
Parallel Sparse Polynomial Multiplication Using Heaps

Michael Monagan
Department of Mathematics

Simon Fraser University
Burnaby, B.C. V5A 1S6, CANADA.

mmonagan@cecm.sfu.ca

Roman Pearce
Department of Mathematics

Simon Fraser University
Burnaby, B.C. V5A 1S6, CANADA.

rpearcea@cecm.sfu.ca

ABSTRACT
We present a high performance algorithm for multiplying
sparse distributed polynomials using a multicore processor.
Each core uses a heap of pointers to multiply parts of the
polynomials using its local cache. Intermediate results are
written to buffers in shared cache and the cores take turns
combining them to form the result. A cooperative approach
is used to balance the load and improve scalability, and the
extra cache from each core produces a superlinear speedup
in practice. We present benchmarks comparing our parallel
routine to a sequential version and to the routines of other
computer algebra systems.

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algebraic Algorithms

General Terms: Algorithms, Design, Performance

Keywords: Parallel, Sparse, Polynomial, Multiplication

1. INTRODUCTION
As multicore computers become standard there arises a

need to exploit the additional computing power provided by
Moore’s law. This paper develops a parallel algorithm for
multiplying sparse distributed polynomials that is designed
to extract maximum performance from modern processors
where multiple identical cores share a large L3 cache.

Let f and g be polynomials stored in a sparse distributed
format that is sorted with respect to a monomial order <.
We shall write the terms of f as f = f1 + f2 + · · ·+ f#f and
g as g = g1 + g2 + . . . + g#g. Our task is to compute the

product h = f × g =
P#f
i=1

P#g
j=1 figj .

The fastest sequential algorithm is due to Johnson in [7].
It uses a binary heap to simultaneously merge each fi × g.
Elements of the heap contain a pointer to fi and gj and the
monomial of figj . After a product fi × gj is extracted from
the heap and added onto the end of the result, we compute
and insert fi× gj+1. The algorithm is fast because the heap
has at most #f elements so it often fits in the CPU cache.

For sparse multiplications that produce O(#f#g) terms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’09, July 28–31, 2009, Seoul, Republic of Korea.
Copyright 2009 ACM 978-1-60558-609-0/09/07 ...$5.00.

Johnson’s heap algorithm uses O(#f#g log min(#f,#g))
monomial comparisons which is the best complexity known.
For dense multiplications that produce O(#f + #g) terms
Monagan and Pearce [11, 12] show how to modify the heap
so that only O(#f#g) comparisons are performed, like in a
divide-and-conquer multiplication.

Previously we found that a heap could be the fastest way
of multiplying sparse polynomials. In [11] we found that it
beat Yan’s geobucket strategy from [21] despite performing
twice as many monomial comparisons, a result we attribute
to its use of cache. In [12] a heap beat all of the computer
algebra systems tested on both sparse and dense problems,
including systems with a recursive dense representation.

Figure 1: A Symmetric Multiprocessor System.

64K L1

1MB L2

64K L1

1MB L2

64K L1

1MB L2

64K L1

1MB L2

Memory

Figure 1 shows a symmetric multiprocessor machine with
shared memory. The four cores may be separate processors
or part of the same physical chip, but they communicate in
random access memory. For problems that are CPU bound
this is often sufficient. For example, if each core performs a
dense polynomial multiplication using a classical algorithm
it does O(#f#g) multiplications to produce O(#f + #g)
terms. Most of the work is independent, and the relatively
small results can be merged efficiently in shared memory.

In a memory bound computation the cores cooperate to
process a massive amount of data. The speed of memory is
already a bottleneck so you can not get a parallel speedup
if RAM is also used for communication. Figure 2 shows the
Intel Core i7 processor introduced at the end of 2008. Each
core now has a smaller L2 cache for its own computations,
but a large shared L3 cache provides a way to transfer data
between cores. AMD processors also use this design, which
is what we need to run memory bound parallel algorithms.

Figure 2: The Core i7 Quad Core CPU.

