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Abstract

We present a parallel GCD algorithm for sparse multivariate polynomials with
integer coefficients. The algorithm combines a Kronecker substitution with a Ben-
Or/Tiwari sparse interpolation modulo a smooth prime to determine the support
of the GCD. We have implemented our algorithm in Cilk C. We compare it with
Maple and Magma’s serial implementations of Zippel’s GCD algorithm.

1 Introduction

Let A and B be two polynomials in Z[x0, x1, . . . , xn]. In this paper we present a modular
GCD algorithm for computing G = gcd(A,B) the greatest common divisor of A and
B which is designed for sparse A and B. We will compare our algorithm with Zippel’s
sparse modular GCD algorithm from [37]. Zippel’s algorithm is the main GCD algorithm
currently used by the Maple, Magma and Mathematica computer algebra systems for
polynomials in Z[x0, x1, . . . , xn].

Multivariate polynomial GCD computation was a central problem in Computer Alge-
bra in the 1970’s and 1980’s. Whereas classical algorithms for polynomial multiplication
and exact division are sufficient for many inputs, this is not the case for polynomial GCD
computation. Euclid’s algorithm, and variant’s of it such as the reduced PRS algorithm
[8] and the subresultant PRS algorithm [6], result in an intermediate expression swell of
size exponential in n when applied to multivariate polynomials. This renders these algo-
rithms useless even for inputs of a very modest size. GCD algorithms which avoid this
intermediate expression swell include Brown’s dense modular GCD algorithm [5], the
the EEZ-GCD algorithm [35], Zippel’s sparse modular algorithm [37], the heuristic GCD
algorithm [7], and Kaltofen and Trager’s black-box algorithm [19]. For the interested
reader, Chapter 7 of [12] provides a description of the algorithms in [5, 35, 37, 7].

Let A =
∑dA
i=0 aix

i
0, B =

∑dB
i=0 bix

i
0 and G =

∑dG
i=0 cix

i
0 where dA > 0, dB > 0 and

the coefficients ai, bi and ci are in Z[x1, . . . , xn]. Our GCD algorithm first computes and
removes contents, that is computes cont(A, x0) = gcd(ai) and cont(B, x0) = gcd(bi).
These GCD computations in Z[x1, x2, . . . , xn] are computed recursively.

Let Ā = A/G and B̄ = B/G be the cofactors of A and B respectively. Let
#A denote the number of terms in A and let Supp(A) denote the set of monomi-
als appearing in A. Let LC(A) denote the leading coefficient of A taken in x0. Let
Γ = gcd(LC(A), LC(B)) = gcd(adA , bdB ). Since LC(G)|LC(A) and LC(G)|LC(B) it
must be that LC(G)|Γ thus Γ = LC(G)∆ for some polynomial ∆ ∈ Z[x1, . . . , xn].
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Example 1. If G = x1x
2
0 +x2x0 +3, Ā = (x2−x1)x0 +x2 and B̄ = (x2−x1)x0 +x1 +2

we have #G = 3, Supp(G) = {x1x
2
0, x2x0, 1}, LC(G) = x1, Γ = x1(x2 − x1), and

∆ = x2 − x1.

We provide an overview of our GCD algorithm. Let H = ∆ × G and hi = ∆ × ci
so that H =

∑dG
i=0 hix

i
0. Our algorithm will compute H not G. After computing H it

must then compute cont(H,x0) = gcd(hi) = ∆ and divide H by ∆ to obtain G. We
compute H modulo a sequence of primes p1, p2, . . . , and recover the integer coefficients
of H using Chinese remaindering. The use of Chinese remaindering is standard. Details
may be found in [5, 12]. Let H1 be the result of computing H mod p1. For the
remaining primes we use the sparse interpolation approach of Zippel [37] which assumes
Supp(H1) = Supp(H). Let us focus on the computation of H mod p1.

To compute H mod the first prime p the algorithm will pick a sequence of points
β1, β2, . . . from Znp , compute monic images

gj := gcd(A(x0, βj), B(x0, βj)) ∈ Zp[x0]

of G then multiply gj by the scalar Γ(βj) ∈ Zp. Because the scaled image Γ(βj)×gj(x0)
is an image of a polynomial, H, we can use polynomial interpolation to interpolate each
coefficient hi(x1, . . . , xn) of H from the coefficients of the scaled images.

Let t = maxdGi=0 #hi. The parameter t measures the sparsity of H. Let d =

maxni=1 degxi H and D = maxdGi=0 deg hi. The cost of sparse polynomial interpolation
algorithms is determined mainly by the number of points β1, β2, . . . needed and the size
of the prime p needed. These depend on n, t, d and D. Table 1 below presents data
for several sparse polynomial interpolation algorithms. In Table 1 pn denotes the n’th
prime which has size O(log n log log n) bits. Other sparse interpolation algorithms, not
directly applicable to the GCD problem, are mentioned in the concluding remarks.

To get a sense for how large the prime needs to be for the different algorithms in
Table 1 we include data for the following benchmark problem: Let G, Ā, B̄ have nine
variables (n = 8), have degree d = 20 in each variable, and have total degree D = 60
(to better reflect real problems). Let G have 10,000 terms with t = 1000. Let Ā and B̄
have 100 terms so that A = GĀ and B = GB̄ have about one million terms.

#points size of p benchmark
Zippel [1979] O(ndt) p > 2nd2t2 = 6.4× 109

BenOr/Tiwari [1988] O(t) p > pDn = 5.3× 1077

Monagan/Javadi [2010] O(nt) p > nDt2 = 4.8× 108

Murao/Fujise [1996] O(t) p > (d+ 1)n = 3.7× 1010

Table 1: Some sparse interpolation algorithms

Notes: Zippel’s sparse interpolation algorithm [37] is probabilistic. It was developed for
polynomial GCD computation and implemented in Macsyma by Zippel. Rayes, Wang
and Weber parallelized parts of it in [31] for shared memory computers. Kaltofen and
Lee showed in [21] how to modify Zippel’s algorithm so that it will work effectively for
primes much smaller than 2nd2t2.

The Ben-Or/Tiwari algorithm [3] is deterministic. The primary disadvantage of the
Ben-Or/Tiwari algorithm is the size of the prime. In [18], Monagan and Javaidi modify
the Ben-Or/Tiwari algorithm to work for a smaller prime but using O(nt) points.
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Murao and Fujise’s method [29] is a modification of the Ben-Or/Tiwari algorithm
which computes discrete logarithms in the cyclic group Z∗p. We call this method as
the “discrete logs” method. We give details for it in Section 1.2. The advantage
over the Ben-Or/Tiwari algorithm is that the prime size is O(n log d) bits instead of
O(D log n log log n) bits.

Our goal is to design a GCD algorithm that recovers H mod p using O(t) points
and a prime p of size O(n log d) bits. Also, for a multi-core computer with N cores we
want to compute N of these O(t) images in parallel. But, in a GCD algorithm that
uses interpolation from values, not all evaluation points can be used. Let βj ∈ Znp be

an evaluation point. If gcd(Ā(x0, βj), B̄(x0, βj)) 6= 1 then βj is said to be unlucky and
this image cannot be used to interpolate H. Section 1.4 characterizes which evaluation
points are unlucky and describes how they can be detected. In Zippel’s algorithm,
where the βj are chosen at random from Znp , unlucky βj , once identified, can simply
be skipped. This is not the case for the evaluation point sequences used by the Ben-
Or/Tiwari algorithm and the discrete logs method. In Section 1.5, we modify these
point sequences to handle unlucky evaluation points.

To reduce the probability of encountering unlucky evaluation points, the prime p
may need to be larger than that shown in Table 1. Our modification for the discrete
logarithm sequence increases the size of p which negates much of its advantage. This
led us to consider using a Kronecker substitution Kr on x1, x2, . . . , xn to map the GCD
computation into a bivariate computation in Zp[x0, y]. Some Kronecker substitutions
result in all evaluation points being unlucky so they cannot be used. We call these
Kronecker substitutions unlucky. In Section 2 we show (Theorem 1) that there are only
finitely many of them and how to detect them so that a larger Kronecker substitution
may be tried.

If a Kronecker substitution is not unlucky there can still be many unlucky evalua-
tion points because the degree of the resulting polynomials Kr(A) and Kr(B) in y is
exponential in n. In order to avoid unlucky evaluation points one may simply choose
the prime p� max(degy(Kr A),degy(Kr B)), which is what we do for our “simplified”
version of our GCD algorithm. But this may mean p is not a machine prime which
will significantly increase the cost of all modular arithmetic in Zp as multi-precision
arithmetic is needed. However, it is well known in the computer algebra research com-
munity that unlucky evaluation points are infact rare. This prompted us to investigate
the distribution of the unlucky evaluation points. Our next contribution (Theorem 3)
is a result for the expected number of unlucky evaluations. This theorem justifies our
“faster” version of our GCD algorithm which first tries a smaller prime.

In Section 3 we assemble a “Simplified Algorithm” which is a Las Vegas GCD al-
gorithm. It first applies a Kronecker substitution to map the GCD computation into
Z[x0, y]. It then chooses p randomly from a large set of smooth primes and computes H
mod p using sparse interpolation in y then uses further primes and Chinese remaindering
to recover the integer coefficients in H. The algorithm chooses a Kronecker substitution
large enough to be a priori not unlucky and assumes a term bound τ ≥ max #hi is
given. These assumptions lead to a much simpler algorithm.

In Section 4, we relax the term bound requirement and we first try a Kronecker
substitution just large enough to recover H. This complicates significantly the GCD
algorithm. In Section 4 we present a heuristic GCD algorithm which we can prove
always terminates and outputs H mod p. The heuristic algorithm will usually be much
faster than the simplified algorithm but it can, in theory, fail several times before it
finds a Kroenecker substitution Kr, a sufficiently large prime p, and evaluation points
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βj which are all good.
We have implemented our algorithm in C and parallelized it using Cilk C. We did

this initially for 31 bit primes then for 63 bit primes and then for 127 bit primes to
handle polynomials in more variables. The first timing results revealed that almost all
the time was spent in evaluating A(x0, βj) and B(x0, βj) and not interpolating H. In
Section 5 we describe an improvement for evaluation and how we parallelized it.

In Section 6 we compare our new algorithm with the C implementations of Zippel’s
algorithm in Maple and Magma. The timing results are very promising. For our bench-
mark problem, Maple takes 22,111 seconds, Magma takes 1,611 seconds. and our new
algorithm takes 4.67 seconds on 16 cores.

If #∆ > 1 then the number of terms in H may be (much) larger than the number of
terms in G. Sections 5.2 and 5.3 describe two practical improvements to reduce #∆ and
hence reduce t. The second improvement reduces the time for our benchmark problem
from 4.67 seconds to 0.652 seconds on 16 cores.

Note for the Referees

An early version of this work was presented at and published in the proceedings of ISSAC
2016. See the ACM Digital Library at https://dl.acm.org/citation.cfm?id=2930903

In that paper we presented a first version of our GCD algorithm, a heuristic version,
for computing the GCD modulo the first prime p. One of the referees asked for a Las
Vegas version of our algorithm with a complete analysis for the probability of failure.
We were unable to do that at the time.

The version of our algorithm in Section 3 Simplified Algorithm is the Las Vegas
algorithm that the referee asked for. So Section 3 is new. In addition, in Section 4
Faster Algorithm we redesigned our heuristic algorithm so that we can give a a formal
proof of termination. Sections 4.1-4.4 are new. The practical improvements in sections
5.2 and 5.3 are also new. The timings for Benchmark 2 in Section 6.2 are new. They
include the practical improvements we made in sections 5.2 and 5.3 and timings for
newer versions of Maple and Magma.

Finally, in the 2016 paper we didn’t have any space to give a treatment for the
Chinese remaindering. The algorithms in the new paper include Chinese remaindering
(in subroutines MGCD and MGCD1) to complete the GCD algorithm. For this purpose
Proposition 2.9 and Theorem 2.10 in Section 2 are also new.

1.1 Some notation and results

The proofs in the paper make use of properties of the Sylvester resultant, the Schwartz-
Zippel Lemma and require bounds for the size of the integer coefficients appearing in
certain polynomials. We state these results here for later use.

Let f =
∑t
i=1 aiMi where ai ∈ Z, ai 6= 0, t ≥ 0 and Mi is a monomial in n variables

x1, x2, . . . , xn. We denote by deg f the total degree of f , degxi f the degree of f in
xi, and #f the number of terms of f . We need to bound the size of the the integer
coefficients of certain polynomials. For this purpose let ||f ||1 =

∑t
i=1 |ai| be the one-

norm of f and ||f || = maxti=1 |ai| be the height of f . For a prime p, let φp denote the
modular mapping φp(f) = f mod p.

Lemma 1 ( Schwartz-Zippel [32, 37] ). Let F be a field and f ∈ F [x1, x2, . . . , xn] be
non-zero with total degree D and let S ⊂ F . If β is chosen at random from Sn then
Prob[f(β) = 0] ≤ D

|S| . Hence if R = {β|f(β) = 0} then |R| ≤ D|S|n−1.
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Lemma 2. Gelfond [13] Lemma II page 135. Let f be a polynomial in Z[x1, x2, . . . , xn]
and let di be the degree of f in xi. If g is any factor of f over Z then ||g|| ≤
ed1+d2+···+dn ||f || where e = 2.71828.

Let A be an m×m matrix with entries Ai,j ∈ Z. Hadamard’s bound H(A) for |det(A)|
is

|detA| ≤
m∏
i=1

√√√√ m∑
j=1

A2
i,j = H(A).

Lemma 3. Goldstein & Graham [15] Let A be an m×m matrix with entries Ai,j ∈ Z[y].
Let B be the m×m integer matrix with Bi,j = ||Ai,j ||1. Then || detA|| ≤ H(B).

For polynomials A =
∑s
i=0 aix

i
0 and B =

∑t
i=0 bix

i
0, Sylvester’s matrix is the

following s+ t by s+ t matrix

S =



as 0 0 bt 0 0
as−1 as 0 bt−1 bt 0
... as−1

. . . 0
... bt−1

. . . 0

a1

... as b1
... bt

a0 a1 as−1 b0 b1 bt−1

0 a0

... 0 b0
...

0 0
. . . a1 0 0

. . . b1
0 0 a0 0 0 b0


. (1)

where the coefficients of A are repeated in the first t columns and the coefficients of B
are repeated in the last s columns. The Sylvester resultant of the polynomials A and
B in x, denoted resx(A,B), is the determinant of Sylvester’s matrix. We gather the
following facts about it into Lemma 4 below.

