GENERAL FORMS FOR MINIMAL SPECTRAL VALUES FOR A
CLASS OF QUADRATIC PISOT NUMBERS.
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ABSTRACT. We study the spectrum of real numbers that result when all height
one polynomials are evaluated at a Pisot number. This continues the research
theme initiated by Erdds, Jo6 and Komornik [6]. We are particularly interested
in the minimal non-zero value of this spectrum. Formally we denote this value
as 11(g), and extend this definition to all height m polynomials as
I™(q) ;= inf(|y| 1y = €0 + €1¢* + -+ + €ng™, € € Z,le;| < m,y #£0).

A recent result of Komornik, Loreti and Pedicini [13] gives a complete descrip-
tion of {"™(q) when g is the Golden ratio. This paper extends this result to
include all unit quadratic Pisot numbers. A main theorem is

Theorem. Let q be a quadratic Pisot number that satisfies a polynomial of
2

the form p(z) = z* — ax £ 1, with conjugate r. If ¢ has a continued fraction

approzimations {g—’;} and k is the mazimal integer such that

|[Dyr — Cx] <m
1—|r|

then

1"(q) = |Dgq — Cg|.

A value related to I(q) is a(g), the minimal non-zero value when all +1
polynomials are evaluated at ¢ [14]. Formally this is
a(g) ;== inf(ly| 1y = €0 + €1¢> + -+ + enq", €6 = £1,y # 0).

An open question of [2] concerning how often a(q) = I(q) is also answered here.

1. INTRODUCTION

Erdés, Joé and Komornik in 1990 [5] initiate the study of the spectra resulting

from evaluating certain classes of polynomials at values ¢ > 1. It is known that
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if we evaluate a height m polynomial at a Pisot number, then it is either zero, or
bounded away from zero [3, 8, 11]. Thus we have that the infimums of these spectra
being studied are greater than zero for all Pisot numbers. To this end Erdés, Joé

and Jo6 [7] define these infimums as I™(q).
Definition 1. Define [ (q) as:

I™(q) :==inf(|ly| 1y = €0 + €1¢* + -+ + €nq™, € € L, || <m,y #0).

A related area of interest is the case where the class of polynomials is restricted

to polynomials with +1 coefficients [2, 14]. The minimal value in this case is defined

as a(q)-
Definition 2. Define a(q) as:

a(g) :==inf(ly|: y = €0 + €1¢" + -+ + €ng", €; = £1,y #0).

An open question concerning when a(g) = l(q) is answered in Section 5. For

additional history of problems relating to I"™(q) and a(q), see [2, 12].

Specific values of I™(q) are calculated for some Pisot numbers ¢q. If ¢ is the
Pisot number that satisfies ¢ — ¢> — 1, then I(q) = ¢®> — 2 [13]. If g is the Pisot
number satisfying ¢" — ¢"~! —--- — 1 then I(q) = % [7, 13]. If g is the Golden
ratio, (the greater root of 22 — x — 1) then 12(q) = ¢®* —2¢> +2¢—2 =3 - 2q
(this corrects a misprint in [3], which used the notation lim inf(ug)) for 12(q)).
For general m, and ¢ the Golden ratio, all ™ (q) are known. If F} is the kth
Fibonacci number (Fo = 0, Ff = 1,F, = F,_1+ F,_3), and ¢* "2 < m < ¢*! then
I™(q) = |Fkq — Fy41] [13].

In [2] an algorithm is given to calculate ["™(q) for any Pisot number ¢ and any
integer m, limited only by the memory of the computer. Although this method can
make calculations for any given ¢ and m, it will only solve the problem for specific
examples. A tabulation of other [™(q) for various m and ¢, based on these methods
of calculation, is found at [10]. Upon examination of these tables, we find another
pattern, similar to that of I"™(q) when ¢ is the Golden ratio. This pattern concerns

I™(q) for unit quadratic Pisot numbers. Recall:

Definition 3. A Pisot number is a real algebraic integer, all of whose conjugates
are of modulus strictly less than 1. A Pisot polynomial is the minimal polynomial

of a Pisot number.

The class of Pisot numbers we consider is:
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Definition 4. Let P be the set of unit quadratic Pisot numbers. This is easily seen
to be the appropriate roots of polynomials of the form z2 —rz—1forr = 1,2,3,---,
and 22 —rz + 1 for r = 3,4,5,---.

Let g € P. This paper shows that I™(gq) = [Dg — C| where & is a convergent of
the continued fraction of q. A better description of which convergent I (q) is equal

to is given in Theorem 2.1, in Section 2.

