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Abstract

There exist sound literature and algorithms for computing Liouvillian solutions for the important
problem of linear ODEs with rational coefficients. Taking as sample the 363 second order equations of
that type found in Kamke’s book, for instance, 51% of them admit Liouvillian solutions and so are solvable
using Kovacic’s algorithm. On the other hand, special function solutions not admitting Liouvillian form
appear frequently in mathematical physics, but there are not so general algorithms for computing them.
In this paper we present an algorithm for computing special function solutions which can be expressed
using the 2F1, 1F1 or 0F1 hypergeometric functions. The algorithm is easy to implement in the framework
of a computer algebra system and systematically solves 91% of the 363 Kamke’s linear ODE examples
mentioned.

Introduction

Given a second order linear ODE
y′′ + A(x) y′ + B(x) y = 0 (1)

where the quantity1 A′/2 + A2/4 − B is a rational function, the problem under consideration is that of
systematically computing solutions for this ODE even when the solutions admit no Liouvillian form2.

The first thing to note is that non-Liouvillian solutions which are representable symbolically not as
unknown infinite sums can be represented using special functions, e.g. Bessel, Hermite or Legendre functions
[1]. In turn, these and most of the special functions frequently appearing in mathematical physics happen
to be particular cases of the pFq hypergeometric function for p equal to 0, 1 or 2 and q equal to 0 or 1 (see
[2]). For example, the Bessel functions can be expressed in terms of 0F1, all cylindrical functions as well as
the Hermite, Laguerre, Whittaker and error family of functions can be expressed in terms of 1F1, and all
Chebyshev, Gegenbauer, Jacobi, Legendre and some others can be expressed in terms of 2F1.

One natural approach is then to directly attempt the computation of hypergeometric function solutions
of these 0F1, 1F1 and 2F1 types, since in this way we cover at once solutions involving all the related special
functions. Such an approach was developed during the year 2001 (see [3]), it became the main algorithm of
the Maple computer algebra system for this type of problem since then and it is the subject of this paper.
The algorithm consists of an equivalence approach to the pFq differential equations and is formulated in
sec. 1, 2 and 3.

1This quantity is an invariant under transformations of the dependent variable - see (11).
2Functions that can be expressed in terms of exponentials, integrals, and algebraic functions, are called Liouvillian functions.

The typical example is exp(
∫

R(x), dx) where R(x) is rational or an algebraic function representing the roots of a polynomial.



It is important to note that the idea of seeking hypergeometric function solutions for (1) or using an
equivalence approach for that is not new. In ’89 Kamran and Olver [4] showed how to use an equivalence
approach to compute Bessel function solutions to eigenvalue problems. Hypergeometric solutions were also
discussed by Petkovsek and Salvy [5] in ’93. Some of the more recent developments were presented as
computer algebra algorithms too. For instance, a classic invariant theory approach was presented during
2000 by von Bülow in [6]; in 2001 Willis [7] presented a semi-heuristic algorithm for computing special
functions solutions; in 2002 Bronstein and Lafaille [8] presented a systematic approach for solving 1F1

equations whenever the point of application of the 1F1 function is rational in the independent variable.
There is natural intersection between what these algorithms can solve but none can claim to extensively

cover the portions of the problem covered by all the others. If compared with the algorithm presented in
this paper - we called it hyper3 - these other algorithms, both those developed before and after hyper3:

• Do not resolve in a systematic manner all of the 2F1, 1F1 and 0F1 equivalences;

• Do not handle the problem of an invariant involving fractional or abstract powers;

• Do not explore automorphisms to avoid uncomputed integrals in the solution.

Also, hyper3 does not require computing resultants nor solving systems of algebraic equations nor comput-
ing Groebner basis nor running differential elimination processes (all of them very expensive computational
processes), thus resulting in a fast and smooth algorithm with little computational cost. These facts, com-
bined with the range of problems it solves, for instance taking Kamke’s book [12] as a testing arena, are at
the base of the role hyper3 has today in the Maple differential equation libraries.

