 1. C code for two FFTs over 𝔽p.

Algorithm 1. Cilk [16] was designed to support the parallelization of recursive divide
and conquer algorithms like the FFT for multi-core computers. To parallelize recursive
algorithms using Cilk we first modify the code so that the memory locations that are
updated in the recursive calls do not overlap.

Figure 1 shows our sequential C code for two radix 2 FFTs that we use. In the ver-
nacular fft1 is known as the “decimation-in-time” FFT and fft2 as the “decimation-
in-frequency” FFT. We refer the reader to Chu and George [9] for a discussion of the
two FFTs. We note that Geddes, Czapor, and Labahn present only fft1 in their book on
computer algebra [10], whereas von zur Gathen and Gerhard present only fft2 [17].

In the code in Figure 1, LONG is a macro for long long int, a 64 bit signed integer.
The C functions addmod, submod, mulmod implement +, −, × in 𝔽p respectively for
1< p<263. For multiplication in 𝔽p we use Roman Pearce's implementation of Möller
and Granlund [38]. The input array A of size n is the main input to and output from
the FFT. The input W is an array of size n containing powers of 𝜔, a primitive n-th root
of unity in 𝔽p. We precompute

W=[1,𝜔,𝜔2, . . . ,𝜔
n
2−1, 1,𝜔2,𝜔4, . . . ,𝜔

n
2−2, 1,𝜔4,𝜔8, . . . ,𝜔

n
2−4, . . . , 1, 0 ].

Precomputing W saves asymptotically half of the multiplications in the FFT. For n=2k,
fft1 and fft2 both do (k −1) n

2 multiplications. Duplicating of powers of 𝜔 means all
recursive calls in fft1 and fft2 access W sequentially.

Codes like these where the recursive calls update separate parts of the array A are
easy to parallelize using Cilk. To parallelize fft1 in Cilk C we first make a new sub-
routine fft1cilk which executes the two recursive calls in parallel. In Figure 2 the two
Cilk spawn directives do this. For small n we do not want to start two new processes
because of the cost of process management overhead. Thus for n⩽215, fft1cilk calls
fft1 which runs sequentially.
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cilk void block1( LONG n2, LONG *A, LONG b, LONG W, LONG p ) {
LONG i,s,t;
for( i=0; i<b; i++ ) {

s = A[i];
t = mulmod(W[i],A[n2+i],p);
A[ i] = addmod(s,t,p);
A[n2+i] = submod(s,t,p);

}
return;

}
#define B 65536
#define FFTCUTOFF 32768
cilk void fft1cilk( LONG *A, LONG n, LONG *W, LONG p ) {

LONG q,r,i;
if( n<=FFTCUTOFF ) { fft1(A,n,W,p); return; }
spawn fft1cilk( A, n2, W+n2, p );
spawn fft1cilk( A+n2, n2, W+n2, p );
sync; // wait for the two fft1cilk calls to finish
n2 = n/2; q = n2/B; r = n2-q*B;
for( i=0; i<q; i++ ) spawn block1( n2, A+i*B, B, W+i*B, p );
if( r>0 ) spawn block1( n2, A+q*B, r, W+q*B, p );
sync; // wait for all blocks to complete
return;

}

Figure 2. Cilk C code for parallelizing fft1

To obtain good parallel speedup we also need to parallelize the for loop in fft1
because it does n

2 multiplications out of a total of (k − 1) n
2 multiplications. We do this

by executing large contiguous blocks of the loop in parallel. We could use Cilk's par-
allel for loop construct cilk_for and let Cilk determine what block size to use but this
does not allow us to tune the block size for best performance. Instead we choose a block-
size B and parallelize the loop explicitly as shown in Figure 2. To get best performance,
we reduced B until the Cilk process overhead takes more than 1% say of the total time
for the FFT. This yields good parallel speedup for many cores when n is large.

An alternative way to parallelize an FFT is to use a recursive FFT for creating parallel
tasks for large n as we have but use a non-recursive FFT for smaller n. These and other
strategies for parallelizing the FFT for multi-core computers are discussed in [9, 13].

