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ABSTRACT

Let T be a bivariate hyperexponential element for which
the existence of a Z-pair is guaranteed. We define a set S
of hyperexponential elements, show that the fast versions of
Zeilberger’s algorithm are not applicable to T if and only
if T is in &, and provide a direct algorithm for computing
the minimal Z-pair for 7" in S.

1. INTRODUCTION

For a given bivariate hyperexponential 1'(x,y), Zeilberger’s
algorithm [16, 18, 19, 20, 3, 10] tries to construct for T a
Z-pair (L,G), which consists of a linear differential or dif-
ference operator L with coefficients in C(z), and a bivariate
hyperexponential

G(ﬁ’y) = R(ﬁvy) T(mv y)v R(xa y) € C(I,y). (1)

The constructed telescoper L in the returned Z-pair is of
minimal possible order, and is called the minimal telescoper.
We name the Z-pair (L,G), where L is the minimal tele-
scoper, the minimal Z-pair.

There exist two versions of Zeilberger’s algorithm. The first
one [19], also known as the “slow” version, is based on the
holonomic systems approach. The second one [20, 3, 18],
also known as the “fast” version or the method of creative
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telescoping, is based on Gosper’s algorithm [8]. Needless to
say, all known implementations of Zeilberger’s algorithm are
based on the fast version, named hereafter as Z for short.

For a hyperexponential T'(x,y), the statement “Z is appli-
cable to 7”7 means that Z terminates given 7T as input, and
succeeds in computing the minimal Z-pair for 7'. If there
exists a Z-pair for T, then it is widely agreed that Z is
applicable to 7. That is, the two statements (A) “There
exists a Zpair for 77, and (B) “Z is applicable to 77 are
equivalent. However, for the hypergeometric term

3
Ty(n, k) = (3nk? + (n® + 1)k +n® +1) (2:) C©

the ¢g-hypergeometric term
n n 2k
T2(q ,qk)=q+k<k> : (3)
q

and the exponential function T5(x,y)

3 2 (z-1)%  (y+2)°
" = @=2 - o -y exp (L4 WD) g

experimentation shows that Z does not seem to terminate
on Th, T», and T3, even though the minimal Z-pairs for 77,
T> and T3 exist and can be computed (Examples 5, 6, 7).

Let T'(x,y) be a hyperexponential element and the existence
of a Z-pair for 1" is guaranteed. We define a set S of hyperex-
ponential elements, and show that Z is not applicable to 1T’
if and only if T € S. As a consequence, the two statements
(A) and (B), strictly speaking, are not equivalent. We pro-
vide a direct algorithm for handling elements of S. With the
incorporation of this algorithm into Z, the two statements
(A) and (B) become equivalent.

This paper is organized as follows: Section 2 reviews a ring
of Ore polynomials suitable to describe linear differential
and difference operators in a uniform manner. Section 3
describes Gosper’s algorithm and Zeilberger’s algorithm in
the setting of Ore polynomials. The set S is defined in
Section 4. Section 5 provides an algorithm for recognizing if
a hyperexponential element 7" is in S, and a direct algorithm
for computing the minimal Z-pair for 7" in S.



2. ORE POLYNOMIAL RINGS AND HY-
PEREXPONENTIAL ELEMENTS

Ore introduces a type of noncommutative rings of univari-
ate polynomials to describe linear ordinary differential and
difference operators [13]. These rings are referred as Ore
rings in literatures. Chyzak and Salvy extend the notion
of Ore rings to the multivariate case and put the respective
elimination processes for linear partial differential and dif-
ference operators in a uniform setting [7]. In Gosper’s algo-
rithm and Zeilberger’s algorithm, linear partial differential
and difference operators have rational function coefficients,
and act on multivariate functions. We describe these algo-
rithms precisely and uniformly by orthogonal Ore rings [11],
which is a special type of general multivariate Ore rings.

Let k be a commutative field of characteristic zero, and o;
be an automorphism of k fori =1, ..., n.

DEFINITION 1. A oj-derivation is an additive mapping 0;
from k to itself satisfying

§; (ab) = 0i(a) 8;(b) + 6;(a)b  for alla,be k. (5)

Let d; be a oj-derivation for i = 1, ..., n. We define the
set ® = {(01,01),...,(on,0n)} to be commutative if for all
i,7 €4{1,2,...,n} with i # j:

0i00; =0 004, 000; =0j004, §;00; =0;00d;. (6)
The set of constants with respect to o; and §; is
Consto, 5, (k) = {a € k : 0i(a) = a, di(a) = 0}.

An element c is a constant if ¢ is a constant with respect to
all o; and §;, for 1 <i < n.

