
Optimizing and Parallelizing Brown’s Modular GCD

Algorithm

Matthew Gibson, Michael Monagan

October 7, 2014

1 Introduction

Consider the multivariate polynomial problem over the integers; that is, Gcd(A,B) where A,B ∈
Z[x1, x2, . . . xn]. We can solve this problem by solving the related Gcd problem in Zp[x1, x2, . . . xn]
for several primes p, and then reconstructing the solution in the integers using Chinese Remain-
dering. The question we address in this paper is how fast can we solve the problem Gcd(A,B)
in Zp[x1, x2, . . . xn] using either 31 or 63 bit primes, and how well can we make use of parallel
processing to do so? To this end, we implemented a modular algorithm using evaluations and inter-
polations, and parallelized it using the CILK framework. Several optimizations for the algorithm
were found, and a few parallelization strategies were attempted. Our final implementation pre-
formed significantly better than both maple and magma on most test cases without using multiple
processors, and with parallelization we acheive a speedup of a factor of about 11 on 16 processors.

The modular method of solving the GCD problem was first explained by Brown in 1971 [1].
Further, the methods used here are very similar to those used in a 2000 paper by Monagan and
Witkopf [2]. A proof of Brown’s algorithm will be included in this paper to aid in the explenations
of the optimizations developed. However, one may wish to reference either the 1971 or 2000 papers
for an alternative and more detailed proof.

The MGCD (modular GCD) algorithm is going to compute the GCD G and the corresponding
co-factors Ā, B̄ of the inputs A,B ∈ Zp[x1, x2 . . . xn]. The algorithm is modular and recursive. We
will use an evaluation homomorphism to remove the variable x1, solve the problem in Zp[x2 . . . xn]
several times recursively, and use the results to reconstruct the solution to the original n-variable
problem.

Definitions

If Z is the ring of integers and p is a prime in Z, then pZ is an ideal and Z/pZ = Zp is a field
of charecteristic p. Then Zp[x1 . . . xn] is the ring of multivariate polynomials in the variables
x1, x2 . . . xn with coefficients in Zp.

Definition. The terms of A ∈ Zp[x1, x2 . . . xn] have a monomial part of the form xe11 x
e2
2 . . . xenn .

A lexicographical ordering with x1 < x2 < · · · < xn orders the monomials according to en, and
in case of a tie according to en−1, and in case of a tie continueing to e1. If all the exponents are
the same, then the terms are equal lexicographically. A polynomial is in lexicographical order if its

1

terms are ordered lexicographically according to their monomials. For example, if x > y > z then
the polynomial A = 3x2yz2 + xy2z − xz2 + 2y + z2 is in lexicographical order.

The univariate polynomial ring Zp[x] is a Euclidean Domain, so that given any a, b ∈ Zp[x], b 6= 0,
we can find a corresponding q, r ∈ Zp[x] such that a = bq+ r where r = 0 or deg(r) < deg(b). As a
result, we can use the Euclidean Algorithm to obtain the GCD of polynomials A,B ∈ Zp[x] through
a sequence of univariate divisions in Zp[x]. The multivariate polynomial domain Zp[x1, x2 . . . xn] is
not a Euclidean Domain whenever n > 1, but it is a Unique Factorization Domain (UFD).

Definition. Let D be any UFD. Then for A,B ∈ D, we say that G ∈ D is the Greatest Common
Divisor of A and B if and only if

1. G | A and G | B

2. for any f ∈ D, f | A and f | B implies f | G

For A,B ∈ Zp[x1, x2 . . . xn] we will define G = Gcd(A,B) to be the unique monic polynomial GCD
for terms in lexicographical order. We will also define the co-factors Ā, B̄ as satisfying GĀ = A
and GB̄ = B.

Definition. In this proof, we will see A ∈ Zp[x1][x2 . . . xn] as a multivariate polynomial in the
variables x2 . . . xn with coefficients in the ring Zp[x1]. Then the leading term of A is the term with
highest lexicographical order in x2 . . . xn, composed of the leading monomial lm(A) in x2 . . . xn and
the leading coefficient lc(A) in Zp[x1].

Definition. Considering A ∈ Zp[x1][x2 . . . xn], we say that the content of A is the monic GCD of
the Zp[x1] coefficients, and we write this as cont(A). If the content of a polynomial is 1, then the
polynomial is primitive. We define the primitive part of A, pp(A), as satisfying pp(A) cont(A) = A.
It could be proved that the polynomial A ∈ Zp[x1][x2 . . . xn] is primitive in x2 . . . xn if and only if,
for any factor f | A, either f is a unit or degxi

(f) > 0 for some 2 ≤ i ≤ n.

Definition. Consider A ∈ Zp[x1][x2 . . . xn] with coefficients in the ring Zp[x1]. Then let φi be the
homomorphism corresponding to the evaluation x1 = αi for some point αi ∈ Zp. Then φi(A) maps
Zp[x1][x2 . . . xn]→ Zp[x2 . . . xn]. It will be helpful later on to use the fact that this homomorphism
is equivalent to the natural homomorphism which maps A to its congruence class mod x1 − αi.

2 Modular Algorithm Proof

2.1 An example of the complicating issues

In developing a modular GCD algorithm, several complicating issues arrise. Consider the modular
GCD problem for the following inputs in Z11[y][x]:

A = (y2 + 3y)x3 + (y2 + y + 2)x2 + (y + 8)x

B = (y2 + 3y)x3 + x2y

We wish to evaluate y = αi for multiple points, and use the results to reconstruct the GCD.
The degree in y of the GCD must be no more than 2, so we only need to evaluate and interpolate
at 3 points. Picking y = 1, 2, 3, we get the following results:

2

αi Ai = φi(A) Bi = φi(B) Gcd(Ai, Bi)
1 4x3 + 4x2 + 9x 4x3 + x2 x2 + 3x
2 10x3 + 8x2 + 10x 10x3 + 2x2 x2 + 9x
3 7x3 + 3x2 7x3 + 3x2 x3 + 2x2

The true GCD of A and B is G = x2(y + 3) + x. Notice that we could not simply interpolate
the GCD’s of the images of the inputs, as two problems arise. The first problem is that we will not
be able to reconstruct the y + 3 coefficient of x2 in the GCD since the image GCD’s are all monic.
This is because the GCD is unique only up to a unit, and is called the leading coefficient problem.
The second problem, the problem of unlucky evaluation points, is that the image GCD for αi = 3
has the wrong degree in x since the co-factors of the inputs are not relatively prime under φ3.