Lemma 4. Let D be any integral domain and let A and B be two polynomials in
D[x0, x1, . . . , xn] with s = degx0

A > 0 and t = degx0
B > 0. Let as = LC(A),

bt = LC(B), R = resx0
(A,B), α ∈ Dn and p be a prime. Then

(i) R is a polynomial in D[x1, . . . , xn],
(ii) degR ≤ degA degB (Bezout bound) and
(iii) degxi R ≤ t degxi A+ s degxi B for 1 ≤ i ≤ n.

If D is a field and as(α) 6= 0 and bt(α) 6= 0 then
(iv) resx0

(A(x0, α), B(x0, α)) = R(α) and
(v) degx0

gcd(A(x0, α), B(x0, α)) > 0 ⇐⇒ resx0
(A(x0, α), B(x0, α)) = 0.

If D = Z and φp(as) 6= 0 and φp(bt) 6= 0 then
(vi) resx0

(φp(A), φp(B)) = φp(R) and
(vii) degx0

gcd(φp(A), φp(B)) > 0 ⇐⇒ resx0
(φp(A), φp(B)) = 0.

Proofs of (i), (ii), (iv) and (v) may be found in Ch. 3 and Ch. 6 of [9]. In particular the
proof in Ch. 6 of [9] for (ii) for bivariate polynomials generalizes to the multivariate
case. Note that the condition on α that the leading coefficients as and bt do not vanish
means that the dimension of Sylvester’s matrix for A(x0, α) and B(x0, α) is the same
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as that for A and B which proves (v). The same argument used to prove (iv) and (v)
works for (vi) and (vii). To prove (iii) we have

degxi detS ≤
∑

c∈columns(S)

max
f∈c

degxi f =

t∑
j=1

degxi A+

s∑
j=1

degxi B.

1.2 Ben-Or Tiwari Sparse Interpolation

Let C(x1, . . . , xn) =
∑t
i=1 aiMi where ai ∈ Z and Mi are monomials in (x1, . . . , xn).

In our context, C represents one of the coefficients of H = ∆G we wish to interpolate.
Let D = degC and let d = maxni=1 degxi C and let pn denote the n’th prime. Let

vj = C(2j , 3j , 5j , . . . , pjn) for j = 0, 1, . . . , 2t− 1.

The Ben-Or/Tiwari sparse interpolation algorithm [3] interpolates C(x1, x2, . . . , xn)
from the 2t points vj . Let mi = Mi(2, 3, 5, . . . , pn) ∈ Z and let λ(z) =

∏t
i=1(z −mi) ∈

Z[z]. The algorithm proceeds in 5 steps.

1 Compute vj = C(2j , 3j , 5j , . . . , pjn) for j = 0, 1, . . . , 2t− 1.

2 Compute λ(z) from vj using the Berlekamp-Massey algorithm [23] or the Euclidean
algorithm [2, 34].

3 Compute the integer roots mi of λ(z).

4 Factor the integers mi using trial division by 2, 3, . . . , pn from which we obtain
Mi. For example, for n = 3, if mi = 45000 = 233254 then Mi = x1

3x2
2x3

4.

5 Solve the following t×t linear system for the unknown coefficients ai in C(x1, . . . , xn).

V a =


1 1 . . . 1
m1 m2 . . . mt

m1
2 m2

2 . . . mt
2

...
...

...
...

m1
t−1 m2

t−1 . . . mt−1
t




a1

a2

a3

...
at

 =


v0

v1

v2

...
vt−1

 = b (2)

The matrix V above is a transposed Vandermonde matrix. Recall that

detV = detV T =
∏

1≤j<k≤t

(mj −mk).

Since the monomial evaluations mi = Mi(2, 3, 4, . . . , pn) are distinct it follows that
V a = b has a unique solution. The linear system V a = b can be solved in O(t2)
arithmetic operations (see [38]). Note, the master polynomial P (Z) in [38] is λ(z).

Notice that the largest integer in λ(z) is the constant term Πt
i=1mi which is at

most pDtn hence of size O(tD log n log log n) bits. Moreover, in [20], Kaltofen, Lakshman
and Wiley noticed that a severe expression swell occurs if either the Berlekamp-Massey
algorithm or the Euclidean algorithm is used to compute λ(z) over Q. For our purposes,
because we want to interpolate H modulo a prime p, we run Steps 2, 3, and 5 modulo
p. Provided we pick p > maxti=1mi ≤ pDn the integers mi remain unique modulo p and
we recover the monomials Mi(x1, . . . , xn) in Step 4 and the linear system in Step 5 has
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a unique solution modulo p. For Step 3, the roots of λ(z) ∈ Zp[z] can be found using
Berlekamp’s algorithm [4] which has classical complexity O(t2 log p).

In [3], Ben-Or and Tiwari assume a sparse term bound T ≥ t is known, that is, we are
given some T such that t ≤ T � (d+1)n and in Step 1 we may compute 2T evaluations
in parallel. In practice such a bound on t may not known in advance so the algorithm
needs to be modified to also determine t. For p sufficiently large, if we compute λ(z)
after j = 2, 4, 6, . . . points, we will see deg λ(z) = 1, 2, 3, . . . , t − 1, t, t, t, . . . with high
probability. Thus we may simply wait until the degree of λ(z) does not change. This
problem is first discussed by Kaltofen, Lee and Lobo in [21]. We will return to this in
Section 4.1.

Steps 2, 3, and 5 may be accelerated with fast multiplication. Let M(t) denote the
cost of multiplying two polynomials of degree t in Zp[t]. The fast Euclidean algorithm
can be used to accelerate Step 2. It has complexity O(M(t) log t). See Ch. 11 of [11].
Computing the roots of λ(z) in Step 3 can be done in O(M(t) log t log(pt)). See Corollary
14.16 of [11]. Step 5 may be done in O(M(t) log t) using fast interpolation. See Ch 10
of [11]. We summarize these complexity results in Table 2 below.

Step Classical Fast
2 O(t2) O(M(t) log t)
3 O(t2 log p) O(M(t) log t log(pt))
5 O(t2) O(M(t) log t)

Table 2: Number of arithmetic operations in Zp for t monomials.

1.3 Ben-Or/Tiwari with discrete logarithms

The discrete logarithm method modifies the Ben-Or/Tiwari algorithm so that the prime
needed is a little larger than (d+1)n thus of size isO(n log d) bits instead ofO(D log n log log n).
Murao & Fujise [29] were the first to try this approach. Some practical aspects of it are
discussed by van der Hoven and Lecerf in [17]. We explain how the method works.

To interpolate C(x1, . . . , xn) we first pick a prime p of the form p = q1q2q3 . . . qn + 1
satisfying 2|q1, qi > degxi C and gcd(qi, qj) = 1 for 1 ≤ i < j ≤ n. Finding such primes
is not difficult and we omit presenting an explicit algorithm here.

Next we pick a random primitive element α ∈ Zp which we can do using the partial
factorization p − 1 = q1q2 . . . qn (see [33]). We set ωi = α(p−1)/qi so that ωqii = 1

and replace the evaluation points (2j , 3j , . . . , pjn) with (ωj1, ω
j
2, . . . , ω

j
n). After Step 2 we

factor λ(z) in Zp[z] to determine the mi. If Mi =
∏n
k=1 x

dk
k we have mi =

∏n
k=1 ω

dk
k .

To compute dk in Step 4 we compute the discrete logarithm x := logαmi, that is, we
solve αx ≡ mi (mod p) for 0 ≤ x < p− 1. We have

x = logαmi = logα

n∏
k=1

ωdkk =

n∑
k=1

dk
p− 1

qk
. (3)

Taking (3) mod qk we obtain dk = x[(p − 1)/qk]−1 mod qk. Note the condition
gcd(qi, qj) = 1 ensures (p− 1)/qk is invertible mod qk. Step 5 remains unchanged.

For p = q1q2 . . . qn + 1, a discrete logarithm can be computed in O(
∑m
i=1 ei(log p +√

p
i
)) multiplications in Zp using the Pohlig-Helman algorithm where the factorization

of p−1 =
∏m
i=1 p

ei
i . See [30, 33]. Since the qi ∼ d this leads to an O(n

√
d) cost. Kaltofen
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showed in [22] that this can be made polynomial in log d and n if one uses a Kronecker
substitution to reduce multivariate interpolation to a univariate interpolation and uses
a prime p > (d+ 1)n of the form p = 2ks+ 1 with s small.

1.4 Bad and Unlucky Evaluation Points

Let A and B be non constant polynomials in Z[x0, . . . , xn], G = gcd(A,B) and Ā = A/G
and B̄ = B/G. Let p be prime such that LC(A)LC(B) mod p 6= 0.

Definition 1. Let α ∈ Znp and let ḡα(x) = gcd(Ā(x, α), B̄(x, α)). We say α is bad if
LC(A)(α) = 0 or LC(B)(α) = 0 and α is unlucky if deg ḡα(x) > 0. If α is not bad and
not unlucky we say α is good.

Example 2. Let G = (x1−16)x0 + 1, Ā = x2
0 + 1 and B̄ = x2

0 + (x1−1)(x2−9)x0 + 1.
Then LC(A) = LC(B) = x1 − 16 so {(16, β) : β ∈ Zp} are bad and {(1, β) : β ∈ Zp}
and {(β, 9) : β ∈ Zp} are unlucky.

Our GCD algorithm cannot reconstruct G using the image gα(x) = gcd(A(x, α),
B(x, α)) if α is unlucky. Brown’s idea in [5] to detect unlucky α is based on the
following Lemma.

Lemma 5. Let α and gα be as above and hα = G(x, α) mod p. If α is not bad then
hα|gα and degx gα ≥ degxG.

For a proof of Lemma 5 see Lemma 7.3 of [12]. Brown only uses α which are not bad
and the images gα(x) of least degree to interpolate G. The following Lemma implies if
the prime p is large then unlucky evaluations points are rare.

Lemma 6. If α is chosen at random from Znp then

Prob[ α is bad or unlucky ] ≤ degAB + degAdegB

p
.

proof: Let b be the number of bad evaluation points and let r be the number of unlucky
evaluation points that are not also bad. Let B denote the event α is bad and G denote
the event α is not bad and U denote the event α is unlucky. Then

Prob[B or U ] = Prob[B] + Prob[G and U ]

= Prob[B] + Prob[G]× Prob[U |G]

=
b

pn
+

(
1− b

pn

)
r

pn − b
=

b

pn
+

r

pn
.

Now α is bad =⇒ LC(A)(α)LC(B)(α) = 0 =⇒ LC(AB)(α) = 0. Applying Lemma 1
with f = LC(AB) we have b ≤ degLC(AB)pn−1. Let R = resx0

(Ā, B̄) ∈ Zp[x1, . . . , xn].
Now α is unlucky and not bad =⇒ deg gcd(Ā(x, α), B̄(x, α)) > 0 and LC(Ā)(α) 6= 0
and LC(B̄)(α) 6= 0 =⇒ R(α) = 0 by Lemma 4 (iv) and (v). Applying Lemma 1 we have
r ≤ deg(R)pn−1. Substituting into the above we have

Prob[B or U ] ≤ deg LC(AB)

p
+

degR

p
≤ degAB

p
+

degAdegB

p
2

The following algorithm applies Lemma 6 to compute an upper bound d for degxi G.

Algorithm DegreeBound(A,B,i)
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Input: Non-zero A,B ∈ Z[x0, x1, . . . , xn] and i satisfying 0 ≤ i ≤ n.

Output: d ≥ degxi(G) where G = gcd(A,B).

1 Set LA = LC(A, xi) and LB = LC(B, xi).
So LA,LB ∈ Z[x0, . . . , xi−1, xi+1, . . . , xn].

2 Pick a prime p� degAdegB such that LA mod p 6= 0 and LB mod p 6= 0.

3 Pick α = (α0, . . . , αi−1, αi+1, . . . , αn) ∈ Znp at random until LA(α)LB(α) 6= 0.

4 Compute a = A(α0, . . . , αi−1, xi, αi+1, . . . , αn) and
b = B(α0, . . . , αi−1, xi, αi+1, . . . , αn).

5 Compute g = gcd(a, b) in Zp[xi] using the Euclidean algorithm.

6 Output d = degxi g.

1.5 Unlucky evaluations in Ben-Or/Tiwari

Consider again Example 2 where G = (x1 − 16)x0 + 1, Ā = x2
0 + 1 and B̄ = x2

0 + (x1 −
1)(x2 − 9)x0 + 1. For the Ben-Or/Tiwari points αj = (2j , 3j) for 0 ≤ j < 2t observe
that α0 = (1, 1) and α2 = (4, 9) are unlucky and α4 = (16, 81) is bad. Since none of
these points can be used to interpolate G we need to modify the Ben-Or/Tiwari point
sequence. For the GCD problem, we want random evaluation points to avoid bad and
unlucky points. The following fix works.

Pick 0 < s < p at random and use αj = (2s+j , 3s+j , . . . , pn
s+j) for 0 ≤ j < 2t. Steps

1,2 and 3 work as before. To solve the shifted transposed Vandermonde system

W c =


ms

1 ms
2 . . . ms

t

m1
s+1 m2

s+1 . . . mt
s+1

...
...

...
...

m1
s+t−1 m2

s+t−1 . . . ms+t−1
t



c1
c2
...
ct

 =


vs
vs+1

...
vs+t−1

 = u.

we first solve the transposed Vandermonde system

V b =


1 1 . . . 1
m1 m2 . . . mt

...
...

...
...

m1
t−1 m2

t−1 . . . mt−1
t



b1
b2
...
bt

 =


vs
vs+1

...
vs+t−1

 = u

as before to obtain b = V −1u. Observe that the matrix W = V D where D is the t by t
diagonal matrix with Di,i = ms

i . Solving Wc = u for c we have

c = W−1u = (V D)−1u = (D−1V −1)u = D−1(V −1u) = D−1b.

Thus ci = bim
−s
i and we can solve Wc = u in O(t2 + t log s) multiplications.

Referring again to Example 2, if we use the discrete logarithm evaluation points
αj = (ωj1, ω

j
2) for 0 ≤ j < 2t then α0 = (1, 1) is unlucky and also, since ωq11 = 1, all

αq1 , α2q1 , α3q1 , . . . are unlucky. Shifting the sequence to start at j = 1 and picking qi >
2t is problematic because for the GCD problem, t may be larger than max{#ai,#bi},
or smaller; there is no way to know in advance. This difficulty led us to consider using
a Kronecker substitution.
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2 Kronecker Substitutions

We propose to use a Kronecker substitution to map a multivariate polynomial GCD
problem in Z[x0, x1, . . . , xn] into a bivariate GCD problem in Z[x, y]. After mak-
ing the Kronecker substitution, we need to interpolate H(x, y) = ∆(y)G(x, y) where
degyH(x, y) will be exponential in n. To make discrete logarithms in Zp feasible, we

follow Kaltofen [22] and pick p = 2ks+ 1 > degyH(x, y) with s small.

