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ABSTRACT
We present algorithms for splitting polynomial systems using Gröb-
ner bases. For zero dimensional systems, we use FGLM to compute
univariate polynomials and factor them, placing the ideal into gen-
eral position if necessary. For positive dimensional systems, we
successively eliminate variables using F4 and use the leading co-
efficients of the last variable to split the system. We also present
a known optimization to reduce the cost of zero-reductions in F4,
an improvement for FGLM over the rationals, and an algorithm for
quickly detecting redundant ideals in a decomposition.
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1 INTRODUCTION
Gröbner bases [7] have become a practical tool for handling polyno-
mial systems in computer algebra. In a Gröbner basis computation,
pairs of polynomials (S-pairs) are chosen, the polynomials are scaled
to have equal leading terms which are cancelled, and the difference
is reduced by the current basis with respect to a term ordering.
Many pairs reduce to zero, but if a new polynomial is found it is
added to the basis and new pairs are generated with it. The result-
ing Gröbner basis, in which all pairs reduce to zero, can be used to
test ideal membership or determine properties such as the dimen-
sion of the solutions. Further processing can split the system into
irreducible components with or without multiplicities.

Early efforts at improving the efficiency of Gröbner bases focused
on avoiding unnecessary pairs. Buchberger [7] presents two criteria
which were refined by Gebauer and Möller in [22]. Faugère in the
F4 algorithm [15] replaces the polynomial division process with
sparse linear algebra. F4 constructs a matrix whose columns are
indexed by the monomials appearing in the divisions. The problem
of finding new polynomials among a batch of pairs is reduced to
finding new elements of the row space. Still, a large number of rows
reduce to zero in F4. A known improvement is to reduce random
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linear combinations of rows, stopping (probabilistically) after zero
is obtained a sufficient number of times.

In his F5 algorithm [17], Faugère addresses the problem zero-
reductions by computing Gröbner bases incrementally. Given a
Gröbner basis G and a polynomial f to be added, F5 uses criteria
based on signatures in the syzygy module to discard pairs whose
leading monomial is reducible by G. A survey of this and related
methods is given in [14].

One often wants to compute Gröbner bases for orderings that
eliminate variables. Czapor [10] suggests selecting pairs with the
smallest total degree. When a Gröbner basis is known, the FGLM
algorithm [19] can compute a Gröbner basis for another ordering
by finding linear dependencies among the monomials in increasing
order. This requires a system with a finite number of solutions or
practical bounds on the degrees. In the general case, the Gröbner
Walk [8] may be used to convert a basis to another ordering by
lifting it through the Gröbner fan along a path of adjacent orderings.

Symbolic solutions of a polynomial system can be represented
by triangular sets. A lexicographical Gröbner basis is one example,
but these can be expensive to compute due to their size and degrees
[11]. Other algorithms, such as [3] compute triangular sets directly,
splitting the system when a zero divisor is found, or in the case
of [24] when a polynomial factors. When a system can be split,
its representation as the intersection of components can be much
more compact [16].

Faugère mentions another algorithm F7 in [16] that splits poly-
nomial systems while computing Gröbner bases. We do not know
the details of this algorithm, but one idea that could be relevant is
the following. In an incremental algorithm when we are adding a
new polynomial f to a Gröbner basis G, every basis element and
matrix row is either zero moduloG or a polynomial multiple of f
modulo G . If a row reduces to zero, we have д · f ≡ 0 mod G , and
G can be split intoG + д andG : д∞. Other incremental algorithms
simultaneously compute a Gröbner basis for G + f and G : f [21],
so it seems reasonable to investigate incremental Gröbner basis
algorithms that split systems.

This paper presents several routines which can be used to factor
polynomial systems. We describe our implementations of F4 and
FGLM which compute Gröbner bases in grevlex, elimination, and
lex order over Zp and Q, and a routine to factor zero dimensional
systems based on Gianni, Trager, and Zacharias [23]. For positive
dimensional systems we eliminate variables one by one using F4,
which in some cases produces generators that factor. In general we
use extension and contraction with extra splitting where possible.