2.2 How to solve leading term problem

In general, consider the inputs A,B in Zp[x1][x2 . . . xn], and φi the homomorphism which evaluates
x1 at some point αi. We have that Gcd(φi(A), φi(B)) = Gcd(φi(G), φi(G)) Gcd(φi(Ā), φi(B̄)), and
since the function Gcd gives a monic result, this means:

Gcd(φi(A), φi(B)) =
φi(G)

lc(φi(G))
Gcd(φi(Ā), φi(B̄)) (1)

We say that αi is unlucky whenever Gcd(φi(Ā), φi(B̄)) 6= 1.
To solve the problem of the leading coefficients, we will assume that the inputsA,B ∈ Zp[x1][x2 . . . xn]

have been made primitive with respect to the variables x2 . . . xn at the beginning of the algorithm.
This can be done by computing the content of each input in Zp[x1] and dividing this from its coeffi-
cients. Further, by Gauss’ Lemma, we know that Gcd(A,B) = Gcd(pp(A),pp(B)) Gcd(cont(A), cont(B))
so we can compute the GCD and cofactors of the content and primitive parts seperately and re-
combine them at the end of the algorithm.

Next, we compute γ = Gcd(lc(A), lc(B)), where lc(A) and lc(B) are in Zp[x1]. For the true
GCD G we know that lc(G) | lc(A) and lc(G) | lc(B), and so it must be that lc(G) | γ and
γ = lc(G)∆ for some ∆ ∈ Zp[x1]. Then for each evaluation point αi, if φi(γ) = 0 we discard it.
Otherwise, we multiply each image GCD by φi(γ) = φi(lc(G))φi(∆). Since φi(γ) 6= 0 we know that
φi(lc(G)) = lc(φi(G)) and so:

φi(γ) Gcd(φi(A), φi(B)) = φi(∆)φi(G) Gcd(φi(Ā), φi(B̄)) (2)

If we knew that no evaluation points we use are unlucky, then after computing degx1
(∆) +

max(degx1
(A),degx1

(B)) image GCD’s, we will have enough information to interpolate the poly-
nomial ∆G, where degx1

(∆) is bounded by degx1
(γ).1 Since the inputs were assumed to be prim-

itive with respect to x2 . . . xn, it follows that G is also primitive, and so it can be recovered as
G = pp(∆G).

2.3 How to detect most unlucky alphas

The second problem is that of detecting unlucky evaluation points. Recall that A,B,G are in
Zp[x1][x2 . . . xn] and that lm(A) is the monomial in x2 . . . xn of the leading term. We know that

1At the end of section 2.5 we will show that the final algorithm needs degx1
(γ) + max(degx1

(A),degx1
(B)) + 1

images.

3

lm(φi(∆)) = 1 since ∆ is in Zp[x1]. Then if we let g∗i = φi(γ) Gcd(φi(A), φi(B)) for each αi, by (2)
we see that:

lm(g∗i) = lm(G) lm(Gcd(φi(Ā), φi(B̄)))

Then we can see that lm(g∗i) > lm(G) if and only if αi is unlucky; otherwise, lm(g∗i) = lm(G). Using
this fact, we can rule out unlucky evaluation points with a high probability using the following
method. For each of a sequence of points αi, ensure that φi(γ) 6= 0. Then compute g∗i and do the
following:2

1. If lm(g∗i) > lm(g∗i−1), then αi is unlucky so choose a new evaluation point.

2. If lm(g∗i) < lm(g∗i−1), then discard all previous evaluation points as unlucky.

Once we have computed an image g∗i for degx1
(γ) + max(degx1

(A),degx1
(B)) different points

and discarded unlucky points using the above method, we will have that either all of the evaluation
points used are unlucky or none of them are. If we could ensure that not all of the points chosen
is unlucky, then we could interpolate ∆G as described above.

2.4 Divisibility Theorem

While the probability of all αi being unlucky is often very small, this possibility is ruled out by
Brown by checking if the interpolated GCD divides the inputs. The basis of this idea can be seen
in the following theorem, in which E can be seen as an interpolated GCD which we are testing for
correctness.

Theorem 1. Let E,G be in Zp[x1][x2 . . . xn], G 6= 0 and G primitive with respect to x2 . . . xn. Let
φ be an evaluation homomorphism evaluating x1 = α for some α in Zp such that the leading term
of G does not vanish under φ. Then if E | G and φ(G) | φ(E), it follows that G | E.

Proof. Recall that the leading monomial of a polynomial in Zp[x1][x2 . . . xn] is the monomial in
x2 . . . xn of the leading term. Since E | G, we know that G = KE for some K ∈ Zp[x1][x2 . . . xn].
Since G is primitive, either K is a unit or degxi

(K) > 0 for some 2 ≤ i ≤ n. Then φ(G) = φ(K)φ(E)
so that lm(φ(E)) ≤ lm(φ(G)). Since φ(G) | φ(E) by assumption and φ(E) 6= 0, we further get that
lm(φ(G)) ≤ lm(φ(E)) so that lm(φ(G)) = lm(φ(E)).

Since E | G, we know that the leading term of E does not vanish under φ, and so lm(φ(E)) =
lm(E) and lm(φ(G)) = lm(G). Then it follows that:

lm(G) = lm(φ(G)) = lm(φ(E)) = lm(E)

Since G = KE, this means lm(K) = 1 and so K ∈ Zp[x1]. Then since G is primitive, K is a unit
and G | E.

Using this theorem, if an interpolated GCD divides the true GCD and if at least one of its
images is divisible by the corresponding image of the true GCD, then it must be equal to the true
GCD up to a unit.

2The final MGCD implementation comapres the total degree of the leading terms rather than comparing mono-
mials. When φi(γ) 6= 0 these tests are equivalent since the leading term doesn’t vanish under the evaluation.

4

2.5 MGCD algorithm

Assuming A,B ∈ Zp[x1][x2 . . . xn] have been made primitive with respect to x2 . . . xn, we wish to
compute Gcd(A,B). The MGCD algorithm will also give the cofactors Ā and B̄. At the beginning of
the algorithm, we compute γ = Gcd(lc(A), lc(B)) and choose a bound bnd = min(deg(A),deg(B))+
deg(γ) + 1. Then we begin choosing evaluation points αi. We discard any point for which φi(γ) =
0, and for the others we compute g∗i = φi(γ) Gcd(φi(A), φi(B)). We use the leading monomial
comparison from section 2.3 to detect and rule out as many unlucky αi as possible.

