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ABSTRACT. Almost all interesting mathematical algorithmic questions
relate to NP-hard questions and such computation is prone to explode ex-
ponentially. More space, more speed and processors, and even say massive
parallelism will have an impact but it will be largely at a ‘micro not macro’
level. We anticipate the greatest benefit accruing from mathematical plat-
forms that allow for highly computer assisted insight generation (more ‘aha’s’
per cycle), not from solution of grand challenge problems.

1 Mathematics Embraces Computing

It is often said that pure mathematicians invented digital computers and
then proceeded to ignore them for the better part of half a century. In the
past two decades this situation has started to change with a vengeance.

Major symbolic mathematics or computer algebra packages, most notably
Maple and Mathematica, have over the last fifteen years reached a remark-
able degree of sophistication. We should also allude to counterparts such
as Axiom, Macsyma, Reduce, MuPad and Derive and to many other more
specialized packages such as GAP, Magma or Cayley (for group theoretic
computation), Pari (for number theory), KnotPlot (for knot theory) SnapPea
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(for hyperbolic 3-manifolds) and SPlus (for statistics), and many more. This
sophistication has relied on a confluence of algorithmic breakthroughs, dra-
matically increased processor power, almost limitless storage capacity, and
most recently network communication, excellent online data bases and web-
distributed (often Java-based) computational tools. We mention: the mathe-
matics front end to the Los Alamos Preprint ArXiv (front .math.ucdavis.edu/),
Mathematical Reviews on the Web (e-math.ams.org/mathscinet), Neil
Sloane’s Encyclopedia of Integer Sequences

(www.research.att.com/personal /njas/sequences/eisonline.html), our
own Inverse Symbolic Calculator (www.cecm.sfu.ca/projects/ISC/ISCmain.html)
which infers symbolic structure from numerical input, and an Integer Rela-
tion Finder (www.cecm.sfu.ca/projects/IntegerRelations/).

The relatively seamless integration of all these components arguably rep-
resents the challenge for 21st Century computational mathematics. By con-
trast, it is hard to think of mathematical problems where a dramatic increase
in speed and scale of computation would make possible a presently intractable
line of research. It is easy to give examples where it would not. Thus, consider
Lam’s 1991 proof (www.cecm.sfu.ca/organics/papers/lam/index.html)
of the nonexistence of a finite projective plane of order 10.! It involved thou-
sands of hours of CRAY and other computation. Lam’s estimate is that the
next case (n = 18) susceptible to his methods would take millions of years on
any conceivable architecture. While a certain class of mathematical enquiries
is susceptible to massively parallel, even web based ‘embarrassingly parallel’,
computation? these tend, however interesting, not to to be problems central
to mathematics.

2 Computational Excursions in Contemporary
Mathematics

Rather difficult problems, previously viewed as intractable, such as exact
integration of elementary functions have been significantly attacked. A num-
ber of the most important mathematical algorithms of the twentieth century
are (i) the Fast Fourier Transform, (ii) Lattice Basis Reduction methods and

LA hunt for a configuration of n? + n' + 1 points and lines.
2For example, discovering Mersenne primes: those of the form 27 — 1.



related Integer Relation algorithms, (iii) the Risch algorithm for indefinite
integration, (iv) Grdbner basis computation for solving algebraic equations,
and (v) the Wilf/Zeilberger Algorithms for ‘hypergeometric’ summation and
integration that rigorously prove very large classes of identities. All these
are, or soon will be, centrally incorporated in such packages.?

Such packages, and powerful more numerical relatives such as MatLab,
can now substantially deal with large parts of the standard mathematics cur-
riculum — and can out-perform most of our undergraduates to boot. They
provide extraordinary opportunities for research that most mathematicians
are only beginning to appreciate and digest. They also allow access to sophis-
ticated mathematics to a very broad cross-section of scientists and engineers.