DEFINITION 2. An Ore polynomial ring over k, given by
a commutative set @, and denoted by

A@ = kj[al,. . .,an; (0'1,61),- LR (Un,5n)],

is the ring of polynomials in O0; over k with the usual poly-
nomial addition, and with the multiplicative rules given by

0; 05 = 0; 05, Oi(a) = o0i(a) 0 + di(a) for alla € k.

The existence of Ore polynomial rings is verified in [7]. If ¢ is
a constant with respect to o; and d;, then 9;c = ¢0;. Hence,
c is also called a 0;-constant. Elements of the ring Ag are
called Ore polynomials.

EXAMPLE 1. For any differential field k& with derivation d,
k[D; (1, 9)] is the ring of linear ordinary differential opera-
tors. If k = C(n) and o is the automorphism of k over C
that takes n to n + 1, then k[Ey; (0, 0)] is the ring of linear
shift operators. If k = C(q)(t) and o is the automorphism
of k over C(q) that takes t to gt, then k[Q:; (o, 0)] is the ring
of linear ordinary ¢-shift operators.

For a uniform description of differential Z and difference Z,
we specialize the base field k to C(z1,...,zn), which is de-
noted by F. We use 1 to denote the idenitity mapping and 0
the mapping that sends everything to zero, respectively.

DEFINITION 3. The commutative set ® is said to be or-
thogonal if, for all i with 1 <i <mn, and f € F,

1. (51 75 0 ifai = 1,’
2. 6;(z;) € C(z;) and o4i(z;) € Clas];
8. If 6; # 0, then

51(_]6) =0 <— f S (C(il,...,$i,1,$i+1,...,$n);

4. If 0 # 1, then

(Tz(f) =f < fe€ C(.T1, ey L1, L1y ,.Tn).
If ® is orthogonal, As is said to be an orthogonal Ore ring.

The first requirement in Definition 3 means that [F is not a
subset of Const,,, s, (). The last two mean that

Conste,,s5,(F) = C(x1,...,Ti—1,Tit1y---,Tn)

for every i with 1 <i < n.

Theorem 1 in [11] shows that an orthogonal Ore ring is iso-
morphic to Aa, where the commutative and orthogonal set

A ={(o1, 01),...,(0n, 6n)}, (7

in which either o; = 1 or §; = 0 for all 7 with 1 < i < n.
Instances of orthogonal Ore rings include the rings of partial
differential operators, partial difference operators, or any
mixture thereof.

Now, we define a commutative ring on which Ore polynomi-
als in Aa will act.

DEFINITION 4. A A-ring E is an F-algebra to which the
0i’s and 6;’s in (7) can be extended in such a way that

1. all the o; are monomorphisms of E;
2. ifo; is 1 on I, s0iso; on E;

3. all the 6;’s are deriwations on E;
4.

if 8; is 0 on ¥, so0 is §; on .

For 9; € Aa and an element a in a A-ring [, the action of 9;
on a is defined to be o;(a) if §; = 0, and d;(a) if o; = 1. This
action is denoted by d;ea. For a € F, 9;a means the product
of 9; and a in Aa. This product is equal to (o;(a)d; +d;(a)),
which is different from 0; e a. As described in Section 4
of [11], the actions of the 9;’s induce a well-defined action of
Ore polynomials in Aa on E. This action is linear over the
ring of constants of E. It is also shown in Section 4 of [11]
that 0; is a pseudo-linear operator, that is,

0; e (ab) = 0;(a)0; @b+ d;(a)b for all a,b e E.  (8)

An element ¢ of E is said to be a constant with respect
to 9; if oi(c) = ¢ and §;(c) = 0. It follows from the pseudo-
linearity of 9; that (9; e (ca)) = ¢(9; ®a) if ¢ is a J;-constant.
An element of [E is a constant if it is a constant with respect
to all the 0;’s.



The input of Gosper’s algorithm and Zeilberger’s algorithm
is an exponential function in the differential case, and a hy-
pergeometric term in the difference case. Below is a uniform
description of both notions.

DEFINITION 5. A nonzero element T of a A-ring is hy-
perexponential in x; over IF if 9;01 = w; T with u; € F. The
element u; is called the O;-certificate of T. A mnonzero ele-
ment T is hyperezponential over F if T' is hyperexponential
in x; over F for all i with 1 <i < mn.

A hyperexponential element is called a hypergeometric term
in the shift case, a ¢g-hypergeometric term in the g-shift case,
and an exponential function in the differential case.

A straightforward calculation shows

LEMMA 1. If T is a hyperezponential element and L is
in Aa, then LeT = RT for some R € .

REMARK 1. Lemma 1 does not assert that (L T') is hy-
perexponential, because the rational function R may be zero.

