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Abstract 

 

In this fourth of five parts in a series, the Schroedinger equation is solved in spheroconical 
coordinates to yield amplitude functions that enable accurate plots of their surfaces to 
illustrate the variation of shapes and sizes with quantum numbers k, l, κ, for comparison 
with the corresponding plots of amplitude functions in coordinates of other systems.  These 
amplitude functions directly derived have the unique feature of being prospectively only 
real, with no imaginary part. 
 

Resumen 

 
En este cuarto artículo de una serie de cinco, se resuelve la ecuación de Schrödinger en 
coordenadas esferocónicas para producer funciones de amplitude que facilitan gráficos 
exactos de sus superficies para ilustrar la variación de formas y tamaños con los números 
cuánticos k, l, κ, para comparación con los gráficos correspondientes de funciones de 
amplitus en coordenadas de otros sistemas. Estas funciones de amplitude derivadas 
directamente tiene la característica única de ser solo prospectivamente real, sin ninguna 
parte imaginaria. 
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I. INTRODUCTION 

 

Schroedinger founded wave mechanics with four papers under a collective title in English 
translation [1] Quantisation as a problem of proper values, with auxiliary essays and lectures.  In the 
first and third papers of that sequence, Schroedinger calculated the energies of the hydrogen atom 
in discrete states according to the solution of his partial-differential equation in coordinates in two 
systems -- spherical polar and paraboloidal, respectively.  The former might be primarily 
appropriate to an isolated hydrogen atom subject to no external influence, so without breaking 
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symmetry O4 (also written as O(4)) of that atom, whereas the primary purpose of the latter 
coordinates was to facilitate the calculation of the influence of an externally applied electric field 
according to the linear Stark effect, which breaks that O4 symmetry.  Although a confirmation that 
a separation of coordinates in a molecular context is practicable also in ellipsoidal coordinates in 
an application to H2+ followed shortly [2] after Schroedinger's original work, a half century passed 
before the analogous recognition of spheroconical coodinates [3]. Of coordinates in those four 
systems in which Schroedinger’s temporally independent equation is separable, the amplitude 
functions in ellipsoidal coordinates have as limiting cases the corresponding amplitude functions 
in either spherical polar coordinates, as distance d between the two centres of the ellipsoidal 
system tends to zero, or paraboloidal coordinates, as d → ∞.  In all three systems, one common 
coordinate φ is the equatorial angle between a half-plane containing polar axis z and the projection 
of a given point (x,y,z) and a reference half-plane also containing the  polar axis, so as to define a 
half-plane extending from that polar axis; associated equatorial quantum number m is 
correspondingly common to these three systems.  In the fourth system that we describe as 
spheroconical coordinates (called also spheroconal), that equatorial angular coordinate φ is, in 
contrast, no longer a member of the set; this system is hence distinct from the other three systems 
in that regard, but retains a radial distance r in common with spherical polar coordinates.  
  In this part IV of a series of articles devoted to the hydrogen atom with its coordinates 
separable in four systems, we state the temporally independent partial-differential equation in 
spheroconical coordinates and its direct solution, for the first time, and provide plots of selected 
amplitude functions as surfaces corresponding to an appropriately chosen value of amplitude; no 
plot of an explicit spheroconical amplitude function is previously reported. As the dependence on 
time occurs in the same manner in all systems of coordinates in which the Schroedinger equation is 
separable, we accept the results from part I [4] and avoid that repetition.  Although the equations 
governing the form of the amplitude functions are here, of necessity, defined in coordinates 
according to a spheroconical system, we view the surfaces of these amplitude functions invariably 
in rectangular cartesian coordinates: a computer procedure (in Maple) translates effectively from 
the original system in which the algebra and calculus are performed to the system to which a 
human eye is accustomed. 
 