There is a coherent argument that the emergence of such packages, and
their integration into mathematical parole, represents the most significant
part in a paradigm shift in how mathematics is done; and certainly they have
already become a central research tool in many subareas of mathematics both
from an exploratory and from a formal point of view. (It is acceptable now
to see a line in a proof that begins “by a large calculation in Maple we see

..7.) The first objective of symbolic algebra packages was to do as much
exact mathematics as possible. A second increasingly important objective
is to do it very fast and to deal in an arbitrary precision environment with
the more standard algorithms of mathematical analysis. Roughly, one would
like to be able to incorporate the usual methods of numerical analysis into
an exact environment or at least into an arbitrary precision environment.

The problems are obvious and hard. For example, how does one do
arbitrary precision numerical quadrature? When does one switch methods
with precision required or with different analytic properties of the integrand?
How does one deal with branch cuts of analytic functions? How does one
deal consistently with log? (Even this isn’t completely worked out.) More
ambitiously how does one do a similar analysis for differential equations?
The goal is to marry the algorithms of analysis with symbolic and exact
computation and to do this with as little loss of speed as possible. Sometimes
this means we must first go back and speed up the core algebraic calculations.
And ultimately, can we provide any ‘certificates’ that a given numeric or

3The first two were among the ten algorithms with “the greatest influence on the
development and practice of science and engineering in the 20th century” described in the
previous volume of this journal. Of course many of the others, such as sorting algorithms,
are fundamental to the needs of contemporary mathematics.



symbolic computation is indeed a proof or even just correct?

Within this context a number of very interesting problems concerning the
visualization of mathematics arise. How does one actually “see” what one is
doing. It has been argued that Cartesian graphing was the most important
invention of the last millennium. Certainly it changed how we thought about
mathematics — the subsequent development of differential calculus rested on
it. More subtle and complicated graphics, like those of fractals, allow for a
kind of exploration that was previously impossible. There are many issues to
be worked out here that live at the interface of mathematics, pedagogy and
even psychology but are very timely to get right. (Think of how one visualizes
the human genome and its patterns — which is after all just a particular
several billion digit number base four.) An instructive example is afforded
by the growing reliance of numerical analysts on graphic representation of
large sparse matrices — the pictures show structure, numerical measurements
very little.*

The great success of the symbolic algebra packages has been their math-
ematical generality and ease of use. These packages deal most successfully
with algebraic problems while many (perhaps most) serious applications re-
quire analytic objects such as definite integrals, series and differential equa-
tions. All the elementary notions of analysis, like continuity and differentia-
bility have to be given precise computational meaning. The first challenge
involves mathematical algorithmic developments to allow the handling of a
variety of these only partially handled problems — including the analysis of
functions given by programs. Many of these relate to the difficult mathemat-
ical problems involved in automatic simplification of complicated analytic
formulae and recognition of when two very different such expressions repre-
sent the same object. There is also an intrinsic need to mix numeric and
symbolic (exact and inexact) methods. Human mathematicians often criti-
cize programs for making dumb errors but often these errors (such as over
simplifying expressions, leaving out hypotheses or ‘dividing by zero’) are pre-
cisely how one begins oneself. As Hadamard noted almost a century ago:

“The object of mathematical rigor is to sanction and legitimize
the conquests of intuition, and there was never any other object
for it.”

4 A nice example is JavaView (www-sfb288.math.tu-berlin.de/vgp/javaview/index.html)
for doing 3D Geometry on the web.



3 Challenge Problems for Computational Pure
Mathematics

1. The question that a pure mathematician might trade his soul with the
devil to solve is most likely the so called “Riemann-Hypothesis” of 1859.
The bounty on its solution now exceeds $1, 000,000 — the amount offered by
the Millennium Prize of the Clay Mathematics Institute
(www.claymath.org/prize problems/rules.htm).