We know that g∗i | φi(γA) and g∗i | φi(γB), which means that we can define unique ā∗i and b̄∗i
satisfying:

φi(γA)− g∗i ā∗i = 0

φi(γB)− g∗i b̄∗i = 0
(3)

Using congruence notation, this is

γA− g∗i ā∗i ≡ 0 mod (x1 − αi)

γB − g∗i b̄∗i ≡ 0 mod (x1 − αi)
(4)

If A and B are univariate, then we can acquire ā∗i and b̄∗i above using univariate division. Otherwise,
they will be computed in the recursive call to the MGCD algorithm. Using g∗i , ā

∗
i and b̄∗i we will

iteratively build the interpolants G∗
k, Ā∗

k and B̄∗
k to satisfy the following for the first k points αi:

G∗
k ≡ g∗i mod (x1 − αi)

Ā∗
k ≡ ā∗i mod (x1 − αi)

B̄∗
k ≡ b̄∗i mod (x1 − αi)

 for i = 1 . . . k (5)

Further, since (x1 − αi) and (x1 − αj) are relatively prime for i 6= j, we can define Mk = (x1 −
α1)(x1 − α2) . . . (x1 − αk) and get from (4) that:

γA−G∗
kĀ

∗
k ≡ 0 mod Mk

γB −G∗
kB̄

∗
k ≡ 0 mod Mk

(6)

As we interpolate, we know that Mk | γA − G∗
kĀ

∗
k and likewise Mk | γB − G∗

kB̄
∗
k . Then when we

have interpolated at least bnd = degx1
(γ) + max(degx1

(A),degx1
(B)) + 1 images, we know that

degx1
(γA) < bnd and degx1

(γB) < bnd, and since degx1
(Mk) = k ≥ bnd, we know the following:

1. If degx1
(G∗

kĀ
∗
k) < bnd then γA = G∗

kĀ
∗
k

2. If degx1
(G∗

kB̄
∗
k) < bnd then γB = G∗

kB̄
∗
k

If these conditions are satisfied then G∗
k | γG. Since G is primitive with respect to x2 . . . xn, we

know further that pp(G∗
k) | G. For each αi, we ensured that φi(γ) 6= 0 so that the leading term of G

doesn’t vanish under φi. By (2) and since g∗i = φi(G
∗
k) we know that φi(G) | φi(G∗

k) and therefore
φi(G) | φi(pp(G∗

k)). Then by Theorem 1 we know that G | pp(G∗
k) and so pp(G∗

k) is equal to G up
to a unit. Further, pp(G∗

k) will be monic. The corresponding primitive co-factors can be found as
Ā = pp(Ā∗

k) and B̄ = pp(B̄∗
k).

5

2.6 Psuedocode for Non-optimized MGCD

The algorithm MGCD takes as inputs n-variable polynomials A,B ∈ Zp[x1][x2] . . . [xn], where
n ≥ 2. The inputs are stored computationally in a recursive dense representation, which takes the
form of a tree with n levels and where the leaves of the tree are polynomials in Zp[x1]. Calls in
the algorithm to GCD on univariate inputs will use the Euclidean Algorithm. The output of the
MGCD algorithm is [G, Ā, B̄], the GCD and two co-factors.

begin:
1. Determine the content of the inputs across the Zp[x1] leafs as cA := cont(A), cB := cont(B).
2. Compute the content GCD and co-factors as cG := GCD(cA, cB), cĀ := cA/cG and cB̄ :=
cB/cG

3. Set A := A/cA, B := B/cB to make the inputs primitive.
4. Compute γ := GCD(lc(A), lc(B))
5. Set bnd = deg(γ) + max(degx1

(A),degx1
(B)) + 1

6. Set G∗, A∗, B∗ := 0 to clear the interpolants, and set e :=∞, cnt := 0
Loop:

7. α := a random element in Zp such that φ(γ) 6= 0
8. Get φ(A), φ(B) by evaluating the leaves of A and B
9. If n > 2 then compute [g∗, ā∗, b̄∗] := GCD(φ(A), φ(B)) by a recursive call to MGCD with n-1

variables. Otherwise, use the Euclidean Algorithm to get g∗, and do univariate division to
get ā∗ and b̄∗.

10. Get the total degree of the leading term, d := ldeg(g∗)
If d = 0 then set G∗ := 1, cA∗ := A, cB∗ := B and goto End, since A and B must be relatively
prime.
If d > e then goto Loop, since α must be unlucky
If d < e then set G∗, A∗, B∗ := 0, e := d, cnt := 0 as all previous evaluations were unlucky

11. Multiply g∗ := φ(γ)× g∗
12. Extend G∗, Ā∗, B̄∗ by interpolating into them the new images g∗, ā∗ and b̄∗ respectively.
13. Set cnt := cnt+ 1
14. If cnt < bnd then goto Loop
15. If degx1

(γ) + degx1
(A) = degx1

(G∗) + degx1
(Ā∗) and degx1

(γ) + degx1
(B) = degx1

(G∗) +
degx1

(B̄∗) then goto End since the degree condition guarantees divisibility and we are done
16. Otherwise, set G∗, A∗, B∗ := 0, e :=∞, cnt := 0 and goto Loop as all evaluation points were

unlucky
End:

17. Remove the content from the interpolants
G∗ := G∗/ cont(G∗)
Ā∗ := Ā∗/ cont(Ā∗)
B̄∗ := B̄∗/ cont(B̄∗)

18. Add the correct content to the GCD and co-factors
G∗ := cG×G∗

Ā∗ := cĀ× Ā∗

B̄∗ := cB̄ × B̄∗

19. return [G∗, Ā∗, B̄∗]

6

3 Optimizations of the Algorithm

3.1 Division in the Images

In the algorithm presented above, Theorem 1 proves the correctness of an interpolated GCD by
testing divisibility. While the bound degx1

(γ) + max(degx1
(A),degx1

(B)) + 1 is needed to ensure
that the interpolated G∗

k divides the inputs A and B, the actual degree of G∗
k in the variable x1

could be much smaller then this bound. This suggests that if we could either find a smaller bound
for the degree of G∗

k in x1 or detect when it is complete in the iterative interpolation, we could then
verify its correctness only by checking if it divides the inputs.

Monagan and Wittkopf used this method in [2] by finding a reasonably tight degree bound for
G∗

k in x1 and using it to only compute enough image GCD’s for interpolation. They then used
division to check divisibility and to acquire Ā∗

k and B̄∗
k . However, division can be slow if a classical

algorithm is used and neither the divisor nor the quotient is small. An alternative optimization will
be presented as follows.

We will consider the specific case where the inputs A and B are in two variables, x1 and x2.
In this case, the image GCD’s are computed using the Euclidean algorithm, and the corresponding
co-factors are acquired through univariate division. If, after k images, we notice that one of the
interpolants G∗

k, Ā∗
k or B̄∗

k doesn’t change with the addition of the next image, we set a flag to
indicate an assumption that it is complete. Then, for each additional image, we do one of the
following.