2. A DESCRIPTION OF [™(q)

In this section we give a description of [™(q) for all ¢ € P. First though, we need

a few lemmas and definitions.
Definition 5. We define the sequences {A2:°}%  and {B2*}>° , as

1 A3 =0, AP" =1, A% = aAY" +bAL®

n—27

2. BY" =1, BM* =0, B4 = aB%" +bB%",.
When the a and b can be inferred from context, we use the notation A4,, and B,,.

Lemma 1. Using the notation of Definition §

A, A,_
det Pl ==t
Bn anl
Proof:
A, A,_ n— n— n—
det ! = det @dn-1+bAn—z  An-
n Bn_1 aBn_1 +bB,_2 Bp_;
bA,_2 An_
= det 2 !
an—Z Bn—l
A, 1 A,
= —bdet ! 2
n—1 Bn72
A A
= (=b)" !det b
B1 By
1 0
= b)" ! det
= (o
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Lemma 1 can be extended fairly easily to higher dimensions.

Lemma 2. For n > 0 we have

" = A%’z + B%*  (mod 2% — ax — b).

Proof: Simple induction argument.

|
Lemma 3. Let g and r be the two roots of x> —ax —b. Then
1 1
At = q" + r
g-r r—gq
and
B;lb,b — r qn + q rm
r—q g—r
Proof: This is a standard result from recurrence relations, see for example [9].
|

By combining Lemmas 2 and 3 we get:

Lemma 4. Let g and r be the two roots of x> — ax — b. Then

r™(x — mod z® — az — b).
= =) )
The next result is well known in the literature on continued fractions, see for

example [4].

Lemma 5. Let g be a real number, and m some integer, then the best approrima-
tion to q by %, where 0 < C,D < m is a convergent g—: of the continued fraction

of q, for n mazimal such that Cy, D, < m.

The next lemma is reminiscent to those lemmas in Section 3 of [13], but the

presentations is different. For this lemma we need the following definition:

Definition 6. Define R[z] = {p € Rlz] : H(p) < 1}.

2 —ax + 1 be associated with some q¢ € P. Let m be such

Lemma 6. Let p(z) =z
that |Ap| < m|By| for alln > 2. Lety' € m]IAE[;c] such that y' = cx + b (mod p(z))

where ¢, b € Z. Then there exists ay € m@[w]ﬂZ[x] such thaty = cx+b (mod p(x)).
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Proof: First it is worth noting that we can always find an m such that |4,,| <
o] = 1] > 1.

Bn

m|Bp| as lim,

By assuming that y = cx+b (mod p(z)) with ¢, b € Z, we show here how to find
y' such that y' =y (mod p(z)) and y' € Z[z]N mR[z]. Let

Yy =apx" +---ag.

If a,, € Z then continue inductively on a,_12" ' +---+ao. If ap € Z then continue
inductively on a,2™ ! + --- + a;. If neither ap nor a, is an integer, then use the
identity that 2™ — A,z — B, = 0 (mod p(x)) along with the fact that |A,| < m|B,]|
to solve for @ where a,+a € Z or ag—aBy, € Z,and |ap+a|, |a1—Apal, |ag—Bra| <

m. Continue inductively on a,x™ + - - + ag + a(z"™ — Az — By).

By repeated application of this we see that g’ is such that all of the a; are
integers with the possible exception of two consecutive terms, a; and a;_;. Notice
that apa™ + -+ ajp127 +aj 02772 +---ag = 'z + b’ for some V', ¢’ € Z. Thus
we see that a;z? + a;_129 71 = (c— ')z + (b—1'), where ¢ — ¢',b— V' € Z. ;From
Lemma 2 we know that ajz’ +a; 129! = ajAjz+a; 1A 1x+a;Bj+a;_1Bj_ 1.
Thus we have that

AJ’ A]'_l a; i c—¢
Bj B]'_l aj—1 d—d
. . Aj Aja |, .
By noticing that the determinate of B is 1, we get that the inverse
J Jj—1

of this matrix is integral, and thus aj,a;_1 € Z.
u

What is interesting here is that this proof is constructive, and a computer algo-

rithm can be designed from this. This is described in Section 3.

Theorem 2.1. Let ¢ € P satisfy a polynomial of the form p(z) = 22 — azx £ 1,
with conjugate r. If g has a continued fraction approximations g—i} and k is the
mazimal integer such that

1

Dpr — Cy| <m———
Per = Gl <M

then

I"™(q) = |Drq — Ch|.