Definition 2. Let D be an integral domain and let f be a polynomial in D[x0, x1, . . . , xn].
Let r ∈ Zn−1 with ri > 0. Let Kr : D[x0, x1, . . . , xn]→ D[x, y] be the Kronecker substi-
tution Kr(f) = f(x, y, yr1 , yr1r2 , . . . , yr1r2...rn−1).

Let di = degxi f be the partial degrees of f for 1 ≤ i ≤ n. We note that Kr is a
homomorphism and it is invertible if ri > di for 1 ≤ i ≤ n− 1. Not all such Kronecker
substitutions can be used, however, for the GCD problem. We consider an example.

Example 3. Consider the following GCD problem

G = x+ y + z, Ā = x3 − yz, B̄ = x2 − y2

in Z[x, y, z]. Since degy G = 1 the Kronecker substitution Kr(G) = G(x, y, y2) is invert-

ible. But gcd(Kr(Ā),Kr(B̄)) = gcd(Ā(x, y, y2), B̄(x, y, y2)) = gcd(x3 − y3, x2 − y2) =
x− y. If we proceed to interpolate the gcd(Kr(A),Kr(B)) we will obtain (x− y)Kr(G)
in expanded form from which and we cannot recover G.

We call such a Kronecker substitution unlucky. Theorem 1 below tells us that the
number of unlucky Kronecker substitutions is finite. To detect them we will also avoid
bad Kronecker substitutions in an analogous way Brown did to detect unlucky evaluation
points.

Definition 3. Let Kr be a Kronecker substitution. We say Kr is bad if degxKr(A) <
degx0

A or degxKr(B) < degx0
B and Kr is unlucky if degx gcd(Kr(Ā),Kr(B̄)) > 0.

If Kr is not bad and not unlucky we say Kr is good.

Proposition 1. Let f ∈ Z[x1, . . . , xn] be non-zero and di ≥ 0 for 1 ≤ i ≤ n. Let X be
the number of Kronecker substitutions Kr such that Kr(f) = 0 where

r ∈ {[d1 + k, d2 + k, . . . , dn−1 + k] for k = 1, 2, 3, . . . }

Then X ≤ (n− 1)
√

2 deg f .

proof: Kr(f) = 0 ⇐⇒ f(y, yr1 , yr1r2 , . . . , yr1r2...rn−1) = 0
⇐⇒ f mod 〈x1 − y, x2 − yr1 , . . . , xn − yr1r2...rn−1〉 = 0
⇐⇒ f mod 〈x2 − xr11 , x3 − xr22 , . . . , xn − x

rn−1

n−1 〉 = 0. Thus X is the number of ideals

I = 〈x2 − xr11 , . . . , xn − x
rn−1

n−1 〉 for which f mod I = 0 with ri = di + 1, di + 2, . . . . We
prove that X ≤ (n− 1)

√
2 deg f by induction on n.

If n = 1 then I is empty so f mod I = f and hence X = 0 and the Lemma holds.
For n = 2 we have f(x1, x2) mod 〈x2 − xr11 〉 = 0 =⇒ x2 − xr11 |f. Now X is maximal
when d1 = 0 and r1 = 1, 2, 3, . . . . We have∑X

r1=1 r1 ≤ deg f =⇒ X(X + 1)/2 ≤ deg f =⇒ X <
√

2 deg f.

For n > 2 we proceed as follows. Either xn − xrn−1

n−1 |f or it doesn’t. If not then the
polynomial S = f(x1, . . . , xn−1, x

rn−1

n−1 ) is non-zero. For the sub-case xn − xrn−1

n−1 |f we

10



obtain at most
√

2 deg f such factors of f using the previous argument. For the case
S 6= 0 we have

S mod I = 0 ⇐⇒ S mod 〈x2 − xr11 , . . . , xn−2 − xrn−2

n−1 〉 = 0

Notice that degxi S = degxi f for 1 ≤ i ≤ n − 2. Hence, by induction on n, X <
(n − 2)

√
2 deg f for this case. Adding the number of unlucky Kronecker substitutions

for both cases yields X ≤ (n− 1)
√

2 deg f . 2

Theorem 1. Let A,B ∈ Z[x0, x1, . . . , xn] be non-zero, G = gcd(A,B), Ā = A/G and
B = B̄/G. Let di ≥ degxi G. Let X be the number of Kronecker substitutions Kr where
r ∈ {[d1 + k, d2 + k, . . . , dn−1 + k] for k = 1, 2, 3, . . . } which are bad and unlucky. Then

X ≤
√

2(n− 1)
[√

degA+
√

degB +
√

degA degB
]
.

proof: Let LA = LC(A) and LB = LC(B) be the leading coefficients of A and B in
x0. Then Kr is bad ⇐⇒ Kr(LA) = 0 or Kr(LB) = 0. Applying Proposition 1, the
number of bad Kronecker substitutions is at most

(n− 1)(
√

2 degLA+
√

2 degLB) ≤ (n− 1)(
√

2 degA+
√

2 degB).

Now let R = resx0
(Ā, B̄). We will assume Kr is not bad.

Kr is unlucky ⇐⇒ degx(gcd(Kr(Ā),Kr(B̄)) > 0

⇐⇒ resx(Kr(Ā),Kr(B̄)) = 0

(Kr is not bad and is a homomorphism) ⇐⇒ Kr(resx(Ā, B̄)) = 0

⇐⇒ Kr(R) = 0

By Proposition 1, the number of unlucky Kronecker substitutions ≤ (n− 1)
√

2 degR ≤
(n−1)

√
2 degAdegB by Lemma 4(ii). Adding the two contributions proves the theorem.

2

Theorem 1 tells us that the number of unlucky Kronecker substitutions is finite.
Our algorithm, after identifying an unlucky Kronecker substitution will try the next
Kronecker substitution r = [r1 + 1, r2 + 1, . . . , rn−1 + 1].

It is still not obvious that a Kronecker substitution that is not unlucky can be used
because it can create a content in y of exponential degree. The following example shows
how we recover H = ∆G when this happens.

Example 4. Consider the following GCD problem

G = wx2 + zy, Ā = ywx+ z, B̄ = yzx+ w

in Z[x, y, z, w]. We have Γ = wy and ∆ = y. For Kr(f) = f(x, y, y3, y9) we have

gcd(Kr(A),Kr(B)) = Kr(G) gcd(y10x+ y3, y4x+ y9) = (y9x2 + y4)y3 = y7(y5x2 + 1).

One must not try to compute gcd(Kr(A),Kr(B)) because the degree of the content of
gcd(Kr(A),Kr(B)) (y7 in our example) can be exponential in n the number of variables
and we cannot compute this efficiently using the Euclidean algorithm. The crucial
observation is that if we compute monic images gj = gcd(Kr(A)(x, αj),Kr(B)(x, αj))
any content is divided out, and when we scale by Kr(Γ)(αj) and interpolate y in Kr(H)
using sparse interpolation, we recover any content. We obtain Kr(H) = Kr(∆)Kr(G) =
y10x2 + y5, then invert Kr to obtain H = (yw)x2 + (y2z).
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2.1 Unlucky primes

Let A,B be polynomials in Z[x0, x1, . . . , xn], G = gcd(A,B), Ā = A/G and B̄ = B/G.
In the introduction we defined the polynomials Γ = gcd(LC(A), LC(B), ∆ = Γ/LC(G)
and H = ∆G where LC(A), LC(B) and LC(G) are the leading coefficients of A, B and
G in x0 respectively.

Let Kr : Z[x0, x1, . . . , xn] → Z[x, y] be a Kronecker substitution Kr(f) = f(x, y,
yr1 , yr1r2 , . . . , yr1r2...rn−1) for some ri > 0. Our GCD algorithm will compute gcd(Kr(A),Kr(B))
modulo a prime p. Some primes cannot be used.

Example 5. Consider the following GCD problem in Z[x0, x1] where a and b are positive
integers.

G = x0 + b x1 + 1, Ā = x0 + x1 + a, B̄ = x0 + x1

In this example, Γ = 1 so H = G. Since there are only two variables the Kronecker
substitution is Kr(f) = f(x, y) hence Kr(Ā) = x + y + a, Kr(B̄) = x + y. Notice
that gcd(Kr(Ā),Kr(B̄)) = 1 in Z[x, y], but gcd(φp(Kr(Ā)), φp(Kr(B̄))) = x+ y for any
prime p|a. Like Brown’s modular GCD algorithm in [5], our GCD algorithm must avoid
these primes.

If our GCD algorithm were to choose primes from a pre-computed set of primes
S = {p1, p2, . . . , pN} then notice that if we replace a in example 5 with a = ΠN

i=1pi then
every prime would be unlucky. To guarantee that our GCD algorithm will succeed on
all inputs we need to bound the number of primes that cannot be used and pick our
prime from a sufficiently large set at random.

Because our algorithm will always choose ri > degxi H, the Kronecker substitution
Kr leaves the coefficients of H unchanged. Let pmin be the smallest prime in S. From
Section 1, H =

∑dG
i=0 hix

i
0 with t = max(#hi), we have #H ≤ (d + 1)t hence if p is

chosen at random from S then

Prob[Supp(φp(H)) 6= Supp(H)] ≤
(d+ 1)t logpmin ||H||

N
.

Theorem 2 below bounds ||H|| from the inputs A and B.

Definition 4. Let p be a prime and let Kr be a Kronecker substitution. We say p is bad
if degx φp(Kr(A)) < degxKr(A) or degx φp(Kr(B)) < degxKr(B) and p is unlucky if
degx gcd(φp(K̄r(A)), φp(K̄r(B))) > 0. If p is not bad and not unlucky we say p is good.

Let R = resx(Ā, B̄) ∈ Z[x1, . . . , xn] be the Sylvester resultant of Ā and B̄. Unlucky
primes are characterized as follows; if p is not bad then Lemma 4(vii) implies p is
unlucky ⇐⇒ φp(Kr(R)) = 0. Unlucky primes are detected using the same approach
as described for unlucky evaluations in section 1.3 which requires that we also avoid
bad primes. If p is bad or unlucky then p must divide the integer M = ||Kr(LC(A))|| ·
||Kr(LC(B))|| · ||Kr(R)||. Let pmin = minNi=1 pi. Thus if p is chosen at random from S
then

Prob[ p is bad or unlucky ] ≤
logpminM

N
.

Proposition 2. Let A be an m ×m matrix with entries Ai,j ∈ Z[x1, x2, . . . , xn] sat-
isfying the term bound #Ai,j ≤ t, the degree bound degxk Ai,j ≤ d and the coefficient
bound ||Ai,j || < h ( for 1 ≤ i, j ≤ m ). Note if a term bound for #Ai,j is not known
we may use t = (1 + d)n. Let Kr : Z[x1, x2, . . . , xn] → Z[y] be the Kronecker map
Kr(f) = f(y, yr1 , yr1r2 , . . . , yr1r2...rn−1) for rk > 0 and let B = Kr(A) be the m ×m
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matrix of polynomials in Z[y] with Bi,j = Kr(Ai,j) for 1 ≤ i, j ≤ m. Then

(i) || detA|| < mm/2tmhm and
(ii) || detB|| < mm/2tmhm.

proof: To prove (i) let S be the m × m matrix of integers given by Si,j = ||Ai,j ||1
We claim || detA|| ≤ H(S) where H(S) is Hadamard’s bound on |detS|. Then applying
Hadamard’s bound to S we have

H(S) =

m∏
i=1

√√√√ m∑
j=1

S2
i,j =

m∏
i=1

√√√√ m∑
j=1

||Ai,j ||21 <

m∏
i=1

√
m(th)

2
= mm/2tmhm

which establishes (i).
To prove our claim let Ks be a Kronecker map with si > md and let C be the m×m

matrix with Ci,j = Ks(Ai,j). Notice that degxk Ai,j ≤ d implies degxk detA ≤ md
for 1 ≤ k ≤ n. Thus Ks(detA) is a bijective map on the monomials of detA thus
Ks(detA) = detC which implies || detA|| = || detC||. Now let W be the m×m matrix
with Wi,j = ||Ci,j ||1 and let H(W ) be Hadamard’s bound on |detW |. Then || detC|| ≤
H(W ) by Lemma 3 and since Ks is bijective S = W hence H(S) = H(W ). Therefore
|| detA|| = || detC|| ≤ H(W ) = H(S) which proves the claim.

To prove (ii), let S and T be the m×m matrices of integers given by Si,j = ||Ai,j ||1
and Ti,j = ||Bi,j ||1 for 1 ≤ i, j ≤ m. From the claim in part (i) if rk > md we have
|| detA|| = || detB|| ≤ H(T ) = H(S). Now if rk ≤ md for any 1 ≤ k ≤ n − 1 then
Kr(detA) is not necessarily one-to-one on the monomials in detA. However, for all
rk > 0 we still have

||Kr(Ai,j)||1 ≤ ||Ai,j ||1 for 1 ≤ i, j ≤ m

so that Ti,j ≤ Si,j hence H(T ) ≤ H(S). We have || detB|| ≤ H(T ) ≤ H(S) and (ii)
follows. 2

Theorem 2. Let A,B,G, Ā, B̄,∆, H be as given at the beginning of this section and let
R = resx0

(Ā, B̄). Suppose A =
∑dA
i=0 ai(x1, . . . , xn)xi0 and B =

∑dB
i=0 bi(x1, . . . , xn)xi0

satisfy degA ≤ d, degB ≤ d, dA > 0, dB > 0, ||ai|| < h and ||bi|| < h. Let Kr :
Z[x0, x1, . . . , xn]→ Z[x, y] be the Kronecker map Kr(f) = f(x, y, yr1 , yr1r2 , . . . , yr1r2...rn−1).
If Kr is not bad, that is, Kr(adA) 6= 0 and Kr(adB) 6= 0, then

(i) ||Kr(LC(A))|| ≤ (1 + d)nh and ||Kr(LC(B))|| ≤ (1 + d)nh,
(ii) ||Kr(R)|| ≤ mm/2(1 + d)nmEm and
(iii) if ri > degxi H for 1 ≤ i ≤ n− 1 then ||H|| ≤ (1 + d)nE2

where m = dA + dB and E = e(n+1)dh.

proof: Since LC(A) ∈ Z[x1, . . . , xn] we have #LC(A) ≤ (1+d)n thus ||Kr(LC(A))|| ≤
(1 + d)n||LC(A)|| ≤ (1 + d)nh. Using the same argument we have ||Kr(LC(B))|| ≤
(1 + d)nh which proves (i).