1. If the flagged interpolant is G∗
k, we evaluate g∗i = φi(G

∗
k) as well as φi(γ)φi(A) and φi(γ)φi(B)

in Zp[x2]. Then we use univariate division to compute ā∗i and b̄∗i according to (3), and we
interpolate Ā∗

i and B̄∗
i as before. If the divisions ever have a non-zero remainder, than we

know that G∗
k - G so that it is either built from all unlucky α’s, or it’s interpolation was not

actually complete.

2. If the flagged interpolant is B̄∗
k (or symmetrically Ā∗

k), then we evaluate b̄∗i = φi(B̄
∗
k), and we

use univariate polynomial division to acquire first g∗i and then ā∗i to satisfy (3). As before,
we interpolate G∗

i and Ā∗
i with the new image. If the univariate divisions ever have a non-

zero remainder, then we again know that either our evaluation points were unlucky or the
interpolant was not actually complete.

Once we have preformed this image division for the rest of the evaluation points up to the bound
bnd, we use the same degree check as before to verify the correctness of the GCD and co-factors.

This optimization effectively replaces at least half of the univariate GCD computations with
univariate polynomial evaluations. Normally, we would have to evaluate φi(A), φi(B), compute
Gcd(φi(A), φi(B)) and then use two divisions to get ā∗i and b̄∗i . With the optimization, we can
avoid the GCD computation and instead evaluate one of the stabilized interpolants with degree in
x1 the least degree in x1 of G, Ā and B̄. For inputs A,B of degree n and GCD G of degree g, the
cost of each univariate GCD is in the order of n2 − g2. Using the optimization, we instead do an
evaluation, each of which has a cost in the order of min(g, n− g).

Figure 1 compares different strategies for verifying divisibility for a range of inputs. The plot is
for inputs A, B of degree 600 in both x1 and x2, where the degree of the GCD G varies between 60
sampled degree sizes from 0 to 600. The plot compares the non-optimized modular GCD algorithm
(Brown’s Algorithm) against the early G∗

k and B̄∗
k stabilization described above, and also shows

a version which uses classical division (written in C) and the results of using Maple 18’s built-in

7

Brown’s Algorithm Classical Division Method

Maple 18 Early G∗
k and B̄∗

k stabilization

0 50 100 150 200 250 300 350 400 450 500 550 600
0

2

4

6

8

deg(G)

T
im

e
(s

ec
)

Figure 1: Image Division Optimizations

GCD mod p method. We can see that the optimization gives the most benefit compared to the
non-optimized algorithm when deg(G) is small. The classical division method preforms better when
deg(G) is either very small or very large.

3.2 Univariate GCD Streamlining

Consider a bivariate GCD problem in which A,B ∈ Zp[x][y] have degree d in both x and y. Then
when the degree of the GCD is mid-sized, we can divide the total MGCD cost into a number of
parts, each of which are cubic in d:

C ∈

Content Computation︷ ︸︸ ︷
O(d3) +

Content Division︷ ︸︸ ︷
O(d3) +

Evaluation︷ ︸︸ ︷
O(d3) +

Univariate GCD︷ ︸︸ ︷
O(d3) +

Interpolation︷ ︸︸ ︷
O(d3)

In the bivariate problem, a significant portion of time is spent on the univariate GCD prob-
lem. This means that any optimizations for the univariate problem will immediately translate into
preformance gains for the multivariate problem.

Univariate GCD’s are computed using the Euclidean Algorithm, where the coefficients of the
univariate inputs come from evaluations of multivariate polynomials at random points. As a re-
sult, it will often be the case that each step of the Euclidean Algorithm we will be dividing two

8

polynomials, R0 of degree n and R1 of degree m, such that n = m+ 1. We can write this as:

R0 = a0 + a1x+ · · ·+ an−1x
n−1 + anx

n

R1 = b0 + b1x+ · · ·+ bmx
m

For an optimization, we streamlined the computation of the next remainder R2 by expressing
the quotient directly as (c+ an

bm
x) where c = an−1− an

bm
bm−1. Then we can find the next remainder

as:
R2 = R0− (c+

an
bm

x)R1

where deg(R2) < deg(R1). This remainder can be computed with one modular reduction per
coefficient of R0. The results are shows in figure 2 which tests the univariate GCD for inputs of
degree 100 whose GCD degree varies from 0 to 100. The preformance gain is about 64.5%.

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

deg(G)

T
im

e
(m

se
c)

Univariate Gcd
With Optimization

Figure 2: Univariate GCD Optimization

3.3 Partial FFT

Along with the univariate GCD, the other high contribution to the computational time of the
MGCD algorithm is multivariate polynomial evaluations and interpolations. In this algorithm, all
of these evaluations and interpolations are preformed in the Zp[x1] leaves of a recursively defined
polynomial structure.

The cost of evaluating or interpolating a univariate polynomial A at a new point x = αi is
n = deg(A). An initial optimization can be found by the fact that in a field Zp with p > 2, for
any point α there exists a corresponding point −α such that α2 = (−α)2. We can use this fact to
reduce the cost of evaluation and interpolation almost in half by separating A into coefficients with
even and odd powers of x and evaluating each term in A once for each (α,−α) pair. Then the two
distinct evaluations of A can be found using an addition and subtraction.

This method makes use of some of the optimizations of the Fast Fourier Transform for evaluation
and interpolation. Because of the nature of the modular GCD algorithm, it would be difficult to

9

use the full Fast Fourier Transform. Since we would have to evaluate and interpolate slightly more
points than the bound when it is not a power of two, and the high cost of the image GCD’s quickly
overcomes the performance gain in evaluation and interpolation. However, it may be beneficial to
generalize the partial FFT strategy to evaluate more than two points at a time, which is done as
follows.

Given the field Zp, let j be a power of 2 such that j | p− 1. Let A ∈ Zp[x] be a polynomial of
degree n > j − 1. We will evaluate A in a batch of size j. For each evaluation point α, we will find
a polynomial A∗ of degree less than j satisfying

A∗ ≡ A mod (xj − αj)

The term (xj − αj) factors as

(xj − αj) =

j−1∏
i=0

(x− αωi)

where each ωi is a distinct jth root of unity in Zp. Because each of these factors is relatively prime,
we know that

A∗ ≡ A mod (x− αωi) for i = 0 . . . j − 1

This means that A and A∗ evaluate to the same points at all of the values in S = {αωi}j−1
i=0 . So

to evaluate A at the j distinct points in S, we compute A∗ and then evaluate it at these points
using the FFT. The cost involves first evaluating the basis functions {1, xj , x2j . . . } and then using
deg(A) multiplications and additions to compute A∗. Then the FFT has a cost in j log j.