32K L1

256K L2

32K L1

256K L2

32K L1

256K L2

32K L1

256K L2

8MB Shared L3

Sparse polynomial multiplication is memory bound when
the product has O(#f#g) terms. Our algorithm, which we
present in §2, was designed for processors like the Core i7.
In §3 we present benchmarks, and in §4 we discuss previous
work and the prospects for multicore computer algebra.

2. ALGORITHM
In designing the parallel algorithm we chose to give each

core the task of merging some of the {fig} with a heap. In
addition to being the fastest method, it makes the best use
of the small cache in each core. Our heaps use five words of
memory per term of f , and only three words if the problem
is dense, so if each term of f is two words (128 bits) we can
multiply by 18000 terms with the L2 cache on the Core i7.
Figure 3 shows the structure of the algorithm. The shaded
strips are products fi × g that we assign to the first core.

Figure 3: Parallel Multiplication Using Heaps.

Local Heaps

Global
Heap

g

f

1

3

2

4

We partition the problem into strips so that the threads
start and stop at the same time. This is needed to achieve
linear speedup. We divide the work as follows. Let X be the
actual number of CPU cores. We compute t = 3

√
#f and

create p = min(t/2, X) threads. Each thread is given #f/p
terms of f in t blocks of size t2/p to multiply by g. Large
blocks improve the cache performance [8] and increase the
effectiveness of the “chaining” optimization from [12].

The results from all the threads are merged together in a
global heap. If a separate thread were used for this task it
would expose our program to context switches, so this task
is shared among the threads. After computing some terms
each thread tries to acquire a lock for the global heap. If it
succeeds the thread enters a critical section to merge some
of the intermediate results. Otherwise it continues merging
terms from its local heap. We give more details in §2.2.

Finally we must consider how to transfer data from the
threads to the global heap. We will have each thread write
its result to a finite circular buffer that is read by the global
merge. The speed of these buffers is critical. Larger buffers
reduce synchronization but steal cache from the algorithm.
On sparse problems the buffers’ cost largely determines the
parallel speedup. This problem was difficult to solve so we
explain our solution in detail.

2.1 Buffer Implementation
To efficiently transfer data between the cores, we need to

understand how the processor in Figure 2 works. Consider
a word of data stored at a memory address x. When a core
loads the value at x into a register the data is fetched from
memory and a copy is kept in the L1 cache. For an inclusive
cache extra copies are kept in the L2 and L3 caches as well.

Then if the core modifies the value at x, the new value is
written to the cache(s) and main memory is updated later.

If a second core now modifies the value at x, for example
by setting the value to zero, a cache coherence protocol [17]
is used to invalidate any copies of the data in the caches of
the other cores. The next time a core reads x it must fetch
the data from L3. This process is costly, and it is the main
reason why sharing variables in multiple threads is slow.

Now consider the problem of transferring data from one
thread to another using a finite array. This is the classical
“producer and consumer” problem often seen in textbooks.
A typical solution involves semaphores that are modified by
both threads whenever data is written or read. In practice
this approach can not be that fast.

Our buffer is based on [15], which allows the number of
items written and read to be updated independently. In the
structure below, w and r are counters that are initialized to
zero. Their values modulo the buffer size give an index into
the array where the data is stored. When the buffer size is
a power of two this division may be done with bitwise and.
We have modified the buffer to place w and r on different
cache lines so that false sharing does not occur.

Figure 4: Circular Buffer Implementation.

wr

N−1

w mod Nr mod N

0

#define N 65536 /* size in words (512 K) */
#define MASK (N-1) /* (i & MASK) = i mod N */
#define LINE 64 /* bytes per cache line */
struct fifo {

long r; /* words read */
char pad1[LINE - sizeof(long)];
long w; /* words written */
char pad2[LINE - sizeof(long)];
long data[N];

};

For good performance the reader must avoid accessing w
and the writer must avoid accessing r. The value of w − r
is the number of words that are already in the buffer. The
reader can read all of those words before accessing w again.
Likewise, N − w + r is the number of words that can be
written to the buffer before the writer must access r again.
On average this reduces synchronization by a factor of N/2.