1 Computing 2F1, 1F1 and 0F1 hypergeometric solutions

To compute pFq solutions to (1), the idea is to formulate an equivalence approach to the 2F1, 1F1 and 0F1

underlying hypergeometric differential equations, that is, to determine whether a given linear ODE can be
obtained from one of these pFq ODEs,

(
x2 − x

)
y′′ + ((a + b + 1) x− c) y′ + b a y = 0, admits 2F1 solutions

xy′′ + (c− x) y′ − a y = 0, admits 1F1 solutions
xy′′ + cy′ − y = 0, admits 0F1 solutions

(2)

where {a, b, c} are arbitrary constants, by means of a transformation of a certain type. If so, the solution to
the given linear ODE is obtained by applying the same transformation to the solution of the corresponding
pFq ODE above.

The first ODE in (2) has 3 regular singularities, at 0, 1 and ∞. The second ODE in (2), also known
as the confluent hypergeometric equation, has a regular singularity at 0 and an irregular one at ∞. The
third ODE in (2) also has one regular and one irregular singularity at 0 and ∞, but we considered the case
separately in order to obtain solutions directly expressed in terms of simpler (Bessel) functions. As we shall
see, the structure of the singularities of these equations is a key for resolving the equivalence.

The approach of course also requires determining the values of the hypergeometric parameters {a, b, c}
for which the equivalence exists, and it is clear that its chances of success depend crucially on how general is
the class of transformations being considered. For instance, one can verify that for linear transformations3

x → F (x), y → P (x) y (3)

with arbitrary F (x), P (x), the problem is too general in that to solve it requires solving first the given ODE,
so that the approach is of no practical use [6].

The transformations considered in this work are of the form
3The problem of equivalence under transformations {x → F (x), y → P (x) y+Q(x)} for linear ODEs can always be mapped

into one with Q(x) = 0, see [9].
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x → α xk + β

γ xk + δ
, y → P (x) y (4)

with P (x) arbitrary and {α, β, γ, δ, k} constant with respect to x. These transformations, which do not
conform a class in the strict sense, can be obtained by sequentially composing three different transformations
each of which does constitute a class. The sequence starts with linear fractional - also called Möbius -
transformations

M := x → α x + β

γ x + δ
, (5)

is followed by power transformations

x → xk, (6)

and ends with linear homogeneous transformations of the dependent variable

y → P y (7)

So, we are talking of an algorithm that systematically computes, when they exist, solutions of the form

y = P (x) pFq

(
..; ..;

α xk + β

γ xk + δ

)
(8)

where pFq is any of the 2F1, 1F1 or 0F1 hypergeometric functions.

1.1 Transformations y → P (x) y of the dependent variable

The first thing to note is that transformations of the form (7) can easily be factored out of the problem: if two
equations of the form (1), respectively with coefficients {A(x), B(x)} and {C(x), D(x)}, can be obtained from
each other by means of (7), the transformation relating them is computable directly from these coefficients.
For that purpose, we first rewrite both equations in normal form, for instance for (1) use

y = u e−
∫

A/2 dx (9)

to obtain

u ′′ =
(

A′

2
+

A2

4
−B

)
u (10)

and the transformation relating the two hypothetical ODEs exists when the two normalized equations are
equal; the transformation relating them being y = u e

∫
(C−A)/2 dx. In what follows we will refer to

I(x) =
A′

2
+

A2

4
−B, (11)

the coefficient of u in (10), as the invariant [10], regardless of the fact that this object is only an absolute
invariant under (7) and not under (5) or (6).

1.2 Transformations x → F (x) of the independent variable

By changing x → F (x) in (1), the invariant I1 of the changed ODE can be expressed in terms of the invariant
I0 of (1) by

I1(x) = F ′2I0(F (x)) + S(F ′) (12)
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where S(x) is the Schwarzian [11]

S(F ′) =
3F ′′2

4F ′2
− F ′′′

2F ′
; (13)

The form of S(F ′) is particularly simple when F (x) is a power transformation and also when F (x) is a
Möbius transformation (5), in which case S(F ′) = 0. These are key facts permitting a simple formulation
and resolution of the equivalence.

