
Polynomial multiplication and division using heap.

Michael Monagan and Roman Pearce

Department of Mathematics, Simon Fraser University.

Abstract
We report on new code for sparse multivariate polynomial multiplication and di-

vision that we have recently integrated into Maple as part of our MITACS project at
Simon Fraser University. Our goal was to try to beat Magma which is widely viewed in
the computer algebra community as having state-of-the-art polynomial algebra. Here
we give benchmarks comparing our implementation for multiplication and division with
the Magma, Maple, Singular, Trip and Pari computer algebra systems. Our algorithms
use a binary heap to multiply and divide using very little working memory. Details of
our work may be found in [7] and [8].

1 Introduction

This report considers the problem of multiplication and division of multivariate polynomials.
Polynomial arithmetic is an essential feature of computer algebra systems like Maple. There
are two basic representations for multivariate polynomials, the distributed representation in
which terms are ordered in a monomial ordering and the recursive representation. Here is a
polynomial in the distributed representation

9xy3z + 4y3z2 − 6xy2z − 8x3 − 5y3

where the terms are sorted in graded lexicographical order with x > y > z. In this term
ordering, the terms xy3z and y3z2, which both have degree 5, appear before the other terms.
Here is the same polynomial in the recursive form

−8x3 + (9 zy3 − 6 zy2)x + (4 z2 − 5)y3.

One may think of it as a polynomial in x whose coefficients are polynomials in y whose
coefficients are polynomials in z whose coefficients are integers.

In 1984 David Stoutemyer in [9] concluded that, generally, the recursive representation
was better for multiplication and division than the distributed representation, and that the
recursive dense representation was best overall, even for sparse problems. This was confirmed
by Richard Fateman in [3] in 2003 in the following benchmark for multiplying f by g where
f = (1 + x + y + z)20 and g = f + 1. These timings were obtained on a Pentium III, a 32 bit
machine running at 933 MHz. MockMMA is Fateman’s own implementation of multiplication
using the recursive dense representation in Alegro Common Lisp and the hashing method is
Fateman’s implementation using a hash table keyed on the monomials.

Our results, however, suggest that the distributed representation can infact be faster
than the recursive representation. This we believe is because our codes use algorithms with
good asymptotic complexity which use very little working memory and because we pack
monomials so that monomial operations are reduced to single machine instructions.

1



Pari/GP 2.0.17 2.3s recursive dense array
MockMMA ACL6.1/GMP4.1 3.3s recursive dense array
Hashing ACL6.1/GMP4.1 4.7s hash on monomial
Reduce 3.7 (in CSL) 5.0s sparse recursive linked list
Singular 2.0.3 6.1s sparse distributed linked list
Macsyma (in ACL 6.1) 6.9s sparse recursive linked list
Maple VR4 17.9s sparse distributed array

Table 1: Selected timings (in CPU seconds) from Fateman’s 2003 benchmark

2 The Algorithms

Suppose we have two polynomials f and g in Z[x1, ..., xn] which are sorted in the distributed
representation with #f and #g terms respectively. Consider the problem of computing the
product h = f × g and dividing h ÷ f to to get the quotient g. If the polynomials are
sparse, the classical multiplication and division algorithms, which do O(#f#g) coefficient
operations, may do as many as O(#f#g2) monomial comparisons. An example where this
happens is f = xn + xn−1 + ... + x and g = ym + ym−1 + ... + y. Maple and Singular solve
this problem by using a divide and conquer approach for multiplication and by switching to
the recursive representation for division.

In the literature, there is a beautiful idea by Yan in [10] called geobuckets which can be
used for division as well as multiplication. Singular uses geobuckets for the divisions that
occur in Gröbner basis computations. The idea is to represent a polynomial h by a sequence
of buckets where the i′th bucket has at most 2i terms of h. When we add (subtract) a
polynomial with k terms from h we add (subtract) it from the bucket j with 2j−1 < k ≤ 2j

terms using merging. If the result is too large to store in bucket j then the result is added
to the next bucket using merging, and so on, until it fits. The total number of monomial
comparisons to compute h = f × g and g = h/f becomes O(#f#g log(#f#g)).

