

Introduction

The sparse polynomial GCD algorithm of Hu and Monagan [3] requires evaluating a multivariate polynomial A (with s terms) into t bivariate images, for some unknown $t \ll s$. These evaluations are the bottleneck of their algorithm, and our problem is to improve this. We outline their method below.

Input:
$$A = \sum_{i=1}^{s} a_i M_i(x_0, x_1, \dots, x_n), a_i \in \mathbb{Z}_p$$

- 1. Kronecker map $A(x_0, x_1, \ldots, x_n) \mapsto \widehat{A}(x_0, x_1, y)$.
- 2. Let $\widehat{A}(x_0, x_1, y) = \sum_{i=1}^{s} a_i X_i y^{m_i}$, where X_i is a monomial in x_0, x_1 . Find a primitive $\alpha \in \mathbb{Z}_p$ and compute $\beta_i = \alpha^{m_i}$ for i = 1..s.
- 3. Let T be the current guess for t. Evaluate \widehat{A} at y = $\alpha^0, \alpha^1, \ldots, \alpha^{T-1}$ by computing $\gamma_i = \widehat{A}(x_0, x_1, \alpha^i)$ in the following matrix-vector multiplication:

$$\begin{bmatrix} 1 & 1 \cdots & 1 \\ \beta_1 & \beta_2 \cdots & \beta_s \\ \vdots & \vdots & \vdots \\ \beta_1^{T-1} & \beta_2^{T-1} \cdots & \beta_s^{T-1} \end{bmatrix} \begin{bmatrix} a_1 X_1 \\ a_2 X_2 \\ \vdots \\ a_s X_s \end{bmatrix} = \begin{bmatrix} \gamma_0 \\ \gamma_1 \\ \vdots \\ \gamma_{T-1} \end{bmatrix}$$

The above can be done in O(sT + nd + ns) multiplications in \mathbb{Z}_p [3]. Using the fast sparse multi-point evaluation described by van der Hoeven and Lecerf in [2] (originating from [1]), we can do better!

Our parallel algorithm and implementation reduces the O(sT) cost to $O(s\log^2 T)$ under reasonable assumptions.

We begin by sorting the terms of \widehat{A} into **buckets** on the monomials $x_0^j x_1^k$. Example:

We operate on each bucket separately as a sparse univariate polynomial in y.

Fast parallel multi-point evaluation of sparse polynomials Michael Monagan and Alan Wong. Department of Mathematics, Simon Fraser University mmonagan@cecm.sfu.ca and cawong@sfu.ca

Fast Sparse Multi-Point Evaluation

Let $\widehat{A}_{jk}(y) = \sum_{i=1}^{s_{jk}} a_i y^{m_i}$ be the polynomial in bucket $x_0^j x_1^k$. We parallelize on \widehat{A}_{jk} . The **main idea** of fast evaluation [2, 1]:

> $\widehat{A}_{jk}(\alpha^0), \ldots, \widehat{A}_{jk}(\alpha^{T-1})$ are the first T coefficients of the power series expansion of the rational function

- $f(u) = \sum_{i=1}^{s_{jk}} \frac{a_i}{1 \beta_i u}$
- split f(u) into blocks $B_1(u), \ldots, B_{\lceil s_{ik}/T \rceil}(u)$ of size $\leq T$
- divide-and-conquer to compute the numerator/denominator of $B_i(u) = N_i(u)/D_i(u)$
- fast series inversion to get the power series expansion of $B_i(u)$ to $O(u^T)$
- cost: $O(\lceil \frac{s}{T} \rceil M(T) \log T) \rightarrow O(s \log^2 T)$ with FFT multiplication

As we don't know t, we use a bottom-up approach. Starting with a small guess T, we compute T evaluations to test for stabilization of the image GCD. If not stabilized, set T := 2T and repeat. To combine two adjacent blocks of size T into a 2T block we use:

$$B_L + B_R = \frac{N_L}{D_L} + \frac{N_R}{D_R} = \frac{N_L D_R + N_R D_L}{\underbrace{D_L D_R}_{\text{use fast multiplication}}} = \frac{N}{D}$$
(1)