Note that the approach requires some way to atomically
store a long. For most architectures this is an inherent part
of the instruction set and C code will suffice. Otherwise an
atomic operation such as compare and swap could be used.
Another problem is that w and r can only be incremented
after data is written or read, but compilers and processors
may reorder loads and stores. Memory barriers are needed
to enforce the correct order, as shown below.

void fifo_put1(struct fifo *f, long v) {
f->data[f->w & MASK] = v; /* f->w mod N */
write_barrier(); /* finish write */
f->w++;

}

long fifo_get1(struct fifo *f) {
long v = f->data[f->r & MASK]; /* f->r mod N */
read_barrier(); /* finish read */
f->r++;
return v;

}

2.2 Scheduling
Our next task is to balance the work done by the threads

between the local and the global heap. Suppose one thread
produces a block of terms that are all strictly greater than
the terms being produced by the other threads. This block
is consumed by the global heap immediately. In that case
we want the thread producing the block to do less work on
the global heap to avoid starvation, while the other threads
do more work on the global heap to compensate.

It is important to do this load balancing without a lot of
communication because the task is already memory bound.
Our threads act independently, in a manner similar to [16].
Each thread uses the number of terms in its own buffer to
determine the role it should play during the computation.

Let p be the number of threads and let N be the buffers’
capacity in terms. In the main loop for each thread we will
know k, the number of terms in the buffer the last time we
checked. We will compute min(N − k,N/p) terms and add
them to the buffer, update k, and try to acquire the lock for
the global heap. When we get the lock we will compute up
to min(k,N/p) new terms of the result. Otherwise, we will
continue merging terms from the local heap.

The ratio N/p ensures that the threads synchronize with
a minimum frequency proportional to the number of cores.
This does not limit scalability in practice, since we already
use at most (3

√
#f)/2 threads. Our primary concern is the

actual performance with 2 to 64 cores, and experimentation
lead us to use this approach.

One tricky problem that we solved was sharply degraded
performance on a system under load. With other programs
running in the background, our performance is proportional
to the number of available cores. This is accomplished by a
short sleep of 10 microseconds when a thread’s buffer is full
and it can not acquire the lock for the global heap. Rather
than busywait we briefly yield to the operating system. The
length of time controls how aggressive our program is when
other programs are running and was chosen by experiment.
We trust the operating system to run the threads at about
the same rate and to maintain processor affinity. If no other
programs are running the algorithm rarely blocks.

2.3 Pseudo Code
We now present the algorithm, beginning with the main

routine that is run on each thread. This function merges a
subset of the partial products fig and writes the result to a
buffer B. The input includes the total number of threads p
and a unique number r ∈ {1, 2, . . . p}. The threads multiply
every pth term of f by g, starting with fr. We removed the
cache blocking on f to simplify the presentation.

Products in the heap are represented as triples [i, j,Mij]
and denoted fi × gj . Mij is the monomial of figj , which we
compute when inserting the product into the heap. We also
refer to that monomial as mon(H1) where H1 is a product.
Finally, mon(fi) and cof(fi) denote the monomial and the
coefficient of a polynomial term fi.

The main loop proceeds in three stages. First, the largest
element of the heap is extracted, giving the monomial M of
the next term. Coefficients are multiplied and accumulated
in the variable C as products with the same monomial are
extracted and merged. We keep track of the products that
are merged by adding them to a set Q.

Second, using Q we insert the successors of each product
that was merged in stage one. For fi×gj we insert fi×gj+1

if it exists, and for j = 1 we insert the next term of f times
g1 if it exists. This avoids adding new elements to the heap
until they must be compared. Combined with the chaining
optimization, it reduces the complexity of dense univariate
multiplications to O(#f#g) [11, 12]. Finally, if the current
term is non-zero we insert it into the buffer B.

In the third stage we recompute the number of terms in
the buffer and try to acquire the lock for the global heap.
Both operations read data from other cores, so this stage is
executed infrequently. We use a counter k that decrements
as the buffer is filled, starting from at most N/p. When the
buffer is full and the global heap lock can not be acquired,
we sleep for 10 microseconds before trying again.

Before each thread terminates, it must signal that it has
finished sending terms and is not simply blocked. We store
this information in the buffer structure, and write close(B)
for the setting of this data.