We compare our software libmgb [25] with Magma v2.22-5 [5]
on a Core i5 4570 at 3.20 GHz running 64-bit Linux. Computations
modulo p use the largest machine prime available, which is 231 − 1
for libmgb and 11863279 for Magma. The benchmark systems are
available on the second author’s webpage.
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2 THE F4 ALGORITHM
The F4 algorithm [15] selects batches of pairs of the form S (дi ,дj ) =
miдi −mjдj . The polynomialsmiдi andmjдj are inserted into a
matrix as rows, the columns of this matrix corresponding to mono-
mials in descending order. The usual strategy is to select all pairs
of least total degree in each step. The trailing monomials are tested
for divisibility, and if they are reducible, multiples of basis elements
mkдk are inserted into the matrix to cancel them off. Faugère calls
this step symbolic preprocessing. Gaussian elimination is applied
to find new rows with smaller leading terms. These polynomials
are added to the basis, and new pairs are generated with them.

Our C implementation of F4 runs over Zp [25]. We first move
the sparsest row for each leading term into a matrix of pivots. The
remaining n rows to be reduced are sorted and partitioned into sets
of size

√
n. For each set, we construct random linear combinations

of rows and reduce them, inserting new rows into the pivot matrix
as they are found. The probability of obtaining zero by chance is
approximately 1/p, so if zero is obtained k times in a row we discard
the set of rows with a probability of error of 1/pk . Once all of the
sets have been processed, we extract the new pivots and perform
back substitution to obtain a unique reduced result.

The probabilistic strategy was first developed by Allan Steel [29]
and we figured it out independently from studying Magma timings.
It works best on dense systems with many zero reductions when n
and p are large. Below is a table comparing our probabilistic F4 for
k = 1, 2, 4 to the exact routine and Magma. The times are for one
core but we show the parallel speedup on 4 cores for k = 1, where
sets of rows are processed in parallel.

The block size of
√
n was chosen experimentally. Larger blocks

can reduce the cost of zero-reductions, but smaller blocks allow
for more parallelism and faster discovery of pivots when blocks
are processed in parallel. When running in parallel, new pivots
are inserted with a non-blocking compare and swap [25]. If the
compare and swap fails we reduce the row further and try again. Our
attempts to parallelize other parts of the algorithm, e.g. symbolic
preprocessing, have so far been met with uneven success.

Table 1: Probabilistic F4 modulo p with k check primes.
speedup k=1 k=2 k=4 exact Magma

bayes148 1.24x 18.939 19.792 21.276 25.035 16.130
cyclic8 1.67x 1.077 1.200 1.446 2.577 1.134
cyclic9 2.05x 74.172 81.075 94.571 308.901 54.621
katsura10 1.75x 0.839 1.024 1.383 4.079 0.750
katsura12 2.08x 29.505 35.094 47.387 264.337 22.602
gametwo7 2.08x 8.758 9.731 11.725 28.337 6.354
jason210 1.32x 3.436 3.667 4.093 3.064 14.054
noon9 1.47x 8.888 9.932 11.390 8.965 29.754
reimer8 1.32x 19.908 22.680 28.075 39.208 18.775

Over the rationals we use Chinese remaindering and rational
reconstruction. As basis elements are recovered, they are added to
the input for the modular algorithm. This substantially improves
performance on systems where degree drops occur, e.g. cyclic-n, as
subsequent images are computed faster. For example, for cyclic-8
over Q the sequential time is reduced from 52.36 to 16.67 seconds,
and the parallel time is reduced from 32.51 to 11.53 seconds.

3 THE FGLM ALGORITHM
We implemented FGLM [19] on top of the linear algebra routines
used in F4. This algorithm takes a Gröbner basis G for a zero-
dimensional ideal I as input and computes a lexicographic basis L.
It first generates the monomials in the quotient ring k[x1, . . . ,xn]/I
using the input basis. These monomials are multiplied by each
variable and symbolic preprocessing is used to obtain a matrix A to
reduce polynomials to normal form using row reductions.

The matrix A can reduce the product of any variable and nor-
mal form in k[x1, . . . ,xn]/I . This task is usually performed using
multiplication matrices for each variable [20]. Compared to those
matrices, the matrix A has extra rows and columns and is not as
dense. We tried using back substitution to obtain the rows of the
multiplication matrices in A, but it was rarely worthwhile.

The FGLM algorithm counts up through the monomials in the
target ordering starting from 1. For each monomialmi it checks
if the normal form of mi mod G is a linear combination of the
previous normal forms. When a linear dependency is found, the
linear combination of monomials is a new polynomial to be added to
the lex basis L. Subsequent monomials considered by the algorithm
should not be reducible by any element of L.