Let Ā =
∑dĀ
i=0 āix

i
0 and B̄ =

∑dB̄
i=0 b̄ix

i
0. Because A = GĀ and B = GB̄, Lemma

2 implies ||Ā|| < E and ||B̄|| < E. Let S be Sylvester’s matrix formed from Kr(āi) and
Kr(b̄i). Now Kr(R) = detS and S has dimension dĀ+ dB̄ ≤ dA+ dB = m. Applying
Proposition 2 to S we have

||Kr(R)|| = || detS|| ≤ tmEmmm/2
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where t = maxi,j #Si,j . Since Ā|A and B̄|B we have degxj āi(x1, . . . , xn) ≤ d and

degxj b̄i(x1, . . . , xn) ≤ d thus #Si,j ≤ (1 + d)n and (ii) follows.
For (iii) since G|A and ∆|LC(A), Lemma 2 implies ||G|| < E and ||∆|| < E. Thus

||H|| = ||∆G|| ≤ #∆ · ||∆|| · ||G|| ≤ (1 + d)nE2. 2

We remark that our definition for unlucky primes differs from Brown [5]. Brown’s
definition depends on the vector degree whereas ours depends only on the degree in x0

the main variable. The following example illustrates the difference.

Example 6. Consider the following GCD problem and prime p.

G = x+ y + 1, Ā = (y + p)x2 + y2, B̄ = yx3 + y + p.

We have gcd(φp(Ā), φp(B̄)) = gcd(yx + y2, yx2 + y) = y. By definition 4, p is not
unlucky but by Brown’s definition, p is unlucky.

Our GCD algorithm in Z[x0, x1, . . . , xn] only needs monic images in Zp[x0] to recover
H whereas Brown needs monic images in Zp[x0, x1, . . . , xn] to recover G. A consequence
of this is that our bound on the number of unlucky primes is much smaller than Brown’s
bound (see Theorems 1 and 2 of [5]). This is relevant because we also require p to be
smooth.

2.2 The number of unlucky evaluation points

Even if the Kronecker substitution is not unlucky, after applying it to input polynomials
A and B, because the degree in y may be very large, the number of bad and unlucky
evaluation points may be very large.

Example 7. Consider the following GCD problem

G = x0 +xd1 +xd2 +· · ·+xdn, Ā = x0 +x1 +· · ·+xn−1 +xd+1
n , B̄ = x0 +x1 +· · ·+xn−1 +1.

To recover G, if we use r = [d + 1, d + 1, . . . , d + 1] for x1, x2, . . . , xn−1 we need p >
(d + 1)n. But R = resx0(Ā, B̄) = 1 − xd+1

n and Kr(R) = 1 − (yr1r2...rn−1)d+1 =
1− y(d+1)n which means there could be as many as (d+ 1)n unlucky evaluation points.
If p = (d+ 1)n + 1, all evaluation points would be unlucky.

To guarantee that we avoid unlucky evaluation points with high probability we
would need to pick p� degKr(R) which could be much larger than what is needed to
interpolate Kr(H). But this upper bound based on the resultant is a worst case. This
lead us to investigate what the expected number of unlucky evaluation points is. We
ran an experiment. We computed all monic quadratic and cubic bivariate polynomials
over small finite fields Fq of size q = 2, 3, 4, 5, 7, 8, 11 and counted the number of unlucky
evaluation points to find the following result.

Theorem 3. Let Fq be a finite field with q elements and f = xl +
∑l−1
i=0(

∑di
j=0 aijy

j)xi

and g = xm+
∑m−1
i=0 (

∑ei
j=0 bijy

j)xi with l ≥ 1, m ≥ 1, and aij , bij ∈ Fq. Let X = |{α ∈
Fq : gcd(f(x, α), g(x, α)) 6= 1}| be a random variable over all choices aij , bij ∈ Fq. So
0 ≤ X ≤ q and for f and g not coprime in Fq[x, y] we have X = q. If di ≥ 0 and ei ≥ 0
then E[X] = 1.
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proof: Let C(y) =
∑d
i=0 ciy

i with d ≥ 0 and ci ∈ Fq and fix β ∈ Fq. Consider the

evaluation map Cβ : Fd+1
q → Fq given by Cβ(c0, . . . , cd) =

∑d
i=0 ciβ

i. We claim that C

is balanced, that is, C maps qd inputs to each element of Fq. It follows that f(x, β) is
also balanced, that is, over all choices for ai,j each monic polynomial in Fq[x] of degree
n is obtained equally often. Similarly for g(x, β).

Recall that two univariate polynomials a, b in Fq[x] with degree deg a > 0 and
deg b > 0 are coprime with probability 1− 1/q (see Ch 11 of Mullen and Panario [27]).
This is also true under the restriction that they are monic. Therefore f(x, β) and g(x, β)
are coprime with probability 1− 1/q. Since we have q choices for β we obtain

E[X] =
∑
β∈Fq

Prob[gcd(A(x, β), B(x, β)) 6= 1] = q(1− (1− 1

q
)) = 1.

Proof of claim. Since B = {1, y − β, (y − β)2, . . . , (y − β)d} is a basis for polynomials

of degree d we can write each C(y) =
∑d
i=0 ciy

i as C(y) = u0 +
∑d
i=1 ui(y − β)i for a

unique choice of u0, u1, . . . , ud ∈ Fq. Since C(β) = u0 it follows that all qd choices for
u1, . . . , ud result in C(β) = u0 hence C is balanced. 2

That E[X] = 1 was a surprise to us. We thought E[X] would have a logarithmic
dependence on deg f and deg g. In light of Theorem 3, we will first pick p > degy(Kr(H))
and, should the algorithm encounter unlucky evaluations, restart the algorithm with a
larger prime.

3 Simplified Algorithm

We now present our GCD algorithm. It consists of two parts: the main routine MGCD
and the subroutine PGCD. PGCD computes the GCD modulo a prime and MGCD
calls PGCD several times to obtain enough images to reconstruct the coefficients of the
target polynomial H using Chinese Remaindering. In this section, we assume that we
are given a term bound τ on the number of terms in the coefficients of target polynomial
H, that is τ ≥ #hi(x1, x2, . . . , xn). We will also choose a Kronecker substitution that is
a priori not bad and not unlucky. These assumptions will enable us to choose the prime
p so that PGCD computes G with high probability. We will relax these assumptions
in the next section. The algorithm will need to treat bad and unlucky primes and bad
and unlucky evaluation points.

3.1 Bad and unlucky Kronecker substitutions

Lemma 7. Let Kr : Z[x0, x1, . . . , xn]→ Z[x, y] be the Kronecker substitution Kr(f) :=
f(x, y, yr1 , yr1r2 , . . . , yr1r2···rn−1). If f 6= 0 and ri > degxi(f) for 1 ≤ i ≤ n − 1 then
Kr(f) sends monomials in f to unique monomials and therefore Kr is one-to-one and
Kr(f) 6= 0.

Proof. Suppose two monomials xd00 x
d1
1 · · ·xdnn and xe00 e

e1
1 · · ·xenn in f are mapped to the

same monomial in Z[x, y] so that

xd0yd1yr1d2 · · · yr1r2···rn−1dn = xe0ye1yr1e2 · · · yr1r2···rn−1en

Clearly d0 = e0 and

d1 + r1d2 + · · ·+ r1r2 · · · rn−1dn = e1 + r1e2 + · · ·+ r1r2 · · · rn−1en (4)
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Reducing (4) modulo r1 we have d1 ≡ e1 (mod r1). Now r1 > degx1
f implies r1 > d1

and r1 > e1 implies d1 = e1. Subtracting d1 = e1 from this equation and dividing
through by r1 we have

d2 + r2d3 + . . . r2r3 · · · rn−1dn = e2 + r2e3 + . . . r2r3 · · · rn−1en

Repeating the argument we obtain di = ei for 1 ≤ i ≤ n.

In our case, we are considering the polynomialsA,B ∈ Z[x0, x1, . . . , xn] with degx0
A >

0 and degx0
B > 0. Let G = gcd(A,B) and Ā = A/G and B̄ = B/G and let LC(A)

and LC(B) the the leading coefficients of A and B with respect to x0. Lemma 7 im-
plies that if we pick ri > max(degxi LC(A),degxi LC(B)) then Kr(LC(A)) 6= 0 and
Kr(LC(B)) 6= 0 thus Kr is not bad. Let R = resx0

(Ā, B̄). By Lemma 4(iii), we have

degxi R ≤ deg x0B̄ degxi Ā+ deg x0Ādegxi B̄.

Since degxi Ā ≤ degxi A and degxi B̄ ≤ degxi B for 0 ≤ i ≤ n we have

degxi R ≤ degx0
B degxi A+ degx0

Adegxi B.

So if we pick ri = (degx0
B degxi A+ degx0

A degxi B) + 1, then Kr is always lucky by
Lemma 7. The assumption that degx0

A > 0 and degx0
B > 0 gives

(degx0
B degxi A+ degx0

Adegxi B) ≥ max{degxi LC(A),degxi LC(B))}

hence the Kronecker substitution Kr with the sequence

[ri = (degxi Adegx0
B + degxi B degx0

A) + 1]1≤i≤n

is good.

3.2 Bad and unlucky evaluations

In this section, the Kronecker substitution Kr is assumed to be good. We also assume
that the prime p is good.

Proposition 3. Let d = max{max{degxi A,degxi B}0≤i≤n} and let ri = 2d2 + 1 for
1 ≤ i ≤ n. Note 2d2 + 1 ≥ (degxi A degx0

B + degxi B degx0
A) + 1. Then

(1) degyKr(A) < (2d2 + 1)n and degyKr(B) < (2d2 + 1)n,
(2) degy LC(Kr(A))(y) < (2d2 + 1)n and degy LC(Kr(B))(y) < (2d2 + 1)n,
(3) degyKr(H) < (2d2 + 1)n, and

(4) degyKr(R) < 2d(2d2 + 1)n, where Kr(R) = resx(Kr(Ā),Kr(B̄)).

Proof. For (1), after the Kronecker substitution, the exponent of y ≤ e1 + e2(2d2 + 1) +
· · ·+ en(2d2 + 1)n−1, where ei is the exponent of xi and ei ≤ d for all i. So degyKr(A)
and degyKr(B) are bounded by

d+ d(2d2 + 1) + · · ·+ d(2d2 + 1)n−1 = d(1 + (2d2 + 1) + · · ·+ (2d2 + 1)n−1)

= d(1 +
(2d2 + 1)n − (2d2 + 1)

(2d2 + 1)− 1
)

=
2d3

2d2
+
d(2d2 + 1)n − d(2d2 + 1)

2d2
)

=
d(2d2 + 1)n − d

2d2

< (2d2 + 1)n.
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Property (2) follows from (1). For (3), recall that degyKr(H) = degyKr(∆G). Since

∆ = gcd(LC(Ā), LC(B̄)), we have

degyKr(∆G) = degyKr(∆) + degyKr(G)

≤min(degyKr(LC(Ā)),degyKr(LC(B̄))) + degrKr(G)

≤min(degyKr(Ā),degyKr(B̄)) + degrKr(G)

= min(degyKr(A),degyKr(B)) < (2d2 + 1)n.

For (4),

degyKr(R) ≤ degyKr(Ā) degxKr(B̄) + degyKr(B̄) degxKr(Ā),

where degxKr(Ā) = degx0
Ā ≤ degx0

A ≤ d, degxKr(B̄) = degx0
B̄ ≤ degx0

B,≤ d,
and degyKr(Ā) ≤ degyKr(A) and degyKr(B̄) ≤ degyKr(B). So we have

degyKr(R) < d(2d2 + 1)n + d(2d2 + 1)n = 2d(2d2 + 1)n.

By proposition 3(1), a prime p > (2d2 + 1)n is sufficient to recover the exponents for
the Kronecker substitution. With the assumption that p is not bad and not unlucky,
we have the following lemma.

Lemma 8. Let p be a prime. If α is chosen at random from [0, p− 1], then

(i) Prob[α is bad] <
2(2d2 + 1)n

p
and

(ii) Prob[α is unlucky or α is bad] <
(2d+ 2)(2d2 + 1)n

p
.

Proof. Prob[α is bad] = Prob[LC(Kr(A)(α)LC(Kr(B))(α) = 0]
≤ degLC(Kr(AB))(y)/p < 2(2d2 + 1)n/p. For (ii) from the proof of Lemma 6 we have
this probability ≤ degKr(LC(AB))/p+ degKr(R)/p where R = resx0

(Ā, B̄). Applying
proposition 3(1) and (4) we have the probability < 2(2d2 + 1)n/p+ 2d(2d2 + 1)n/p and
the result follows.

The probability that our algorithm does not encounter a bad or unlucky evaluation
can be estimated as follows. Let U denote the bound of the number of bad and unlucky
evaluation points and τ ≥ maxi{#hi}. We need 2τ good consecutive evaluation points
(a segment of length 2τ in the sequence (1, . . . , p− 1)) to compute the feedback polyno-
mial for hi. Suppose αk is a bad or unlucky evaluation point where s ≤ k < s+ 2τ − 1
for any positive integer s ∈ (0, p − 1]. Then every segment of length 2τ starting at αi

where k− 2τ + 1 ≤ i ≤ k includes the point αk. Hence our algorithm fails to determine
the correct feedback polynomial. The union of all segments including αk has length
4τ − 1. We can not use every segment of length 2τ from k − 2τ + 1 to k + 2τ − 1
to construct the correct feedback polynomial. The worst case occurs when all bad and
unlucky evaluation points, their corresponding segments of length 4τ−1 do not overlap.
Since there are at most U of them, we can not determine the correct feedback polyno-
mials for at most U(4τ − 1) points. Note, this does not mean that all those points are
bad or unlucky, there is only one bad or unlucky point in each segment of length 2τ . U
is bounded by 2(2d2 + 1)n + 2d(2d2 + 1)n = (2d+ 2)(2d2 + 1)n.
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Lemma 9. Suppose p is good. Then

Prob[2τ evaluation points fail to determine the feedback polynomial ]

≤ 4τU − U
p− 1

<
4τU

p− 1
=

4τ(2d+ 2)(2d2 + 1)n

p− 1
.

So if we choose a prime p > 4Xτ(2d+ 2)(2d2 + 1)n for some positive number X, then
the probability that PGCD fails is at most 1

X .

We note that the choice of p in previous lemma implies p > (2d2+1)n ≥ degy(Kr(H)).
So we can recover the exponents of y in H.

3.3 Bad and unlucky primes

Our goal here is to construct a set S of smooth primes, with |S| large enough so if we
choose a prime p ∈ S at random, the probability that p is good is at least 1

2 . Recall
that a prime p is said to be y-smooth if q|p − 1 implies q ≤ y. The choice of y affects
the efficiency of discrete logarithm computation in Zp.