4.2. Step 4: the Taylor shift
Steps 1, 2, 3, 5, and 6 of Algorithm 6 require O(d) time. Steps 3 and 6 involve d−1 inverses
in 𝔽p which, because they require many divisions, are relatively very expensive. All the
inverses can be replaced with multiplications as follows. After computing d! in step 1,
we compute the inverse finv=(d!)−1. For steps 3 and 6, we run the loop backwards and
multiply by i to get the next inverse as follows.

for( i=d; i>1; i-- ) { Pi[i] = mulmod(Pi[i],finv,p); finv = mulmod(finv,i,p); }

We parallelized only the polynomial multiplication L̃E in step 4. To multiply two
polynomials of degree at most d our FFT multiplication needs three arrays A, B, and W
of size n where n=2k satisfies 2d<n⩽4d.
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The data in Table 4 shows that the best parallel speedup for step 3 is 4.12. A factor
of 4.12 on 10 cores is not very good and due to the fact that we did not paralellize steps 1, 3
and 6 which involve 2 d, 3 d and 2 d multiplications in 𝔽p, respectively. We did not do
this because computing P(z+𝜏) is not a bottleneck of Algorithm 1.

Of course, it is possible to paralellize steps 1, 3 and 6. For q blocks of size B we would
need to compute the factorials F=[B!, (2B)!, (3B)!, . . . , (q B)!] in parallel. We could do
this by first computing q partial products [B!, ∏k=B+1

2B k, ∏k=2B+1
3B k, . . . , ∏k=qB+1

d k ] in
parallel and then compute F. Now we can execute step 1 in q blocks in parallel. Next we
would compute the inverses of F so we can execute steps 3 and 6 in parallel.

4.3. Step 5: the tangent Graeffe loop
Step 5 of Algorithm 1 is the main computation in Algorithm 1. It has complexity
NO(M(d))=O(M(d)log (p/s)). We successfully parallelized the FFTs and all O(d) loops
in blocks except the following data movement:

for( i=0; i<n/2; i++ ) A[i] = A[2*i]; // compress
for( i=0; i<n/2; i++ ) A[n/2+i] = A[i]; // duplicate

We tried parallelizing the above code by moving the even entries of A into a temporary
array T, in blocks, in parallel, then copying them back to A, twice, in blocks, in parallel.
On 6 cores, the parallel code is slower than the serial code so we have left this pure data
movement not parallelized.

4.4. Step 6: parallelizing the evaluations
Each of the three evaluations A(𝜔i), A′(𝜔i) and B(𝜔i) for 0⩽ i<s in step 6 of Algorithm 1
can be done using the Bluestein transform [4] in O(M(s)) =O(M(d)) time. Although
step 6 does not dominate the time complexity it needs the most space. We need at least 3s
units of storage to store the values of A(𝜔i), A′(𝜔i) and B(𝜔i). For p=5×255+1 and d=
109, the requirement 4d⩽s<8d implies s=5×230. This is 120 gigabytes. We chose to save
half of this by choosing 2d⩽ s<4d instead. This increases the time a little (see Table 3)
because we obtain a smaller portion of the roots at each recursive call of Algorithm 1.

The Bluestein transform does one multiplication of two polynomials of degree s
plus O(s) work. For a multiplication of degree s we need an FFT of size n=2k>2 s and
our FFT uses 3 n units of temporary storage. For p=5× 255+1, d=109 and s=5× 229
we have n=233 so we need 192 gigabytes. We do not evaluate of A(z), A′(z) and B(z)
in parallel as that would triple the 192 gigabytes to 576 gigabytes.

For p= r 2k+1 with r small, because s= r 2 j for some j, we can save time and space
by applying (6). We do 2 j DFTs of size r, in blocks, in parallel, then s multiplications by
powers of 𝜔, in blocks in parallel, followed by r FFTs of size s/r which we do in parallel.
This reduces the time for an evaluation by a factor between 6 and 12 since we replace
3 FFTs of size n where 2 s<n⩽4 s by r FFTs of size s/r which is equivalent to one FFT of
size s.

We need an additional s units of storage for storing the r inputs of size 2 j for the r
FFTs and an additional s/r units for the required W array. Thus applying (6) reduces the
temporary storage needed from 3n units to s+ s/r units. For p=5×255+1 and d=109,
with s=5×229, this is 8(s+ s/r)=24 gigabytes of temporary storage instead of 192 giga-
bytes.
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We can now state the total storage needed by our implementation of Algorithm 1.
We need to store the input P(z) of degree d and an array of size d for the output roots S.
We need space for three temporary polynomials of degree d. Including the memory for
step 6, our implementation uses 5d+4+3 s+ s+ s/r units, which, for p=5255+1, d=109
and s=5×229 is 121 gigabytes.