The strategy for interpolation is similar. Let Mk =
∏k

i=0(xj − αj
i). We interpolate using a

modification of Newton’s method. The kth interpolant of G satisfies Gk ≡ G mod Mk and is of
the form:

Gk = g0 + g1M0 + · · ·+ gkMk−1

where each gi is a polynomial of degree less than j. Given a new batch of j images of G at the
points x ∈ {αk+1ωi}j−1

i=0 , we first use the Inverse Fast Fourier Transform to get a polynomial G∗ ≡ G
mod (xj − αj

k+1). Then because G ≡ Gk+1 mod Mk+1 and Gk+1 = Gk + gk+1Mk, and further

since Mk+1 = Mk(xj − αj
k+1) we get the next coefficient polynomial as:

gk+1 ≡
G∗ −Gk

Mk
mod (xj − αj

k+1)

according to the normal form of Newton interpolation.
The cost of interpolating a batch of size j involved first using the IFFT to interpolate a poly-

nomial of degree j − 1, with a cost in j log j. Next we need to evaluate the basis functions
{1,M0,M1 . . . } by substituting xj = αj and then use these to reduce Gk and Mk mod (xj −αj

k+1).
This can all be done in a cost linear in deg(G). Thus the cost per point for both evaluation and
interpolation can be expressed as:

C =
deg(A)

j
+ log j (7)

where j is a power of 2. We can see that as we increase j from 1, the linear part of this cost
diminishes quickly, while the logarithmic part grows slowly. While it is hard to use the FFT in the
GCD algorithm due to extra cost associated with computing extra image GCD’s, the partial FFT

10

j T
im

e:
E

va
l

an
d

In
te

rp
T

im
e:

Im
ag

e
G

C
D

s
in

Z p
[x

2,
x
3]

T
im

e:
T

ot
al

1 7.5481 28.9039 36.5883
2 3.9039 27.8351 31.8288
4 2.9636 27.9806 31.0109
8 2.5036 27.9426 30.5034
16 2.1192 27.9491 30.1215
32 2.1517 29.4514 31.6592

Table 1a: A,B ∈ Zp[x1][x2, x3]

j T
im

e:
E

va
l

an
d

In
te

rp
T

im
e:

Im
ag

e
G

C
D

s
in

Z p
[x

3]
T

im
e:

T
ot

al

1 0.0538 0.0703 0.1277
2 0.0267 0.0687 0.0975
4 0.0196 0.0699 0.0910
8 0.0189 0.0702 0.0903
16 0.0160 0.0753 0.0923
32 0.0159 0.0811 0.0981

Table 1b: A,B ∈ Zp[x2][x3]

Table 1: Partial FFT Optimizations

with a small choice of j can still get some of the preformance gains in evaluation and interpolation
while only computing a few extra image GCD’s.

Table 1 shows the results for using various values of j for two different problems. Tests are for
triangular dense inputs of total degree 300 with GCD of total degree 150, with p = 167772161.
Table 1a uses blocks of size j for eval and interp of the variable x1 only. Table 1b shows the
results of blocks of size j for the subproblem in Zp[x2, x3]. Using j = 8 for the variable x2 in the
trivariate problem gives a preformance gain of about 20 %, and using j = 8 for the variable x1 in the
bivariate problem gives a gain of 41%. The final implementation in this paper selects j according
to a fraction of the input degrees; however the results indicate most of the benefits of this method
are realized when j is still small, and alternative strategy would have been to simply use j = 2 or
j = 4 whenever possible.

3.4 Dividing Content from the Images

For the multivariate problem, we can express each input as a set of univariate polynomials in x1
and monomials Mi in x2 . . . xn as follows:

A(x1 . . . xn) =
t∑

i=0

(ai0 + ai1x1 + · · ·+ aidx
d
1)M i

where d is degx1
(A). Then we can see that computing the content of A involves t univariate GCD

computations with inputs of the order d, for a total cost of O(td2). Further, dividing the content
from A will also cost O(td2). We can reduce this cost somewhat by not dividing the content from
the inputs. Instead, we evaluate the content along with the evaluation of A at each αi, and divide
it out of φi(A) as a scalar. The number of terms in φi(A) is of the order t and the algorithm bound
is of the order d, so the cost of doing this is O(td).

11

3.5 Accumulation Buffer Computational Strategy

There are several places in the MGCD algorithm where we need to compute a sum of products. For
example, consider univariate evaluation of a polynomial without using the FFT method described
above. Given a list of precomputed powers of x in an array X, and a corresponding list of coefficients
in an array A, we need to multiply the coefficients with their corresponding powers of x and add
the results. All of this needs to be done in the field Zp for some machine-word sized prime p. The
naive method is to reduce each product modulo p in order to ensure that integer overflow is not
occuring, as seen in the following C-code snippet:

r = A[0] ;
for (k=1; k <= d ; k++) {

r = r + mulmodinv (A[k] ,X[k] , qp) ; // r = r + A[k] ∗ X[k] % p
neg64(&r , qp . p) ; // i f (r>0) r = r − p

}
pos64(&r , qp . p) ; // i f (r<0) r = r + p
return r ;

However, the modular reduction in mulmodinv is expensive. To optimize this code, we use a
temporary buffer T which is 2 machine-words long. Then we can store the intermediate results and
ensure that overflow doesn’t occur without computing a remainder. Further, p is limited to one
bit less than the wordsize, so that at least two products can be added before we need to check for
overflow:

c128 (T, A [0]) ; // T = A[0]
for (k=1; k < d ;) {

fadd128 (T, A[k] , X[k]) ; // T = T + A[k] ∗ X[k]
neg128 (T, qp . p) ; // i f (T>0) T = T − 2ˆ64 ∗ p
k++;
fadd128 (T, A[k] , X[k]) ; // T = T + A[k] ∗ X[k]
k++;

}
i f (k == d) { // one more

fadd128 (T, A[k] , X[k]) ; // T = T + A[k] ∗ X[k]
}
// reduce accumulator mod p
pos128 (T, qp . p) ; // i f (T<0) T = T + 2ˆ64 ∗ p
return mod(T, qp) ; // T % p

The results of this optimization can be seen in table 2, in Zp[x] with p = 1924145348627.
The results show a 228% preformance gain. This optimization is used in univariate polynomial
evaluation, interpolationa and division, and in content multiplication.

deg(A) Original Optimized
20 0.10 0.03
50 0.22 0.07

100 0.44 0.14
500 2.21 0.66

1000 4.48 1.30

Table 2: Timings in milliseconds for using evaluation of A

12

4 Parallelization

The modular GCD algorithm is well suited to parallel computation. This was implemented using
the CILK framework which uses a work stealing algorithm and a fixed number of worker threads.3

CILK uses two basic commands. cilk spawn branches a thread of execution into two, creating a
new job, while cilk sync collects multiple threads back together, ending any branched jobs. We do
not make use of the third cilk command, cilk for.