Subroutine: Local Heap Merge.
Input: f, g ∈ Z[x1, ..., xn], monomial order <, buffer B,

thread number r, total number of threads p.
Output: terms of the product are written to B.
Locals: heap H, set Q, monomial M , coefficient C.
Globals: lock L, buffer capacity N (in terms).

H := an empty heap ordered by < with max element H1

insert [r, 1, mon(fr) ·mon(g1)] = fr × g1 into H
k := N/p
while |H| > 0 do

(i, j, M) := extract max(H)
C := cof(fi) · cof(gj)
Q := {(i, j)}
while |H| > 0 and mon(H1) = M do

(i, j, M) := extract max(H)
C := C + cof(fi) · cof(gj)
Q := Q ∪ {(i, j)}

for all (i, j) ∈ Q do
if j < #g then

insert fi × gj+1 into H
if j = 1 and i + p ≤ #f then

insert fi+p × g1 into H
if C 6= 0 then

insert the term (C, M) into the buffer B
k := k − 1
while k = 0 do

k = |B|
if trylock(L) then

global heap merge(min(k, N/p), <)
release(L)

else if k = N then
sleep for 10 microseconds

k = min(N − k, N/p)
close(B)
return

Our next routine is the global merge which can be called
by any thread. When it is first called, some buffers may be
empty and the global heap does not yet exist. The function
begins by building the global heap, and it aborts if a buffer
is empty but is still sending terms. Once every buffer has a
term in the heap it computes the next term of the result.

We will use a global set P to initialize the global heap G
similar to how Q was used to update H in the last routine.
P is a set of buffers that is pre-initialized by the outermost
routine. The heap elements are now of the form [B,C,M],
where C and M are the coefficient and monomial of a term
and B is a pointer to the buffer they came from. There is a
test for |G| = 0 since we may discover that all buffers have
stopped sending terms, in which case we should quit.

Subroutine: Global Heap Merge.
Input: max iterations i, monomial order <.
Output: terms of the result are written to h.
Locals: coefficients K, C, monomial M , buffer B.
Globals: heap G, set P , polynomial h.

while i > 0 do
i := i− 1
for all B in P do

if B is not empty then
extract the next term (C, M) from the buffer B
insert [B, C, M] into G
P := P \ {B}

else if not is closed(B) then
return

if |G| = 0 then return
(B, C, M) := extract max(G)
P := {B}
while |G| > 0 and mon(G1) = M do

(B, K, M) := extract max(G)
C := C + K
P := P ∪ {B}

if C 6= 0 then
append the term (C, M) to h

return

Finally we present the outermost routine that sets up the
algorithm and runs the threads. Once they finish it merges
any remaining terms and returns the product h. There are
some important things to note. The buffers must be passed
by reference so that threads write to the objects in P . The
lock protects P as the threads are spawned.

Algorithm: Sparse Polynomial Multiplication.
Input: f, g ∈ Z[x1, . . . , xn], monomial order <,

number of threads p.
Output: h = f · g.
Globals: heap G, set P , lock L, buffer capacity N (in terms),

result polynomial h.
G := an empty heap ordered by < with max element G1

P := a set of p empty buffers
L := an unheld lock
h := 0
lock(L)
for i from 1 to p do

spawn local heap merge(f, g, <, Pi, i, p)
release(L)
sleep until all threads complete
global heap merge(#f#g, <)
return h

Our implementation has two additional optimizations to
improve the performance. First, the merge of all remaining
terms is performed in local heap merge by the thread which
merges f#f × g, i.e., the thread assigned the last term of f .
Second, only p − 1 threads are spawned; the parent thread
is used to run the last local heap merge.

2.4 Implementation
We implemented the algorithm in C using Posix threads.

In our software (sdmp), we represent polynomials as sorted
arrays of monomial and coefficient pairs. Monomials can be
one or more words, and we have an option to pack multiple
exponents into each word to increase speed and reduce the
storage cost. We use word operations to compare, multiply,
and divide monomials. The coefficients are always integers.