4.5. Step 9: parallelizing the product tree multiplication algorithm
In step 9 we need to expand the polynomial Q=∏𝛼∈S (z−𝛼). Let n=∣S∣ and suppose S
is stored in an array of size n and Q in an array of size n+1. We can compute Q in
O(M(n) log n) using fast multiplication and divide and conquer. The obvious way to do
this is to split the roots in S into two equal size groups, of size m=⌊n/2⌋ and d=n − m,
then recursively compute

a(x)=�
i=1

m

(z−Si)=xm+�
i=0

m−1

ai zi and b(x)= �
i=m+1

n

(z−Si)=xd+�
i=0

d−1

bi zi

and finally multiply a(x) by b(x) using fast multiplication for large n. In the literature this
approach is called the product tree multiplication algorithm; see [17, Algorithm 10.3].
In Appendix A, the function mult implements the product tree algorithm in Magma.
We use it to create the input polynomial P(z) to get Magma timings. However, mult
is inefficient because all recursive calls allocate new memory for the inputs and prod-
ucts in the product tree.

For large products we use our FFT based polynomial multiplication FFTpolmul64s
which needs a temporary array T of size 3N units of storage where N=2k>n. We do
not want to allocate space for T in each recursive call. Fortunately, N is a power of 2 so
we can divide T into two halves and execute the two recursive calls in parallel using the
two halves of T. But the size of a(x) plus b(x) is n+2. They don't fit in Q. The remedy is
to note that a and b are both monic, so we do not need to store their leading coefficients.

Figure 3 presents C code for an in-place product tree algorithm which uses the input
space S of size n, the output space Q of size n+1 and a temporary array T of size 3N for
all polynomial multiplications in the product tree. Our solution splits S asymmetrically
into a “large” set of size m=2k where n

2 ⩽m<n and a “small” set of size d=n − m. For
example, for n=36 we use m=32 and d=4. To multiply a×b we first recursively com-
pute â≔ a − xm in Q[0..m−1] and b̂≔ b− xd in Q[m..n −1]. We copy the contents of Q to
the input array S and we compute the product â× b̂ in Q[0..n − 2]. For small n, we use
polmul64s an in-place multiplication with quadratic complexity. Then we add xd â and
xm b̂ to Q so that Q contains ab�≔ab−xn. Thus we have the following result.

PROPOSITION 16. Let S⊂𝔽p of size n and Q be an array of size n+1 and T an array of size 3N
where N=2k and N>n. Assuming N∣(p−1), Algorithm treemul computes Q=∏𝛼∈S z−𝛼 in
O(M(n) log n) arithmetic operations in 𝔽p using only the memory of S,Q and T.

In Figure 3, because the memory for S, Q and T in the two recursive calls is separated,
we may execute the two recursive calls to treemul in parallel. This also holds recursively,
so we can keep executing recursive calls in parallel, which is ideal for Cilk. In our parallel
implementation of treemul we parallelize the two recursive calls if n⩾216=65536. We
also parallelize FFTmul64s and the FFTs (both the subalgorithms and their calls inside
treemul). We do not parallelize the two polynomial additions.
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#include <stdlib.h>
#define LONG long long int

// Input polynomials a and b mod p of degree da and db respectively.
// Output array c is space for the sum a + b mod p (product a b mod p)
LONG poladd64s( LONG *a, LONG *b, LONG *c, LONG da, LONG db, LONG p );
LONG polmul64s( LONG *a, LONG *b, LONG *c, LONG da, LONG db, LONG p );
LONG FFTmul64s( LONG *a, LONG *b, LONG *c, LONG da, LONG db, LONG *T, LONG p );