Our first implementation of FGLM uses three auxiliary arrays:m
is an array of target monomials, R is an array of normal forms, and B
is a triangular matrix that is used to find dependencies. To compute
the normal form of a new monomial mi , there are two cases. If
mi is not reducible by G then it is already in normal form, e.g. 1.
Otherwise, we write mi as the product of a previous monomial
mj for j < i and some variable xk (usually the last variable) and
compute the normal form R[mi ] by reducing R[mj ] · xk using the
matrix A. We copy R[mi ] and attach an additional column, 1 · ei ,
which is used to track linear dependencies.

That is, we append rows of an identity matrix to the normal
forms before the linear algebra reduction. The augmented normal
form is reduced by the matrix of pivots B, and we obtain either a
linear dependency in the columns {ej : j ≤ i} or a new pivot that is
added to B with updated dependency information. The algorithm
stops when no more monomials can be generated that are not
reducible by L.

Below is a table of timings for FGLM modulo p. We show the
time spent computing normal forms and the time to detect linear
dependencies, and the total time. The cost to generate A is small,
and is equal to the total time minus the others. We include Magma
timings for comparison. Magma has a fast dense algorithm for the
shape lemma case. The timings are competitive with the version of
sparse FGLM presented in [20], but not with the version presented
by Faugère, Gaudry, and Renault in [18].

Table 2: First Version of FGLM algorithm modulo p.
sols n.form linalg total Magma

cyclic7 924 0.006 0.011 0.025 0.460
cyclic10 34940 63.364 288.541 361.810 > 10000
katsura10 1024 0.381 0.634 1.109 0.620
katsura12 4096 21.388 38.697 61.777 50.459
noon9 19665 78.039 560.858 641.541 > 10000
reimer7 2880 2.886 2.329 5.450 220.330
reimer8 14400 291.750 152.987 451.603 > 10000
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We considered parallelizing this code, but the computation of
each normal form requires the previous ones, so the maximum
speedup we could obtain would be about 3x. Instead, we sought to
address an inefficiency pointed out by a referee.

In our second version of the algorithm, we again construct the
matrix A and augment it with extra columns to keep track of the
dependencies. The difference is that rows are added directly to the
matrix A, so that normal forms and depedencies are computed in a
single row reduction. When the next monomialmi is to be reduced,
we take the previous row that was added to A after being reduced,
and scale it to obtain a row containingmi in the dependencies. This
works provided the ideal is in shape position.

The table below shows the time to construct A and run this
algorithm, compared to our previous code. There is a significant
improvement for both sparse and dense systems. We are currently
working to adapt this routine to the non shape position case. We
did not attempt to parallelize the algorithm because each iteration
of the main loop uses the result of the previous one, and the time
taken is at most a few milliseconds.

Table 3: FGLM algorithm modulo p in shape position.
sols setup A linalg previous speedup

eco12 1024 0.029 0.482 2.637 5.16x
eco14 4096 0.798 33.412 182.422 5.33x
katsura10 1024 0.025 0.276 1.109 3.68x
katsura12 4096 0.505 16.633 61.777 3.60x

Over Q, the coefficients of a lex Gröbner basis can be extremely
large so instead of applying Chinese remaindering directly, we try
to recover a much smaller triangular set [11]. This idea was noted
in [2] and has been used in various systems.

When the first image mod p is computed, we identify the univari-
ate polynomial f in the lowest variable. If gcd( f , f ′) = 1 mod p,
we multiply the remaining polynomials by f ′ and reduce modulo f .
We do this for each image, and reconstruct the basis in that form.

Dahan and Schost [11] show this form is an order of magnitude
smaller than a lex Gröbner basis. To recover the lex basis we take
the univariate polynomial f and compute the inverse 1/f ′ mod f
over the rationals. The remaining polynomials are multiplied by
the inverse and reduced modulo f .

In Table 4 below, we report the times and number of images
modulo p required to recover the lex basis using this approach
versus direct recovery. On some systems, e.g. cyclic-7, the triangular
set method destroys sparsity, which we can see from the increased
times for Chinese remaindering and rational reconstruction. For
comparison we include timings for FGLM in Magma and Singular
and a rational univariate representation [27] computed in Maple.