Our implemention only uses parallelization for 3 or more variables, providing a fairly large
bivariate problem at the base of parallelization. In the parallel version, we don’t follow the iterative
method as described by the algorithm proof in section 2. Instead, we preform all of the bnd
evaluations and image GCD’s at the same time in parallel. We do this by first spawning dbnd/je
jobs of blocks of size j. For each block the j input evaluations are preformed in serial (using
the partial FFT), and then j more jobs are spawned for the recursive calls to MGCD on the
input images. This call will involve further parallelization if it is also in 3 or more variables.
When all of this is complete, a cilk sync command recollects the parallel threads, and interpolation
begins, using another parallelization strategy. If we think of the interpolation image φi(G) as being
in Zp[x2 . . . xn−1][xn], then degxn

(φi(G)) jobs are spawned on the coefficients in xn, which are
interpolated in Zp[x1 . . . xn−1]. Further, the GCD and two cofactors are interpolated in parallel.

5 Preformance Timings

Timings were obtained on the two Intel Xeon servers gaby and jude in the CECM. Both servers
are running CentOS Unix. The gaby server has two Intel E5-2660 cpus, each with 8 cores running
at 2.2 GHz (3.0 GHz in turbo). The jude server has two Intel E5 2680 v2 cpus, each with 10 cores
running at 2.8 GHz (3.6 GHz turbo).

Tables 3: Optimization Testing

The first set of tests in Tables 3 investigate the effectiveness of the optimizations in sections 3.1, 3.2
and 3.3. These tests were run on the jude machine, and are on trivariate inputs A and B in which
the GCD and cofactors are built to be dense in maximum degree4 with random coefficients in the
field Zp. In each set of tests, the degree of G varies while the degrees of the inputs A and B are
constant. There are 4 of these sets of tests. Seperate sets of tests were run for input degree 200
and 400, and for each of these seperate tests were run for the primes p = 230− 35 and p = 262− 57.

For each generated input, tests were run on a fully optimized non-parallel version of code
(column No CILK). Then three seperate tests were run with each of the optimizations turned off
(columns 3.1,3.2,3.3). Further tests were used to find the percentage of No CILK time was spent on
the univeriate GCD part of the recursive algorithm. Finally, tests were run on the parallel version
of the code with 1,2,4,8,16 and 20 worker threads.

For each of these tests, the MGCD algorithm was compiled as a maple extension and called from
maple. When run in this way, the input and output of the MGCD algorithm needs to be converted
between Maple’s internal integer polynomial structure called POLYDAG and the recursive array
structure used in the MGCD algorithm. Timings for this conversion were taken seperately, and are

3typically set to the number of cpu threads on the machine
4terms of total degree ≤ d non-zero

13

shown in the columns POLYDAG:In/Out. To get the real times of each maple call, the POLYDAG
conversion times should be added to the other columns

Notes on tables 3

1. Optimization 3.1 is the most significant of the three. It is greatest when deg(G) is small,
since this is when the univariate GCD problems are most expensive. In this case the gain is
a speedup of a factor of 2 to 3.

2. Optimization 3.2 is most effective when deg(G) = deg(Ā) = deg(B̄), which is when the
problem requires the most univariate GCD’s. This is because optimization 3.1 reduces the
number of needed univariate GCD’s to approximately min(deg(G),deg(Ā),deg(B̄)). The
result is that optimization 3.2 saves about 1

3 .

3. The benefit of doing evaluation and interpolation in blocks using the partial FFT method
was more than expected. This is partly because optimization 3.1 replaces univariate GCD’s
with evaluations. The gain is a over a factor or 3 when deg(Ā) and deg(B̄) � deg(G). This
is because, as deg(G) increases, the cost of univariate GCD’s decreases so that more time is
spent on evaluation and interpolation.

4. A comparison of the No CILK results to the parallel version of the code with 1 cpu indicates
that the overhead of the CILK infastructure is minimal for this problem.

5. The results in % UniGcd show that a surprisingly small percentage of the time is in the
univariate GCD problem, due to optimization 3.1. Notice that the portion of time reduces to
just a few percent as deg(G) increases, since the univariate problem is least expensive when
the GCD is large.

6. The parallelization results indicate that, not including the conversion time, we get a speedup
of about a factor of 12 on 16 cores, or about 13 times on 20 cores.

7. There is about a 10 % increase in timings going from p = 230 − 35 to p = 22
62 − 57 for the

200-degree problem, and about a 50 % increase for the 400-degree problem.

Tables 4: Maple and Magma Comparison

The second set of tests in Tables 4 compares the parallel MGCD algorithm to the modular GCD
algorithms in Maple and Magma. These tests were run on the gaby machine. Inputs were generated
in the same manner as for those in Tables 3, except that in this case the maximum degrees of the
inputs were 100 and 200.

The Maple and Magma GCD timings include a Mult and Div column. The Mult column
measures the polynomial multiplication cost of generating the two inputs as A = GĀ and B = GB̄,
while the Div column measures the time to compute the cofactors as Ā = A

G and B̄ = B
G using a

polynomial division. These allow us to compate the relative cost of a GCD with multiplication and
division. Note, our MGCD algorithm constructs and returns the cofactors without a division.

The Magma tests are run twice. In the columns under MagmaR, the tests are run on a Magma
ring constructed in the recursive polynomial structure GF (p)[x][y][z], shown below. The columns
under MagmaM instead run the tests in the multivariate polynomial structure, GF (p)[x, y, z].

14

Listing 1: Recursive

F := Ga lo i sF i e l d (p) ;
S [x] := PolynomialRing (F) ;
T[y] := PolynomialRing (S) ;
P [z] := PolynomialRing (T) ;

Listing 2: Multivariate

F := Ga lo i sF i e l d (p) ;
P<x , y , z> := PolynomialRing (F , 3) ;

Once again, parallelized results of the MGCD function are provided. These timings are run from
a compiled maple extension, and once again the conversion times are not included in the MGCD
timings but are listed seperately in the columns POLYDAG:In/Out.

Notes on tables 4

1. Maple uses the Hensel Lifting algorithm to compute Gcd(A,B) mod p with 3 or more vari-
ables. Maple also has parallelized and optimized multivariate polynomial multiplication and
division procedures, which improves the preformance of the Gcd as well which uses these in
the Hensel Lifting.

2. Both Maple and Magma preform better when coefficients are less than 231. Maple’s timings
roughly double when moving to a larger prime, while magma’s timings generally increase
more, depending on deg(G).