2 Möbius transformations and a classification of singularities

For our purposes, perhaps the most important property of Möbius transformations is that they do not
change the structure of the singularities of (1). These transformations only move the location of the poles.
For example, the 0F1 hypergeometric equation

x y′′ + c y′ − y = 0 (14)

has one regular singularity at the origin and one irregular at infinity. The transformed ODE, obtained from
(14) by means of (5)

y′′ +
(2α γ x + 2 γ β − γ cβ + cα δ)

(α x + β) (γ x + δ)
y′ − (α δ − γ β)2

(γ x + δ)3 (α x + β)
y = 0 (15)

also has one regular and one irregular singularity, respectively located at −β/α and −δ/γ. In the case of the
2F1 equation (see (2)), under (5) the three regular singularities move from {0, 1,∞} to {−δ/γ,−β/α, (δ −
β)/(α − γ)}. So, from the structure of the singularities of an ODE, not only one can tell with respect to
which of the three differential equations (2) could the equivalence under (5) be resolved, but also one can
extract information regarding the values of the parameters {α, β, γ, δ} entering the transformation.

Reversing the line of reasoning, through Mobius transformations one can formulate a classification of
singularities of the linear ODEs “equivalent” to the pFq equations (2), based on how the invariant of each
of these equations is transformed. Concretely, after transforming the 2F1 equation, the invariant of the
resulting equation has the form

I
2F1

=
ω2x

2 + 2 ω1x + ω0

(σ1x + σ2)
2 (σ3x + σ4)

2 (σ5x + σ6)
2 (16)

where all {ωi, σj} can be expressed in terms of {a, b, c} and {α, β, δ, γ} respectively entering the 2F1 equation
(2) and the transformation (5). The invariant of the transformed 1F1 equation has the form

I
1F1

=
ω2x

2 + 2 ω1x + ω0

(σ3x + σ4)
2 (σ5x + σ6)

4 (17)

and that of the transformed 0F1 equation has the form

I
0F1

=
ω1x + ω0

(σ3x + σ4)
2 (σ5x + σ6)

3 (18)

These transformed invariants are all of the form

I
pFq

=
∏m

i=1 (aix + bi)∏n
i=1 (cix + di)

qi
(19)

Cancellations between factors in the numerator and denominators of (19) may also happen and, independent
of that, some coefficients {ai, ci} can be zero4. So the degrees with respect to x of the numerators and

4Provided that, in (5), αδ − γβ 6= 0 and also that in (1) the invariant remains finite, i.e. its denominator is not zero.
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denominators of (16), (17) and (18) can be lower than the maximum implicit by these equations; in this way
the problem splits into cases.

Taking these possible cancellations into account, from the structure of the invariants (16), (17) and (18),
the different cases for each of the 2F1, 1F1, 0F1 classes were determined. With this classification in hands,
from the knowledge of the degrees with respect to x of the numerator and denominator of the invariant (19)
of a given ODE, one can tell whether or not it can be obtained from the 2F1, 1F1 or 0F1 equations (2) using
(5). These observations can be summarized in a classification table as follows, using the symbol

[≤ p, [q1∗, q2∗, ..., qn∗]]
where p is the degree in x of the numerator of (19) and qi are the powers of the factors entering the
denominator of it. The symbol ≤, when present, refers to the value of p (can be less or equal to). The
symbol ∗, when present, means there can be factors canceling between numerator and denominator, so that
the actual value of the related qi can be lower (provided p is also lower by the same amount). For example,

[≤ 2∗, [2∗, 2∗]] (20)

represents the following possible seven different “lists of values” (herein referred as cases) for the degrees of
the numerator and denominator of the invariant

[2∗, [2∗, 2∗]] = [2, [2, 2]], [1, [1, 2]], [0, [1, 1]], [0, [0, 2]]
[1∗, [2∗, 2∗]] = [1, [2, 2]], [0, [1, 2]]

[0, [2, 2]]
(21)

With this notation, the classification of all the possible cases equivalent to the 2F1, 1F1 and 0F1 equations
under Möbius transformations is given by

Class Cases Number of cases

2F1 [<= 2∗, [2∗, 2∗, 2∗]], [<= 2∗, [2∗, 2∗]] 14

1F1 [2∗, [2∗, 4]], [<= 2, [6]], [<= 2, [4]], [2∗, [2∗]], [2, [0]] 13

0F1 [1∗, [2∗, 3]], [<= 1, [5]], [<= 1, [3]], [1∗, [2∗]], [1, [0]] 9
Table 1. Classification of linear ODEs equivalent to pFq ODEs under Möbius

3 Transformations x → xk of the independent variable

Using the results of the previous sections it is possible to resolve the equivalence of a given linear ODE (1)
and the hypergeometric equations (2) under compositions of transformations (7) of the dependent variable
y(x) and Möbius transformations (5) of the independent variable x. In this section a worth additional level
of generalization is obtained by composing those two transformations with transformations x → xk of the
independent variable.