It is worth noting, when ¢ is the Golden ratio then the result is equivalent to
Theorem 3.1 in [13].
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Proof: Recall from Lemma 4 that

From this is follows that
HAR[a:] =v(z—r)+wlx—gq) (modp(x))

where v € R and |w| < m

Consider the continued fraction of g, {g—’;} Lemma 5 indicates that the best
linear terms are of the form Dyq— C}. Lemma 6 indicates that if Dyx —C} € m]l/i[a:]
then there exists a y € Z[z] ﬂﬁ[x] (mod p(z)) such that y = Dyx— Cy (mod p(z)).
It follows that I™(q) = Drq — Cx when Dyz — Cy € m]ﬁ[x] (mod p(x)) with &
maximal. Write Dyz—C, asv(z—r)+w(x—q). As Dz —Cy, € m@[x] (mod p(x))

we have w S (qfr)r(nf‘r” Thus

|Dgr — Ci| = |v(r —r) +w(r —q)|
= |w(g—r)|
S Gena-mr
< m
=TT

This is the desired result.

Corollary 1. Define F,, =rF,,_1 + F,,_o with Fy =0 and F; = 1 and q the Pisot
root of 2 —rx — 1. If ¢* (g —1) <m < ¢*(qg— 1) then I™(q) = |Frq — Fry1]-

Flt1

7 } are the continued fractions of ¢. A

Proof: It is easy to verify that {

simple calculation shows that
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and that r = —*. This yields that I"(q) = |Fiq — Fi+1| when
m
_ <
|Fk7' Fk-‘rl' >~ l_llrla
ko, oky. (kD k1 m
L@ - oty <
1 k k+1 m
— <
‘q_r(qr ) < =’
T—q i m
<
-l = 1= 7|’
ko< m
S
(q - 1)qk71 S m,
and the result follows.
| |
Table 1 gives the ranges that m is in, for I"™(q) = Fy_1q — F.
I™(q) ¢°—q-1|¢—-2¢-1|¢-3¢—1 | ¢®—4g-1 ¢>—5¢—1
|F0q - Fll [ ) ] [1a2] [153] [1a4]
|F1q - F2| []-a]-] [ ) ] [3a7] [4513] [5a21]
|F2q - F3| [ ) ] [8a25] [14758] [227113]
|Fsq — Fi| | [2,2] [9,19] [26,82] [59,245] [114,586]
|Faq — Fs| | [3,4] [20,48] [83,274] [246,1042] [587,3048]
|Fsq — Fg| | [5,6] [49,115] [275,004] | [1043,4413] | [3049,15826]
|Fsq — Fr| | [7,11] [116,280] | [905,2980] | [4414,18698] | [15827,82183]
|Frq — Fs| | [12,17] | [281,675] | [2990,9871] | [18699,79205] | [82184,426742]
|Fsq — Fy| | [18,29] [676,1632] | [9872,32605] | [79206,335521] | [426743,2215893]

With a proof similar to that of Corollary 1, we get

Table 1: Relation between ["™(q) and Fj_1q — Fy.

Corollary 2. Define E, = rE,_1 — Ep_5 with Eg = 0 and E; = 1 and G,, =

rGn_1

@ 3g—1)2 <m < g"?(qg—1) then I™(q) =
1)2 then I™(q) =

m < qk72(

Table 2 gives the ranges that m is in, for I™(q) =

|Er—1q9 — E|

q-—

|Ex—1q — Eg|.

— Gn_2 with Go = 1 and G1 = 1 and and q the Pisot root of x> —rz + 1.
|Gr-1q — G| and if ¢* (¢ —1) <

If

|Gr—1q9 — G| and I™(q) =
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I™(q) @ —-3q+1|q®?—-4g+1|¢®>=5q+1|¢>—6g+1|¢>—Tqg+1
|Gog — G1]

|Eog — E1] | [1,1] [1,2] [1,2] [1,3] [1,5]

|G1g — G| [3,3] [4,4]

|Erg — Es| | [2,2] [3,7] [4,14] [5,23] [6,34]

|G2q — G| | [3,4] [8,10] [15,18] [24,28] [35,40]
|Eaq — Es| | [5,6] [11,27] [19,68] [29,135] [41,234]
|G3q — G4l | [7,11] [28,38] (69,87 [136,164] [235,275]
|Esq — E4| | [12,17] [39,103] [88,329] [165,791] [276,1609]

Table 2: Relation between [™(q), Ex_19 — Er, and Gx_1q — Gy.