3. Magma’s GCD preformance using the MagmaM ring structure for deg(G) small is very good.
However, the corresponding multiplication and division preformance is much worse. In many
practical uses of the GCD problem, this may defeat the gain of having a faster GCD algorithm.
Multiplication and division in MagmaR are better.

4. The time for MGCD on one core is typically 20-50 times faster than Maple’s Gcd time, and
faster than multiplication and division in Maple. This is parly because we are using a modular
Gcd algorithm of complexity O(n4) instead of O(n6) for these trivariate problems.

5. The MagmaM Gcd algorithm is faster than the MGCD algorithm in the 100 and 200 degree
problems for a small prime only when deg(G) is small. for the 31-bit prime, when deg(G) =
deg(Ā) = deg(B̄) the MGCD algorithm is about 2 times faster than the MagmaM algorithm
in both the 100- and 200-degree problem. For the 62-bit prime, the MGCD algorithm is
about 18 times faster in the 100-degree problem and 9 times faster for 200-degree problem.
When deg(G) > deg(Ā), the MagmaM and MagmaR preformance drops off considerably, with
MagmaM timings increasing to 17 and 340 times as much.

6. Using multiple CPUs, if you do not take into account the input and output conversions,
then the MGCD algorithm has about a 11.4 times speedup on 16 cpu cores when deg(G) is
midsized. Taking into account the input and output conversions, the average speedup is for
the midsized 100-degree problem is 8.5, and for the midsized 200-degree problem is 9.1.

7. The POLYDAG conversion time for the MGCD inputs remains constant for each test set,
since input degrees are not changing. Since there are two cofactors, output conversion time
when deg(Ā) = deg(B̄) is large is roughly twice that of when deg(G) is large.

15

Without Opt MGCD, #cpus POLYDAG
deg(G) deg(Ā) 3.2 3.1 3.3 No CILK % UniGcd 1 2 4 8 16 20 In Out

10 190 4.90 10.86 8.57 4.38 10.4 % 4.43 2.31 1.26 0.74 0.47 0.42 0.13 0.13
40 160 6.53 10.30 8.90 5.19 25.0 % 5.27 2.70 1.43 0.82 0.49 0.44 0.13 0.08
70 130 7.69 9.42 9.18 5.82 33.0 % 5.78 2.98 1.56 0.88 0.50 0.46 0.13 0.05
100 100 8.40 8.41 9.20 6.00 37.8 % 6.01 3.09 1.62 0.90 0.51 0.48 0.13 0.03
130 70 6.18 7.29 8.00 4.84 25.0 % 4.83 2.49 1.31 0.74 0.42 0.37 0.13 0.03
160 40 4.44 5.75 7.00 3.82 11.9 % 3.84 1.99 1.06 0.60 0.36 0.32 0.13 0.04
190 10 3.36 3.93 6.65 3.13 1.8 % 3.17 1.67 0.90 0.52 0.33 0.29 0.13 0.07

Table 3a: jude Tests, p = 230 − 35, inputs have 1373701 terms

Without Opt MGCD, #cpus POLYDAG
deg(G) deg(Ā) 3.2 3.1 3.3 No CILK % UniGcd 1 2 4 8 16 20 In Out

10 190 5.39 13.10 8.79 4.77 11.9 4.79 2.53 1.39 0.84 0.54 0.48 0.13 0.24
40 160 7.22 12.39 9.42 5.73 28.8 5.79 3.00 1.61 0.92 0.55 0.49 0.13 0.14
70 130 8.26 11.29 9.74 6.42 36.9 6.47 3.33 1.76 0.99 0.56 0.49 0.13 0.08
100 100 9.00 9.93 9.87 6.74 41.0 6.72 3.45 1.82 1.00 0.57 0.50 0.13 0.05
130 70 6.58 8.38 8.19 5.29 27.5 5.29 2.73 1.44 0.80 0.46 0.40 0.13 0.05
160 40 4.71 6.52 7.14 4.14 14.4 4.16 2.16 1.16 0.66 0.39 0.34 0.13 0.07
190 10 3.59 4.50 6.58 3.42 1.8 3.44 1.82 0.99 0.58 0.37 0.33 0.13 0.12

Table 3b: jude Tests, p = 262 − 57, inputs have 1373701 terms

Without Opt MGCD, #cpus POLYDAG
deg(G) deg(Ā) 3.2 3.1 3.3 No CILK % UniGcd 1 2 4 8 16 20 In Out

20 380 51.30 126.20 115.86 43.51 13.7 43.32 23.19 12.58 7.41 4.76 4.21 1.05 1.13
80 320 81.80 125.57 123.61 57.16 30.4 57.22 30.04 15.93 8.89 5.30 4.50 1.04 0.64
140 260 99.49 117.16 132.67 67.29 39.0 67.04 34.68 18.27 9.97 5.70 4.84 1.04 0.37
200 200 110.23 107.82 132.78 71.46 42.8 71.34 36.98 19.25 10.53 5.89 5.40 1.05 0.23
260 140 76.81 90.10 114.79 55.49 29.7 59.80 28.97 15.17 8.32 4.68 4.18 1.06 0.23
320 80 50.55 68.59 104.17 41.25 15.0 41.50 21.81 11.63 6.48 3.75 3.35 1.05 0.34
380 20 33.05 40.34 97.75 30.23 4.2 30.52 16.46 8.89 5.09 3.21 2.82 1.05 0.56

Table 3c: jude Tests, p = 230 − 35, inputs have 10827401 terms

Without Opt MGCD, #cpus POLYDAG
deg(G) deg(Ā) 3.2 3.1 3.3 No CILK % UniGcd 1 2 4 8 16 20 In Out

20 380 69.68 157.34 126.29 60.09 12.0 60.42 32.39 17.74 10.54 6.80 6.17 1.04 1.96
80 320 93.84 150.20 130.85 73.94 27.5 73.68 38.77 20.67 11.55 6.88 5.91 1.05 1.15
140 260 109.51 140.62 132.04 83.87 35.6 82.86 43.16 22.61 12.33 7.08 6.49 1.04 0.67
200 200 119.31 125.47 124.88 87.81 39.8 86.69 44.96 23.38 12.80 7.15 5.93 1.05 0.42
260 140 87.65 104.64 106.24 72.44 25.9 68.85 35.93 18.85 10.41 5.83 5.30 1.04 0.41
320 80 64.89 82.53 93.16 57.32 13.1 61.46 28.79 15.24 8.52 4.90 4.17 1.06 0.60
380 20 45.37 55.38 99.01 47.33 3.2 44.01 23.79 12.86 7.38 4.54 4.02 1.04 0.98