But it as an older idea of Johnson in [6] from 1974 that we have found is superior on
our modern computers with their many levels of cache. The idea is to use an auxiliary
data structure, a binary heap, sorted on the monomials in the product h for multiplying
f × g. Johnson’s multiplication algorithm does O(#f#g log min(#f, #g)) comparisons and
requires O(min(#f, #g)) storage for the heap. Johnson implemented the algorithm in the
ALTRAN system but it seems to have been forgotten. We have also observed that since
the terms in the product h are generated in order, the coefficient arithmetic can be done in
temporary storage in such a way that the entire multiplication f × g generates no garbage.
This is a clear advantage. In [7] we found that our heap implementation beat our geobucket
implementation for sparse polynomials.

Johnson also used a heap to test if f divides h exactly, with zero remainder, and to
compute the quotient g using O(#h+#f#g log #g) comparisons. This is good if the number
of terms in the quotient g is smaller than that of the divisor f which is the case in some
contexts but not others. In [7] we have devised a new algorithm to (i) get the complexity
down to O(#h + #f#g log min(#f, #g)) comparisons, i.e., the same as multiplication, (ii)
extend the algorithm to compute the remainder r efficiently by using pseudo-division to avoid

2



arithmetic with fractions and (iii) do everything without creating any garbage.
Dividing the total cost by (#f#g), we get the cost per term in the multiplication and

division algorithms is cost of the coefficient arithmetic plus the cost of O(log min(#f, #g))
monomial comparisons. One of the reasons why the distributed representation is slow com-
pared with the recursive representation is that we must compare monomials. In general this
requires a function call and a loop over the degrees in each variable. One way to reduce this
cost is to pack multiple exponents into one machine word.

2.1 Monomial Representations

In [1], Bachmann, Schönemann describe various packing schemes and show that this is help-
ful. It is most helpful, obviously, if we can pack the entire monomial into one machine word.
Consider the monomial xiyjzk in graded lex order with x > y > z. If we pack this in one 64
bit word

i + j + k i j

i.e., with the total degree i + j + k in the leading 22 bits, i in the next 21 bits, and j in
the bottom 21, then we can compare two monomials X and Y by doing a single unsigned
machine integer comparison and we can multiply XY by doing an unsigned machine integer
addition. Thus if the number of variables and their degrees is not too large, then we essen-
tially eliminate the cost of the monomial arithmetic altogether. On a 64 bit machine, we
can pack a polynomial in 8 variables with degree up to 255. This encompasses essentially all
polynomials in 8 variables arising in practice. The 64 bit word makes this very effective.

Note, the reason we prefer graded lexicographical order over pure lexicographical order is
so that we can do a polynomial division without having to check for exponent overflow. For if
one uses lexicographical order, and the remainder is not zero, the degree of the remainder in
the non-main variables can be larger then the degree of the non-main variables in the inputs.
One needs an overflow detection bit to detect overflow if we use a packed representation.
The good thing about graded orderings is that the degrees remain bounded and hence no
overflow detection is needed.

2.2 Benchmarks

We ran benchmarks using one core of an Intel Xeon 5160 (Core 2 Duo) 3.0 GHz with 4 MB
of L2 and 16 GB of RAM, running in 64 bit mode with GMP 4.2.1. Our software (SDMP)
is a C library that uses heaps to compute with sparse polynomials. We give two times for
our library. In the slow time we store each exponent in a 64 bit integer. For the fast time
we pack all of the exponents into one 64 bit integer .

We have included timings for the computer algebra systems Pari, Magma (see [2]), Maple
11, Singular (see [5]) and Trip (see [4]). Magma was designed for computational algebra and
group theory, Maple is general purpose, and Singular was designed for algebraic geometry.
They use the distributed representation. Pari was designed primarilly for computational
number theory and Trip, a new system, is designed for celestial mechanics. Pari and Trip
use the recursive representation.

3



2.3 Fateman’s Benchmark

Our first benchmark, a dense problem, is due to Fateman [3]. Let f = (1 + x + y + z + t)30

and g = f + 1. We multiply h = f × g and divide q = h/f = g. The polynomials f and
g have 46,376 terms and 61 bit coefficients. The product h has 635,376 terms and 128 bit
coefficients. We use graded lexicographic order with x > y > z > t. That our code beat’s
Pari which is using the recursive dense representation is a surprise.