It is shown in [17] that, in general, hyperexponential ele-
ments are not contained in a field. This motivates us to
define them in a ring. As we do not assume hyperexponen-
tial elements are invertible, their properties will be proved
by the compatibility of their certificates, as defined below.

DEFINITION 6. Elements P1, ... P, in F are compatible

if, for all1 <1 < j <n,
Pioi(P;) + 6:i(P;) = Py o (Pi) + 6;(Fs). )

The commutativity of d; and 9; implies

LEMMA 2. IfT is a hyperexponential element, then their
certificates are compatible.

3. GOSPER'S ALGORITHM AND ZEIL-
BERGER’S ALGORITHM

This section reviews Gosper’s and Zeilberger’s algorithms.
For notational convenience we set §,,=d; and 04, =0;.

3.1 Gospersalgorithm
Let y be one of the z;’s. Set

if oy =1,

_1 9
Vy—{ Oy—1 ifoy#1.

Given a hyperexponential T in y, Gosper’s algorithm deter-
mines if there exists a hyperexponential G in y such that

T=V,eG, (10)

and computes such a G provided that it exists. In this case T'
is said to be hyperexponential integrable with respect to y.

For a hyperexponential G that satisfies (10), there is a func-
tion 2z € F such that G = 27, which, together with (10)
and 9y e T = rT for some r € F, implies

Ooy(z)+rz=1 ifoy=1, (11)
roy(z) —z=1 ifoy #1.

The problem of finding a hyperexponential solution G of (10)
is reduced to that of finding a rational solution z of (11).

REMARK 2. For the shift case, equation (11) has the form
r(y) z(y + 1) — z(y) = 1; for the g-shift case, it has the form
r(y) z(qy) — z(y) = 1; and for the differential case, it has
the form 2'(y) + r(y)z(y) = 1. These forms are given in
descriptions of Gosper’s algorithms [20, 10, 3, 16, 14].

Let K be the subfield of F consisting of elements free of y.

e (¢-)shift: For r € F, there are (a,b,c) € Kly]*® such
that (i) 7 = a/b x oy(c)/c, (ii) ged(a, ol (b)) = 1 for
all h € N. Then the problem of finding a rational
solution 7oy (z) — z = 1 in (11) is reduced to finding a
polynomial solution w(y) of

ay) oy(w(y)) — o, ' (b)) wly) = c(y); (12)

e differential: For r € F, there are (a,b,c) € K[y]® such
that (i) 7 = a/b+ dy(c)/c, (ii) ged(b,a — hdy (b)) =1
for all h € N. Then the problem of finding a rational
solution dy(z) + 72z =1 in (11) is reduced to finding a
polynomial solution w(y) of

b(y) oy (w(y)) + (a+ 5y (b(y))) w(y) = c(y).  (13)

A polynomial solution of either (12) or (13) can be com-
puted by the method of undetermined coefficients. First
one computes an upper bound d for the degree of the poly-
nomial w(y) (see [8] for the shift case, [10] for the g-shift
case, and [3] for the differential case). The value of d is de-
termined by a, b, and deg, c¢. Then one substitutes a generic
polynomial of degree d for w(y) into (12) or (13), equates
the coefficients of like powers in y. This results in a linear
system of algebraic equation, and the problem is reduced to
determining if this system is consistent or not.

3.2 Zeilberger’'salgorithm
Let z and y be two distinct elements of {z1,...,zn}, and
K be the field of rational functions in ({z1,...,2n} \ {z,y})
over C. For a given hyperexponential 1" in z and y, Z tries
to construct for 1" a Z-pair (L, G) which consists of a linear
operator L with coefficients in K(z)

L=0a,00 + - +0a10, + a0, ap #0, a; € K(z), (14)
and a hyperexponential G of the form
G=RT, ReTF (15)
such that
LeT =Vy,e(G.

Z uses an item-by-item examination on the order p of the
operator L in (14). It starts with the value of 0 for p and



increases p until it succeeds in computing the minimal Z-
pair (L, G) for T.

For each value of the guessed order p € N, set
F=LeT=(ap0% +---+ai10y+ao)eT

where the a;’s are unknown. Since L € K(2)[0;], (L e T)
is equal to ST with S € Flao,...,a,] by Lemma 1. Note
that the unknowns ag, ..., a, appear in the numerators of S
linearly. Under the assumption that S is nonzero, F is hy-
perexponential. Then Z attempts to compute a Z-pair for T'
by a variant of Gosper’s algorithm. That is, it determines if
there exists a hyperexponential G such that FF =V, eG. If
such a G does not exist, then Z tries to compute a telescoper
of order p + 1. This process continues until it succeeds in
finding a Z-pair for T, provided that such a pair exists.