II. SCHROEDINGER’S EQUATION IN SPHEROCONICAL COORDINATES 

 

Among the three coordinates for three spatial dimensions, we define two right elliptical 
cones, each with two nappes, orientated about axes x and z that complement a radial distance r 

from the origin, as presented with surfaces of constant values of these coordinates in figure 1; each 
nappe must have an elliptical cross section perpendicular to its respective axis. Such elliptical 
cones might be considered to be limiting geometric cases of paraboloids that occur in the 
paraboloidal coordinates or the hyperboloid that occurs in the ellipsoidal coordinates. These 
spheroconical coordinates ξ,r,η are related to cartesian coordinates x,y,z as follows: 

 

 

 
the use here of ξ and η as symbols for dimensionless coordinates is not to be confused with those 
same symbols to denote coordinates in the ellipsoidal system.  The domains of these coordinates 
are −a < ξ < a, 0 < r < ∞, −b < η < b. To conform to a requirement that a2 + b2 = 1 that enables the 
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separation of coordinates in Schroedinger's partial-differential equation, we set a = b = 1/√2; the 
square root of the sum of the squares of the coordinates according to the above definitions, i.e. (x2 + 
y2 + z2)½ = r, simplifies the form of the electrostatic potential energy.  Required in integrals over 
volume, the jacobian of the transformation of coordinates is 
 

. 

 

 
FIGURE 1.  Definition of spheroconical coordinates ξ, r, η: a surface of a double elliptical cone 
(red), opening along positive and negative axis z, has ξ = ¼ and its apices at the origin; a surface 
of a sphere (green) has its centre at the origin and radius r = 2/5 units; a surface of another 
double elliptical cone (blue), opening along positive and negative axis x, has η = ¼ and its 
apices at the origin. 

 
After separation of the coordinates of the centre of mass of the H atom, Schroedinger’s 

temporally independent equation in explicit SI units contains within terms on the left side an 
electrostatic potential energy, proportional to r−1, and first and second partial derivatives of an 
assumed amplitude function ψ(ξ,r,η) with respect to spatial coordinates ξ, r, η within hamiltonian 
operator H(ξ,r,η); the right side comprises a product of energy as parameter E independent of 
ccordinates with the same amplitude function, so that the entire equation resembles an eigenvalue 
relation expressed as H(ξ,r,η) ψ(ξ,r,η)  = E ψ(ξ,r,η).  
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Apart from fundamental physical constants electric permittivity of free space ε0, Planck 

constant h and protonic charge e, there appear parameters Z for atomic number – Z = 1 for H – and 
µ for the reduced mass of the atomic system, practically equal to the electronic rest mass me, apart 
from energy E that is absent from the temporally dependent Schroedinger equation in these same 
coordinates. After separation of the variables in the partial-differential equation to produce a 
product of functions of each a single variable, 

ψ(ξ,r,η)  = Ξ(ξ) R(r) Η(η) 
and solution of the three consequent ordinary-differential equations including definition of the 
integration constants, the full solution of the above equation has this form [5], 

 

 
that has become simplified on incorporating Bohr radius a0, 

, 

to contain other constants and parameters in a compact manner. That solution is formally 
normalized such that 