Table 2: Dense multiplication and division over Z

46376× 46376 = 635376 h = f × g q = h/f

time space time space

LOWER BOUND 15.50s 15.50s

SDMP (1 word monomial) 47.42s 19.8mb 68.16s 3.4mb

SDMP (4 word monomial) 107.43s 45.2mb 126.32s 5.1mb

Trip v0.99 (rationals) 108.22s 68.7mb NA

Pari/GP 2.3.3 512.18s – 283.44s –

Magma V2.14-7 679.07s 160.4mb 610.62s 70.7mb

Singular 3− 0− 4 1482.36s 98.1mb 364.49s 80.5mb

Maple 11 15986.17s – 13039.25s –

That the Singular timing for division is three times faster than multiplication is because
Singular automatically switches to using the recursive representation for division (but not
for multiplication).

The time of 15.50 seconds represents a lower bound on the time for multiplying f × g
and dividing h ÷ f on this particular machine. We obtain this time by writing down the
coefficients of f and g in an array and viewing them as dense univariate polynomials and
multiplying them using assembler to do the coefficient arithmetic. That is, we are bounding
from below the cost of the coefficient arithmetic. Thus we are within a factor of 3 to 4 from
what is possible.

2.4 Sparse Problems in Many Variables

Our second benchmark is a sparse computation in ten variables. For (n, d) let f = (x1x2 +
x2x3 + · · ·+ xnx1 +

∑n
i=1 xi + 1)d and g = (

∑n
i=1 x2

i +
∑n

i=1 xi + 1)d. We multiply h = f × g
and divide q = h/f . We use n = 10 and d = 5. Then f has 26,599 terms, g has 36,365 terms,
and h has 19,631,157 terms. We will use lexicographic order with x1 > x2 > · · · > x10.

The Magma timing for division is very slow compared with multiplication. This is because
this benchmark is sparse (the first is dense) and whereas Magma is using a hash-table based
algorithm for multiplication, it is using the classical algorithm for division.

Notice the space efficiency of our division algorithm. It needs space for the output (the
quotient q), the heap and temporary registers. This is much smaller than the size of the
dividend h.

4



Table 3: Sparse multiplication and division over Z

26599× 36365 = 19631157 h = f × g q = h/f

time space time space

SDMP (1 word monomial) 37.14s 303mb 41.33s 3.4mb

SDMP (10 word monomial) 174.87s 1,667mb 162.37s 14.4mb

Pari/GP 2.3.3 109.27s – 109.69s –

Trip v0.99 (rationals) 221.91s 2,123mb NA

Magma V2.14-7 313.02s 2,365mb 5744.60s 1,753mb

Singular 3-0-4 655.25s 1,538mb 206.60s 1,390mb

Maple 14053.37s – 10760.36s

References

[1] O. Bachmann, H. Schönemann. Monomial representations for Gröbner bases computations.
Proceedings of ISSAC 1998, ACM Press (1998) 309–316.

[2] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I: The user
language. J. Symbolic Comput., 24(3-4):235-265, 1997.
Magma homepage: http://magma.maths.usyd.edu.au/magma

[3] R. Fateman. Comparing the speed of programs for sparse polynomial multiplication.
ACM SIGSAM Bulletin, 37 (1) (2003) 4–15.

[4] M. Gastineau, J. Laskar. Development of TRIP: Fast Sparse Multivariate Polynomial Multi-
plication Using Burst Tries. Proceedings of ICCS 2006, Springer LNCS 3992 (2006) 446–453.
Trip homepage: http://www.imcce.fr/Equipes/ASD/trip

[5] G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 3.0. A Computer Algebra System for
Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2005).
Singular homepage: http://www.singular.uni-kl.de

[6] S.C. Johnson. Sparse polynomial arithmetic. ACM SIGSAM Bulletin, 8 (3) (1974) 63–71.

[7] M. Monagan, R. Pearce. Polynomial Division Using Dynamic Arrays, Heaps, and Packed
Exponent Vectors. Proceedings of CASC 2007, Springer (2007) 295–315.

[8] M. Monagan, R. Pearce. Sparse Polynomial Pseudo Division using a Heap. In preparation for
the special issue “Milestones in Computer Algebra” of J. Symb. Comput. in honor of Keith
Geddes’ 60th birthday.

[9] D. Stoutemyer. Which Polynomial Representation is Best? Surprises Abound! Proceedings of
the 1984 Macsyma Users’ Conference Schenectady, New York, pp. 221–243, 1984.

[10] T. Yan. The geobucket data structure for polynomials. J. Symb. Comput. 25 (1998) 285–293.

5