We illustrate an example of the computation for $\widehat{A} =$ $(12)x_0^3 + (5y^7 + y^4 + 11y)x_0x_1$ over \mathbb{Z}_{17} , with $\alpha = 3$:

Parallelize each level for N cores (using Cilk C):

- Count the number of total blocks b_T which require computing their N/D using (1). In the example $b_1 = 8$, $b_2 = 3$ and $b_4 = 2$. Assign $\lfloor \frac{b_T}{N} \rfloor$ blocks to each core.
- For the series expansion, we divide the buckets into N subsets of roughly equal work.

$$= (3y^6)x_0^2x_1 + (y^{13} + 8y^2 + 14y^{14} -$$

Benchmarks

- 9 variables

			Matrix		Fast			
S	t	1 core	16 cores	Speedup	1 core	16 cores	Speedup	
10^{7}	10^{2}	7.35	0.73	10.0x	11.18	1.45	7.7x	
10^{7}	500	32.67	2.71	12.0x	27.83	2.77	10.1x	
10^{7}	10^{3}	64.32	5.29	12.2x	38.94	3.63	10.7x	
10^{7}	10^{4}	633.51	51.43	12.3x	92.25	7.77	11.9x	
10^{7}	10^{5}	6335.26	516.44	12.3x	155.58	12.72	12.2x	
10^{8}	10^{4}	6198.68	553.84	11.2x	890.20	74.48	12.0x	
10^{8}	10^{5}	-	5852.47	_	1374.74	112.52	12.2x	
10^{8}	10^{6}	-	-	_	2045.96	164.96	12.4x	

#A	#G	t	Fast	(eval)	Matrix	(eval)	Maple	Magma
10^{5}	10^{3}	36	0.1	(76%)	0.1	(55%)	341.9	63.6
10^{6}	10^{3}	40	0.5	(88%)	0.2	(66%)	5553.5	FAIL
10^{6}	10^{4}	264	0.8	(82%)	0.6	(74%)	62520.1	FAIL
10^{7}	10^{4}	256	5.8	(90%)	4.5	(88%)	-	-
10^{7}	10^{5}	2334	13.5	(77%)	36.1	(91%)	-	-
10^{7}	10^{6}	24214	91.1	(32%)	395.7	(85%)	-	-
10^{8}	10^{4}	246	46.2	(89%)	45.8	(91%)	_	-
10^{8}	10^{5}	2328	96.3	(92%)	369.2	(98%)	_	-
10^{8}	10^{6}	24214	214.9	(69%)	3691.1	(98%)	-	-
10^{8}	10^{7}	242574	3058.1	(11%)	39643.0	(93%)	-	-

References

experimental exper

• Generating random sparse polynomials with s terms and

• degree in each variable ≤ 10 , total degree ≤ 60 \bullet run the algorithm until we get at least t images • using an Intel Xeon server at 2.8/3.6 GHz, max theoretical speedup is $12.44 = 2.8/3.6 \times 16$

We inserted our fast evaluation implementation into the GCD code of [3]. Polynomials $G, \overline{A}, \overline{B}$ were created with $\#G, \#\bar{A}, \#\bar{B}$ terms (respectively), 9 variables, degree in each variable ≤ 20 , and total degree ≤ 60 .

We then constructed $A = G \cdot \overline{A}$ and $B = G \cdot \overline{B}$ as inputs to the GCD algorithm. t is the number of images required, and (eval) is the % of time spent in the evaluations. 16 cores were used for the Fast/Matrix timings.

[1] A. Bostan, G. Lecerf, É. Schost. Tellegen's principle into practice. Proceedings of ISSAC 2003, ACM, 37–44, 2013.

[2] Joris van der Hoeven and Grégoire Lecerf. On the bitcomplexity of sparse polynomial and series multiplication. J. *Symbolic Comput.*, **9**:227–254, 2013.

[3] Jiaxiong Hu and Michael Monagan. A fast sparse parallel polynomial GCD algorithm. Accepted for ISSAC 2016, 2016.