Polynomial Factorization over Algebraic Function Fields

The Problem

The problem of factoring multivariate polynomials over a field is one of the most challenging problems in computer algebra. We are specially interested in factorization over algebraic number and function fields.
An algebraic number is a root of a univariate polynomial with integer coefficients.
E.g. $\quad \alpha=\sqrt{2}$ is an algebraic number which is a root of $m_{\alpha}(z)=z^{2}-2$.

An algebraic function is a root of a univariate polynomial in $\mathbb{Z}\left(t_{1}, t_{2}, \ldots, t_{k}\right)[z]$.
E.g. $\quad \alpha=\sqrt{t_{1}+\sqrt{2}}$ is an algebraic function which is a root of $m_{\alpha}(z)=z^{4}-\left(2 t_{1}\right) z^{2}+t_{1}^{2}-2$.

If $m_{\alpha}(z)$ is monic and irreducible, it is called the minimal polynomial for α.
Given algebraic functions $\alpha_{1}, \ldots, \alpha_{r}$ in parameters t_{1}, \ldots, t_{k} we want to compute over the algebraic function field $L=\mathbb{Q}\left(t_{1}, \ldots, t_{k}\right)\left(\alpha_{1}, \ldots, \alpha_{r}\right)$. In this poster we want to factor a polynomial $f \in L\left[x_{1}, \ldots, x_{v}\right]$ into irreducible factors to obtain $f=l \times f_{1} \times f_{2} \times \cdots \times f_{n}$ where $l=\operatorname{lc}_{x_{1}, \ldots, x_{v}}(f)$ is the leading coefficient of f and each f_{i} is a monic irreducible polynomial.
Example 1. For $\alpha=\sqrt{1-t^{2}}$, the algebraic function field is $L=\mathbb{Q}(t)\left(\sqrt{1-t^{2}}\right)$. Factoring $f=x^{5}-\alpha x^{2} y+x^{2}+3 \alpha x^{4} y-3 x y^{2}+3 x y^{2} t^{2}+3 \alpha x y-x^{3}+\alpha y-1$ over L results in $f=\left(x^{2}+3 \alpha x y-1\right) \times\left(x^{3}-\alpha y+1\right)$.

Trager's Algorithm
One way to factor $f \in L\left[x_{1}, \ldots, x_{v}\right]$ is to use Trager's algorithm:

Motivation

The following problem was given to us by Jürgen Gerhard [2]:

$$
\begin{aligned}
& f=\frac{19}{2} c_{4}^{2}-\sqrt{11} \sqrt{5} \sqrt{2} c_{5} c_{4}-2 \sqrt{5} c_{1} c_{2}-6 \sqrt{2} c_{3} c_{4}+\frac{3}{2} c_{0}^{2}+\frac{23}{2} c_{5}^{2}+ \\
& \frac{7}{2} c_{1}^{2}-\sqrt{7} \sqrt{3} \sqrt{2} c_{3} c_{2}+\frac{11}{2} c_{2}^{2}-\sqrt{3} \sqrt{2} c_{0} c_{1}+\frac{15}{2} c_{3}^{2}-\frac{10681741}{1985} .
\end{aligned}
$$

Observation: If we evaluate f at $\left(c_{1}=1, c_{2}=2, c_{3}=3, c_{4}=4, c_{5}=5\right.$) the resulting polynomial can be proven irreducible using Trager's algorithm. In general we have:

Theorem 1. Let $f \in L\left[x_{1}, \ldots, x_{v}\right\}$ and $\beta \in \mathbb{Z}^{k+v-1}$ be an evaluation point for all the parameters and variables except x_{1}. If $\operatorname{lc}_{x_{1}}(f)(\beta) \neq 0$ then
$f\left(x_{1}, \beta\right) \in L(\beta)\left[x_{1}\right]$ is irreducible $\Rightarrow f$ is irreducible.