An integer coefficient x is stored as 2x + 1 if |x| < 2β−2

where β is the base of the machine. For example x = 5 is
stored as 11. We use assembly code to accumulate products

of these integers [12]. For multiprecision integers we store a
pointer to a GMP structure and call the mpz t routines [6].
The data structure for the polynomial

Ax3 +Bxy3z + Cxy2z − 8y3z − 5

in lexicographical order with x > y > z where A,B and C
are multiprecision integers is shown below.

Figure 5: Polynomial Data Structure

−5−8

x y z

Poly 5

packing

xyz xyz xyz

121

xyz

000

xyz

300 032131

GMP B GMP CGMP A

Among the optimizations we made to the single threaded
routine, the most important was chaining (see [12]). When
a new element is inserted into the heap we do comparisons
to determine its position. If we detect equality, rather than
enlarge the heap we attach the new element to the existing
one to form a chain (a linked list) of like terms. We extract
and merge all elements in a chain with one heap operation.
Chaining reduces both the size of the heap and the number
of monomial comparisons.

Another optimization is that each thread reuses working
storage while computing the coefficient of the current term.
The single threaded algorithm generates no garbage, and if
all the integers are small then the multithreaded algorithm
generates no garbage as well. However, when multiprecision
coefficients are written to a buffer we copy them into blocks
of memory and write pointers instead. In the future we plan
to recycle these blocks to reduce the garbage generated.

3. BENCHMARKS
We conducted benchmarks using two different quad core

processors. The first is an Intel Core i7 920 2.66GHz. This
processor is shown in Figure 2. It has a large 8MB shared
L3 cache which we thought would speed up memory bound
parallel algorithms. We also tested the older Intel Core 2
Q6600 2.4GHz which is commonly found in desktop PCs.
This processor resembles Figure 1 except that each pair of
cores shares a faster 4MB L2 cache.

The Core i7 computer has 6GB of DDR3 RAM and runs
Fedora 10 Linux with the 2.6.27 kernel. The Core 2 machine
has 4GB of DDR2 RAM and runs Fedora 9 with the 2.6.26
kernel. Our software (sdmp) was compiled using GCC 4.3.2.
These benchmarks use lexicographical order with all of the
exponents packed into one 64-bit word.

Although the Core i7 has four cores, each core is able to
simultaneously execute two threads, albeit at a slower rate.
We disabled this feature because the operating system did
not always distribute the load across physical cores, leading
to inconsistent times for 2 to 6 threads. In the benchmarks
speedup is calculated relative to the sequential routine [12],
we did not run the parallel algorithm with only one thread.

3.1 Sparsity and Speedup
We generated random univariate polynomials with 8192

terms and coefficients chosen from (−99, 99). Starting with
e0 = 0, the next exponent ei+1 was chosen by adding a
random integer to ei. Two polynomials were generated and
multiplied modulo 32003. The range of the random integers

used to generate the exponents affects the sparsity of the
computation. We measure the sparsity of h = f × g as the
work per term

W (f, g) = (#f#g)/#h

that is needed to produce the result (see [12]). For example,
W (f, g) = 1.021 means 81922/1.021 = 65.7 million terms
were produced totalling 1000 MB. In Figure 6 we graph the
speedup obtained for different sparsities on the Core i7.

Figure 6: Sparsity vs. Parallel Speedup over Zp
(totally sparse) 1 ≤W (f, g) ≤ 4096.25 (totally dense)

threads

p
ar

al
le

l
sp

ee
d

u
p

2 3 4

5

4

3

2

1
1

6

W(f,g) = 1.021

W(f,g) = 1.361

W(f,g) = 2.054

W(f,g) = 3.637

W(f,g) = 5.912

W(f,g) = 133.7

W(f,g) = 2737

W(f,g) = 11.16

W(f,g) = 21.72

W(f,g) = 41.11

W(f,g) = 2040

As sparsity increases and W (f, g) → 1, communication
increases and parallel speedup decreases. This overhead is
offset by the extra cache available to the parallel algorithm.
Overall the result is very good. We have linear speedup at
W (f, g) = 3.637 and we never drop below 3x on four cores.
Our results for Z are identical except that W (f, g) = 1.021
reaches only 3.12x. For dense problems the heaps collapse
and the algorithm is 4.66x faster on four cores. Otherwise,
problems that generate fewer than 1.85 million terms run at
least five times faster using four threads on the Core i7.