The first thing to note regarding power transformations is that, unlike Möbius transformations, they do
not preserve the structure of singularities. The change in the invariant due to x → xk, however, has a simple
and tractable structure. The Schwarzian (13) is given by:

S(F ′) =
k2 − 1
4 x2

(22)

So, the changed invariant I1 shown in (12) can be expressed in terms of I0 by

x2I1(x) +
1
4

=
((

xk
)2

I0(xk) +
1
4

)
k2 (23)

This naturally suggests the introduction of a “shifted” invariant J(x)

Ji(x) = x2Ii(x) +
1
4

(24)
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for which the transformation rule under x → xk has the simple form

J1(x) = k2J0(xk) (25)

The equivalence of two linear ODEs A and B under x → xk can then be formulated as follows: Given
J1A(x) and J1B(x), compute kA and kB entering (25) such that the degrees with respect to x of J0A(x)
and J0B(x) are minimized. This approach is systematic: equations A and B are related through power
transformations only when J0A = J0B and, if so, the mapping relating A and B is just x → xkA−kB .

The computation of k minimizing the degrees of J0 in (25) is formulated as follows. Given the set

A :=
pi

qi
, i = 1 to m (26)

of (possibly rational) numbers entering as exponents in the powers of the independent variable found in J1,
compute the smallest rational number k̃ such that multiplying by it each element of A, all of them become
integers. Then the value of k minimizing the degrees of J0 is k = 1/k̃.

4 Summary of the hyper3 approach and examples

An itemized description of the algorithm, discussed in the previous subsections to resolve the equivalence
proposed in the introduction, is as follows.

1. Rewrite the given equation (1) we want to solve in normal form

y′′ = I(x) y (27)

where I(x) is the invariant (11).

2. Compute J1(x), the shifted invariant (24), and use transformations x → xk to reduce to the integer
minimal values the exponents of powers entering J0(x); i.e., compute k and with it compute J0(x) in
(25).

3. Classify the structure of the singularities of J0(x) according to Table 1 to tell whether an equivalence
under Möbius transformations is possible and to which of the 2F1, 1F1 or 0F1 equations (2) .

4. When the equivalence is possible, from the singularities of J0(x) and by comparing it with the shifted in-
variant of the corresponding pFq equation5, compute the parameters {a, b, c} entering the pFq equation
(2) such that the equivalence exists as well as the parameters {α, β, γ, δ} entering the Möbius trans-
formation (5).

5. Compose the three transformations to obtain one of the form

x → αxk + β

γxk + δ
, y → P (x) y

mapping the pFq equation involved into the ODE being solved.

6. Apply this transformation to the known solution of the pFq equation resulting in the desired ODE
solution.

5At this point, J0(x) and the shifted invariant of the pFq equation have the same degrees.
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An example of the 2F1 class

Consider the second order linear ODE

y′′ =
(2 ν − 2 µ) x2 − 3 x4 − 2 µ− 2 ν − 1

x5 − x
y′ +

2 ν (ν/2 + µ + 1)
x6 − x2

y (28)

This equation has five regular singular points: {0, 1,−1, i,−i}. Following the steps outlined in the Summary,
we rewrite the equation in normal form and then compute the value of k leading to an equation with minimal
degrees for the powers entering J0(x) in (25). The value found is k = 2. So, using6

t = x2, u =
√

x e

(
−

∫
(2 ν − 2 µ) x2 − 3 x4 − 2 µ− 2 ν − 1

2 (x5 − x)
dx

)

y, (29)

the given equation (28) can be obtained from

u ′′ =

(
µ2 + 2 ν2 − 2 µ− 4

)
t2 +

(
2 µ2 − 2 ν2

)
t + µ (µ + 2)

4 t2(t− 1)2 (t + 1)2
u, (30)

which is already in normal form and has an invariant with “minimal degrees” with respect to power trans-
formations (6).