At the Clay Institute website the problem is described in the following
form:

“Some numbers have the special property that they cannot be
expressed as the product of two smaller numbers, e.g., 2,3,5,7,
etc. Such numbers are called prime numbers, and they play an
important role, both in pure mathematics and its applications.
The distribution of such prime numbers among all natural num-
bers does not follow any regular pattern, however the German
mathematician G.F.B. Riemann (1826-1866) observed that the
frequency of prime numbers is very closely related to the behavior
of an elaborate function ((s) called the Riemann Zeta function.
The Riemann hypothesis asserts that all interesting solutions of
the equation ((s) = 0 lie on a straight line. This has been checked
for the first 1,500,000,000 solutions. A proof that it is true for ev-
ery interesting solution would shed light on many of the mysteries
surrounding the distribution of prime numbers.”

A little more precisely the Riemann Hypothesis is usually formulated as:

All the zeros in the right half of the complex plane of the analytic
continuation of
((s) == 20

1

lie on the vertical line R(s) = 3.

We observe in passing that one of the most famous results in elementary
mathematics is Bernoulli’s evaluation of ((2) = 72/6.



Without doubt this is one of the ‘grand challenge’ problems of math-
ematics and for good reason. Large tracts of mathematics fall into place
if the Riemann Hypothesis is true. Unlike problems such as Fermat’s last
problem (now theorem) which may prove to be an isolated mountain peak,
even if the proof methods are tremendously significant, ° the truth of the
Riemann Hypothesis is central — its falseness would be disquieting. Most
mathematicians believe the Riemann Hypothesis is true though there have
been notable dissenters. Littlewood, one of the great analytic number the-
orists of last century is in print hypothesizing its falseness ¢ . Of course,
finding just one zero off the line R(s) = %,7 should it exist, is worth a million
dollars (although perhaps the prize is only for a proof not a disproof — cer-
tainly a proof is more interesting) and this may provide additional motivation
to extend the climb of this particular mountain. The fact that more than
the first billion zeros are known, by computation, to satisfy the Riemann hy-
pothesis might be considered “strong numerical evidence” as it is the article
by Enrico Bombieri that accompanies the prize citation. But it is far from
overwhelming — there are subtle phenomena in this branch of mathematics
that only manifest themselves far outside of present computer range.

One reason to extend such computations, which are neither easy nor
obvious and rely on some fairly subtle mathematics, is the hope that one
will uncover delicate phenomena that give insight for a proof. Greatly more
ambitious is the possibility that, in the very long run, it will be possible to
machine generate a proof even for problems clearly as difficult as this one.

2. Of the seven million-dollar Millennium Prize problems, the one that is
most germane to this discussion is the so called P # NP problem. Again,
we quote from the discussion on the Clay website:

“It is Saturday evening and you arrive at a big party. Feeling shy,
you wonder whether you already know anyone in the room. Your
host proposes that you must certainly know Rose, the lady in the
corner next to the dessert tray. In a fraction of a second you are
able to cast a glance and verify that your host is correct. However,

5A much deeper community understanding of modular and elliptic functions may also
pay dividends.

6J.E. Littlewood, “Some Problems in Real and Complex Analysis,” Heath Mathemat-
ical Monographs, 1968.

7And off the real line where there are ‘trivial’ zeros at negative even integers.



in the absence of such a suggestion, you are obliged to make a tour
of the whole room, checking out each person one by one, to see if
there is anyone you recognize. This is an example of the general
phenomenon that generating a solution to a problem often takes
far longer than verifying that a given solution is correct. Similarly,
if someone tells you that the number 13,717,421 can be written as
the product of two smaller numbers, you might not know whether
to believe him, but if he tells you that it can be factored as
3607 times 3803 then you can easily check that it is true using
a hand calculator. One of the outstanding problems in logic and
computer science is determining whether questions exist whose
answer can be quickly checked (for example by computer), but
which require a much longer time to solve from scratch (without
knowing the answer). There certainly seem to be many such
questions. But so far no one has proved that any of them really
does require a long time to solve; it may be that we simply have
not yet discovered how to solve them quickly. Stephen Cook
formulated the P versus NP problem in 1971.”