Making this algorithm effective required several improvements
to Maple. We implemented multivariate division by multiple poly-
nomials in C using a heap [26], and used this in the sprem and
Rem commands to compute remainders over Q and Zp . We imple-
mented rational reconstruction in the Maple kernel in C to support
FGLM with an efficient fraction free algorithm for polynomials. We
changed the extended Euclidean algorithm to use a sparse primitive
remainder sequence to compute the inverses, after we ran into a
problem on the cyclic-7 system. We needed to compute the inverse

Table 4: FGLM over Q: triangular set versus direct recovery.
triangular #p images chrem ratrec misc total
cyclic7 25 0.616 0.372 0.449 0.757 2.194
katsura7 22 0.090 0.020 0.053 20.396 20.559
reimer7 7 37.957 0.028 0.003 0.529 38.517
schwarz11 231 26.887 1.011 1.178 11.786 40.862
direct #p images chrem ratrec misc total
cyclic7 36 0.868 0.099 0.104 0.124 1.195
katsura7 2325 9.587 41.730 32.911 2.020 86.248
reimer7 156 848.083 0.559 0.215 2.959 851.816
schwarz11 429 50.330 1.377 5.856 1.046 58.609

other Magma 2.22-5 Maple RUR Singular 4.1
cyclic7 3.899 2797.951 64.630
katsura7 33.630 2.329 133.520
reimer7 357.759 > 10000 –
schwarz11 9.400 > 10000 5047.530

of f ′(x ) in the quotient field Q[x]/( f ) where f is the univariate
polynomial for cyclic-7 (see Appendix A). The Maple command

> g := gcdex(diff(f,x),f,x,'s');

solves s f ′ + t f = д for s, t ,д ∈ Q[x] where д = gcd( f ′, f ) = 1.
Thus the polynomial s (x ) is the desired inverse. Maple is using
Collins’ reduced pseudo remainder sequence (PRS), see [9]. For this
input it does not terminate because of an exponential coefficient
blowup. That this can happen was first pointed out by Brown and
Traub in [6]. The authors write:

In a normal reduced PRS, the coefficient growth is
essentially linear. In an abnormal PRS, the growth
can be exponential, but of course not as badly as in
the corresponding Euclidean PRS.

Switching to use Brown and Traub’s subresultant PRS eliminates
the exponential blowup. The largest integer coefficient in the sub-
resultant PRS sequence has 81,353 digits which is still very big. We
noticed that if we use a primitive PRS instead, and we use sparse
pseudo-division, the largest coefficient in the PRS is only 1,352
digits and the computing time is reduced from 0.751 second to 0.017
seconds. For clarity, we include details of our sparse primitive PRS
in Appendix B.

4 ZERO DIMENSIONAL SYSTEMS
To split zero-dimensional ideals we use the algorithm of Gianni,
Trager, and Zacharias [23]. As suggested by Decker, Greuel, and
Pfister [13] we factor univariate polynomials in each variable before
placing the ideal into general position, which tends to destroy
sparsity. In the last section we found lex Gröbner bases unweildy,
so we will try to avoid their construction.

Let x be the chosen variable. To split the ideal we use FGLM
to find the univariate generator of I ∩ k[x] and factor it. Let f =
f e11 f e22 . . . f

ek
k be the factorization. For a primary decomposition,

we would add each f eii to the ideal to obtain the components, and
for prime decomposition of the radical we would add each fi .

Our implementation of FGLM can optionally return the normal
forms of the target monomials {1,x ,x2, . . . }. This allows us to
rewrite each factor f eii as a linear combination of normal forms to
obtain equivalent polynomials of low degree. Our F4 code accepts
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an initial Gröbner basis as input to allow for faster recomputation
of a grevlex basis for each component.

Note that if the ideal is found to be in general position with
respect to x , that is deg( f ) is equal to the number of solutions
over the algebraic closure, then the components we obtain are
primary (or prime) and the algorithm can stop [23]. Otherwise, as a
final step we introduce a new variable z and a random linear form
f = z + c1x1 + · · ·+ cnxn and factor the univariate polynomial in z,
as in [4]. Note that if G is a Gröbner basis for I ⊂ k[x1, . . . ,xn] in
grevlex order then G ∪ { f } is a Gröbner basis in k[z,x1, . . . ,xn] in
grevlex order. That is, by placing z first we can avoid recomputing
a grevlex basis to run FGLM. The table below shows the time to
compute a prime decomposition of the radical modulo p.