∫ ψ(ξ,r,η)* ψ(ξ,r,η) dvol = 1, 
 

in which dvol is a volume element incorporating the jacobian specified above. Coefficient N is a 
normalizing factor, to be evaluated, to take into account that factors Ξ(ξ) and Η(η) of ψ(ξ,r,η) are 
not separately normalized, unlike factor R(r).  Coefficient c that equals a complex number of 
modulus unity such as a fourth root of unity – c = ±1, ±√−1, appears because Schroedinger’s 
equation is linear and homogeneous, or equally because that temporally independent equation has 
the form of an eigenvalue relation, as shown above. The conventional choice c = 1 – a choice that is 
arbitrary and lacks physical justification – imposes that solutions ψ(ξ,r,η) as amplitude functions 
from Schroedinger’s temporally independent equation appear in an entirely real form because a 
general Heun function, denoted HeunG, includes here no imaginary part; with a mathematically 
valid alternative choice c = + i, amplitude functions would be entirely imaginary, thus alien to 
physical space, or c = −1 would merely reverse the phase of the amplitude function. This direct 
solution of the differential equations hence contains general Heun functions of coordinates both ξ 
and η appearing as their squares, not previously suggested to be applicable in this context; Lamé 
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polynomials, of which products form ellipsoidal harmonics, have been instead mentioned [3], 
although no explicit formula was ever provided. The ellipsoidal harmonics in these spheroconical 
coordinates replace the spherical harmonics of spherical polar coordinates.  Lamé’s differential 
equation corresponds to a special case of the Heun differential equation with particular relations 
between the parameters; in the solution of the Heun differential equation, the fifth and sixth 
arguments in the general, or non-confluent, Heun function equal ½ for this particular Lamé case, 
as exhibited above.  Parameters that appear in the solution but not the partial-differential equation 
take discrete variables, imposed by boundary conditions, as follows: radial quantum number k and 
azimuthal quantum number l appear in generalized Laguerre function R(r) in exactly the same 
form as in spherical polar coordinates because, after the separation of variables, the ordinary-
differential equation that governs R(r) is exactly the same in both spherical polar and 
spheroconical coordinates. There is no constraint on the relative values of quantum numbers k and 
l, each of which assumes values of non-negative integers. Another quantity κ occurs in one of 
seven arguments of the general Heun function of each coordinate ξ and η; although these two 
coordinates have, by design, the same domain, specifically −1/√2 ... 1/√2, κ occurs in distinct forms 
in those two arguments:  κ + ¼ for coordinate ξ, and κ − ¼ for coordinate η.  The energy depends 
on only k and l, hence n = k + l  + 1 as for spherical polar coordinates; in the absence of an external 
field imposed on a hydrogen atom, the energy is thus independent of κ in spheroconical 
coordinates, as proved by calculations with varied κ, similarly to a lack of dependence on m in 
spherical polar coordinates [4].  
 
III. GRAPHICAL REPRESENTATIONS OF AMPLITUDE FUNCTION ψ(ξψ(ξψ(ξψ(ξ,r,ηηηη) 

 
 As these amplitude functions ψ(ξ,r,η) in spheroconical coordinates were entirely unknown 
in an explicit algebraic form before this work, we here provide several instances of their nature and 
form, represented as surfaces in three spatial dimensions for ψ set equal to a particular value, 
analogously to the presentation of amplitude functions in other systems of coordinates in three 
preceding parts of this series of papers. All these functions contain general Heun functions that fail 
to simplify to an explicit algebraic structure when particular values of parameters are specified, 
but they might be converted approximately to polynomials through formation of Taylor series.  
The latter practice is useful primarily because the domain of each of ξ and η is finite; calculations, 
such as plots or integrations, involving these functions are thus implemented with such 
expansions within Maple to attain a satisfactory accuracy.  
 The formula for ψ(ξ,r,η) for the state of least energy specified with quantum numbers k = l = 
κ = 0, with Z = 1 assumed here and in each following formula, is thereby expressed as  
 

 

 
of which a surface for a particular value, ψ0,0,0 = 0.008 a0

˗3/2, yields a shape shown in figure 2.  In 
generating that formula for arguments in a particular set, a simplification is automatically 
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algebraic formula for the normalizing factor, we apply a numerical method that yields the 
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numerical coefficient specified within this, and other, formula in rational form.  In all plots of these 
surfaces of amplitude functions formed in spheroconical coordinates, the distance scale has unit a0 
= 5.2917721067x10−11 m; the value of the surface of ψ(ξ,r,η) in each figure is 1/100 of the maximum 
value of ψ(ξ,r,η)/a03/2 so that the corresponding volume of ψ(ξ,r,η)2 encloses about 0.995 of the total 
electronic charge density. Because of the presence of factors (1 – 2 ξ2)½ and (1 – 2 η2)½ in each 
amplitude function, each such square root must be accommodated in both its positive and 
negative signs. The symmetric patterns observable in the plots reflect also the presence of ξ and η 
in the seventh arguments of the Heun functions appearing as squares. The surface of each 
spheroconical amplitude function ψ(k,l,κ) must hence be plotted as four separate segments; a gap 
between each two segments results from the fact that calculation of the general Heun functions 
becomes slow when ξ or η is near either bound at ±1/√2, necessitating making the magnitudes of 
the bounds of these variables in the plot slightly less than 1/√2.  Despite the presence of Bohr 
radius a0 that is an atomic unit, the use of SI units is maintained throughout:  a0 serves as merely a 
scaling factor. 