The Core i7 has exceptional performance because of its
combination of dedicated caches and a large shared cache.
The Core 2 Q6600 has 32KB of dedicated cache per core
and did not perform as well. We achieved linear speedup at
W (f, g) = 6, and from W (f, g) = 11 to W (f, g) = 2040 the
speedup varied between 4.2x and 4.7x with four cores. For
W (f, g) = 2737 the speedup reached 6.02x, and on dense
problems it reached 4.4x. On sparse problems the speedup
was poor because each pair of cores communicates over the
front side bus. For W (f, g) = 1.021 the speedup was 1.79x,
2.70x, and 2.67x with 2, 3, and 4 cores respectively, which
suggests that we were limited by the memory bandwidth.

3.2 Dense Benchmark
Let f = (1 + x+ y + z + t)30 and g = f + 1. We multiply

h = f × g. The polynomials have 46376 terms and 61 bit
coefficients and their product has 635376 terms and 128 bit
coefficients. The problem is due to Fateman in [3].

In addition to our software (sdmp), we tested Maple [10],
Magma [2], Singular [5], Pari/GP [14], and Trip [4]. Trip is
the only other multithreaded program and it supports both
recursive sparse and recursive dense polynomials. We used
rational coefficients to benchmark Trip. Pari also uses the
recursive dense representation but with integer coefficients.
Maple, Magma, Singular, and sdmp use sparse distributed
representations with integer coefficients.

Table 1: Fateman benchmark, W (f, g) = 3332.

threads Core i7 Core 2 Quad

sdmp

4 11.48 s 6.15x 14.15 s 4.25x
3 16.63 s 4.24x 19.43 s 3.10x
2 28.26 s 2.50x 28.29 s 2.13x
1 70.59 s 60.25 s
4 23.76 s 3.89x 26.86 s 3.94x

Trip 1.0 beta2 3 31.05 s 2.97x 35.65 s 2.97x
recursive dense 2 46.56 s 1.98x 52.98 s 1.99x

1 92.38 s 105.78 s
4 29.36 s 3.26x 31.95 s 3.38x

Trip 1.0 beta2 3 36.00 s 2.66x 39.96 s 2.71x
recursive sparse 2 50.96 s 1.88x 56.68 s 1.91x

1 95.74 s 108.15 s
Magma 2.15-8 1 526.12 s
Pari/GP 2.3.3 1 642.74 s 707.61 s
Singular 3-1-0 1 744.00 s 1048.00 s
Maple 13 1 5849.48 s 9343.68 s

This result is also very good, but notice how sdmp with
one thread is slower on the newer and faster Core i7 CPU.
Intel has traded raw sequential performance in the form of
a large L2 cache for improved parallel performance with an
even larger but slower L3 cache and smaller dedicated L2s.
Multiple threads are required to achieve peak performance
on this architecture.

Figure 7: Fateman benchmark in shared memory.

20

12

4

4 12 20

threads

p
ar

al
le

l
sp

ee
d
u
p

8 16 24

24

16

8

rec. dense

rec. sparse

heap

William Stein kindly offered us the use of a large machine
to test the scalability of the algorithms in shared memory.
The computer is a four-way Intel “Dunnington” system for

which we acknowledge National Science Foundation Grant
DMS-0821725. It has four 2.66GHz Xeon X7460 CPUs with
six cores each and 16 MB of shared L3 cache. The cores in
different CPUs communicate through shared memory.

Figure 7 shows the speedup of the parallel algorithms on
the large machine. The heap can use up to 18 cores before
the performance drops off due to high latency. Sdmp would
normally limit the computation to 3

√
46376/2 = 17 threads,

which takes 3.07 seconds at 17.73x. Trip’s recursive dense
algorithm scales nicely but can not maintain linear speedup
past five threads. Its best time was 5.416 seconds at 17.51x.
The recursive sparse algorithm scaled to 8.22x on 13 cores,
taking 11.73 seconds, but beyond that we saw only minimal
increases in performance.