Efactor: Our New Algorithm

Our idea is to use polynomial evaluation and interpolation using Hensel lifting. To factor a univariate polynomial we will use Trager's algorithm. Things to be done

- In order to use Hensel lifting we need to determine the true leading coefficient of each factor f_{i} - How to avoid the fractions in \mathbb{Q} and fractions in the parameters t_{1}, \ldots, t_{k} when doing Hensel lifting? Because doing arithmetic with fractions is expensive.
To find the leading coefficient of each factor we will use a trick similar to Wang's idea [3] to factoring polynomials over \mathbb{Q}.

Example 2. Let $\alpha=\sqrt{t}$ and

$f=\left(-t y^{2} \alpha+2 y^{3}+3 t^{2}-t \alpha-6 y \alpha+2 y\right) x^{3}+(4 y-2 t \alpha) x^{2}+\left(y^{2}-3 \alpha+1\right) x+2$.
For evaluation point $\beta=(t=5, y=7)$ using Trager's algorithm we get:
$f(\beta)=(775-292 \alpha)\left(x^{2}+\frac{14}{71}+\frac{5}{71} \alpha\right)\left(x+\frac{20}{491}+\frac{6}{2455} \alpha\right)$
The denominators are $d_{1}=71$ and $d_{2}=491$. We factor $l c_{x}(f)$ recursively:
$l c_{x}(f)=l_{1} \times l_{2}=\left(y^{2}-3 \alpha+1\right)(2 y-t \alpha)$
We compute

$$
\frac{1}{l_{1}(\beta)}=\frac{10}{491}+\frac{3}{2455} \alpha \text { and } \frac{1}{l_{2}(\beta)}=\frac{14}{71}+\frac{5}{71} \alpha .
$$

We can see that l_{1} must be the leading coefficient of f_{2} and l_{2} must be the leading coefficient of f_{1}.
To avoid fractions in \mathbb{Q}, we will do Hensel lifting modulo a machine prime. To lift the integer coefficients of each factor, we use a new algorithm called Sparse p-adic Lifting

Algorithm Efactor

1 Factor the leading coefficient of the input polynomial f recursively.
2 Find a random evaluation point β for every parameter and variable except the main variable x_{1}. 3 Factor $f(\beta)$ (univariate) using Trager’s algorithm.
4 Find the true leading coefficient of each univariate factor
5 Use Hensel Lifting modulo a machine prime p
6 Use sparse p-adic lifting to lift the integer coefficients.

Benchmarks

$\#$	n	r	k	d	$\# f$	Trager	Efactor	GCD
1	2	2	1	17	6408	5500	259.91	47.47
2	2	2	1	22	12008	37800	296.74	56.90
3	2	2	2	10	34	120	0.22	0.16
4	2	2	2	12	34	571	0.31	0.19
5	3	2	2	10	69	5953	0.27	0.29
6	6	5	0	4	46	>50000	88.43	1.93
7	5	2	1	10	17052	>50000	58.41	57.75
8	1	1	2	102	928	16427	72.10	7.71

Table 1: Timings (in CPU seconds)

Applications

Polynomial factorization has many applications. It is especially used for solving systems of polynomial equations. Another application of factorization is in coding theory for developing errorcorrecting codes. Here is an example from robotics:

This picture is taken from [1]. Here l_{1}, l_{2}, l_{3} and l_{4} are variables, $c_{1}=\cos \left(\theta_{1}\right), c_{2}=\cos \left(\theta_{2}\right)$ and $c_{3}=\cos \left(\theta_{3}\right)$ are parameters and $s_{1}=\sqrt{1-c_{1}^{2}, s_{2}}=\sqrt{1-c_{2}^{2}}$ and $s_{3}=\sqrt{1-c_{3}^{2}}$ are the field extensions. The algebraic function field is $L=\mathbb{Q}\left(c_{1}, c_{2}, c_{3}\right)\left(s_{1}, s_{2}, s_{3}\right)$.

References

[1] D. A. Cox, J. Little, and D. O'Shea. Ideals, Varieties, and Algorithms. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007
[2] Jürgen Gerhard and Ilias S. Kotsireas. Private communication.
[3] Paul S. Wang. An improved multivariate polynomial factorization algorithm. Math. Comp. 32(144):1215-1231, 1978