Table 5: Zero Dimensional Prime Decomposition modulo p.
sols #P F4 FGLM factor 1 core 4 cores

cyclic7 924 588 0.143 0.010 0.013 3.260 1.920
eco12 1024 120 2.201 2.391 5.869 177.600 64.520
gametwo7 1854 4 9.359 7.623 22.231 61.160 48.090
katsura10 1024 14 1.073 1.136 5.239 20.770 12.060
katsura11 2048 13 5.685 8.103 29.011 121.200 72.040
reimer7 2880 264 0.806 0.205 0.012 6.520 3.640
reimer8 14400 480 21.282 4.027 0.026 231.600 99.010
schwarz11 2048 2048 0.372 0.090 0.468 271.200 119.290

We report the number of solutions, the number of components
(in column #P), and the times for the first calls of F4, FGLM, and
factorization.We see that on some systems, e.g. eco-12, recomputing
grevlex bases was expensive. This prevented us from computing
decompositions for cyclic-10 and noon-9 in grevlex order.

One can see that a significant amount of time is spent processing
systems after the initial split. For the parallel times, we usedMaple’s
Grid package to spawn extra processes for that purpose.

Over Q, the content of the normal forms of {1,x ,x2, . . . } can
be very large. To overcome this problem, we can construct the
normal forms of the factors modulo p for several primes, make
the images monic with respect to their leading terms, and apply
Chinese remaindering and rational reconstruction.

5 POSITIVE DIMENSIONAL SYSTEMS
For positive dimensional systems, we again face the problem that
a lex Gröbner basis is too expensive to compute. E.g. for cyclic-
8 modulo p a grevlex basis takes about a second, whereas a lex
basis takes over 100 seconds with F4 or over 800 seconds with the
Gröbner walk in Magma. The problem is that all of the polynomials
in the lex basis have high degrees in the lowest variables. It is much
easier to eliminate variables one by one using F4, that is, compute
I2 = I ∩ k[x2, . . . ,xn] then I3 = I2 ∩ k[x3, . . . ,xn] and so on. For
cyclic-8 this takes less than two seconds, and we obtain generators
that factor in the end.

Let us review some splitting tools from Decker et al [13]. Let I
be an ideal of R = k[x1, . . . ,xn], then:

• If f ∈ R and I : f s = I : f ∞ then I = (I : f s ) ∩ (I + f s ).
• In particular

√
I =
√
I : f ∩

√
I + f for any f ∈ R.

• If f · д ∈ I and ⟨f ,д⟩ = R then I = (I + f ) ∩ (I + д).
• In particular, for any f · д ∈ I ,

√
I =
√
I + f ∩

√
I + д.

Let c be the co-dimension of the ideal and reorder the variables
so that a maximal independent set {xc+1, . . . ,xn } comes last. Then
Ic = I ∩k[xc , . . . ,xn] is the last non-empty ideal encountered when
eliminating variables one by one.

If the generators of Ic factor then we can apply the last splitting
tool, but if the factors have high degrees then adding them to
the original ideal can produce blowup in F4. We can reduce the
degrees of the factors by computing normal forms in reverse: that
is, compute the normal form with respect to Ic−1, then Ic−2, etc.

Alternatively, if there is only one large factor we can get its
component by saturating the ideal with respect to the small factors.
This is the case, e.g. for cyclic-9, where one factor yields a large
zero-dimensional component.

The example of cyclic-9 is worth discussing because the approach
is unreasonably effective. Computing a grevlex Gröbner basis in
about a minute (modulo p) we find that the dimension of the ideal
is 2. We compute I7 = I ∩ k[x7,x8,x9] and find 425 polynomials,
all of which have a factor of f = x37x

3
8x

3
9 − 1 and another factor in

k[x8,x9]. We can quickly find f by computing a gcd. Adding f to
the ideal produces a component with dimension 2 which can be
factored further, while saturating by f produces a zero dimensional
ideal with 5796 solutions.

Of course, we may not be so lucky as to find generators that
factor in Ic . For the general case over Q, we use extension and
contraction [4, 23] to reduce the dimension of the ideal. Applied
to Ic we would compute a Gröbner basis with xc ≫ {xc+1, . . . ,xn }
and take f to be the lcm of the leading coefficients in xc . Note that
this polynomial can be very large, however we can also factor it
and use the splitting tools in the following.

For a primary decomposition we find s with I : f s = I : f ∞
and factor Ic : f s as a zero-dimensional ideal over Q(xc+1, . . . ,xn ).
Its components are contracted back to the original ring and we
recursively factor Ic + ⟨f s ⟩ which has lower dimension. For prime
decomposition of the radical we can take s = 1.