Although in many instances one may question the practical distinction
between polynomial and non polynomial algorithms, this problem really is
central to our current understanding of computing. Roughly it conjectures
that many of the problems we currently find computationally difficult must
per force be be that way. It is a question about methods, not about actual
computations, but it underlies many of the challenge problems one can imag-
ine posing. A question that requests one to “compute such and such a sized
incidence of this or that phenomena” always risks having the answer “it’s
just not possible” because P # NP.

4 Two Specific Challenges

With the ‘NP* caveat,® let us offer two challenges that are let us offer two
challenges that are far fetched but not inconceivable goals for the next few
decades.

8Though factoring is difficult it is not generally assumed to be in the class of NP-hard
problems.



3. Design an algorithm that can reliably factor a random thou-
sand digit integer.

Current algorithms even with a huge effort get stuck at about 150 digits.
Details lie at www.rsasecurity.com/rsalabs/challenges/factoring/index.html
where the current factoring challenges are listed. Again, in the cash prize
game there is also a $100, 000 offered for any honest 10,000, 000 digit prime
(www.mersenne.org/prime.htm.)

Primality checking is currently easier than factoring, and there are some
very fast and powerful probabilistic primality tests — much faster than those
providing ’certificates’. Given that any computation has potential errors due
to: (i) subtle (or even not-so-subtle) programming bugs, (ii) compiler errors,
(iii) other software errors, (iv) and undetected hardware integrity errors, it
seems increasingly pointless to distinguish between these two types of pri-
mality tests. Many would take their chances with a (1 — 107!%%) probability
statistic over a ‘proof’ any day.

The above questions are intimately related to the Riemann Hypothesis,
though not obviously so to the non afficionado. They are also critical to
issues of internet security. Learn how to factor large numbers and most
current security systems are crackable.

There are many old plum problems that lend themselves to extensive nu-
merical exploration. To name but one other: a problem that arose originally
in signal processing called the Merit Factor problem that is due in large part
to Marcel Golay with closely related versions to Littlewood and Erdds. It has
a long pedigree though certainly not as long as the Riemann hypothesis. Re-
cent references and records can be found at (itp.nat.uni-magdeburg.de/ mertens/.)

It can be formulated as follows. Suppose (a¢ := 1, ay, -..., a,) is a sequence
of length n + 1 where each a; is either 1 or —1. If

n—k
Ck = Z AjQj1k
§=0
then the problem is, for each fixed n, to minimize,

n
> .

k=—n

Minima have be found up to about about n = 50. The search space of
sequences at size 50 is 2°° which is about todays limit of a very very large



scale calculation. In fact the records use a branch and bound algorithm which
grows more or less like 1.8". This is marginally better than the naive 2" of a
completely exhaustive search but is still painfully exponential.

4. Find the minima in the merit factor problem up to size 100.

The best hope for a solution is better algorithms. The problem is widely
acknowledged as a very hard problem in combinatorial optimization but it
isn’t known to be in one of the recognized hard classes like NP. The next best
hope is radically different computers, perhaps quantum computers. And
there is always a remote chance that analysis will lead to a mathematical
solution.

5 A Concrete Example

In this section we illustrate some of the mathematical challenges with a spe-
cific problem, proposed in the American Mathematical Monthly (November,
2000).

10832. Donald E. Knuth, Stanford University, Stanford, CA. Evaluate

S (L)
s \klek  \ork)
1. A very rapid Maple computation yielded —0.08406950872765600 ... as

the first 16 digits of the sum.