void treemul( LONG *S, LONG n, LONG *Q, LONG *T, LONG p ) {
LONG i,m,d;
if( n==1 ) { Q[0] = submodp(0,S[0],p); return; }
for( m=1; 2*m<n; m=2*m );
d = n-m;
treemul(S,m,Q,T,p); // compute a(x)-x^m in Q[0..m-1] using S[0..m-1] and T[0..3m-1]
treemul(S+m,d,Q+m,T+3*m,p); // and b(x)-x^d in Q[m..n-1] using S[m..n-1] and T[3m..]
for( i=0; i<n; i++ ) S[i] = Q[i]; // S = [a0,a1,...,am-1,b0,b1,...,bd-1]
if( d<10 ) polmul64s(S,S+m,Q,m-1,d-1,p); // in-place classical multiplication
else FFTmul64s(S,S+m,Q,m-1,d-1,T,p); // FFT multiplication using T[0..6m-1]
Q[n-1] = 0;
poladd64s(Q+d,S,Q+d,m-1,m-1,p); // add x^m (b-x^d) to Q[d..n-1]
poladd64s(Q+m,S+m,Q+m,d-1,d-1,p); // add x^d (a-x^m) to Q[m..n-1]
// Q[n] = 1; is okay for this sequential code but not for a parallel code
return;

}

LONG *array64s(LONG n); // return an array of size n
void treeproduct( LONG *S, LONG n, LONG *Q, LONG p ) {
// S is an array of size n and Q of size n+1
LONG N,*T;
for( N=1; N<n; N=2*N );
T = array64s(3*N);
treemul(S,n,Q,T,p);
free(T);
Q[n] = 1;
return;

}

Figure 3. C code for computing Q=∏i=0
n−1 (z−Si) in step 9.

Remark 17. By dividing the input S asymmetrically so that the FFTs are fully utilized, we
gain upto a factor of 2 in speed when d is much smaller then m. Thus we get the benefit
of using a truncated FFT [22] for the polynomial multiplications without using it.

Remark 18. If we insert the statement Q[n] = 1; before the return statement in
treemul, then the sequential code will still work. However, since both recursive calls
update Q[n], the memory is no longer separated, so the two recursive calls cannot be
executed in parallel.

5. TIMING RESULTS

We want to compare our new tangent Graeffe implementation with an implementation
of the Cantor–Zassenhaus algorithm [8] which uses fast polynomial arithmetic. One of
the best implementations that we know of is Magma's Factorize command. Magma
uses an implementation of Shoup's work [44] by Allan Steel [45]. For P(z) ∈𝔽p[z] of
degree d with d distinct roots in𝔽p, Magma uses the Cantor–Zassenhaus algorithm which
has time complexity O(M(d) log d log p).

The timings in Tables 1 and 2 were obtained on an 8 core Intel Xeon E5-2660 CPU
which runs at at 2.2 GHz base and 3.0 GHz turbo. The input polynomials P(z) in Tables 1
and 2 of degree d were created with d random distinct roots in 𝔽p. Table 1 is for the 28.8
bit prime p=7×226+1 and Table 2 is for the 62.4 bit prime p=3×29×256+1.
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d Magma NewTG Step5 Step6 Step9 P/Q first %roots N FFT
213−1 3.38 s 0.07 s 0.02 s 0.01 s 0.01 s 0.00 s 0.05 s 75.0% 14 0.41 ms
214−1 7.34 s 0.17 s 0.05 s 0.03 s 0.01 s 0.01 s 0.11 s 74.4% 13 0.86 ms
215−1 16.96 s 0.32 s 0.10 s 0.05 s 0.03 s 0.02 s 0.23 s 75.1% 12 1.84 ms
216−1 39.05 s 0.64 s 0.20 s 0.10 s 0.08 s 0.03 s 0.46 s 75.7% 11 3.85 ms
217−1 88.65 s 1.21 s 0.37 s 0.19 s 0.17 s 0.06 s 0.92 s 75.3% 10 7.93 ms
218−1 203.0 s 2.54 s 0.71 s 0.43 s 0.41 s 0.12 s 1.94 s 75.2% 9 16.8 ms
219−1 462.5 s 5.16 s 1.34 s 0.90 s 0.91 s 0.25 s 3.94 s 75.1% 8 35.2 ms
220−1 1050. s 10.5 s 2.51 s 1.84 s 2.03 s 0.52 s 8.01 s 75.2% 7 74.7 ms
221−1 2407. s 21.2 s 4.55 s 3.80 s 4.41 s 1.11 s 16.1 s 75.4% 6 157.5 ms
222−1 — 43.0 s 8.14 s 8.06 s 9.62 s 2.31 s 32.7 s 75.7% 5 333.7 ms
223−1 — 86.2 s 13.7 s 16.3 s 21.1 s 4.91 s 64.4 s 76.3% 4 697.5 ms
224−1 — 174.0 s 22.4 s 33.5 s 46.3 s 10.2 s 132. s 77.5% 3 1460. ms
225−1 — 342.8 s 32.2 s 67.2 s 99.7 s 20.7 s 258. s 80.1% 2 3055. ms