A bad prime must divide ‖LC(Kr(A))‖ or ‖LC(Kr(B))‖ and an unlucky prime must
divide ‖Kr(R)‖. Recall that in section 2.1,

M = ‖LC(Kr(A))‖‖LC(Kr(B))‖‖Kr(R)‖.

We want to construct a set S = {p1, p2, . . . , pN} of N smooth primes with each pi >
4τ(2d + 4)(2d2 + 1)nX. If p > 4τ(2d + 4)(2d2 + 1)nX, then the probability that our
algorithm fails to determine the feedback polynomial is < 1

X . The size N of S can be
estimated as follows. If

N = Y dlog4Xτ(2d+4)(2d2+1)nMe > Y logpminM,

where a bound for M is given by Theorem 2 (ii), pmin = minpi∈S pi and Y > 0, Then

Prob[ p is bad or unlucky ] ≤
logpminM

N
<

1

Y
.

We construct the set S which consists of N y-smooth primes so that minpi∈S pi >
4τX(2d + 4)(2d2 + 1)n which is the constraint for the bad or unlucky evaluation case.
We conclude the following result.

Theorem 4. Let S be constructed as just described. Let p be chosen at random from
S, s be chosen at random from 0 < s ≤ p − 1 and αp be a random generator of Z∗p.

Let E = {αs+jp : 0 ≤ j < 2τ} be 2τ consecutive evaluation points. For any X > 0 and
Y > 0, we have

Prob[p is good and E are all good] > (1− 1

X
)(1− 1

Y
).

3.4 The Simplified GCD Algorithm

Let S = {p1, p2, . . . , pN} is the set of N primes constructed in the previous section.
We’ve split our GCD algorithm into two subroutines, subroutine MGCD and PGCD.
The main routine MGCD chooses a Kronecker substitution Kr and then chooses a prime
p from S at random and calls PGCD to compute Kr(H) mod p.
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Algorithm MGCD is a Las Vegas algorithm. The choice of S means that algorithm
PGCD will compute Kr(H) mod p with probability at least (1− 1

X )(1− 1
Y ). By taking

X = 4 and Y = 4 this probability is at least 1
2 . The design of MGCD means that even

with probability 1
2 , the expected number of calls to algorithm PGCD is linear in the

minimum number of primes needed to recover H using Chinese remaindering, that is,
we do not need to make the probability that algorithm PGCD computes H mod p high
for algorithm MGCD to be efficient.

Algorithm MGCD( A, B, τ )

Inputs A,B ∈ Z[x0, x1, . . . , xn] and a term bound τ satisfying n > 0, A and B are
primitive in x0, degx0

A > 0, degx0
B > 0 and τ ≥ max #hi.

Output G = gcd(A,B).

1 Compute Γ = gcd(LC(A), LC(B)) in Z[x1, . . . , xn].

2 Set ri = 1 + (degxi Adegx0
B + degxi B degx0

A) for 1 ≤ i < n.

3 Let Y = (y, yr1 , yr1r2 , . . . , yr1r2...rn−1).
Set KrA = A(x, Y ), KrB = B(x, Y ) and KrΓ = Γ(Y ).

4 Construct the set S of smooth primes according to Theorem 4 with X = 4 and
Y = 4.

5 Set Ĥ = 0,M = 1, d0 = min(degx0
A,degx0

B).

LOOP: // Invariant: d0 ≥ degx0
H = degx0

G.

6 Call PGCD( KrA, KrB, KrΓ, S, τ , M ).
If PGCD outputs FAIL then goto LOOP.
Let p and Ĥp =

∑dx
i=0 ĥi(y)xi be the output of PGCD.

7 If dx > d0 then either p is unlucky or all evaluation points were unlucky so goto
LOOP.

8 If dx < d0 then either this is the first image or all previous images in Ĥ were
unlucky so set d0 = dx, Ĥ = Hp, M = p and goto LOOP.

Chinese-Remaindering

9 Set Hold = Ĥ. Solve {Ĥ ≡ Hold mod M and Ĥ ≡ Ĥp mod p} for Ĥ. Set

M = M × p. If Ĥ 6= Hold then goto LOOP.

Termination.

10 Set H̃ = K−1
r Ĥ(x, y) and let H̃ =

∑d0
i=0 c̃ix

i
0 where c̃i ∈ Z[x1, x2, . . . , xn].

11 Set Ĝ = H̃/ gcd(c̃0, c̃1, . . . , c̃d0) (Ĝ is the primitive part of H̃).

12 If Ĝ|A and Ĝ|B then output Ĝ.

13 goto LOOP.
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Algorithm PGCD( KrA, KrB, KrΓ, S, τ , M )

Inputs KrA,KrB ∈ Z[x, y], KrΓ ∈ Z[y], S a set of smooth primes, a term bound
τ ≥ max #hi and M a positive integer.

Output With probability ≥ 1
2 a prime p and polynomial Hp ∈ Zp[x, y] satisfying

Hp = Kr(H) mod p and p does not divide M .

1 Pick a prime p at random from S that is not bad and does not divide M .

2 Pick a random shift s such that 0 < s < p and any generator α for Z∗p.

Compute-and-scale-images:

3 For j from 0 to 2τ − 1 do

4 Compute aj = KrA(x, αs+j) mod p and bj = KrB(x, αs+j) mod p.

5 If degx aj < degxKrA or degx bj < degxKrB then output FAIL (αs+j is a
bad evaluation point.)

6 Compute gj = gcd(aj , bj) ∈ Zp[x] using the Euclidean algorithm and set
gj = KrΓ(αs+j)× gj mod p.

End for loop.

7 Set d0 = deg g0(x). If deg gj(x) 6= d0 for any 1 ≤ j ≤ 2τ − 1 output FAIL
(unlucky evaluations).

Interpolate-coefficients:

8 For i = 0 to d0 do

9 Run the Berlekamp-Massey algorithm on the coefficients of xi in the images
g0, g1, . . . , g2τ−1 to obtain λi(z) and set τi = deg λi(z).

10 Compute the roots mj of each λi(z) in Zp. If the number of distinct roots of
λi(z) is not equal τi then output FAIL (the feedback polynomial is wrong
due to undetected unlucky evaluations.)

11 Set ek = logαmk for 1 ≤ k ≤ τi and let σi = {ye1 , ye2 , . . . yeτi}.
12 Solve the τi by τi shifted transposed Vandermonde system{

τi∑
k=1

(αs+j)ekuk = coefficient of xi in gj(x) for 0 ≤ j < τi

}

modulo p for u and set hi(y) =
∑τi
k=1 uky

ek . Note: (αs+j)ek = ms+j
k

End for loop.

13 Set Hp :=
∑d0
i=0 hi(y)xi and output (p,Hp).

We remark that we do not check for termination after each prime because computing
the primitive part of H̃ or doing the trial divisions Ĝ|A and Ĝ|B in Step 12 could be
more expensive than algorithm PGCD. Instead algorithm MGCD waits until the Chinese
remaindering stabilizes in Step 9 before proceeding to test for termination.
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Theorem 5. Let N = logpmin ||2H||. So N primes in S are sufficient to recover the
integer coefficients of H using Chinese remaindering. Let X be the number of calls that
Algorithm MGCD makes to Algorithm PGCD. Then E[X] ≤ 2(N + 1).

Proof. Because the Kronecker substitution Kr is not bad, and the primes p used in
PGCD are not bad and the evaluations points {αs+j : 0 ≤ j ≤ 2τ − 1} used in PGCD
are not bad, in Step 6 of Algorithm PGCD, deg gj(x) ≥ degx0

G by Lemma 5. Therefore

d0 ≥ degx0
H = degx0

G throughout Algorithm MGCD and degx Ĥ = degx0
Ĝ ≥

degx0
G. Since A and B are primitive in x0, if Ĝ|A and Ĝ|B then it follows that

Ĝ = G, so if algorithm MGCD terminates, it outputs G.
To prove termination observe that Algorithm MGCD proceeds in two phases. In

the first phase MGCD loops while d0 > degx0
H. In this phase no useful work is

accomplished. Observe that the loops in PGCD are of fixed length 2τ and d0 + 1 so
PGCD always terminates and algorithm MGCD tries another prime. Because at least
3/4 of the primes in S are good, and, for each prime, at least 3/4 of the possible
evaluation point sequences are good, eventually algorithm PGCD will choose a good
prime and a good evaluation point sequence after which d0 = degx0

H.
In the second phase MGCD loops using images Hp with degxHp = d0 to construct

Ĥ. Because the images gj(x) used satisfy degx gj(x) = d0 = degx0
H and we scale them

with Γ(αs+j), PGCD interpolates Hp = H mod p thus we have modular images of H.

Eventually Ĥ = H and the algorithm terminates.
Because the probability that the prime chosen from S is good is at least 3/4 and the

evaluations points αs+j are all good is at least 3/4, the probability that PGCD outputs
a good image of H is at least 1/2. Since we need N images of H to recover H and one
more to stabilize (see Step 9), E[X] ≤ 2(N + 1) as claimed.

4 Faster Algorithm

In this section we consider the practical design of algorithms MGCD and PGCD. We
make three improvements. Unfortunately, each improvement leads to a major compli-
cation.

4.1 Term Bounds

Recall that H = ∆G =
∑dG
i=0 hi(x1, . . . , xn)xi0. Algorithms MGCD and PGCD assume

a term bound τ on #hi(y). In practice, good term bounds are usually not available.
For the GCD problem, one cannot even assume that #G ≤ min(#A,#B) so we must
modify the algorithm to compute ti = #hi(y).

We will follow Kaltofen et. al. [21] which requires 2ti + O(1) evaluation points to
determine ti with high probability. That is, we will loop calling the Berlekamp-Massey
algorithm after 2, 4, 6, 8, . . . , evaluation points and wait until we get two consecutive
zero discrepancies, equivalently, we wait until the output λi(z) does not change. This
means λi(z) is correct with high probability when p is sufficiently large. We give details
in section 4.5. This loop will only terminate, however, if the sequence of points is
generated by a polynomial and therein lies a problem.

Example 8. Consider the following GCD problem in Z[x, y]. Let p be a prime and let

G = 1, Ā = (yx+ 1)((y + 1)x+ 2), B̄ = (yx+ 2)(y + p+ 1)x+ 2).

21



Observe that LC(A) = y(y + 1), LC(B) = y(y + p + 1), Γ = y and gcd(A mod p,B
mod p) = (y + 1)x+ 2 so p is unlucky.

Suppose we run algorithm PGCD with inputs A = GĀ, B = GB̄ and Γ = y and
suppose PGCD selects the prime p. Let F (x, y) = x + 2

y+1 . Algorithm PGCD will

compute monic images gj(x) = F (x, αs+j) mod p which after scaling by Γ = αs+j are
images of yx+ 2y

y+1 which is not a polynomial in y. So the Berlekamp-Massey algorithm

will likely not stabilize and algorithm PGCD will loop trying to compute λ0(z). The
problem is that scaling by Γ = y does not result in a polynomial. We note that the
same problem may be caused by an unlucky Kronecker substitution.

Our solution is to scale with either Γ = LC(A) or Γ = LC(B), whichever has
fewer terms. Then, assuming p is not bad, LC(gcd(A mod p,B mod p)) must divide
both LC(A) mod p and LC(B) mod p thus scaling gj(x) by LC(A)(αs+j) mod p or
LC(B)(αs+j) mod p will always give an image of a polynomial. The downside of this
solution is that it may increase ti = #hi(y).

Another difficulty caused by λi(z) stabilizing too early is that the support σi of
Kr(hi) computed in Step 11 of PGCD may be wrong. We consider an example.

Example 9. Consider the following GCD problem in Z[x, y]. Let p and q be prime and

G = x+ py + qy2 + py4, Ā = 1, B̄ = 1.

Suppose MGCD chooses p first and suppose PGCD returns x + qy2 mod p so that
σ0 = {y2}. Suppose MGCD chooses q next and suppose λ0(z) stabilizes too early and
σ0 = {y3} which is wrong. This could also be due to a missing term, for example, if
G = x+pqy+ qy2 +py3. If we combine these two images modulo p and q using Chinese
remaindering to obtain Ĥ of the form x + ·y2 + ·y3 we have a bad image in Ĥ and
we need somehow to detect it. Once detected, we do not want to restart the entire
algorithm because we might be throwing away a lot of good images in Ĥ. Our solution
in Steps 7–10 of algorithm MGCD1 is probabilistic.

4.2 Using smaller primes

Another consideration is the size of the primes that we use. We have implemented
our GCD algorithm for 63 bit primes and 127 bit primes. By choosing a Kronecker
substitution that is a priori good, and requiring that the 2τ evaluation points are good,
the primes in S must be greater than 4τ(2d+ 2)(2d2 + 1)n where d bounds the degree
of A and B in all variables. If instead we choose ri > degxi H then we will still be able
to recover H from Kr(H) but Kr may be unlucky.

Since degxi H ≤ min(degxi A,degxi B) ≤ d, using ri = d + 1 we replace the factor
(2d2 + 1)n with (d + 1)n. We will detect if Kr is unlucky when deg gj(x) > d0 by
computing d0 = DegreeBound(A,B, 0) periodically (see Step 6 of MGCD1) so that
eventually we obtain d0 = degx0

G and can detect unlucky Kr. Once detected we will
increase ri by 1 to try a larger Kronecker substitution.

Recall that p is an unlucky prime if p|R where R = resx0
(Ā, B̄). Because the inputs

A and B are primitive in x0 it follows that the integer coefficients of Ā and B̄ are
relatively prime. Therefore, the integer coefficients of R are also likely to have a very
small common factor like 2. Thus the expected number of unlucky primes is very close
to 0. In Theorem 3 we showed that the expected number of unlucky evaluations is 1
hence instead of using p > 4τ(2d+ 2)(d+ 1)n we first try a prime p > 4(d+ 1)n. Should
we encounter bad or unlucky evaluation points we will increase the length of p until we
don’t. This reduces the length of the primes for most inputs by at least a factor of 2.
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Example 10. For our benchmark problem where n = 8, d = 20 and τ = 1000 we have
log2[4τ(2d+ 2)(2d2 + 1)n] = 94.5 bits which precludes our using 63 bit primes. On the
other hand log2[4(d+ 1)n] = 37.1 bits, meaning a 63 bit prime is more than sufficient.