2. The Inverse Symbolic Calculator has a ‘smart lookup’ feature® that
replied that this was probably —2 — ((5)/v/2.

3. Ample experimental confirmation was provided by checking this to 50
digits. Thus within minutes we knew the answer.

4. As to why? A clue was provided by the surprising speed with which
Maple computed the slowly convergent infinite sum. The package
clearly knew something the user did not. Peering under the covers

9 Alternatively, a sufficiently robust integer relation finder could be used.



revealed that it was using the LambertW function, W, which is the
inverse of w = z exp(z).1°

5. The presence of ((1/2) and standard Euler-MacLaurin techniques, us-
ing Stirling’s formula (as might be anticipated from the question), led

to
°°< 1 _L(%)H):a%) 0
Verk  V2((k=1)1)  Vor

where the binomial coefficients in (1) are those of \/JTZ Now (1) is a
formula Maple can ‘prove’.

6. It remains to show

1o (k1) _ 2
Z(k'ek \@(k—l)!>__§' 2)

k—1
7. Guided by the presence of W and its series 72, (_k)k! Zk, an appeal

to Abel’s limit theorem lets one deduce the need to evaluate
d z 1 2
li . —_— | = —. 3
o1 (dzw( )+ \/2—2z> 3 ®)
Again Maple happily does know (3).

Of course this all took a fair amount of human mediation and insight.

6 Conclusion

In 1996, discussing the philosophy and practice of Experimental Mathemat-
ics, we wrote:!!

10A search for ‘Lambert W function’ on MathSciNet provided 9 references — all since
1997 when the function appears named for the first time in Maple and Mathematica.

11J.M. Borwein, P.B. Borwein, R. Girgensohn and S. Parnes, “Making Sense of Experi-
mental Mathematics,” Mathematical Intelligencer, 18, Number 4 (Fall 1996), 12-18. The
quotes from Zeilberger and Chaitin are also cited therein.
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“As mathematics has continued to grow there has been a recog-
nition that the age of the mathematical generalist is long over.
What has not been so readily acknowledged is just how special-
ized mathematics has become. As we have already observed,
sub-fields of mathematics have become more and more isolated
from each other. At some level, this isolation is inherent but it
is imperative that communications between fields should be left
as wide open as possible. As fields mature, speciation occurs.
The communication of sophisticated proofs will never transcend
all boundaries since many boundaries mark true conceptual dif-
ficulties. But experimental mathematics, centering on the use
of computers in mathematics, would seem to provide a common
ground for the transmission of many insights.”

This common ground continues to increase and extends throughout the sci-
ences and engineering.

The corresponding need is to retain the robustness and unusually long-
livedness of the rigorous mathematical literature. Doron Zeilberger’s pro-
posed Abstract of the future (1993) challenges this in many ways.

“We show in a certain precise sense that the Goldbach conjec-
ture'? is true with probability larger than 0.99999 and that its
complete truth could be determined with a budget of 10 billion.”

He goes on to suggest that only the Riemann hypothesis merits paying really
big bucks for certainty. Relatedly, Greg Chaitin (1994) argued that we should
introduce the Riemann hypothesis as an ‘axiom®.

“I believe that elementary number theory and the rest of math-
ematics should be pursued more in the spirit of experimental
science, and that you should be willing to adopt new principles. I
believe that Euclid’s statement that an axiom is a self-evident
truth is a big mistake!®. The Schrddinger equation certainly
isn’t a self-evident truth! And the Riemann hypothesis isn’t self-
evident either, but it’s very useful. A physicist would say that

12Every even number is the sum of two primes.
13 There is no evidence that Euclid ever made such a statement. However, the statement
does have an undeniable emotional appeal.
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there is ample experimental evidence for the Riemann hypothesis
and would go ahead and take it as a working assumption.”

How do we reconcile these somewhat combative challenges with the inar-
guable power of the deductive method? How do we continue to produce
rigorous mathematics when more and more research will be performed in
large computational environments where one may or not be able to deter-
mine what the system has done or why?'4

At another level we see the core challenge for mathematical computing to
be the construction of work spaces that largely or completely automate the
diverse steps illustrated in Knuth’s and like problems.

14This has often been described as “relying on proof by ‘Von Neumann says’.”
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