3.3 Sparse Benchmark
Our final benchmark is a challenge problem where we did

not do as well. Let f = (1 + x + y + 2z2 + 3t3 + 5u5)12

and g = (1 + u + t + 2z2 + 3y3 + 5x5)12. The polynomials
have 6188 terms and 37 bit coefficients. Their product has
5821335 terms and 75 bit coefficients.

We used lexicographical order with x > y > z > t > u,
but the result for graded lexicographical order was similar.
The multiplication is quite sparse and the speedup is poor.
Based on the sparisty we expected linear speedup.

Table 2: Sparse benchmark, W (f, g) = 6.577.

threads Core i7 Core 2 Quad

sdmp

4 0.59 s 2.64x 0.71 s 2.60x
3 0.74 s 2.11x 0.88 s 2.11x
2 1.00 s 1.56x 1.22 s 1.52x
1 1.56 s 1.86 s
4 1.49 s 3.19x 1.85 s 3.19x

Trip 1.0 beta2 3 1.87 s 2.55x 2.31 s 2.55x
recursive dense 2 2.59 s 1.84x 3.21 s 1.65x

1 4.76 s 5.90 s
4 1.19 s 2.50x 1.62 s 2.36x

Trip 1.0 beta2 3 1.39 s 2.15x 1.85 s 2.06x
recursive sparse 2 1.78 s 1.68x 2.32 s 1.65x

1 2.99 s 3.83 s
Magma 2.15-5 1 15.48 s
Pari/GP 2.3.3 1 59.80 s 65.35 s
Singular 3-1-0 1 26.00 s 38.00 s
Maple 13 1 135.89 s 199.86 s

Upon closer examination, we found a highly non-uniform
structure in the order of the products merged. In Figure 8
the products fi × gj are colored by rank with respect to <.
The first product merged is white and the last one is black.
Using edge-detection, we identified regions that are merged
essentially one after another. They are arranged in vertical
strips of blocks, all of which are merged sequentially.

At first we thought that this pattern might be difficult to
merge. Bottlenecks can be produced in our algorithm when
buffers are filled and emptied unevenly. However, the result
is actually due to chaining. We disabled it and the time for
one thread on the Core i7 jumped to 3.72 seconds, whereas
the time for four threads increased to only one second. The
result is much closer to linear speedup.

The sequential algorithm is particularly efficient because
the blocks and regions tend to make chains. In the parallel
algorithm they are split up and merged in different threads
which sharply reduces the effectiveness of the strategy.

We offer this problem as a challenge for other algorithms.
If a larger problem is desired one can raise the polynomials
to the 16th power instead of the 12th.

Figure 8: Sparse Benchmark

f

g

4. CONCLUSION
Early implementations of parallel algorithms for polyno-

mial multiplication include the work of Wang in [18] and
Fitch and Norman [13]. For dense univariate polynomials
f = a0 + a1x + ... + amx

m and g = b0 + b1x + ... + bnx
n

Wang used the following formula to multiply f × g:

m+nX
k=0

Ckx
k where Ck =

X
i+j=k

aibj .

Here, the Ck can be computed independently in parallel.
This approach could be applied to multivariate f(x, y, z, ...)
and g(x, y, z, ...) if they were represented in recursive form,
that is, as polynomials in x with coefficients ai and bj that
are polynomials in the other variables. This strategy is used
by Trip [4].

However, if the polynomials are dense then FFT based
methods are likely to be faster. Xavier and Iyengar’s text
[20] on parallel algorithms describes how to use an FFT to
multiply in parallel and Bini and Pan in [1] give an FFT
based parallel division algorithm. In [9], Maza et al. im-
plemented multivariate polynomial multiplication modulo a
(dense) triangular set modulo a prime using the FFT. But
for sparse polynomials the FFT is not applicable.

In this paper we have taken the fastest known sequential
method for multiplying sparse polynomials and parallelized
it. We focused on multicore processors because they are in
almost every type of computer, and we designed for newer
CPUs where shared cache is a standard feature.