REMARK 3. For the differential case, Z is proved to be
applicable to all exponential functions [3]. For the shift and
the g-shift cases, the fundamental theorem [18, 16] provides
a sufficient condition for the termination of Z. It states that
if the given (g-)hypergeometric 1" is proper (see [18, 16] for
definitions), then Z terminates on 7. Later, necessary and
sufficient conditions for the termination of Z are presented
in [1] for the shift case, and in [6] for the ¢-shift case.

It is worth noting that the assumption that S is nonzero
may fail for certain hyperexponential elements. In this case,
additional care should be taken, as it will be discussed in
the next two sections.

4. A PARTICULAR SET OF HYPEREXPO-
NENTIAL ELEMENTS

In this section we assume n = 2, that is, our base field
is F = C(z,y), and the orthogonal Ore ring A is specialized
to K0z, Oy; (0, 02), (0y,y)]. Furthermore o is either the
shift or the g-shift operator if it is not equal to 1, and §, is
the usual differential operator if it is not equal to 0. The
same assumption applies to oy and §y.

Let Sp be the set of all hyperexponential 1'(x, y)’s with the
following two properties:

1. T'is not hyperexponential-integrable with respect to y.

2. The O,-certificate of T' belongs to C(z).

LEMMA 3. IfT'(z,y) € So, then Z is not applicable to T'.

Proof : Let L of the form (14) be any guessed telescoper
for T. By Lemma 1 and the fact that L € C(x)[0;], there
exists u € C(x) such that L e T = uT'. It follows that

Oye(LeT)=0ye(ul')=u(0yeT)=rul =r(LeT), (16)

where 7 is the dy-certificate of 7'. Note that r is independent
of the guessed telescoper L. Since T' € Sp, (11) at step 0
does not have a rational solution. It follows from (16) that
the equations of the form (11) at step 0 and at step p are
the same. Consequently, Z is not applicable to T'. u

Let T belong to So whose 0,- and OJy-certificates are P
and @, respectively. By Lemma 2

Po2(Q) + 62(Q) = Qoy(P) + 6y(P).

Since P is in C(z), Pos(Q) + 6.(Q) = PQ. If 0, = 1,
then 0z(Q) = 0. If o # 1, then 0,(Q) = Q because P # 0
by Definition 5. Consequently, @ is a d,-constant, that is,
Q € C(y) by the orthogonality of A. Intuitively, So consists
of hyperexponential elements f(x)g(y), where f(x) and g(y)
are hyperexponential with respect to z and y, respectively.

REMARK 4. For the (g-)shift case, it is simple to prove
that if the given T'(z,y) can be written as f(z) g(y), then T’
is proper. By the fundamental theorem, there exists a Z-pair
for T. However, Z is not applicable to 7' by Lemma 3 (if T’
is not (¢-)hypergeometric summable with respect to y).

ExXAMPLE 2. Z does not terminate on a number of hy-
pergeometric terms in Gould’s Combinatorial Identities [9].
This includes the hypergeometric terms used as summands
in the formulas 1.105, 1.106, 1.107, 2.20, 2.21, 2.22, 2.23,
3.39, 3.127, 3.128, 10.1, 12.1, 12.2, 24.1, 31.1, 31.2. All of
these hypergeometric terms are elements of Sg.

There are hyperexponential elements outside Sp to which Z
is not applicable. Since these elements must be annihilated
by a nonzero operators in C(z)[0;], we characterize bivari-
ate hyperexponential elements that are solutions of some
operator in C(x)[0).

LEMMA 4. Let T(z,y) be hyperezponential. Then there
exists nonzero L € C(x)[8:] such that LeT' =0 if and only
if there exist P € C(z) and nonzero a € Clz,y] such that
the Og-certificate P of T' can be written as
0z(a)

‘”LE“)P += = (17)

P =

Proof. Assume that L € C(z)[0,] annihilates T. There are
algorithms for computing all hyperexponential solutions of L
(see [4] for the differential case, [15] for the shift case, and [2]
for the g¢-shift case). In fact, these algorithms compute the
certificate of T with respect to 0. Following the algorithms,
we find that the certificate must be of the form P + 6, (a)/a
if o, = 1, and Poy(a)/a if ; = 0, where P € C(z) and a is
a polynomial in 2 whose coefficients possibly involve unspec-
ified constants with respect to (04, dz). Since a € C(y)[z],
we may assume that a belongs to Clz, y]. Hence (17) holds.

Conversely, let P in (17) be the O,-certificate of T, and
set H =T /a. Note that (5) implies

5 (l) __ala) (18)

a ogz(a)a

We compute

Or e H = 8z§§)
= 02 (1) (B eT)+ 6. ()T (by (8))
= (0 eT)— 2=ELT (by (18))

ox(a)a

= ( P = 28 ) aH  (since OpeT = PT)

oz(a) oz (a)a

= PH (by (17)).