In step 3, analyzing the invariant of (30) (coefficient of u in its right-hand-side), the equation has now
three regular singular points, at {0, 1,−1}. Using the notation of sec. 1.2, the degrees with respect to x
of the numerator and of each of the linear factors entering the denominator are [2, [2, 2, 2]]. The equation
matches the classification Table 1 presented in sec. 1.2 and is identified as equivalent to the 2F1 equation
under Möbius transformations (5).

So we proceed with step 4., comparing the invariant of (30) with the invariant of the 2F1 equation (2),
that is, with the coefficient of y in its right-hand-side after writing it in normal form

y′′ =
(a− b + 1) (a− b− 1) x2 + 2 ((1− a− b) c + 2 a b)x + c (c− 2)

4 x2 (x− 1)2
y (31)

From equating these invariants and from the singularities of (30), we compute the values of the hypergeo-
metric parameters {a, b, c} entering the 2F1 equation (2) such that the equivalence under Möbius exists, as
well as the Möbius transformation itself, obtaining:

{a =
ν

2
, b =

ν

2
− µ, c = −µ}, M := x =

2 t

t− 1
, y = e

(∫
(t− 1)−1

dt

)

u (32)

At this point we have computed the transformation (32) mapping the normal form (31) of the 2F1 equation
into (30) and the transformation (29) mapping (30) into the equation (28) we want to solve. Composing
these transformations and using the values in (32) for the hypergeometric parameters {a, b, c}, in step 6 we
obtain the solution of (28)

y =
(x + 1)(ν+1)/2

xµ/2 (x− 1)(ν−µ−1)/2 2F1

(
ν

2
,

ν

2
− µ;−µ;

2 x

x− 1

)
C1 (33)

+
(x + 1)(ν+1)/2

x(µ/2+1)

(x− 1)(ν+µ+1)/2 2F1

(
ν

2
+ 1,

ν

2
+ µ + 1; 2 + µ;

2x

x− 1

)
C2

where C1 and C2 are arbitrary constants.
As mentioned in the introduction, an implementation of the algorithm being presented is at the core of

the current Maple ability to solve this type of problem. The time consumed by this Maple implementation
6This transformation is the composition of t ≡ xk = x2 with a transformation of the form (9) so that (30) is normalized.
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to compute the solution (33) performing all the steps mentioned is 0.4 seconds in a Pentium IV, 2 GigaHertz
computer. The Maple command line to compute this solution directly using hyper3 is: > dsolve(ode,
[hyper3]);.

An example of the 1F1 class

As an example which also requires an extension of the algorithm to handle symbolic powers in the
invariant (11), consider Kamke’s second order linear equation 2.15:

y′′ +
(
µx2 σ + ν xσ−1

)
y = 0 (34)

where µ, ν and σ are constants with respect to x. This equation is already in normal form and the shifted
invariant (24) for it is

J1(x) = 1/4− x2
(
µx2 σ + ν xσ−1

)
(35)

To compute the values of k entering (25) and leading to J0(x) with minimized integer powers, in (26),
instead of restricting k̃ to be a rational number, we allow it to depend on symbolic variables. So we compute k̃
such that the set of exponents entering (35), A := {2σ+2, σ+1}, becomes a set of integers after multiplying
each element of it by k̃, resulting in7 k̃ = 1/(σ + 1). In summary, using

{
t = xσ+1, u(t) = xσ/2 y(x)

}
,

Kamke’s equation (34) can be obtained from the following equation, which is already in normal form and
has an invariant with minimized integer degrees, free of symbolic powers

u ′′ = −
(
4 µ t2 + 4 ν t + σ2 + 2 σ

)

4 (σ + 1)2 t2
u (36)

Proceeding with step 3., the invariant J0(t) is the coefficient of u in the above and the degrees with
respect to t of its numerator and factors in its denominator match the Table 1 of sec. 1.2, identifying (36) as
equivalent to the 1F1 equation under Möbius transformations (5).