3. FINDING THE HEIGHT m POLYNOMIALS

For ¢ € P with minimal polynomial p(z), we have that I™(q) = |Dg — C| for
some integers C' and D where % is a convergent of ¢. What this section is interested
in is finding the particular height m polynomial that I™(q) relates to. We notice
that Lemma 6 can be implemented into an algorithm. Thus it is sufficient to find a
t(z) € mR[z] such that t(z) = Dz—C (mod p(z)). For this we can use the simplex
method [15]. Write

n n+2
Dz —C+ (Z arz®)p(z) = Z brxk
k=0 k
for unknowns ag. We wish —m < by < m for all k = 0,---,(n + 2). So for the

correct value of n we minimize for A with
(1) —h <by <h

and solve for the ay. A careful calculation can yield the minimal value for n that
works as

(2) n= {1 (m+|D’“—C| Ir| — IDr—C|) (ln(lrl))‘lJ

Ir|

Using the simplex method in this way works for any polynomial, where as the value
for n given in equation (2) is only true for ¢ € P. Thus if we wish to implement
this algorithm for polynomials that come from some ¢ ¢ P we can simply take n

increasing until we find one that works.

We now do an example

Example 1. Let ¢ be the root of ¢ — 3¢ + 1. A simple calculation demonstrates

that [7(q) = 5q — 13 Using equation (2) we have that the minimal value for n is
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3. So minimizing h with respect to the constraints in equation (1) as n = 3 gives

h= % < 7. This gives a polynomial of:

17 5 305 4 305 5 305 , 305 305
27 Tt Tt Tt Tt .

Here we use the techniques in Lemma 6 iteratively. Notice that at any step, only

three coefficients are altered.

175 305, 805, 305, 305 305 _

_ —_— = j— 2 j—
R VR VR VR al T g = 13 (mod z° — 3z + 1),
327 . 305, 305, 305, 520 _ \

BTL 305, 305, 553,

88 44 44 88

305 229 305

5 9V 4 229 3 oUo 5
VI VI
42° — Tt — 523 —T2? —Tx —7 =52 —13 (mod 2® — 3z +1).

Tz —7=5x—13 (mod 22 — 3z + 1),

4z Te —7=5x—13 (mod z? — 3z + 1),

Thus we have found a height 7 integer polynomial p(z) where I”(q) = 5¢—13 = p(q).

4. NON-UNIT QUADRATIC PI1SOT NUMBERS

It is worth noting that Theorem 2.1 does not work for all quadratic Pisot
numbers. The problem is that Lemma 6 doesn’t work for all Pisot polynomials
x? — az — b. For example if ¢ is the Pisot root of 22> — 2z — 2 (of approximately
2.732050808) then we see that

7
Exs—2w7+3x6—3:1:5+3x4—3w3+3x2—3x+3£8—3x (mod z? — 2z — 2)

is in 3R[z] but it is not in Z[2)N3R[z]. Worse we have that |8 —3q| = 0.196152424 <
0.267949192 = I3(q).

5. THE EXISTENCE OF AN INFINITE FAMILY OF PISOT NUMBERS WHERE
l(q) = alq)

It is easy to give an infinite set of Pisot numbers ¢ where I(¢) = a(q). We know
from [7] that if ¢" —¢" ! —---—1=0then I(q) = ¢" "' —¢" 2 —---— 1. It is clear
in this case that I(¢) = a(qg). This answers question 1 in [2] in the negative, as it

gives an infinite family of Pisot numbers where I(q) = a(q).
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6. FURTHER RESEARCH

The counter example of Section 4 shows that Theorem 2.1 does not work for
all quadratic Pisot numbers. Despite this, the spirit of Theorem 2.1 appears to
be true. Computationally I"™(q) = |Dg — C| for £ a convergent of the continued
fraction of ¢ (just not always the one that would be predicted by Theorem 2.1). It

would be interesting to know if this is indeed the case.

Secondly it would be of interest if a Lemma similar to Lemma 6 could be found
that would work for all polynomials p where p(0) = £1, regardless of the degree of
p(x). If something like this could be found then this could be used to prove, for

€ (1,2), that I(g) > 0 if and only if ¢ is Pisot. This is conjectured to be true by
a number of people, see for example [2, 12]. The second part of this Lemma easily
extends to arbitrarily degree, but it is not clear that there is an algorithm that

forces all but d consecutive terms to be integers (where d is the degree of p(z)).

While searching for patterns among various Pisot numbers, it appears that a
nice description exists for the Pisot roots of £ —z — 1 and z® — 22 — 1. Some work

is done on this [1] but this is not fully answered as of yet.
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