Table 1. Timings in CPU seconds for p=7×226+1 using s∈[2d, 4d).

The timings in column NewTG are for our C implementation of Algorithm 1 with the
parameter s chosen in [2 d, 4 d). The timings in column Magma are for the Factorize
command for Magma version V2.25-5. Magma code for creating P(z) and factoring it
is given in Appendix A. We note that older versions of Magma have a quadratic sub-
algorithm; this problem was fixed by Steel for version V2.25-5. We also note that Magma
has faster arithmetic for primes p<230.

The columns in Tables 1 and 2 labeled Step5, Step6, Step9, and P/Q report the time
spent in steps 5, 6, 9, and 10, respectively, in the top level call of Algorithm 1. They show
that initially step 5, which costs O(M(d) log (p/s), dominates the cost of steps 6 and 9
which cost O(M(s)) and O(M(d) log d) respectively. As d increases, so does s, and the
number of iterations N of step 5 in Algorithm 1 drops; ultimately, the computation of the
product Q in step 9 dominates.

The column labeled %roots reports the percentage of the roots found in the first tan-
gent Graeffe application. Column N is the value of N in step 5. Step 5 does 4N+2 FFTs of
size n=d+1. Column FFT reports the time for one of those FFTs. For example, in Table 2,
for d=220−1, 13.9 seconds was spent in step 5. The code did 4×41+2=166 FFTs of size
n=220 which took 166×0.0747=12.4 seconds.

The timings in Table 1 show that the tangent Graeffe method is 100 times faster than
Magma's implementation of Cantor–Zassenhaus at degree 220− 1. For the larger prime
in Table 2 the tangent Graeffe method is 166 times faster at degree 220−1.

d Magma NewTG Step5 Step6 Step9 P/Q first %roots N FFT
213−1 18.94 s 0.21 s 0.08 s 0.04 s 0.01 s 0.00 s 0.14 s 69.8% 48 0.41 ms
214−1 44.07 s 0.46 s 0.18 s 0.08 s 0.01 s 0.01 s 0.30 s 68.8% 47 0.86 ms
215−1 103.5 s 0.98 s 0.37 s 0.17 s 0.03 s 0.02 s 0.64 s 69.2% 46 1.83 ms
216−1 234.2 s 2.06 s 0.77 s 0.35 s 0.08 s 0.05 s 1.33 s 68.9% 45 3.83 ms
217−1 534.5 s 4.15 s 1.54 s 0.72 s 0.17 s 0.08 s 2.67 s 69.2% 44 7.93 ms
218−1 1219. s 8.90 s 3.24 s 1.53 s 0.38 s 0.18 s 5.70 s 69.2% 43 16.6 ms
219−1 2809. s 18.69 s 6.75 s 3.24 s 0.87 s 0.40 s 12.0 s 69.2% 42 35.2 ms
220−1 6428. s 38.76 s 13.9 s 6.79 s 1.93 s 0.85 s 24.9 s 69.2% 41 74.7 ms
221−1 — 79.88 s 28.3 s 14.2 s 4.11 s 1.77 s 51.4 s 69.2% 40 157.5 ms
222−1 — 165.5 s 57.6 s 29.8 s 9.01 s 3.71 s 106. s 69.2% 39 333.5 ms
223−1 — 335.4 s 115. s 60.8 s 19.2 s 7.66 s 215. s 69.2% 38 697.5 ms
224−1 — 702.5 s 238. s 129. s 42.4 s 16.3 s 451. s 69.2% 37 1460. ms