Let a = 3% bi(z)y* with b; € Clz]. If bj # 0, then

L= - \(Ung”ﬂp ¥ %)e C@)lo:]

R;

annihilates any hyperexponential element with R; as its O-
certificate, so it annihilates y’b;H. Therefore, the least
common left multiple (or lclm for short) of the L;’s an-
nihilates aH, which is T'. ™

Let S1 be the set of all hyperexponential T'(z,y)’s whose
Os-certificates can be written in the form (17). The next
lemma describes how elements of S; look like.

LEMMA 5. If T'(z,y) € S1, then its Oy-certificate equals

Q= JyT@Q + %T@ with Q € C(y). (19)
Consequently, T' € S1 if and only if
T = pH, (20)

where p € Clz,y] and H is a hyperezponential element whose
Oz -certificate is in C(x) and dy-certificate is in C(y). In
addition, the polynomial p may be assumed to be primitive
with respect to both x and y.

Proof. Note that Lemma 2 and (9) imply
Pox(Q) +02(Q) = Qoy(P) + dy(P). (21)

We make a case distinction.
Case 1. If 0, = 0y =1, then (17) and (21) become
P=p+29D and 6,00 =6, P),
a

respectively. It follows that

(@) =5, (L) =, (2],

Thus d, ( ) 0. The orthogonality of A then im-

plies that (Q ( ) is in C(y), and hence, Q = Q + % (a)
where Q € C(y). Hence (19) holds.

Case 2. If §; = 0 and oy = 1, then (17) and (21) become

pP= "@T@)ﬁ and Po.(Q) = QP + 6,(P),

respectively. It follows that

=045, (7)),

a

=l (@) =

dy(a)
a

which implies that o (Q — ) =Q— %Tm). The orthog-
onality of A then implies that (Q — sy_m)) € C(y). Conse-

quently, Q@ = Q + %9 for some Q@ € C(y), and (19) holds.

Similarly, one can show that (19) holds in the cases in which
(6 = 0y = 0) and (0 =1 and 6y = 0).

Setting 1" = aH, and repeating the computation in the sec-
ond paragraph of the proof of Lemma 4 for both = and v,
one sees that the d,- and 9y-certificates of H; are in C(x)
and C(y), respectively. Setting a = aja2p, where a1 € Clz],
az € Cly], p is primitive with respect to both z and y, and
then H = aijazHi, we prove (20). u

Note that if 7" € 81, then the minimal annihilator of T'
in C(2)[9,] is not necessarily the minimal telescoper of T'.

ExampLE 3. Consider the hypergeometric term

3
Ta(n, k) = (2k* — nk® — 20k —n® +1) <2kk> .

It is evident that 74 € Si;. While the minimal annihilator
computed using lclm technique described in the proof of
Lemma 4 is of order four, the computed minimal telescoper
returned from Z is of order three.

Let T'(z,y) be an element of (S1 \ So) in form (20). Let
Ry =1, Ry € C(z) be such that 9, « H = Ry H. Then one
can readily prove that, for i > 1, ¢ e H = R; H, where R; =
0z(Ri—1) R1 + 9. (Ri—1). Note that R; € C(z) by Lemma 5.
Consider the application of an operator L, € C(z)[d,] of
the form (14) to 7". We have

(jf:(l¢0;(p)]%i> -Ela 62 = Oa
1=0
l;p o =4 o ) )

(Z a; (J) ( (p)) Rij) H, o,=1.

1=0 J=0

L M,

(22)
Observe that M, € C(x)[y]. Additionally, since the a;’s are
different unknowns free of y, deg, M, = deg, p > 0. That
is, deg, M, is independent of p. Equation (22) implies

Oye(LyeT) = oy(M,)(0yeH)+dy(M,)H

v

R,
where R is the dy-certificate of H in C(y) by Lemma 5.
Hence, R, is the dy-certificate of (L, ® T'). Consider the
following four cases:

Cases 1 or 2: (6y = 0 and 6, = 0) or (6y = 0 and o, = 1).
Let (a,b,c) € C[y]* be a PNF of R. Then

Izp;: X ggﬁﬂéﬁfl.

a
b Mye

Hence, the triple (a,b, M,c) is a PNF of the 9y-certificate
of (L, @ 1"), and the key equation to be solved (for a poly-
nomial solution w(y)) is

a(y) oy(w(y)) — oy, ' (b)) w(y) = My(z,y)c(y).  (23)
Cases 3 or 4: (cy =1and 0, =1) or (o0y =1 and 6, = 0).