As in the previous example, in step 4, from the singularities of (36) and comparing its invariant with
the invariant of the normalized 1F1 equation, we compute the values of the parameters entering the 1F1

equation (2) such that the equivalence exists, as well as the parameters entering the Möbius transformation.
Composing all the transformations, we arrive at the solution for Kamke’s example 2.15

y = e

(
−

i
√

µxσ+1

σ + 1

)

1F1

( √
µσ + i ν

2
√

µ (σ + 1)
;

σ

σ + 1
;
2 i
√

µ

σ + 1
xσ+1

)
C1 (37)

+ e

(
−

i
√

µxσ+1

σ + 1

)

1F1

(
2
√

µ +
√

µσ + i ν

2
√

µ (σ + 1)
;
σ + 2
σ + 1

;
2 i
√

µ

σ + 1
xσ+1

)
x C2

where C1 and C2 are arbitrary constants. The time consumed by the implementation in Maple to perform
these steps and return the solution above is again 0.4 seconds, as in the previous example. This also illustrates
that, for typical problems, the additional handling of symbolic powers by the algorithm does not imply on
any important performance cost.

5 Remark on the computation of the second independent solution

The algorithm presented is based on computing a transformation mapping a pFq equation into a given linear
ODE, then applying that transformation to the solution of the pFq equation to obtain the solution for the

7To perform this computation, it suffices to sequentially take the gcd between each of the elements of A.
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given problem. This process has a subtlety: depending on the values of the hypergeometric parameters,
we may have only one independent solution available for the pFq equation. In cases like that, the second
independent solution can always be obtained through integration: if y = S(x) is a solution of (1), then

y =
∫

e
(∫

A(x)dx
)

S(x)2
dxS(x) (38)

is a second independent solution directly computable from S(x) and A(x).
This approach, however, frequently introduces uncomputable integrals, thus complicating further ma-

nipulations and undermining the usefulness of the result. As an example of this situation, for the 2F1

equation,

(
x2 − x

)
y′′ + ((a + b + 1) x− c) y′ + b a y = 0, (39)

the two independent solutions are:

y = 2F1 (a, b; c; x) C1 + x1−c
2F1 (b− c + 1, a− c + 1; 2− c; x) C2 (40)

but for c = 1 these two solutions are equal. Using the integration recipe (38) and the first 2F1 function
entering (40) as the first solution, a second independent solution is

y =
∫

e

(∫
(a + b + 1) x− 1

x2 − x
dx

)

2F1 (a, b; 1; x)2
dx 2F1 (a, b; 1; x) (41)

Although the inner integral, with rational integrand, is easy to compute, the outer integral, with 2F1 (a, b; 1; x)2

in its denominator, is uncomputable in current computer algebra systems.
The approach used in hyper3 to minimize the occurrence of uncomputable integrals consists of exploring

the group of automorphisms of the 2F1 equation in order to make c not an integer when that is possible.
Recalling, the group elements and their action are

Group element Action on the plane
g1 : x → x (0 → 0, 1 → 1,∞→∞)
g2 : x → 1− x (0 → 1, 1 → 0,∞→∞)
g3 : x → 1/x (0 →∞, 1 → 1,∞→ 0)
g4 : x → 1/(1− x) (0 → 1, 1 →∞,∞→ 0)
g5 : x → (x− 1)/x (0 →∞, 1 → 0,∞→ 1)
g6 : x → x/(x− 1) (0 → 0, 1 →∞,∞→ 1)
Table 2. Group of automorphisms of the 2F1 equation

These transformations, known to act as permutations on the set {0, 1,∞}, also act as permutations on a set
{κ, λ, µ} related to the hypergeometric parameters {a, b, c} by

µ = a + b− c, κ = a− b, λ = 1− c (42)

The action of each gi on {κ, λ, µ} is obtained from Table 2 by respectively changing {0, 1,∞} by {λ, µ, κ}.
Hence, the solution (40) can be written in different manners, by changing the application point of the
2F1 function using the gi, permuting accordingly the parameters {κ, λ, µ} entering the 2F1 function and
multiplying the result by the proper non-constant factor8.