Our benchmarks show that substantial speedups may be
realized because of the extra cache available to the parallel
algorithm. With four cores we often achieve a factor of five
speedup, and linear speedup is achieved in all but the most
extreme cases of sparsity. We believe that this result will be
typical in the multicore era, and that multicore processors,
far from being a burden, offer tremendous potential for new
parallel program designs. The old free lunch is replaced by
a new one, where the price of entry is that we must design
software to exploit the memory hierarchy.

Acknowledgements
We gratefully acknowledge the MITACS NCE of Canada
and NSERC of Canada for funding this work, and we thank
the anonymous referees for their comments.

5. REFERENCES
[1] D. Bini, V. Pan. Improved parallel polynomial division.

SIAM J. Comp. 22 (3) 617–626, 1993.

[2] W. Bosma, J. Cannon, and C. Playoust. The Magma
algebra system. I. The user language. J. Symb. Comp., 24
(3-4) 235–265, 1997

[3] R. Fateman. Comparing the speed of programs for sparse
polynomial multiplication. ACM SIGSAM Bulletin, 37 (1)
(2003) 4–15.

[4] M. Gastineau, J. Laskar. Development of TRIP: Fast
Sparse Multivariate Polynomial Multiplication Using Burst
Tries. Proceedings of ICCS 2006, Springer LNCS 3992
(2006) 446–453.

[5] G.-M. Greuel, G. Pfister, and H. Schönemann. Singular
3.1.0 – A computer algebra system for polynomial
computations. http://www.singular.uni-kl.de (2009).

[6] T. Granlund. The GNU Multiple Precision Arithmetic
Library, version 4.2.2. http://www.gmplib.org/ (2008).

[7] S.C. Johnson. Sparse polynomial arithmetic. ACM
SIGSAM Bulletin, 8 (3) (1974) 63–71.

[8] M. Lam, E. Rothberg, and M. Wolf. The cache performance
and optimizations of blocked algorithms. ACM SIGOPS
Operating Systems Review., 25 (1991) 63–74.

[9] X. Li and M. Moreno Maza. Multithreaded parallel
implementation of arithmetic operations modulo a
triangular set. Proc. of PASCO ’07, ACM Press, 53–59,
2007.

[10] M. Monagan, K. Geddes, K. Heal, G. Labahn,
S. Vorkoetter, J. McCarron, P. DeMarco. Maple 13
Introductory Programming Guide Maplesoft, 2009.

[11] M. Monagan, R. Pearce. Polynomial Division Using
Dynamic Arrays, Heaps, and Packed Exponent Vectors.
Proc. of CASC 2007, Springer (2007) 295–315.

[12] M. Monagan, R. Pearce. Sparse Polynomial Division Using
a Heap. submitted to J. Symb. Comp., October 2008.

[13] A. Norman, J. Fitch. CABAL: Polynomial and power series
algebra on a parallel computer. Proc. of PASCO ’97, ACM
Press, pp. 196–203, 1997.

[14] PARI/GP, version 2.3.4, Bordeaux, 2008,
http://pari.math.u-bordeaux.fr/.

[15] D. Reed, R. Kanodia. Synchronization with eventcounts
and sequencers. Comm. of the ACM, 22 (2) (1979)
115–123.

[16] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A simple
load balancing scheme for task allocation in parallel
machines. Proc. of the third annual ACM symposium on
Parallel algorithms and architectures., (1991), 237–245.

[17] P. Sweazey, A. Smith. A Class of Compatible Cache
Consistency Protocols and their Support by the IEEE
Futurebus. Proc. of 13th Annual International Symposium
on Computer Architecture, (1986), 414–423.

[18] P. Wang. Parallel Polynomial Operations on SMPs. J.
Symbolic. Comp., 21 397–410, 1996.

[19] B. Wilkinson, M. Allen. Parallel Programming: Techniques
and Applications Using Networked Workstations and
Parallel Computers. Prentice Hall, 1999.

[20] C. Xavier, S. Iyengar. Introduction to Parallel Algorithms
Wiley, 1998. Section 10.5 has an FFT based univariate
multiplication.

[21] T. Yan. The Geobucket Data Structure for Polynomials. J.
Symb. Comput. 25 (1998) 285–293.