 
FIGURE 2.  Surface of real spheroconical amplitude function ψ0,0,0 = 0.008 a0

˗3/2; the distance 
scale here and in succeeding plots has unit a0 = 5.2917721067x10−10 m. 

 
The surface of ψ0,0,0 = 0.008 a0

˗3/2  has hence a rigorously spherical shape; its radius is 4.72 a0 = 
2.47x10−10 m, exactly the same as for the surface of spherical polar amplitude function ψ0,0,0(r,θ,φ) or 
paraboloidal amplitude function ψ0,0,0(u,v,φ) according to a corresponding criterion.  
 The variation of the shape of the surface of ψ(k,l,κ) with κ is of particular interest because of 
the novelty of the present solution of the Schroedinger equation in spheroconical coordinates that 
uniquely contains this particular quantum parameter.  For these amplitude functions with varied 
κ, the numerical normalizing factor for ψk,l,−κ is the same as that of ψk,l,+κ and  is independent of the 
value of k.  This formula for ψ0,0,1, 
 

 

 
yields a surface presented in figure 3; this surface is symmetric across planes x = 0, y = 0 and z = 0,  
and has planar nodal surfaces containing axis z. The positive lobes along axis x have the shapes of 
two spheroids that become pointed at the origin. The negative lobe resembles an elliptical torus 
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around axis x, extending almost to the origin to separate the two positive lobes.   The extent of the 
lobes parallel to axes x and y is about 13 a0, but only 9 a0 along axis z.  The surface of the square of 
this amplitude function, which has accordingly only a positive phase, has a similar shape and size. 
The corresponding surface of ψ0,0,−1 has a form similar to that of ψ0,0,1, but its extent perpendicular to 
plane x = 0 is less than across planes y = 0 and z = 0; its positive lobes lie along axis z and its 
negative lobe resembles an elliptical torus around z.   

 
FIGURE 3. Surface of real spheroconical amplitude function ψ(0,0,1) = 0.0041 a0

˗3/2, cut open to 
reveal the diagonal nodal surfaces;  the positive lobes (red) extend along axis y and the negative 
lobe like an elliptical torus (blue) is perpendicular to axis y.  

 
 Spheroconical amplitude function ψ0,0,2 conforms to this formula, 

 

 
and presents a surface in figure 4 in which there are again planar nodal surfaces through the origin 
that separate the positive and negative lobes; these lobes are symmetric across that origin, but the 
negative lobe is an elliptical torus around axis y; its cross section in plane z = 0 is larger than the 
cross section of the positive lobes, in contrast with the respective lobes of ψ0,0,1.  The corresponding 
surface of ψ0,0,−2 has a similar form but with its positive lobes along axis z; the negative lobe 
resembles a flattened torus also about axis y, separating the positive lobes along axis z; its thickness 
parallel to axis x is thus less than that parallel to axes y and z. 
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FIGURE 4. Surface of real spheroconical amplitude function ψ0,0,2 = 0.0013 a0

˗3/2, cut open to 
reveal the diagonal nodal surfaces; the positive lobes (pink) extend along axis x and the 
negative lobe (magenta) is a torus about axis y. 

 
 Figure 5 shows a surface of real spheroconical amplitude function ψ0,0,3 that conforms to this 
formula. 

 

 
This surface exhibits three nodal surfaces: two such surfaces resemble hyperboloids oriented 
separating the spheroidal positive lobes, and plane x = 0 constitutes a third nodal surface.  The 
single torus of ψ(0,0,1) or ψ(0,0,2) here is split into positive and negative lobes with the planar 
nodal surface between them. The surface of ψ0,0,32 has a similar shape and size. The corresponding 
surface of real spheroconical amplitude function ψ0,0,−3 has three analogous nodal surfaces and each 
lobe is symmetric across plane x = 0. 