We implemented the full primary decomposition algorithm in
Maple but its performance remains unsatisfactory. Over Zp we can
use the algorithm of [28] but we have not implemented that yet.
Instead we will present a splitting algorithm that we are testing as
a preprocessor for prime decomposition of the radical. We did not
include lifting factors of Ic to normal forms modulo I .

Algorithm 1: Positive Dimensional Splitting
Input: A set of generators for I ⊂ k[x1, . . . ,xn].
Output: Ideals P1, . . . , Pk with

√
I ⊆
⋂

Pi ⊆ I
G[0] := grevlex Gröbner basis for I
for i from 1 to n do
G[i] := Gröbner basis for G[i − 1] ∩ k[xi , . . . ,xn]

in an elimination order with xi ≫ {xi+1, . . . ,xn }.
end loop
g := gcd of the polynomials in the last G[i] , ∅.
F := the set of irreducible factors of д.
return G[0] : д∞ and (G[0] ∪ f ) for each f ∈ F .

We report the time and number of components generated and
the total number of solutions in zero dimensional components. The
F4 algorithm is run with and without parallel linear algebra.



An Algorithm For Splitting Polynomial Systems Based On F4 Submitted to PASCO’17, July 2017, Kaiserslautern, Germany

Table 6: Positive Dimensional Splitting over Zp .
dim #P sols 1 core 4 cores

alea6 1 2 375 1.560 1.280
cyclic8 1 10 864 9.090 7.170
cyclic9 2 4 5796 112.780 64.010

Aggressive use of the splitting tools generates many redundant
components, so we need a fast way to detect and remove redundant
ideals in an intersection. Let {G1,G2, . . . ,Gk } be Gröbner bases for
the ideals. For eachGi make fi a random linear combination of the
polynomials in the Gröbner basis.

To test which ideals are contained within Gi (so that Gi can be
removed) we compute normal forms for all { fj | j , i} mod Gi
simultaneously using symbolic preprocessing and matrix reduction.
If an fj reduces to zero, we test explicitly if all the elements of G j
reduce to zero mod Gi with a second simultaneous normal form
computation. If so then Gi ∩G j = G j and we can remove Gi .

We implemented this algorithm over Zp and found that it runs
almost instantly. It does not detect ifGi contains the intersection
of the other ideals, so it does not produce a minimal decomposition,
only an irredundant one. Over Q we can take the Gi to be images
mod p and test fj ∈ Gi and G j ⊆ Gi over Zp before checking
containment of the original ideals over Q.

Finally, we mention our interest in splitting positive dimensional
systems is also motivated by problems where it is not practical to
compute or use a grevlex Gröbner basis for the entire system, e.g.
cyclic-10. For these problems we hoped to proceed incrementally,
computing a Gröbner basis for ⟨f1, f2⟩ and splitting, then adding
f3 to each component and splitting again, etc. Unfortunately we
found that while computing the first few incremental bases is fast,
eliminating variables from those bases can be very slow.

6 CONCLUSION
In this paper we presented our routines for splitting polynomial
systems based on F4. We first compute a grevlex basis, and if the
ideal is zero-dimensional we apply the FGLM algorithm to split the
univariate polynomials, stopping after the ideal has been in shape
position. If necessary, we introduce a new variable and random
linear form to put the ideal into shape position. When factors are
found, we rewrite them to obtain low degree polynomials that can
be added to the grevlex basis efficiently.

For positive dimensional ideals, we successively eliminate vari-
ables to intersect the ideal with a subring containing a maximal
independent set of variables and one other variable. Sometimes we
are lucky and the generators factor. Otherwise, we use extension
and contraction, splitting where possible.

Splitting positive dimensional ideals can generate many redun-
dant components. We presented a randomized algorithm to detect
these efficiently. We also presented a probabilistic improvement to
F4 which was known, and our implementation of a triangular set
approach to recovering lex bases over rationals using FGLM. Our
implementation of FGLM is based on the linear algebra from F4,
and further improvements appear to be possible.