Let (a,b,c) € C[y]® be a PNF of R. Then

o a  0y(Myc)

R, = 5t Myc
Hence, the triple (a,b, Myc) is a PNF of the 9y-certificate
of (L, @ T'), and the key equation to be solved (for a poly-
nomial solution w(y)) is

b(y)dy(w(y)) + (aly) + 0y (b(y)))w(y) = Mp(z, y)c(y). (24)

From (23), (24), and the fact that deg, M, = deg,p for
all p € N, it follows that the computed upper bounds for
the degree of non-zero polynomial solutions of (23) or (24)
are the same for all p € N. Let d be the computed upper
bound at step p = 0 in Z. Then there are two cases:

deN and d¢ N

If d € N, then set the polynomial solutions of (23) or (24)
to be of the form Uy = udyd + .-+ + ug, where ug,...,up
are unknown coefficients in C(z). Substituting Uq into (23)
or (24) gives rise to a linear homogeneous system consisting
of e equations in (d+ p+2) unknowns ug, . .., Ug, Gp, . . . , Gg,
where e € Z7 is independent of p. The linear system has
a solution, in which one of the a;’s, is nonzero when p is
sufficiently large. Hence, Z terminates.

If d ¢ N, then neither (23) nor (24) has non-zero polynomial
solutions for all p € N. Z does not terminate, because it in-
creases p to (p+1) as soon as d is not a nonnegative integer
for the guessed minimal telescoper L, of the input 7. In
this case, the minimal telescoper of 1" has to be the mini-
mal annihilator of 7', and we will show how to compute the
minimal telescoper efficiently in the next section.

REMARK 5. At step p = 0, the key equations (23)
and (24) are of the respective forms

a(y) oy(w(y)) — oy ' (b(y) wly) = plz,y) e(y),  (25)

and

b(y) oy (w(y)) + (aly) + 0y (b(y))) wly) = p(x, y) c(y). (26)

As a consequence, let S be the union of Sp and elements 7" of
(81\So) such that the computed upper bound d for non-zero
polynomial solutions of either (25) or (26) is not a nonneg-
ative integer. If T € S, then Z does not terminate. On the
other hand, if Z does not terminate on 7', then the rational
function R(z,y) in (15) equals 0. By Lemma 4, T must be
an element of S;. Since Z terminates if T € S; \ S, T € S.
This leads to the following main theorem of the paper.

THEOREM 1. Let T'(x,y) be a hyperexponential element
such that the existence of the minimal Z-pair for 1" is guar-
anteed, then Z does not terminate given T if and only if T
is an element of S.

ExaMpPLE 4. The hypergeometric term 74 in Example 3
is an element of S;. Additionally, the computed degree
bound for the polynomial w(y) in (25) is 0. Hence, T4 ¢ S,
and Z terminates on 7T4. On the other hand, the hypergeo-
metric term 77 in (2) also belongs to S1. However, the com-
puted upper bound for the polynomial w(y) in (25) is —1.
Hence, Th € S, and Z does not terminate on 7.

5. ALGORITHM DESCRIPTION

In this section, we describe an algorithm which helps com-
plete Z. First we show how to determine if a hyperexpo-
nential element belongs to Sp and Si1. Checking whether
a hyperexponential 1" belongs to Sy is simply based on the
definition of Sp. The following lemma provides a formula
for computing the minimal Z-pair for every 1" € So.

LEMMA 6. For T € So, let
Oz 0T = z—lT, s1, s2 € Clz], ged(s1, s2) = 1. (27)
2

Then (s2(xz) Oz — s1(x), 1) is the minimal Z-pair for T'.

EXAMPLE 5. The g-hypergeometric term 7% in (3) is not
¢-hypergeometric summable with respect to ¢®. Addition-
ally, since the dgn-certificate of T» equals g € C(q"), T> € So.
It follows from Lemma 3 that Z is not applicable to 15 al-
though (9¢» —q, 1) is the minimal Zpair for 7% by Lemma 6.

For the recognition of elements in S1, assume that P is the
Og-certificate of 1", and the variable y appears in P effec-
tively. Let the denominator of P be fg, where f € Clx],
g € C[z,y], and g is primitive with respect to y.

First, we consider the differential case o, = 1. If T"is in S,
then we may also assume that @ in (17) has factors neither
in C[z] nor in Cly] by Lemma 5. This assumption implies

LEMMA 7. Let o = 1. If r is a rational function appear-
ing in the irreducible partial fraction decomposition of P with
respect to x, then r is either in C(z) or equal to a logarith-
mic derivative (with respect to x) of some polynomial with
positive degree in y.