For example, when c is an integer but a + b is not an integer, applying g2 and permuting the parameters
µ ↔ λ, the power x1−c entering (40) becomes a power with non-integer exponent. Using this mechanism,
for (39) at c = 1, instead of the solution with integrals (41) we obtain two independent solutions free of
uncomputed integrals:

8These multiplicative factors are different for each g1; we omit them here for brevity.
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y = 2F1 (a, b; a + b; 1− x) C1 + (x− 1)1−b−a
2F1 (1− b, 1− a; 2− b− a; 1− x) C2 (43)

When c and a + b are both integers, g2 does not resolve the problem, but if a − b is not an integer
then g3 does, since it permutes the integer λ = 1 − c with the non-integer κ = a − b. For example, for
a = 2/3, b = 1/3, c = 1, (39) becomes

2 y/9 + (2x− 1) y′ +
(
x2 − x

)
y′′ = 0 (44)

Applying g3 and permuting the parameters λ and κ, we obtain the following two independent solutions free
of integrals

y = x−1/3
2F1 (1/3, 1/3; 2/3; 1/x) C1 + x2/3

2F1 (2/3, 2/3; 4/3; 1/x) C2 (45)

When all of c, a+b and a−b are integers, these permutations are in principle of no use, but still for some
cases the solution can be represented free of integrals. This is the case of Legendre’s equation. Recalling the
relationship between the associated Legendre function of the first kind and the hypergeometric 2F1 function9,

LegendreP (a, b, z) =
(z + 1)1/2 b

2F1 (a + 1,−a; 1− b; (1− z)/2)

(z − 1)1/2 b Γ (1− b)
, (46)

whenever the group elements of Table 2 can map the 2F1 function solution into one of the form above, one
independent solution can be expressed using LegendreP and the second one is obtained from the first one
replacing LegendreP by the associated function of the second kind LegendreQ. For example, for

y/4 + (2x− 1) y′ +
(
x2 − x

)
y′′ = 0 (47)

we have µ = κ = λ = 0, so c = 1 and both a + b and a− b are integers. A solution free of integrals is

y = LegendreP (−1/2, 2 x− 1) C1 + LegendreQ (−1/2, 2 x− 1) C2 (48)

Conclusions

In this presentation we discussed an algorithm for second order linear ODEs, we called it hyper3, for comput-
ing non-Liouvillian solutions by resolving an equivalence to the 2F1, 1F1 and 0F1 equations. Taking Kamke’s
book as testing arena, this algorithm is the most successful one of the current set of linear ODE algorithms
of the Maple system. From the 363 corresponding examples of Kamke’s book having rational coefficients,
hyper3 alone solves 331 (91 %), followed by Kovacic’s algorithm solving 181 (50 %). Moreover, from these
181 examples admitting Liouvillian solutions, hyper3 solves 163 (90 %).

The fact that, for 90% of these equations admitting Liouvillian solutions, the solution can also be com-
puted as a hypergeometric one of the form (8) is a good indication that the restriction used to make the
algorithm feasible is appropriate. The fact that around one half of Kamke’s examples only admit special
function solutions of non-Liouvillian form also illustrates the relevance of this type of solution in the general
framework of linear ODE problems popping up in applications.

Despite the simplicity of the approach, till the end of 2001, when the routines for this algorithm were
developed, no equivalent or similar algorithms were available in any of the Axiom, Maple, Mathematica,
MuPAD or Reduce computer algebra systems (CAS). These CAS failed in computing special function solu-
tions but for occasional success, e.g., by previous to hyper3 Maple routines able to resolve an equivalence
under only power transformations of the form (6) [13], or an equivalence under only Möbius transformations
and only with respect to the 2F1 class [14].

Since at the core of hyper3 there is the concept of singularities, two natural extensions of this work
consist of applying the same ideas to compute solutions for linear ODEs of order three and higher [15] and

9We use here the Maple convention for the branch cuts of LegendreP; the idea being discussed is valid regardless of that.
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for second order equations of Heun type. The latter have four regular singular points or any combination
of singularities derived from that case through confluence processes [16]; one example of these are Mathieu
equations. Related work is in progress [17, 18].
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