Table 3d: jude Tests, p = 262 − 57, inputs have 10827401 terms

Maple MagmaR MagmaM MGCD, #cpus POLYDAG
deg(G) deg(Ā) Mult GCD Div Mult GCD Div Mult GCD Div 1 2 4 8 16 In Out

10 90 0.26 6.01 0.42 6.33 0.91 5.64 3.55 0.27 88.63 0.56 0.30 0.16 0.09 0.06 0.02 0.02
20 80 0.56 9.36 0.72 18.80 1.48 7.55 15.42 0.40 109.75 0.61 0.32 0.17 0.10 0.06 0.02 0.01
30 70 1.56 12.78 1.10 18.44 2.53 6.94 39.08 0.69 234.90 0.65 0.34 0.18 0.10 0.07 0.02 0.01
40 60 1.55 14.90 1.29 19.12 4.31 6.67 56.41 0.97 178.03 0.68 0.35 0.19 0.10 0.06 0.02 0.01
50 50 1.55 15.34 2.05 15.61 6.93 6.22 64.75 1.31 122.72 0.69 0.36 0.19 0.10 0.06 0.02 0.00
60 40 1.56 15.88 3.11 18.21 53.09 6.43 58.38 80.76 112.56 0.59 0.31 0.16 0.09 0.06 0.02 0.00
70 30 1.57 13.08 1.69 18.71 53.32 6.32 40.03 114.85 65.51 0.51 0.27 0.14 0.08 0.05 0.02 0.00
80 20 0.54 9.50 0.83 17.90 52.78 6.97 19.12 73.73 23.88 0.45 0.24 0.13 0.07 0.05 0.02 0.01
90 10 0.26 6.00 0.63 5.06 43.56 5.19 3.90 47.04 4.55 0.40 0.21 0.11 0.07 0.04 0.02 0.01

Table 4a: gaby Tests, p = 230 − 35, inputs have 176851 terms

Maple MagmaR MagmaM MGCD, #cpus POLYDAG
deg(G) deg(Ā) Mult GCD Div Mult GCD Div Mult GCD Div 1 2 4 8 16 In Out

10 90 0.26 10.68 0.40 9.08 4.50 9.54 8.22 1.63 100.94 0.61 0.33 0.18 0.10 0.07 0.02 0.04
20 80 0.54 18.28 0.72 48.77 11.85 15.35 41.81 3.24 194.31 0.68 0.36 0.19 0.11 0.07 0.02 0.03
30 70 0.87 24.88 1.11 64.96 25.24 16.35 91.40 5.29 405.33 0.74 0.39 0.20 0.11 0.07 0.02 0.02
40 60 2.37 30.12 1.29 70.27 42.77 16.98 209.87 9.33 527.10 0.77 0.40 0.21 0.11 0.07 0.02 0.01
50 50 2.37 30.45 1.97 82.36 72.78 16.43 265.92 14.32 507.11 0.78 0.41 0.21 0.12 0.07 0.02 0.01
60 40 2.38 31.37 2.60 70.65 322.10 16.48 191.68 254.32 405.77 0.66 0.35 0.18 0.10 0.06 0.02 0.01
70 30 0.86 26.48 1.39 64.62 248.58 16.10 95.48 211.09 243.09 0.56 0.29 0.15 0.09 0.05 0.02 0.01
80 20 0.55 19.64 0.84 49.34 127.28 15.15 40.21 85.24 109.01 0.47 0.25 0.13 0.07 0.05 0.02 0.01
90 10 0.55 11.64 0.63 9.83 56.51 10.85 8.23 53.63 24.20 0.42 0.22 0.12 0.07 0.05 0.02 0.02

Table 4b: gaby Tests, p = 262 − 57, inputs have 176851 terms

Maple MagmaR MagmaM MGCD, #cpus POLYDAG
deg(G) deg(Ā) Mult GCD Div Mult GCD Div Mult GCD Div 1 2 4 8 16 In Out

10 190 2.21 41.22 3.66 61.20 9.60 46.34 31.16 1.83 4607.3 5.82 3.05 1.64 0.94 0.62 0.17 0.17
40 160 15.12 120.80 19.75 301.71 20.44 151.85 1099.97 4.83 10198 7.03 3.64 1.92 1.06 0.67 0.17 0.10
70 130 15.21 220.25 41.95 350.77 46.81 131.82 2971.70 9.72 16428 7.89 4.05 2.12 1.14 0.71 0.17 0.06
100 100 15.00 234.40 65.43 315.78 102.00 123.89 4454.7 16.31 8802.7 8.25 4.24 2.19 1.18 0.71 0.17 0.04
130 70 15.34 217.53 47.08 336.02 3118.2 121.45 3129.7 5544.3 4521.8 6.53 3.36 1.75 0.95 0.61 0.17 0.04
160 40 15.15 118.54 17.13 282.25 3159.4 135.60 1037.0 5249.6 1726.6 5.12 2.65 1.40 0.78 0.48 0.17 0.05
190 10 2.23 33.42 5.38 41.18 2050.2 44.49 33.75 3578.1 49.11 4.18 2.20 1.18 0.67 0.43 0.17 0.08

Table 4c: gaby Tests, p = 230 − 35, inputs have 1373701 terms

Maple MagmaR MagmaM MGCD, #cpus POLYDAG
deg(G) deg(Ā) Mult GCD Div Mult GCD Div Mult GCD Div 1 2 4 8 16 In Out

10 190 2.22 70.98 3.51 77.22 33.34 79.26 62.65 10.03 4351.3 6.35 3.34 1.83 1.06 0.71 0.17 0.30
40 160 25.65 267.16 20.24 920.48 159.71 327.56 2436.5 39.64 14666 7.75 4.01 2.13 1.18 0.75 0.17 0.18
70 130 25.62 439.80 42.44 1624.6 462.09 307.40 6567.4 85.97 29550 8.72 4.48 2.35 1.27 0.75 0.17 0.11
100 100 25.43 453.27 64.85 1526.2 900.65 274.31 10425 85.97 27612 9.11 4.67 2.43 1.32 0.79 0.17 0.07
130 70 25.69 436.11 50.46 1559.2 14254 276.84 7096.7 11050 17270 7.11 3.66 1.92 1.04 0.62 0.17 0.06
160 40 25.44 282.04 17.18 934.45 7084.3 333.45 2393.0 6608.8 5750.2 5.63 2.89 1.52 0.83 0.51 0.17 0.09
190 10 2.23 77.28 4.29 90.30 2229.8 95.77 72.63 2075.2 225.56 4.69 2.41 1.29 0.74 0.47 0.17 0.15

Table 4d: gaby Tests, p = 262 − 57, inputs have 1373701 terms