4.3 Using fewer evaluation points

Let Kr(hi) =
∑ti
j=1 cijy

eij for some coefficients cij ∈ Z and exponents eij so that
Supp(Kr(hi)) = {yeij : 1 ≤ j ≤ ti}. Because of the size of the primes chosen by
algorithm MGCD, it is likely that the first good image Hp computed by PGCD has the
entire support of Kr(H), that is, Supp(ĥi) = Supp(Kr(hi)). Assuming this to be so,
we can compute the next image of Kr(H) modulo p using only t evaluations instead of
2t + O(1) as follows. We choose a prime p and compute gj(x) for 0 ≤ j < t as before
in PGCD. Assuming these t images are all good, one may solve the the ti by ti shifted
transposed Vandermonde systems{

ti∑
k=1

(αs+j)eijuij = coefficient of xi in gj(x) for 0 ≤ j ≤ τi − 1

}

for the unknown coefficients uij obtaining Hp =
∑d0
i=0

∑ti
j=0 uijy

eij .
It is possible that the prime p used in PGCD may divide a coefficient cij in Kr(H) in

which case we will need to call PGCD again to compute more of the support of Kr(H).

Definition 5. Let f =
∑d
i=0 ciy

ei be a polynomial in Z[y]. We say a prime p causes
missing terms in f if p divides any coefficient ci in f .

Our strategy to detect when Supp(ĥi) 6⊂ Supp(Kr(hi)) is probabilistic. We compute
one more image j = τi and check that the solutions of the Vandermonde systems are
consistent with this image. Thus we require t+1 evaluations instead of 2t+O(1). Once
missing terms are detected, we call PGCD again to determine Supp(Kr(hi)).

4.4 Algorithm MGCD1

We now present our algorithm as algorithm MGCD1 which calls subroutines PGCD1 and
SGCD1. Like MGCD, MGCD1 loops calling PGCD1 to determine the Hp = Kr(H)
mod p. Instead of calling PGCD1 for each prime, MGCD1 after PGCD1 returns an
image Hp, MGCD1 assumes the support of Kr(H) is now known and uses SGCD1 for
the remaining images.

Algorithm MGCD1( A, B )

Inputs A,B ∈ Z[x0, x1, . . . , xn] satisfying n > 0, A and B are primitive in x0, and
degx0

A > 0, degx0
B > 0.

Output G = gcd(A,B).

1 If #LC(A) < #LC(B) set Γ = LC(B) else set Γ = LC(A).

2 Call Algorithm DegreeBound(A,B,i) to get di ≥ degxi G for 0 ≤ i ≤ n.
If d0 = 0 return 1.

3 Set ri = min( degxi A, degxi B, di + degxi(Γ) ) for 1 ≤ i ≤ n.
Set δ = 1.
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Kronecker-Prime

4 Set ri = ri + 1 for 1 ≤ i < n. Let Y = (y, yr1 , yr1r2 , . . . , yr1r2...rn−1).
Set KrA = A(x, Y ), KrB = B(x, Y ) and KrΓ = Γ(Y ).
If Kr is bad goto Kronecker-Prime otherwise set δ = δ + 1.

RESTART

5 Set Ĥ = 0,M = 1 and MissingTerms = true.
Set σi = φ and τi = 0 for 0 ≤ i ≤ d0.

LOOP: // Invariant: d0 ≥ degx0
H.

6 Compute dx = DegreeBound(A,B, 0).
If dx < d0 set d0 = dx and goto RESTART.

7 For each prime p|M do // check current images

8 Set a = KrA mod p, b = KrB mod p and h = Ĥ mod p.

9 Pick β from [0, p− 1] at random.

10 If KrΓ(β) 6= 0 and either h(x, β) does not divide a(x, β) or does not divide

b(x, β) then h is wrong so set M = M/p and Ĥ = Ĥ mod M to remove this
image.

End for loop.

If MissingTerms then // for first iteration

11 Pick a new smooth prime p > 2δ
∏n
i=1 ri that is not bad.

12 Call PGCD1( KrA, KrB, KrΓ, d0, τ , r, p ).

13 If PGCD1 returned UNLUCKY(dmin) set d0 = dmin and goto RESTART.
If PGCD1 returned FAIL goto Kronecker-Prime.

14 Let Ĥp =
∑d0
i=0 ĥi(y)xi be the output of PGCD1.

Set MissingTerms = false, σi := σi ∪ Supp(ĥi) and τi = |σi| for 0 ≤ i ≤ d0.

else

15 Pick a new prime p > 2δ
∏n
i=1 ri that is not bad.

16 Call SGCD1( KrA, KrB, KrΓ, d0, σ, τ , p ).

17 If SGCD1 returned UNLUCKY(dmin) set d0 = dmin and goto RESTART.
If SGCD1 returned FAIL goto Kronecker-Prime.
If SGCD1 returned MISSINGTERMS set δ = δ + 1, Missingterms = true and
goto LOOP.

18 Let Ĥp =
∑d0
i=0 ĥi(y)xi be the output of SGCD1.

End If

Chinese-Remaindering
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19 Set Hold = Ĥ. Solve {Ĥ ≡ Hold mod M and Ĥ ≡ Ĥp mod p} for Ĥ. Set

M = M × p. If Ĥ 6= Hold then goto LOOP.

Termination.

20 Set H̃ = K−1
r Ĥ(x, y). Let H̃ =

∑d0
i=0 c̃ix

i
0 where c̃i ∈ Z[x1, . . . , xn].

21 Set Ĝ = H̃/ gcd(c̃0, c̃1, . . . , c̃d0) (Ĝ is the primitive part of H̃).

22 If deg Ĝ ≤ degA and deg Ĝ ≤ degB and Ĝ|A and Ĝ|B then return Ĝ.

23 goto LOOP.

Algorithm PGCD1( KrA, KrB, KrΓ, d0, τ , r, p )

Inputs KrA,KrB ∈ Z[x, y] and KrΓ ∈ Z[y], d0 ≥ degx0
G where G = gcd(A,B), term

bound estimates τ ∈ Zd0+1, r ∈ Zn, and a smooth prime p.

Output Hp ∈ Zp[x, y] satisfying Hp = Kr(H) mod p or FAIL or UNLUCKY(dmin).

1 Pick a random shift s ∈ Z∗p and any generator α for Z∗p.

2 Set T = 0.

LOOP

3 For j from 2T to 2T + 1 do

4 Compute aj = KrA(x, αs+j) mod p and bj = KrB(x, αs+j) mod p.

5 If degx aj < degxKrA or degx bj < degx0
KrB then return FAIL (αs+j is a

bad evaluation point.)

6 Compute gj = gcd(ai, bi) ∈ Zp[x] using the Euclidean algorithm.
Make gj monic and set gj = KrΓ(αs+j)× gj mod p.

End for loop.

7 Set dmin = min deg gj(x) and dmax = max deg gj for 2T ≤ j ≤ 2T + 1.
If dmin < d0 output UNLUCKY(dmin).
If dmax > d0 output FAIL.

8 Set T = T + 1.
If T < #KrΓ or T < maxd0i=0 τi goto LOOP.

9 For i from 0 to d0 do

10 Run the Berlekamp-Massey algorithm on the coefficients of xi in the images
g0, g1, . . . , g2T−1 to obtain λi(z) and set τi = deg λi(z). If either of the last
two discrepancies were non-zero goto LOOP.

End for loop.

11 For i from 0 to d0 do

12 Compute the roots mk of λi(z). If λi(0) = 0 or the number of distinct roots
of λi(z) is not equal τi then goto LOOP (λi(z) stabilized too early)
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13 Set ek = logαmk for 1 ≤ k ≤ τi and let σi = {ye1 , ye2 , . . . yeτi }.
If ek ≥

∏n
i=1 ri then ek > degyKr(H) so output FAIL (either the λi(z)

stabilized too early or Kr or p or all evaluations are unlucky).

14 Solve the τi by τi shifted transposed Vandermonde system{
τi∑
k=1

(αs+j)ekuk = coefficient of xi in gj(x) for 0 ≤ j < τi

}

modulo p for u and set ĥi(y) =
∑τi
k=1 uky

ek . Note: (αs+j)ek = ms+j
k .

End for loop.

15 Set Hp =
∑d0
i=0 ĥi(y)xi and output Hp.

The main for loop in Step 3 of algorithm PGCD1 evaluates KrA and KrB at αs+j

for j = 2T and j = 2T + 1 in Step 4 and computes their gcd in Step 6, that is, it
computes two images before running the Berlekamp-Massey algorithm in Step 10. In
our parallel implementation of algorithm PGCD1, for a multi-core computer with N > 1
cores, we compute N images at a time in parallel. We discuss this in Section 5.1.

Algorithm SGCD1( KrA, KrB, KrΓ, d0, σ, τ , p )

Inputs KrA,KrB ∈ Z[x, y], KrΓ ∈ Z[y], d0 ≥ degx0
G where G = gcd(A,B), supports

σi for Kr(hi) and τi = |σi|, a smooth prime p.

Output FAIL or UNLUCKY(dmin) or MISSINGTERMS or Hp ∈ Zp[x, y] satisfying if
d0 = degx0

G and σi = Supp(Kr(hi)) then Hp = Kr(H) mod p.

1 Pick a random shift s such that 0 < s < p and any generator α for Z∗p.

2 Set T = maxd0i=1 τi.

3 For j from 0 to T do // includes 1 check point

4 Compute aj = KrA(x, αs+j) mod p and bj = KrB(x, αs+j) mod p.

5 If degx aj < degxKrA or degx bj < degx0
KrB then output FAIL (αs+j is

a bad evaluation point.)

6 Compute gj = gcd(ai, bi) ∈ Zp[x] using the Euclidean algorithm.
Make gj monic and set gj = KrΓ(αs+j)× gj mod p.

End for loop.

6 Set dmin = min deg gj(x) and dmax = max deg gj for 0 ≤ j ≤ T.
If dmin < d0 output UNLUCKY(dmin).
If dmax > d0 output FAIL.

7 For i from 0 to d0 do

8 Let σi = {ye1 , ye2 , . . . , yeτi }.
Solve the τi by τi shifted transposed Vandermonde system{

τi∑
k=1

uk(αs+j)ek = coefficient of xi in gj(x) for 0 ≤ j ≤ τi − 1

}

modulo p for u and set ĥi(y) =
∑τi
k=1 uky

ek . Note (αs+j)ek = ms+j
k .
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9 If ĥi((α)s+τi) 6= coefficient of xi in gτi then output MISSINGTERMS.

End for loop.

10 Set Hp =
∑d0
i=0 ĥi(y)xi and output Hp.

We prove that algorithm MGCD1 terminates and outputs G = gcd(A,B). We first
observe that because MGCD1 avoids bad Kronecker substitutions and bad primes, and
because the evaluation points αs+j used in PGCD1 and SGCD1 are not bad, we have
Kr(Γ)(αs+j) 6= 0 and deg gj(x) ≥ degx0

G by Lemma 5. Hence degx Ĥ = degx0
Ĝ ≥

degx0
G. Therefore, if algorithm MGCD1 terminates, the conditions A and B are prim-

itive and Ĝ|A and Ĝ|B imply Ĝ = G.
To prove termination we observe that Algorithm MGCD1 proceeds in four phases.

In the first phase MGCD1 loops while d0 > degxKr(H) = degx0
G. Because Γ is either

LC(A) or LC(B), even if Kr or p or all evaluations points are unlucky, the scaled images
in Step 6 of algorithm PGCD1 are images of a polynomial in Z[x, y] hence the λi(z)
polynomials must stabilize and algorithm PGCD1 always terminates.

Now if PGCD1 or SGCD1 output UNLUCKY(dmin) then d0 is decreased, otherwise,
they output FAIL or MISSINGTERMS or an image Hp and MGCD1 executes Step 6
at the beginning of the main loop. Eventually the call to DegreeBound in Step 6 will set
d0 = degx0

G after which unlucky Kronecker substitutions, unlucky primes and unlucky
evaluation points can be detected.

Suppose d0 = degx0
G for the first time. In the second phase MGCD1 loops while

PGCD1 outputs FAIL due to an unlucky Kronecker substitution or an unlucky prime
or bad or unlucky evaluation points or the Berlekamp-Massey algorithm stabilized too
early. If PGCD1 outputs FAIL, since we don’t know if this is due to an unlucky Kro-
necker substitution or an unlucky prime p, MGCD1 increases ri by 1 and the size of p
by 1 bit. Since there are only finitely many unlucky Kr, eventually Kr will be lucky.
And since there are only finitely many unlucky primes, eventually p be lucky. Finally,
since we keep increasing the length of p, eventually p will be sufficiently large so that
no bad or unlucky evaluations are encountered in PGCD1 and the Berlekamp-Massey
algorithm does not stabilize too early. Then PGCD1 succeeds and outputs an image
Hp with degxHp = d0 = degx0

G.
In the third phase MGCD1 loops while the σi 6⊇ Kr(hi), that is, we don’t yet have

the support for all Kr(hi) ∈ Z[y] either because of missing terms or because a λi(z)
polynomial stabilized too early in PGCD1, and went undetected.

We now prove that Step 9 of SGCD1 detects that σi 6⊇ Supp(Kr(hi)) with probability
at least 3

4 so that PGCD1 is called again in MGCD1.
Suppose σi 6⊇ Supp(Kr(hi)) for some i. Consider the first τi equations in Step 8 of

SGCD1. We first argue that this linear system has a unique solution. Let mk = αek so
that (αs+j)ek = ms+j

k . The coefficient matrix W of the linear system has entries

Wjk = ms+j−1
k for 1 ≤ j ≤ τi and 1 ≤ k ≤ τi.

W is a shifted transposed Vandermonde matrix with determinant

detW = ms
1 ×ms

2 × · · · ×ms
τi ×

∏
1≤j<k≤τi

(mj −mk).

Since mk = αek we have mk 6= 0 and since p > degyKr(H) the mk are distinct hence
detW 6= 0 and the linear system has a unique solution for u.
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Let E(y) = φp(Kr(hi)(y)) − ĥi(y) where ĥi(y) =
∑τi
k=1 uky

ek is the polynomial
in Zp[y] computed in Step 8 of SGCD1. It satisfies E(αs+j) = 0 for 0 ≤ j < τi. If
σi 6⊇ Supp(Kr(hi)) then E(y) 6= 0 and algorithm SGCD1 tests for this in Step 9 when
it checks if E(αs+τi) 6= 0. It is possible, however, that E(αs+τi) = 0. We bound the
probability that this can happen.

Lemma 10. If s is chosen at random from [1, p− 1] then

Prob[E(αs+τi) = 0] <
1

4
.

Proof. The condition in Step 13 of algorithm PGCD1 means deg h̄i(y) <
∏n
j=1 rj hence

degy(E) <
∏n
j=1 rj . Now s is chosen at random so αs+τi is random on [1, p−1] therefore

Prob[E(αs+τi) = 0] ≤
degy(E)

p− 1
<

∏n
j=1 rj

p− 1
.

Since the primes in SGCD1 satisfy p > 4
∏n
j=1 rj the result follows.