 
FIGURE 5.  Surface of real spheroconical amplitude function ψ0,0,3 = 0.00065 a0

˗3/2; the positive 
lobes (coral) are symmetrically related to the negative lobes (plum) across plane x=0 with 
reversed phase. 

ψ
, ,0 0 3

36998

561969
eeee












−

r

a
0

 − 1 2 ξ2  − 1 2 η2 





HeunG , , , , , ,-1

13

4

1

2
1

1

2

1

2
−2 ξ2 = 









HeunG , , , , , ,-1

-11

4

1

2
1

1

2

1

2
−2 η2 a

0

( )/3 2



J. F. OGILVIE 
 

Ciencia y Tecnología, 32(2): 54-68, 2016- ISSN: 0378-0524 62 

 Figure 6 presents a surface of real spheroconical amplitude function ψ0,0,4 that conforms to 
this formula. 

 

 
There are two positive lobes that extend along axis x from a point at the origin, and three lobes 
resembling tori about axis y, of which a positive toroidal lobe separates two negative toroidal 
lobes; all lobes are symmetric with respect to plane z = 0.  The surface has an extent greater parallel 
to axes x and y than parallel to axis z.  Real spheroconical amplitude function ψ0,0,−4 has a similar 
shape and size; its toroidal lobes are also perpendicular to axis y, but its extension parallel to axis x 
is less than in the other two directions. 

 
 

FIGURE 6.  Surface of real spheroconical amplitude function ψ0,0,4 = 0.00039 a0
˗3/2, cut open to 

reveal the four nodal surfaces that all cross the origin; the positive lobes (sienna) extend along 
axis x; two negative tori (cyan) with one positive torus (sienna) between them surround axis y. 

 
As a first exhibit of the shape of a surface of a spheroconical amplitude function with 

quantum number l  >  0, figure 7 shows first a surface of ψ0,1,0, which conforms to this formula. 
 

 

 
For the particular surface of spheroconical amplitude function ψ0,1,0 depicted in figure 7, the shape 
is roughly an oblate spheroid; the maximum extent in direction x or z is about 10.8 a0, but only 9.4 
a0 in direction y.  Only one lobe is discernible, corresponding to a positive phase of ψ0,1,0; there is no 
nodal plane. As the amplitude function contains a factor r, the function has zero amplitude at the 
origin of the coordinate system and hence formally an inner surface at which ψ0,1,0 = 0.00093 a0

˗3/2, 
but its radius is too small to appear even when the surface is cut open.  The surface of ψ0,1,02 
resembles that of ψ0,1,0 in figure 7, also having an oblate spheroidal shape with minor axis y. 
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FIGURE 7.  Surface of real spheroconical amplitude function ψ0,1,0 = 0.00093 a0
˗3/2 

 
 Figure 8 shows the surface of ψ0,2,0, which has this algebraic form. 

 

 
This surface shows four lobes, of alternating positive and negative phase around axis y, directed 
parallel to axis y between nodal planes x = 0 and z = 0.  Its maximum extent parallel to axes x and z 
is about 14.3 a0 but parallel to axis y only 11.1 a0, so exhibiting an overall roughly oblate spheroidal 
shape.  The shape of this surface strongly resembles the corresponding surface of the imaginary 
part of ψ0,2,1(r,θ,φ) in spherical polar coordinates. 
 

 
FIGURE 8.  Surface of real spheroconical amplitude function ψ0,2,0 = 0.00034 a0

˗3/2 with two 
positive lobes (yellow) and two negative lobes (brown) 
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 Figure 9 shows the surface of amplitude function ψ0,3,0, which has this algebraic form. 