Table 2. Timings in CPU seconds for p=3×29×256+1 using s∈[2d, 4d).
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d=1,100,000 d=1,400,000
Choice of s e−d/s %roots Step5 Step6 Total e−d/s %roots Step5 Step6 Total

d⩽ s<2d 0.432 43.3% 27.6 s 0.54 s 64.53 s 0.586 58.5% 27.4 s 0.96 s 67.10 s
2d⩽ s<4d 0.657 65.7% 27.3 s 1.16 s 44.71 s 0.766 76.5% 26.7 s 2.39 s 47.17 s
4d⩽ s<8d 0.811 81.1% 26.7 s 2.40 s 39.86 s 0.875 87.4% 25.9 s 4.92 s 43.14 s
8d⩽ s<16d 0.900 90.0% 25.9 s 4.92 s 39.47 s 0.935 93.5% 24.0 s 10.2 s 45.34 s

16d⩽ s<32d 0.949 94.9% 25.2 s 10.3 s 43.16 s 0.967 96.7% 24.4 s 21.2 s 55.12 s

Table 3. Tangent Graeffe timings in CPU seconds for p=5×255+1 for various s.

Table 3 shows the effect of different choices for the parameter s in Algorithm 1. If
the roots of P(z+𝜏) under the Graeffe transform G2N are uniformly distributed among
the s-th roots of unity, then the proportion of them that remain distinct is e−d/s. Thus
doubling s increases the proportion of roots found at each recursive level of Algorithm 1,
which saves time, but it also doubles the cost of the evaluations in step 6. Recall that the
theoretically optimal performance is obtained by taking s/d≍ log d� , where we note that
log d� =3.730 and log2 d� =4.480 for d=1,100,000.

Column e−d/s gives the expected proportion of roots that will be found. Column %roots
is the actual percentage of roots found by Algorithm 1. Columns Step5, Step6, and Total
are the time in step 5, step 6, and the total time. The data in Table 3 suggests choosing
4d⩽s<8d to minimize time. For 4d⩽s<8d the algorithm is expected to obtain between
e−1/4=0.779 and e−1/8=0.882 of the roots. Our actual choice of 2 d⩽ s<4 d increases
the time by about 10% but saves a factor of 2 in space.

Table 4 shows the results for our parallel implementation including timings for P(z)
of degree 109. The timings in Table 4 were obtained on a server with a 10 core Intel E5
2680 v2 CPU with 128 gigabytes of RAM running at 3.0GHz base, 3.6GHz turbo. The
input polynomial P(z) is created as before by choosing d random distinct values from 𝔽p
with p=5×255+1.

d cores P(z) Step3 Step5 Step6 Step8 Step9 P/Q first Total Space
106 1 1.931 0.393 8.446 0.841 0.624 1.233 0.562 12.11 19.44 120 MiB
106 10 0.292 0.135 1.320 0.147 0.078 0.190 0.157 2.035 5.627 120 MiB

speedup 6.61x 2.91x 6.40x 5.72x 8.00x 6.49x 3.58x 5.95x 3.45x
2 ⋅106 1 3.975 0.817 17.18 1.671 1.246 2.683 1.180 24.79 39.97 240 MiB
2 ⋅106 10 0.538 0.261 2.421 0.297 0.150 0.397 0.273 3.823 8.336 240 MiB

speedup 7.39x 3.13x 7.10x 5.63s 8.31x 6.76x 4.32x 6.48x 4.79x
4 ⋅106 1 8.458 1.713 35.00 3.533 2.512 5.826 2.475 51.09 82.31 488 MiB
4 ⋅106 10 1.110 0.533 5.043 0.625 0.300 0.797 0.521 7.845 16.25 488 MiB

speedup 7.62x 3.21x 6.94x 5.65x 8.37x 7.31x 4.75x 6.51x 5.07x
8 ⋅106 1 18.16 3.533 70.75 7.244 5.001 12.63 5.220 104.4 168.6 0.95 GiB
8 ⋅106 10 2.383 1.070 10.07 1.218 0.599 1.680 1.045 15.74 27.66 0.95 GiB

speedup 7.62x 3.30x 7.03x 5.95x 8.35x 7.52x 5.00x 6.63x 6.10x
25 ⋅107 1 819.4 133.3 2316 274.2 157.2 574.0 203.4 3660 5815 30.3 GiB
25 ⋅107 10 102.7 37.49 319.7 45.75 18.54 74.29 38.50 536.1 850.4 30.3 GiB