Thus eventually σi 6⊇ Supp(Kr(hi)) is detected in Step 9 of algorithm SGCD1.
Because we cannot tell whether this is caused by missing terms or λi(z) stabilizing too
early and going undetected in Steps 12 and 13 of PGCD1, we increase the size of p by 1
bit in Step 17 so that with repeated calls to PGCD1, λi(z) will eventually not stabilize
early and we obtain σi ⊇ Supp(Kr(hi)) mod p.

How many good images are needed before σi ⊇ Supp(Kr(hi)) for all 0 ≤ i ≤ d0 ? Let
pmin be the smallest prime used by algorithm PGCD1. Let N = blogpmin ||Kr(H)||c.
Since at most N primes ≥ pmin can divide any integer coefficient in Kr(H) then N + 1
good images from PGCD1 are sufficient to recover the support of Kr(H).

In the fourth and final phase MGCD1 loops calling SGCD1 while Ĥ 6= Kr(H). If
SGCD1 outputs an image Hp then since d0 = degx0

H and σi ⊇ Supp(Kr(hi)) then
Hp satisfies Hp = H mod p. The image is combined with previously computed images
in Ĥ using Chinese remaindering. But as noted in example 9, Ĥ may contain a bad
image. A bad image arises because either PGCD1 returns a bad image Hp because a
λi(z) stabilized too early or because SGCD1 uses a support with missing terms and fails
to detect it.

Consider the prime p and polynomial h(x, y) in Step 8 of MGCD1. Suppose h(x, y)
is a bad image, that is, h 6= Kr(H) mod p. We claim Steps 7−10 of MGCD1 detect this
bad image with probability at least 1/2 and since the test for a bad image is executed
repeatedly in the main loop, algorithm MGCD1 eventually detects it and removes it
hence eventually MGCD1 computes Kr(H) and terminates with output G.

To prove the claim recall that H = ∆G and LC(H) = Γ. Because Step 8 of
PGCD1 requires T ≥ #Kr(Γ) this ensures algorithm PGCD1 always outputs Hp with
LC(Hp) = Kr(Γ) mod p hence LC(h) = Kr(Γ) mod p.

If h = Kr(H) mod p and Kr(Γ)(β) 6= 0 then in Step 10 of MGCD1 h(x, β) must
divide a(x, β) and divide b(x, β) as a(x, β) = Kr(A)(x, β) and b(x, β) = Kr(B)(x, β).
Now suppose h 6= Kr(H) mod p. Then Step 10 of MGCD1 fails to detect this bad
image if KrΓ(β) 6= 0 and h(x, β)|a(x, β) and h(x, β)|b(x, β) in Zp[x]. Since degx h =
d0 = degxKr(H) it must be that h(x, β) is an associate of Kr(H)(x, β). But since
LC(h) = Kr(Γ) mod p = LC(Kr(H)) mod p we have h(x, β) = Kr(H)(x, β) mod p.
Let E = h−Kr(H) mod p. Therefore the test for a bad image h succeeds iffKr(Γ)(β) 6=
0 and E(x, β) 6= 0. Lemma 11 below implies the test succeeds with probability at least
1/2.
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Lemma 11. If β is chosen at random from [0, p− 1] then

Prob[Kr(Γ)(β) 6= 0] ≥ 3

4
and Prob[E(x, β) 6= 0] ≥ 3

4
.

Proof. The primes p chosen in Step 15 of MGCD1 satisfy p > 2δ
∏n
i=1 ri with δ ≥ 2.

Since degyKr(Γ) <
∏n
i=1 ri by Step 3 of MGCD1 then Prob[Kr(Γ)(β) mod p = 0] ≤

degy(Γ)

p < 1
4 . Since degy h <

∏n
i=1 ri by Step 13 of PGCD 1 and since ri is chosen

in Step 3 of MGCD1 so that ri ≥ degxi H we have degyKr(H) <
∏n
i=1 ri. Hence

Prob[E(x, β) = 0] ≤ degy E

p < 1
4 .

4.5 Determining t

Algorithm PGCD1 tests in Steps 9 and 10 if both of the last two discrepancies are 0
before it executes Step 11. But it is possible that in Step 11 τi < #hi.

Let Vr = (v0, v1, . . . , v2r−1) be a sequence where r ≥ 1. The Berlekamp-Massey
algorithm (BMA) with input Vr computes a feedback polynomial c(z) which is the
reciprocal of λ(z) if r = t. In PGCD1, we determine the t by computing c(z)s on the
input sequence Vr for r = 1, 2, 3, . . . . If a c(z) remains unchanged from the input Vk to
the input Vk+1, then we conclude that this c(z) is stable which implies that the last two
consecutive discrepancies are both zero, see [23, 21] for a definition of the discrepancy.
However, it is possible that the degree of c(z) on the input Vk+2 might increase again.
In [21], Kaltofen, Lee and Lobo proved (Theorem 3) that the BMA encounters the first
zero discrepancy after 2t points with probability at least

1− t(t+ 1)(2t+ 1) deg(C)

6|S|

where S is the set of all possible evaluation points. Here is an example where we
encounter a zero discrepancy before 2t points. Consider

f(y) = y7 + 60y6 + 40y5 + 48y4 + 23y3 + 45y2 + 75y + 55

over Z101 with generator α = 93. Since f has 8 terms, 16 points are required to
determine the correct λ(z) and two more for confirmation. We compute f(αj) for
0 ≤ j ≤ 17 and obtain V9 = (44, 95, 5, 51, 2, 72, 47, 44, 21, 59, 53, 29, 71, 39, 2, 27, 100, 20).
We run the BMA on input Vr for 1 ≤ r ≤ 9 and obtain feedback polynomials in the
following table.

r Output c(z)
1 69z + 1
2 24z2 + 59z + 1
3 24z2 + 59z + 1
4 24z2 + 59z + 1
5 70z7 + 42z6 + 6z3 + 64z2 + 34z + 1
6 70z7 + 42z6 + 25z5 + 87z4 + 16z3 + 20z2 + 34z + 1
7 z7 + 67z6 + 95z5 + 2z4 + 16z3 + 20z2 + 34z + 1
8 31z8 + 61z7 + 91z6 + 84z5 + 15z4 + 7z3 + 35z2 + 79z + 1
9 31z8 + 61z7 + 91z6 + 84z5 + 15z4 + 7z3 + 35z2 + 79z + 1

The ninth call of the BMA confirms that the feedback polynomial returned by the
eighth call is the desired one. But, by our design, the algorithm terminates at the third

29



call because the feedback polynomial remains unchanged from the second call. It also
remains unchanged for V4. In this case, λ(z) = z2c(1/z) = z2 + 59z + 24 has roots 56
and 87 which correspond to monomials y4 and y20 since α4 = 56 and α20 = 87. The
example shows that we may encounter a stable feedback polynomial too early.

5 Implementation and Optimizations

5.1 Evaluation

LetA,B ∈ Zp[x0, x1, . . . , xn], s = #A+#B, and d = maxni=1 di where di = max(degxi A,
degxi B). If we use a Kronecker substitution

K(A) = A(x, y, yr1 , . . . , yr1r2...rn−1) with ri = di + 1,

then degyK(A) < (d + 1)n. Thus we can evaluate the s monomials in K(A)(x, y)

and K(B)(x, y) at y = αk in O(sn log d) multiplications. Instead we first compute
β1 = αk and βi+1 = βrii for i = 1, 3, . . . , n − 2 then precompute n tables of powers

1, βi, β
2
i , . . . , β

di
i for 1 ≤ i ≤ n using at most nd multiplications. Now, for each term in

A and B of the form cxe00 x
e1
1 . . . xenn we compute c × βe11 × · · · × βenn using the tables

in n multiplications. Hence we can evaluate K(A)(x, αk) and K(B)(x, αk) in at most
nd+ns multiplications. Thus for T evaluation points α, α2, . . . , αT , the evaluation cost
is O(ndT + nsT ) multiplications.

When we first implemented algorithm PGCD we noticed that often well over 95%
of the time was spent evaluating the input polynomials A and B at the points αk.
This happens when #H � #A + #B. The following method uses the fact that for a
monomial Mi(x1, x2, . . . , xn)

Mi(β
k
1 , β

k
2 , . . . , β

k
n) = Mi(β1, β2, . . . , βn)k

to reduce the total evaluation cost from O(ndT+nsT ) multiplications to O(nd+ns+sT ).
Note, no sorting on x0 is needed in Step 4b if the monomials in the input A are are
sorted on x0.

Algorithm Evaluate.

Input A =
∑m
i=1 cix

ei
0 Mi(x1, . . . , xn) ∈ Zp[x0, . . . , xn], T > 0, β1, β2, . . . , βn ∈ Zp, and

integers d1, d2, . . . , dn with di ≥ degxi A .

Output yk = A(x0, β
k
1 , . . . , β

k
n) for 1 ≤ k ≤ T .

1 Create the vector C = [c1, c2, . . . , cm] ∈ Zmp .

2 Compute [βji : j = 0, 1, . . . , di] for 1 ≤ i ≤ n.
3 Compute Γ = [Mi(β1, β2, . . . , βn) : 1 ≤ i ≤ m].
4 For k = 1, 2, . . . , T do

4a Compute the vector C := [Ci × Γi for 1 ≤ i ≤ m].
4b Assemble yk =

∑m
i=1 Cix

ei
0 = A(x0, β

k
1 , . . . , β

k
n).

The algorithm computes yk as the matrix vector product.
Γ1 Γ2 . . . Γm
Γ1

2 Γ2
2 . . . Γm

2

...
...

...
...

Γ1
T Γ2

T . . . Γm
T




c1 x
e1
0

c2 x
e2
0

c3 x
e3
0

...
cm x

em
0

 =


y1

y2

...
yT

 .
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Even with this improvement evaluation still takes most of the time so we must parallelize
it. Each evaluation of A could be parallelized in blocks of size m/N for N cores. In
Cilk C, this is only effective, however, if the blocks are large enough (at least 50,000) so
that the time for each block is much larger than the time it takes Cilk to create a task.
For this reason, it is necessary to also parallelize on k. To parallelize on k for N cores,
we multiply the previous N values of C in parallel by the vector

ΓN = [Mi(β1, β2, . . . , βn)N : 1 ≤ i ≤ m]

Because most of the time is still in evaluation, we have considered the asymptotically
fast method of van der Hoven and Lecerf [16] and how to parallelize it. For our evaluation
problem it has complexity O(nd+ns+s log2 T ) which is better than our O(nd+ns+sT )
method for large T . In [26], Monagan and Wong implemented this method using 64 bit
machine integers and in comparing it with our method used here, found the break even
point to be around T = 500.

5.2 The non-monic case and homogenization.

Algorithm PGCD interpolates H = ∆G from scaled monic images K(Γ)(αj)gj(x) which
are computed in Step 6. If the number of terms of ∆ is m and m > 1 then it is likely
that #H is greater than #G, which means we need more evaluation points for sparse
interpolation. For sparse inputs, this may increase t by a factor of m.

One such example occurs in multivariate polynomial factorization. Given a polyno-
mial f in Z[x0, x1, . . . , xn], factorization algorithms first identify and remove repeated
factors by doing a square-free factorization. See Section 8.1 of [12]. The first Step of
square-free factorization computes

g = gcd(f, h =
∂f

∂x0
).

Then we have Γ = gcd(LC(f), LC(h)) = gcd(LC(f), dLC(f)) = LC(f) and ∆ =
LC(f)/LC(g) which can be a large polynomial.

Obviously, if either A or B is monic in xi for some i > 0 then we may simply
use xi as the main variable our GCD algorithm instead of x0 so that #Γ = #∆ = 1.
Similarly, if either A or B have a constant term in any xi, that is, A =

∑
j=0 ajx

j
i and

B =
∑
j=0 bjx

j
i and either a0 or b0 are integers, then we can reverse the coefficients

of both A and B in xi so that again #Γ = #∆ = 1. But many multivariate GCD
problems in practice do not satisfy any of these conditions.

Suppose A or B has a constant term. We propose to exploit this by homogenizing
A and B. Let f be a non-zero polynomial in Z[x1, x2, . . . , xn] and

Hz(f) = f(
x1

z
,
x2

z
, . . . ,

xn
z

)zdeg f

denote the homogenization of f in z. We have the following properties of Hz(f).

Lemma 12. Let a and b be in Z[x1, x2, ..., xn]. For non-zero a and b

(i) Hz(a) is homogeneous in z, x1, . . . , xn of degree deg a,
(ii) Hz(a) is invertible: if f(z) = Hz(a) then H−1

z (f) = f(1) = a,
(iii) Hz(ab) = Hz(a)Hz(b), and
(iv) Hz(gcd(a, b)) = gcd(Hz(a), Hz(b)).
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proof: To prove (i) let M = xd11 x
d2
2 . . . xdnn be a monomial in a and let d = deg a.

Then

Hz(M) = zd
xd11

zd1
. . .

xdnn
zdn

.

Observe that since d ≥ d1 + d2 + · · ·+ dn then degz(Hz(M)) ≥ 0 and degHz(M) = d.
Properties (ii) and (iii) follow easily from the definition of Hz. To prove (iv) let g =
gcd(a, b). Then a = gā and b = gb̄ for some ā, b̄ with gcd(ā, b̄) = 1. Now

gcd(Hz(a), Hz(b)) = gcd(Hz(gā), Hz(gb̄))

= gcd(Hz(g)Hz(ā), Hz(g)Hz(b̄)) by (iii)

= Hz(g)× gcd(Hz(ā), Hz(b̄)) up to units.

Let c(z) = gcd(Hz(ā), Hz(b̄)) in Z[z, x1, . . . , xn]. It suffices to prove that gcd(ā, b̄) = 1
implies c(z) is a unit. Now c(z) = gcd(Hz(ā), Hz(b̄)) ⇒ c(z)|Hz(ā) and c(z)|Hz(b̄)
which implies

Hz(ā) = c(z)q(z) and Hz(b̄) = c(z)r(z)

for some q, r ∈ Z[z, x1, . . . , xn]. ApplyingH−1 to these relations we get ā = c(1)q(1) and b̄ =
c(1)r(1). Now gcd(ā, b̄) = 1 implies c(1) is a unit and thus q(1) = ±ā and r(1) = ±b̄.
We need to show that c(z) is a unit. Let d = degHz(ā). Since degHz(ā) = deg ā by (i)
and q(1) = ±ā then deg q(1) = d and hence deg q(z) ≥ d. Now since Hz(ā) = c(z)q(z) it
must be that deg c(z) = 0 and deg q(z) = d. Since c(1) = ±1 then deg c(z) = 0 implies
c(z) = ±1. 2.