 

 

 
Whereas the surfaces of spheroconical amplitude functions ψ0,0,0 and ψ0,1,0 both have only one lobe 
and the surface of ψ0,2,0 has four lobes, two of positive phase and two of negative phase, according 
to a phase convention with coefficient c = 1, amplitude function ψ0,3,0 has ten lobes, four of negative 
phase along axes x and z; of six lobes of positive phase, four lie between planes xy and yz but two 
are located along axis y on either side of, and remote from, the origin.  
 

 
FIGURE 9. Surface of real spheroconical amplitude function ψ0,3,0 = 0.00020 a0-3/2.  The negative 
lobes (aquamarine) are directed along axes x and z; the positive lobes (violet) lie between those 
axes with additional small lobes located along axis y on either side of the origin. 

 
 Figure 10 shows the surface of amplitude function ψ0,4,0, which has this algebraic form. 
 

 

 
Like spheroconical amplitude function ψ0,3,0 and unlike function ψ0,2,0 that exhibits only four lobes, 
of its ten lobes function ψ0,4,0 has four lobes of positive phase between planes xy and yz, and two 
further and smaller lobes along axis y remote from the origin, but the positive lobes along axis y 
are larger than the corresponding features of function ψ0,3,0; four negative lobes lie along axes x and 
z.  The four positive lobes between the axes might appear to be connected across the origin, so 
separating the negative lobes, but factor r4 in the formula for the amplitude function above 
imposes zero amplitude at the origin, independent of direction.  For amplitude function ψ0,5,0 that 
has no chemical or physical interest and is hence not shown here, the positive lobes along axis y 
become still larger relative to the other lobes. 
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FIGURE 10. Surface of real spheroconical amplitude function ψ0,4,0 = 0.000105 a0

˗3/2.  The positive 
lobes (brown) are directed between axes x and z and the negative lobes (tan) lie along those 
axes, with additional positive lobes (brown) located along axis y farther from the origin. 

 
Spheroconical amplitude function ψ1,0,0 has this formula; 
 

 

 
its surfaces have the shape shown in figure 11.  Three concentric spheres display their centres at 
the origin: one innermost sphere has a positive phase, and an only slightly larger sphere has a 
negative phase; the latter sphere and the outer sphere demarcate a spherical shell of negative 
phase.  These surfaces strongly resemble those of ψ1,0,0(r,θ,φ) in spherical polar coordinates. 
 

 
FIGURE 11. Surface of real spheroconical amplitude function ψ1,0,0 = 0.0014 a0

˗3/2 cut open to 
reveal the interior structure; a small inner positive spherical lobe (red) is surrounded with a 
thick negative spherical shell (blue). 
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Spheroconical amplitude function ψ1,1,0 has this formula; 
 

 

 
its surfaces of constant ψ1,1,0 have the shape exhibited in figure 12.  Like the surfaces of amplitude 
function ψ1,0,0 in figure 11, there is a small inner spheroidal surface, nearly spherical and of positive 
phase, surrounded closely with a surface of negative phase and an outer spheroidal surface, oblate 
like that of amplitude function ψ0,1,0 presented in figure 7, that marks the distance at which the 
amplitude function decays to the stated value on its way asymptotically to zero.  
 

 
FIGURE 12. Surface of real spheroconical amplitude function ψ1,1,0 = 0.00053 a0

˗3/2, cut open to 
reveal the interior structure; an inner positive spherical lobe (violet) is surrounded with a thick 
negative oblate spheroidal shell (yellow). 

 
 Surfaces of further real spheroconical amplitude functions ψk,l,κ exhibit features that are 
predictable on the basis of the figures presented above, specifically that inner spheres numbering k 
appear within an outer surface resembling that of ψ0,l,κ. 
 