In the future we plan to incorporate these ideas and routines
into a new general purpose polynomial system solver for Maple.
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APPENDIX A: CYCLIC 7
The cyclic n system is the system of n polynomial equations

{ f1 = 0, f2 = 0, . . . , fn−1 = 0, fn = n }

where

fi =
n∑
j=1

j+i−1∏
k=j

xk for 1 ≤ i ≤ n

with xn+j = x j so that f2 = x1x2 +x2x3 + · · ·+xn−1xn +xnx1. The
univariate polynomial f (x1) for cyclic 7 which generates the ideal
⟨f1, f2, fn−1, . . . , fn − n⟩ ∩ Q[x1] is

f := 128*x1^203-625591465*x1^196
-1379565483492966*x1^189
-69051360012922713930*x1^182
+503269676439575515122310*x1^175
-358607771626419731119489079*x1^168
-147952840877635699778667316508*x1^161
-1147922766589841137530437873498*x1^154
-3283047528072876955188179107557*x1^147
-5494471139223382529181506689788*x1^140
-6295323446544817875033709377526*x1^133
-5439730226339556502298385195313*x1^126
-4047134740954486045236505654710*x1^119
-2699447938384037396439601445910*x1^112
-1005987107212742027676051174393*x1^105
+1005987107212742027676051174393*x1^98
+2699447938384037396439601445910*x1^91
+4047134740954486045236505654710*x1^84
+5439730226339556502298385195313*x1^77
+6295323446544817875033709377526*x1^70
+5494471139223382529181506689788*x1^63
+3283047528072876955188179107557*x1^56
+1147922766589841137530437873498*x1^49
+147952840877635699778667316508*x1^42
+358607771626419731119489079*x1^35
-503269676439575515122310*x1^28
+69051360012922713930*x1^21
+1379565483492966*x1^14+625591465*x1^7-128;

APPENDIX B: THE SPARSE PRIMITIVE PRS
Let a,b ∈ Z[x] with dega ≥ degb ≥ 0. Let q, r be the quotient and
remainder of a÷b. Thus q, r satisfy a = bq+r with r = 0 or deg r <
degb. Recall that the pseudo-quotient and pseudo-remainder q̃, r̃
of a ÷ b satisfy

(i) q̃, r̃ ∈ Z[x],
(ii) µa = q̃b + r̃ with r̃ = 0 or deg r̃ < degb, and
(iii) q = q̃/µ and r = r̃/µ.

where the multiplier µ = lcoeff (b)δ with δ = max(0, dega−degb+
1). For details see Ch 2 of [12]. In the pseudo division algorithm, it
is possible that a smaller power may be used for δ such that (i ), (ii )
and (iii ) are still satisfied. A pseudo-division algorithm that uses
the smallest δ is called sparse pseudo-division. Here is Maple code
for sparse pseudo-division.

spdiv := proc(a,b,x)
# Input a,b in Z[x] with b <> 0
# Output mu in Z and pseudo remainder pr
# and pseudo quotient pq in Z[x]
local pr,pq,mu,db,dr,lb,lr;

db := degree(b,x);
lb := coeff(b,x,db);
dr := degree(a,x);
pr,pq,mu := a,0,1;
while pr<>0 and dr>=db do

lr := coeff(pr,x,dr);
qt := lr*x^(dr-db);
pr := expand(lb*pr-qt*b);
pq := lb*pq+qt;
mu := mu*lb;
dr := degree(pr,x);

end do;
return(mu,pr,pq); # mu a = pq b + pr

end proc;

Let a,b ∈ Z[x] with b , 0. To compute a−1 in Q[x]/(b) we
want to solve sa + tb = д for д, s, t ∈ Q[x] where д = gcd(a,b). If
д = 1 then s = a−1 otherwise a is not invertible. We can use the
ordinary (half) extended Euclidean algorithm (see [12] Ch 2) to do
this. Instead, to avoid fractions, we use pseudo-division. The Maple
code below uses the primitive PRS with sparse pseudo-division. It
outputs s1 ∈ Z[x] and r1 ∈ Z such that s1/r1 = a−1.

speea := proc(a,b,x)
# Input a,b in Z[x] with deg(b)>0
# Output s1 in Z[x] and r1 in Z
local r0,r1,r2,s0,s1,s2,mu,pq,g;

r0,r1 := a,b;
s0,s1 := 1,0;
while r1 <> 0 and degree(r1,x) > 0 do

mu,r2,pq := spdiv(r0,r1,x);
s2 := expand(mu*s0-pq*s1);
if r2 <> 0 then

g := igcd(icontent(r2),icontent(s2));
r0,r1 := r1,r2/g;
s0,s1 := s1,s2/g;

end if;
end do;
if r1=0 then return(FAIL) fi;
return(s1,r1); # s1/r1 = a^(-1) mod b

end proc;
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