Properties (iii) and (iv) mean we can compute G = gcd(A,B) using

G = H−1
z gcd(Hz(A), Hz(B)).

Notice also that homogenization preserves sparsity. To see why homogenization may
help we consider an example.

Example 11. Let G = x2+y+1, Ā = xy+x+y+1 = (y+1)x+(y+1) = (x+1)y+(x+1)
and B̄ = x2y + xy2 + x2 + y2 = (y + 1)x2 + y2(x + 1). Then Hz(G) = z2 + yz + x2,
Hz(Ā) = z2 + (x+ y)z + xy, and Hz(B̄) = (x2 + y2)z + (x2y + xy2).

Notice in Example 11 that A and B are neither monic in x nor monic in y but since
A has a constant term, Hz(A) is monic in z. If we use x as x0 in Algorithm PGCD then
Γ = gcd(y+1, y+1) = y+1 = ∆ and we interpolate H = ∆G = (y+1)x2 +(y2 +2y+1)
and t = 3. If we use y as x0 in Algorithm PGCD then Γ = gcd(x+1, x+1) = x+1 = ∆
and we interpolate H = ∆G = (x + 1)y + (x3 + x2 + x + 1) and t = 4. But if we use
use z as x0 in Algorithm PGCD then Γ = gcd(1, x2 + y2) = 1 hence ∆ = 1 and we
interpolate Hz(G) = z2 + yz + x2 and t = 1.

If A or B has a constant term then because homogenizing A and B means Γ ∈ Z and
∆ ∈ Z, we always homogenize if #Γ > 1. There is, however, a cost to in homogenizing
for the GCD problem, namely, we increase the number of variables to interpolate by 1
and we increase the cost of the univariate images in Zp[z] if the degree increases. The
degree may increase by up to a factor of n + 1. For example, if G = 1 +

∏n
i=0 x

d−1
i ,

Ā = 1 +
∏n
i=0 xi and B̄ = 1 −

∏n
i=0 xi then degxi A = d = degxi B but degzHz(A) =

(n + 1)d = degzHz(B). Homogenizing can also increase t when G has many terms of
the same total degree.
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5.3 Bivariate images

Recall that we interpolate H =
∑dG
i=0 hi(x1, . . . , xn)xi0 where H = ∆G. The number of

evaluation points used by algorithm PGCD is 2t + O(1) where t = maxdGi=0 #hi. Since
the cost of our algorithm is multiplied by the number of evaluation points needed we
can reduce the cost of algorithm PGCD if we can reduce t.

Algorithm PGCD interpolates H from univariate images in Zp[x0]. If instead we
interpolate H from bivariate images in Zp[x0, x1], this will likely reduce t when #∆ = 1
and when #∆ > 1. For our benchmark problem, where ∆ = 1, doing this reduces t
from 1198 to 130 saving a factor of 9.2. On the other hand, we must now compute
bivariate GCDs in Zp[x0, x1]. To decide whether this will lead to an overall gain, we
need to know and the cost of computing bivariate images and the likely reduction in t.

To compute a bivariate GCD in Zp[x0, x1] we have implemented Brown’s dense
modular GCD algorithm from [5]. If G is sparse, then for sufficiently large t and n,
G is likely dense in x0 and x1, so using a dense GCD algorithm is efficient. The
complexity of Brown’s algorithm is O(d3) arithmetic operations in Zp where d =
max1

i=0(degxi A,degxi B). Thus if this cost is less than the cost of evaluating the in-
puts, which using our evaluation algorithm from 3.2 is s multiplications in Zp where
s = #A + #B, then the cost of the bivariate images does not increase the overall
cost of the algorithm significantly. For our benchmark problem, s = 2 × 106 and
d3 = 403 = 64, 000 so the cost of a bivariate image is negligible compared with the cost
of an evaluation.

Let us write

H =

d0∑
i=0

hi(x1, . . . , xn)xi0 =

d0∑
i=0

d1∑
j=0

hij(x2, . . . xn)xi0x
j
1

and define t1 = max #hi and t2 = max #hij . The ratio t1/t2 is reduction of the number
of evaluation points needed by our algorithm. The maximum reduction in t occurs
when the terms in H are distributed evenly over the coefficients of H in x1, that is,
then t1/t2 = 1 + d1 = 1 + degx1

∆ + degx1
G. For some very sparse inputs, there is no

gain. For example, for
H = xd0 + xd1 + xd2 + · · ·+ xdn + 1

we have t1 = n and t2 = n− 1 and the gain is negligible.
If H has total degree D and H is dense then the number of terms in hi(x1, . . . , xn) is(

D−i+n
n

)
which is a maximum for h0 where #h0 =

(
D+n
n

)
. A conservative assumption is

that #hi is proportional to
(
n+D−i

n

)
and similarly #hij is proportional to

(
n−1+D−(i+j)

n−1

)
.

In this case, the reduction is a factor of

#h0

#h00
=

(
n+D

n

)
/

(
n− 1 +D

n− 1

)
=
n+D

n
.

For our benchmark problem where n = 8 and D = 60 this is 8.5 = 68
8 .

6 Benchmarks

We have implemented algorithm PGCD for 31, 63 and 127 bit primes in Cilk C. For
127 bit primes we use the 128 bit signed integer type __int128_t supported by the gcc
compiler. We parallelized evaluation (see Section 3.2) and we interpolate the coefficients
hi(y) in parallel in Step 11 of Algorithm PGCD1.
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The new algorithm requires 2t+ δ images (evaluation points) for the first prime and
t + 1 images for the remaining primes. The additional image (t + 1 images instead of
t) is used to check if the support of H (see Step 9 of Algorithm SGCD1) obtained from
the first prime is correct.

To assess how good our new algorithm is, we have compared it with the serial
implementations of Zippel’s algorithm in Maple 2016 and Magma V2.22. For Maple we
are able to determine the time spent computing G modulo the first prime in Zippel’s
algorithm. It is typically over 99% of the total GCD time. The reason for this is that
Zippel’s algorithm requires O(ndt) images for the first prime but only t+ 1 images for
the remaining primes.

We also timed Maple’s implementation of Wang’s EEZ-GCD algorithm from [35, 36].
It was much slower than Zippel’s algorithm on these inputs so we have not included
timings for it. Note, older versions of Maple and Magma both used the EEZ-GCD
algorithm for multivariate polynomial GCD computation.

All timings were made on the gaby server in the CECM at Simon Fraser University.
This machine has two Intel Xeon E-2660 8 core CPUs running at 3.0 GHz on one core and
2.2 GHz on 8 cores. Thus maximum parallel speedup is a factor of 16× 2.2/3.0 = 11.7.

6.1 Benchmark 1

For our first benchmark (see Table 3) we created polynomials G, Ā and B̄ in 6 variables
(n = 5) and 9 variables (n = 8) of degree at most d in each variable. We generated
100d terms for G and 100 terms for Ā and B̄. That is, we hold t approximately fixed
to test the dependence of the algorithms on d.

The integer coefficients of G, Ā, B̄ were generated at random from [0, 231 − 1]. The
monomials in G, Ā and B̄ were generated using random exponents from [0, d − 1] for
each variable. For G we included monomials 1, xd0, x

d
1, . . . , x

d
n so that G is monic in all

variables and Γ = 1. Maple and Magma code for generating the input polynomials is
given in the Appendix.

Our new algorithm used the 62 bit prime p = 29 × 257 + 1. Maple used the 32 bit
prime 232 − 5 for the first image in Zippel’s algorithm.

New GCD algorithm Zippel’s algorithm
n d t 1 core (eval) 16 cores Maple Magma
5 5 110 0.29s (64%) 0.074s (3.9x) 3.57s 0.60s
5 10 114 0.62s (68%) 0.091s (6.8x) 48.04s 6.92s
5 20 122 1.32s (69%) 0.155s (8.5x) 185.70s 296.06s
5 50 121 3.48s (69%) 0.326s (10.7x) 1525.80s > 105s
5 100 123 7.08s (69%) 0.657s (10.8x) 6018.23s NA
5 200 125 14.64s (71%) 1.287s (11.4x) NA NA
5 500 135 38.79s (71%) 3.397s (11.4x) NA NA
8 5 89 0.27s (61%) 0.065s (4.2x) 32.47s 2.28s
8 10 110 0.63s (65%) 0.098s (6.4x) 138.41s 7.33s
8 20 114 1.35s (66%) 0.163s (8.3x) 664.33s 78.77s
8 50 113 3.52s (66%) 0.336s (10.5x) 6390.22s 800.15s
8 100 121 7.43s (68%) 0.645s (11.5x) NA 9124.73s

Table 3: Real times (seconds) for GCD problems.
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In Table 3 column d is the maximum degree of the terms of G, Ā, B̄ in each variable,
column t is the maximum number of terms of the coefficients of G. Timings are shown
in seconds for the new algorithm for 1 core and 16 cores. For 1 core we show the %age of
the time spent evaluating the inputs, that is computing K(A)(x0, α

j) and K(B)(x0, α
j)

for j = 1, 2, . . . , T . The parallel speedup on 16 cores is shown in parens.
Table 3 shows that most of the time in the new algorithm is in evaluation. It shows

a parallel speedup approaching the maximum of 11.7 on this machine. There was a
parallel bottleneck in how we computed the λi(z) polynomials that limited parallel
speedup to 10 on these benchmarks. For N cores, after generating a new batch of N
images we used the Euclidean algorithm for Step 12b which is quadratic in the number
of images j computed so far. To address this we now use an incremental version of the
Berlekamp-Massey algorithm which is O(Nj).

6.2 Benchmark 2

Our second benchmark (see Table 4) is for 9 variables where the degree of G, Ā, B̄ is at
most 20 in each variable. The terms are generated at random as before but restricted to
have total degree at most 60. The row with #G = 104 and #A = 106 is our benchmark
problem from Section 1. We show two sets of timings for our new algorithm. The first
set is for projecting down to univariate image GCDs in Zp[x0] and the second set it for
bivariate GCDs and consequently the values of t are different.

The timings for the new algorithm are for the first prime only. Although one prime
is sufficient for these problems to recover H that is, no Chinese remaindering is needed,
our algorithm uses an additional 63 bit prime to verify H mod p1 = H. The time for
the second prime is always less than 50% of the time for the first prime because it needs
only t+1 points instead of 2t+δ points and it does not need to compute degree bounds.

For #G = 103, #A = 105, the time of 497.2s breaks down as follows. 38.2s was
spent in computing degree bounds for G, 451.2s was spent in evaluation, of which 43.2s
was spent computing the powers. Using the support of H from this first prime it took
220.9s to compute H modulo a second prime.

Table 4 shows again that most of the time in the new algorithm is in evaluation.
This is also true of Zippel’s algorithm and hence of Maple and Magma too. Because
Maple uses random evaluation points, and not a power sequence, the cost of each eval-
uation in Maple is O(n(#A+ #B)) multiplications instead of #A+ #B evaluations for
the new algorithm. Also, Maple is using % p to divide in C which generates a hard-
ware division instruction which is much more expensive than a hardware multiplication
instruction. For the new algorithm, we are using Roman Pearce’s implementation of
Möller and Granlund [25] which reduces division by p to two multiplications plus other
cheap operations. Magma is doing something similar. It is using floating point primes
(25 bits) so that it can multiply modulo p using floating point multiplications. This is
one reason shy Maple is slower than Magma.

In comparing the new algorithm with Maple’s implementation of Zippel’s algorithm,
for n = 8, d = 50 in Table 3 we achieve a speedup of a factor of 1815 = 6390.22/3.52
on 1 core. Since Zippel’s algorithm uses O(dt) points and our Ben-Or/Tiwari algorithm
uses 2t+O(1) points, we get a factor of O(d) speedup because of this.
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7 Conclusion and Final Remarks

We have shown that a Kronecker substitution can be used to reduce a multivariate GCD
computation to bivariate by using a discrete logs Ben-Or/Tiwari point sequence. Our
parallel algorithm is fast and practical. For polynomials in more variables or higher
degree algorithm PGCD may need a prime p larger than what a 63 bit prime for a 64
bit machine. Can we do anything to reduce the size of the prime needed?

We cite the sparse interpolation methods of Garg & Schost [10], Giesbrecht & Roche
[14] and Arnold, Giesbrecht and Roche [1] which can use a smaller prime and would
also use fewer than 2t + O(1) evaluations. These methods compute ai = Kr(A)(x, y),
bi = Kr(B)(x, y) and gi = gcd(ai, bi) all mod 〈p, yqi − 1〉 for several primes qi and
recover the exponents of y in Kr(H) using Chinese remaindering. The algorithms differ
in the size of qi and how they avoid and recover from exponent collisions modulo qi.
It is not clear whether this approach can work for the GCD problem as these methods
assume a division free evaluation but computing gi modulo 〈p, yqi−1〉 requires division
and y = 1 may be bad or unlucky. These methods also require qi � t which means
computing gi modulo 〈p, yqi − 1〉 will be expensive for large t. Instead of pursuing this
direction we chose to implement a 127 bit prime version of our algorithm which proved
to be not difficult. A 127 bit prime will cover almost all multivariate GCD problems
arising in practice.
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Appendix

Maple code for the 6 variable gcd benchmark.

r := rand(2^31);

X := [u,v,w,x,y,z];

getpoly := proc(X,t,d) local i,e;

e := rand(0..d);

add( r()*mul(x^e(),x=X), i=1..t );

end:

infolevel[gcd] := 3; # to see output from Zippel’s algorithm

for d in [5,10,20,50,100] do

s := 100; t := 100*d;

g := add(x^d,x=X) + r() + getpoly(X,t-7,d-1);

abar := getpoly(X,s-1,d) + r(); a := expand(g*abar);

bbar := getpoly(X,s-1,d) + r(); b := expand(g*bbar);

st := time(); h := gcd(a,b); gcdtime := time()-st;

printf("d=%d time=%8.3f\n",d,gcdtime);

end do:

Magma code for the 6 variable gcd benchmark.

39



p := 2^31;

Z := IntegerRing();

P<u,v,w,x,y,z> := PolynomialRing(Z,6);

randpoly := function(d,t)

M := [ u^Random(0,d)*v^Random(0,d)*w^Random(0,d)

*x^Random(0,d)*y^Random(0,d)*z^Random(0,d) : i in [1..t] ];

C := [ Random(p) : i in [1..t] ];

g := Polynomial(C,M);

return g;

end function;

for d in [5,10,20,50] do

s := 100; t := 100*d;

g := u^d+v^d+w^d+x^d+y^d+z^d + randpoly(d,t-7) + Random(p);

abar := randpoly(d+1,s-1) + Random(p); a := g*abar;

bbar := randpoly(d+1,s-1) + Random(p); b := g*bbar;

d; time h := Gcd(a,b);

end for;
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