IV. DISCUSSION 

 

 Like coordinates in three other systems, as specified in three preceding papers in this series, 
the spheroconical coordinates enable a separation of the variables in the temporally independent 
Schroedinger equation, with a restriction on variables ξ and η that limits each domain to the same 
interval −1/√2 to +1/√2 in a unit with no physical dimension. Only radial distance r from the origin 
is common to another system of coordinates. In conjunction with these three distinct variables, 
three quantum parameters k, l and κ characterize these spheroconical amplitude functions and the 
shapes of their surfaces of ψk,l,κ set at a selected value.  Although the amplitude functions in this 
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spheroconical system have uniquely defined algebraic formulae and shapes of their surfaces 
according to the specified criterion, a transformation of coordinates converts an amplitude 
function of this system into amplitude functions of a selected other system in an appropriate linear 
combination, just as illustrated between spherical polar and paraboloidal coordinates in part II of 
this series [7].  The existence of such a general transformation in no way makes one system, and 
the amplitude functions expressed therein, objectively superior or preferable to another system 
and its particular functions.  The great advantage of amplitude functions in this spheroconical 
system is that, with coefficient c = 1, all formulae are real – i.e. have no imaginary part, so that their 
full surfaces can be presented directly in real space, as figures 2 – 12 demonstrate emphatically.  
Amplitude functions ψk,l,κ(ξ,r,η) beyond those depicted in the eleven specified figures show inner 
spheroidal surfaces directly analogous to those of surfaces of ψk,l,m(r,θ,φ) or amplitude functions in 
the two other systems of coordinates, just as the surfaces in figures 11 and 12 transcend those of 
figures 2 and 7. 

Regarding spheroconical amplitude functions ψ0,0,κ, their size increases slightly with 
increasing κ, and the number of nodal surfaces tends also to increase, although not from ψ0,0,1 to 
ψ0,0,2.  In all cases there exist axes of symmetry two fold along the coordinate axes, which reflects 
the dual axes about which the double cones of coordinates ξ and η locate; for the same reason, the 
planes of symmetry for the thinner extents are z = 0 for ψ0,0,+κ and x = 0 for ψ0,0,−κ. Other planes of 
symmetry are generally also present. All lobes of ψ0,0,κ with κ > 0 begin at one of these two axes and 
have zero magnitude at that axis. 
 For spheroconical amplitude functions ψ0,l,0, in contrast their size increases rapidly with 
increasing quantum number l, like the size of functions ψk,0,0, and according to the same property:  
the energy of such an amplitude function increases proportionally to −1/(k + l + 1)2, in which 
quantum numbers k and l appear on an equivalent basis.  
 Because quantum numbers k for radial and l for angular momentum are precisely defined 
for amplitude functions in spheroconical coordinates, the spectrometric states conventionally 
expressed in terms of these quantum numbers are defined with respect to these coordinates 
equally as well as in spherical polar coordinates.  Explicitly, the designation of a spectrometric 
state of the hydrogen atom not subject to an externally applied field is conventionally based on 
such a value of the quantum number for angular momentum  – S states for l = 0, P states for l = 1, D 
states for l = 2 et cetera; energy quantum number n is directly included in such a designation as n l 
and all states of the hydrogen atom are doublet states when the intrinsic angular momentum of the 
electron is taken into account, to yield a term symbol such as 1 2S, 2 2S, 2 2P et cetera.  The presence 
of κ for spheroconical coordinates instead of equatorial quantum number m for spherical polar 
coordinates has no implication for this nomenclature. 
 Cook and Fowler [6] sought to explore solutions of the temporally independent 
Schroedinger equation for the hydrogen atom in spheroconical coordinates in terms of Lamé 
functions of the first and second kind, but produced neither an explicit formula for a spheroconical 
amplitude function nor a plot thereof. 
 
V  CONCLUSION 

 
Amplitude functions in spheroconical coordinates have several attractive features: they are entirely 
real and hence lend themselves directly to a physical depiction in cartesian coordinate space, they 
are associated with integer values of quantum numbers k and l that define, in a sum with unity, the 
energy, and spectral states are readily associated with those quantum numbers.  Like their real 
counterparts in spherical polar coordinates, they lack a particular directional character, having 
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mostly an overall oblate spheroidal shape.  Further assessment of their character and a comparison 
with the amplitude functions in other systems of coordinates appears in part V of this series of 
articles. 
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