speedup 7.98x 3.56x 7.23x 5.99x 8.48x 7.73x 5.28x 6.83x 6.84x
5 ⋅108 1 1752 274.9 4631 566.6 316.7 1228 422.5 7442 11820 60.6 GiB
5 ⋅108 10 219.7 75.66 636.0 92.46 37.35 159.7 76.92 1082 1719.3 60.6 GiB

speedup 7.79x 3.63x 7.28x 6.12x 8.48x 7.69x 5.49x 6.88x 6.88x
109 1 3739 645.2 10486 1423 682.6 2795.5 1017 17057 26889 121 GiB
109 10 465.2 156.5 1366 243.8 83.03 341.5s 180.7 2379 3714.7 121 GiB

speedup 8.04x 4.12x 7.67x 5.88x 8.22x 8.19x 5.63x 7.17x 7.23x

Table 4. Real timings (in seconds) for p=5×255+1 using s∈[2d, 4d).
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Timings in column P(z) are for computing the input polynomial P(z) using our in-
place parallel product tree multiplication from section 3.4. The total time for computing
the roots of P(z) is in column Total. Roughly speaking, our software takes 10 times longer
to compute the roots of P(z) (less for larger d) than it does to create P(z)!

Timings in columns Step4, Step5, Step6, Step9, and P/Q are the times for those steps
for the top-level call of Algorithm 1. Speedups are given for each computation. The
reader can see that the parallel speedup is not as good for Step4 and the division P/Q.
This is because we have only parallelized the FFTs in them; none of steps of linear cost
are parallelized.

6. CONCLUSION

The motivation for our work is the problem of sparse polynomial interpolation where
one seeks to recover the coefficients and monomials of a polynomial f ∈𝔽p[x1, . . . , xn]
with t terms from values of f . The popular approach by Prony and Ben-Or–Tiwari needs
only 2 t values of f but it needs to factor a polynomial Λ(z)∈𝔽p[t] of degree t which
has t distinct roots in 𝔽p. Using the Cantor–Zassenhaus (CZ) algorithm, computing the
roots of Λ(z) takes O(M(t) log2 t log2 p) time. Because this is the most expensive step
in Ben-Or/Tiwari sparse interpolation, and because CZ does gcd computations which
are difficult to parallelize, research in sparse interpolation has tried different approaches
that do not require root finding.

If we choose the prime p of the form p=𝜎 2k+1 with 𝜎 small, the new tangent Gra-
effe (TG) algorithm factors Λ(z) in O(M(t) log2 p) time. This is Θ(log t) faster than CZ,
but the constants actually matter in practice. In this work we improved the main step
of TG by a factor of 2 and we showed that for large p, TG is faster than CZ by a factor
of /7 2 log2 t. Our new C implementation of TG is over 100 times faster than Magma's C
implementation of CZ for t>220 on the tests we made. So TG really is a lot faster than CZ.

Another goal was to see if we could parallelize TG for multi-core computers. We
found that it was not sufficient to only parallelize the underlying FFT. We also had to par-
allelize many sub-algorithms to get good parallel speedup. Here we contributed a new
parallel in-place product tree algorithm. We were also successful in reducing the space
needed so that we could compute the roots of Λ(z) of degree one billion on a 10 core com-
puter with 128 gigabytes of RAM in about one hour. It should be possible to reduce the
time further by using vectorization [12, 26]. The sequential implementation of the FFTs
could also be further improved using techniques from [15, 42] and Harvey's approach
for number theoretic FFTs [21].

APPENDIX A. MAGMA CODE

p := 3*29*2^56+1;

p := 7*2^26+1;

Fp := FiniteField(p);

R<x> := PolynomialRing(Fp);
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mult := function( L )

n := #L;

if n eq 1 then return x-L[1];

else

m := n div 2;

f := $$( L[1..m] ) * $$( L[m+1..n] );

return f;

end if;

end function;

d := 2^12-1;

S := { Random(Fp) : i in [1..d] };

while #S lt d do S := S join { Random(Fp) : i in [1..d-#S] }; end while;

#S;

L := [ x : x in S ];

time f := mult( L );

time g := Factorization(f);
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