As f(z) and g(z,y), viewed as polynomials in C(y)[z], are
relatively prime, we can decompose

P = ? + g;l where f1,g1 € C(y)[z]- (28)

Thus, T does not belong to Sy if y appears in f; effectively
by Lemma 7. Assume that fi belongs to Clz]. By (17),
(28) and the uniqueness of the irreducible partial fraction
decomposition, we deduce that T" belongs to Sy if and only
if g?l = (S””T@. By Lemma 4, this implies

LEMMA 8. Let o, = 1, and g, g1, f1 be given in (28)
and f1 be in C[z]. Then T € 81 if and only if the equation

902(2) = g1z (29)

has a nonzero polynomial solution in Clz,y].

Second, we consider the case 6, = 0. We have

p= 1202

fg
where fo € C[z] and g2 € C[z,y] primitive w.r.t. y. Once
again, if 7" is in &1, then we may also assume that @ in (17)

(30)



does not have nontrivial factors in C[z] or C[y]. From (17),
(30) and 0 = 0, it follows that P = £ and %2 = 22 Ag
a consequence, we have

LEMMA 9. Let 6, = 0 and g, g2 be given in (30). Then
T € S; if and only if the equation

902(2) = goz (31)

has a nonzero polynomial solution in Clz,y].

There are general algorithms for computing polynomial so-
lutions of linear differential and difference operators. The
following ones do the same job for (29) and (31) more effi-
ciently by gcd-calculation.

It is straightforward to derive the following: if (29) has a
nonzero polynomial solution a, then (1) deg, g = deg, g1+1;
(2) the ratio d of the leading coefficients of g1 and g
with respect to = is a positive integer, which is equal
to deg, a; and (3) d is no less than deg, g. Assume that
these three conditions are satisfied. Then ¢ must divide a
over C(y), because ged(g1,9) = 1. By the transformation
2z = gu, we obtain hdy(u) = hiu, where h,h1 € C(y)[z]
with ged(h, h1) = 1. The problem is then reduced to finding
polynomial solutions of the latter equation with degree no
more than (d — deg, g).

A similar idea applies to (31). It is easy to see that if (31) has
a nonzero polynomial solution a, then (1) deg, g = deg, g2;
(2) the degree of a, say d, can be computed; and (3) d is
no less than deg, g. If deg, g = 0, we only need to find a
polynomial solution of a first-order difference equation with
constant coefficients. Otherwise, we can use the same trans-
formation z = gu to reduce the degree bound for the polyno-
mial solution of a new first-order difference equation whose
polynomial solutions have a degree bound (d — deg,, g).

EXAMPLE 6. For the hypergeometric term 73 in (2), the
polynomials g and g2 in (30) are g = (k+1)n? +3k*n+k+1
and g» = (k+ 1)n? + (3k® 4+ 2k +2)n + 3k* + 2k + 2). Since
deg, g = deg, g2 = 2, and since the recurrence (31) has a
polynomial solution z = (k+1)n?+3k*n+k+1, T1 € S1, and
can be written in the form (20) where p = z and H = (2:)3.
The Ox-certificate R of H equals 8(2k 4+ 1)3/(k +1)3, which
admits (a,b,c) = (64(k + 1/2)3, (k 4+ 1)3,1) as a PNF with
respect to y. Given a, b, ¢, p, the computed upper bound for
w(y) in (25) equals —1. Hence, Z is not applicable to 17.

Similarly, for the exponential function 73 in (4), the poly-
nomials ¢ and g1 in (28) are g = z —y — 1 and g1 = 1.
Since the differential equation (29) admits z = v —y — 1
as a polynomial solution in C[z,y], 75 € Si, and can
be written in the form (20) where p = z and H =

—y(y+1) exp (@ + %) The 9y-certificate R of H
equals (29" + 843 +8y* — 7y —8)/(y*(y + 1)), which ad-
mits (a,b,c) = (2y*+6y°+y—8,y>,y+1) as a PNF with re-
spect to y. Given a,b, c,p, the computed upper bound for
w(y) in (26) equals —1. Hence, Z is not applicable to 13.

We now describe a direct algorithm for computing the min-
imal Zpairs for elements in § \ Sp. The following theo-

rem provides a sufficient condition for the construction of
the minimal Z-pair for a sum of hyperexponential elements
based on the minimal Z-pair for each hyperexponential el-
ement of the sum. It is a generalization of Lemma 1 and
Theorem 2 in [12].

THEOREM 2. Let (Li,Gh),...,(Ls,Gs) be the minimal
Z-pairs for the hyperexponential elements Ti,...,Ts, re-
spectively. Let L = lelm(Li,...,Ls), i.e., there exist

1y.vo, Ly € C(x)[0] such that L = L1Ly = --- = L Ls.
Set G = L1 eG1+---+L.eGs. If G is hyperexponential, then
(L,G) is a Z-pair for T =T1 + --- + Ts. Additionally, for
any telescoper L for T, if L is also a telescoper for each T;,
i=1,...,8. Then (L,QG) is the minimal Z-pair for T.

Proof. The application of L to T is equal to

i:L;o(LioTi): ES: Lie(V,0G;)=Vy e (i: L;.Gi) .
i=1 i=1

i=1

Hence, L e T =V, e G. The second statement follows from
the fact that a telescoper for T is a left multiple of the
minimal telescoper for T ™

For a hyperexponential element 7" which belongs to & and
which can be written in the form (20), let p = E?:o bi(x)y",
b; € Clz], and T; = b; ' H with b; # 0.

LEMMA 10. T; belongs to So.

Proof. Consider the key equations (25) and (26) for 7'
The corresponding key equations for T; are the same except
for the replacement of the polynomial p(z,y) in the right
hand sides by the polynomial p; = b;(z)y*. Since deg, pi <
deg, p, and since the computed upper bound d for the degree
of w(y) in either (25) or (26) is not a non-negative integer,
the computed upper bound for the degree of the polynomial
w(y) in the corresponding key equations for 7; is not a non-
negative integer either. Hence, T; is not hyperexponential
integrable with respect to y. The claim follows since it is
evident that the d,-certificate of T; belongs to C(z). -

LEMMA 11. Let (L;, 1) be the minimal Z-pair for T;.
Then (lclm (L;’s), 1) is the minimal Z-pair for T.

Proof. Theorem 2 implies that L = lclm (L;’s) is a tele-
scoper for T'. Let L be any telescoper for T', we need to show
that L is also a telescoper for each 1} for all 4 with 0 < i < d.
Since the Oy -certificate of H is free of y by Lemma 5, there
exists r; in C(x) such that LeT; =r;Hy. Since T isin S,
any telescoper for T is also an annihilator for 7. As a conse-
quence, LoT' =% (LeT;) = H (Zle riyi) = 0. Thus, r;

is zero, and so is L T}, i.e. L is a telescoper for Tj. -

Lemmas 10 and 11 provide a direct way to compute the min-
imal Z-pair for an element of S: apply Lemma 6 to compute
the minimal telescoper for T;, T; # 0, 0 < i < d; compute
L =lclm (L;’s). Then the minimal Z-pair for 7" is (L, 1).



ExampLE 7. It follows from Example 6 that the hyper-
exponential 71 in (2) and 73 in (4) both belong to S.

The hypergeometric term 7% can be written in the form (20)

where p = p1+patps, H= ()%, p1 = 2nk?, ps = (n®+ 1)k,

and ps = n? + 1. Applying Lemma 6 results in the minimal
telescopers L; for p;H, 1 < i < 3:

Li=ndn—(n+1), Lo=Ls=(n>+1)8, — (n> +2n+2).
Hence, (Iclm (L1, L2),1) is the minimal Z-pair for 71 where
lelm (L1, L2) = (n°+n—1)05—(2n° +4n—2)0p +(n°+3n+1).

The exponential function 75 can be written in the form (20)

2 3
where p = p1 + p2, H = —y(y + 1) exp ((1;1)_ 4 (9-22) )’

p1 = —vy, and p2 =z — 1. Applying Lemma 6 results in the
minimal telescopers L; for p;H, 1 <1i < 2:

Li =20, —(x—1)(z+1), Lo=(z—1)z’ 0y —a’+z—1.
Hence, (lclm (L1, L2),1) is the minimal Z-pair for 13 where

lclm (L1, Lo) = 02 —22% (z—1)(2+1) 0o+ —22° —22+1.

We conclude this paper with a description of a modification
to Z which guarantees to compute the minimal Z-pair for a
given hyperexponential element, provided that such a pair
exists. This modification also guarantees that the two state-
ments (A) and (B) given in Section 1 become equivalent.

Apply Lemma 8 (differential) or Lemma 9 ((g-)shift) to de-
termine if a given hyperexponential 7" belongs to S;.

1. If T € 81, rewrite T in the form (20) where p equals z
in (29) (differential) or in (31) ((g-)shift), and compute
the upper bound d for the degree of the polynomial
w(y) in the key equation (25) (differential) or (26) ((g-
)shift). If d is not a non-negative integer, then 1" € S,
and the minimal Z-pair for 7" can be directly computed
using the lclm technique (Lemma 11); otherwise, use
Z to compute the minimal Z-pair for 7.

2. If 1" ¢ S1, use Z to compute the minimal Z-pair for 1'.

The modified version of Z described above is implemented
for the differential case and for the shift case in the computer
algebra system Maple, and is available from
http://www.cecm.sfu.ca/ hle/maple/Zcomplete/.
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