Introduction

The sparse polynomial GCD algorithm of Hu and Monagan [3] requires evaluating a multivariate polynomial A (with s terms) into t bivariate images, for some unknown $t \ll s$. These evaluations are the bottleneck of their algorithm, and our problem is to improve this. We outline their method below.

Input: $A=\sum_{i=1}^{s} a_{i} M_{i}\left(x_{0}, x_{1}, \ldots, x_{n}\right), a_{i} \in \mathbb{Z}_{p}$

1. Kronecker map $A\left(x_{0}, x_{1}, \ldots, x_{n}\right) \mapsto \widehat{A}\left(x_{0}, x_{1}, y\right)$.
2. Let $\widehat{A}\left(x_{0}, x_{1}, y\right)=\sum_{i=1}^{s} a_{i} X_{i} y^{m_{i}}$, where X_{i} is a monomial in x_{0}, x_{1}. Find a primitive $\alpha \in \mathbb{Z}_{p}$ and compute $\beta_{i}=\alpha^{m_{i}}$ for $i=1$..s.
3. Let T be the current guess for t. Evaluate \widehat{A} at $y=$ $\alpha^{0}, \alpha^{1}, \ldots, \alpha^{T-1}$ by computing $\gamma_{i}=\widehat{A}\left(x_{0}, x_{1}, \alpha^{i}\right)$ in the following matrix-vector multiplication:

$$
\left[\begin{array}{rcr}
1 & 1 \cdots & 1 \\
\beta_{1} & \beta_{2} \cdots & \beta_{s} \\
\beta_{1}^{T-1} & \beta_{2}^{T-1} & \cdots \\
\beta_{s}^{T-1}
\end{array}\right]\left[\begin{array}{c}
a_{1} X_{1} \\
a_{2} X_{2} \\
\vdots \\
a_{s} X_{s}
\end{array}\right]=\left[\begin{array}{c}
\gamma_{0} \\
\gamma_{1} \\
\vdots \\
\gamma_{T-1}
\end{array}\right]
$$

The above can be done in $O(s T+n d+n s)$ multiplications in \mathbb{Z}_{p} [3]. Using the fast sparse multi-point evaluation described by van der Hoeven and Lecerf in [2] (originating from [1]), we can do better!
Our parallel algorithm and implementation reduces the $O(s T)$ cost to $O\left(s \log ^{2} T\right)$ under reasonable assumptions. We begin by sorting the terms of \widehat{A} into buckets on the monomials $x_{0}^{j} x_{1}^{k}$. Example:

We operate on each bucket separately as a sparse univariate polynomial in y.

NSERC GRSNG

Fast Sparse Multi-Point Evaluation

Let $\widehat{A}_{j k}(y)=\sum_{i=1}^{s_{j k}} a_{i} y^{m_{i}}$ be the polynomial in bucket $x_{0}^{j} x_{1}^{k}$. We parallelize on $\widehat{A}_{j k}$. The main idea of fast evaluation [2, 1]:
$\widehat{A}_{j k}\left(\alpha^{0}\right), \ldots, \widehat{A}_{j k}\left(\alpha^{T-1}\right)$ are the first T coefficients of the power series expansion of the rational function

$$
f(u)=\sum_{i=1}^{s_{j k}} \frac{a_{i}}{1-\beta_{i} u}
$$

- split $f(u)$ into blocks $B_{1}(u), \ldots, B_{\left\lceil s_{j k} / T\right\rceil}(u)$ of size $\leq T$
- divide-and-conquer to compute the numerator/denominator of $B_{i}(u)=N_{i}(u) / D_{i}(u)$
- fast series inversion to get the power series expansion of $B_{i}(u)$ to $O\left(u^{T}\right)$
- cost: $O\left(\left\lceil\frac{s}{T}\right\rceil M(T) \log T\right) \rightarrow O\left(s \log ^{2} T\right)$ with FFT multiplication

As we don't know t, we use a bottom-up approach. Starting with a small guess T, we compute T evaluations to test for stabilization of the image GCD. If not stabilized, set $T:=2 T$ and repeat. To combine two adjacent blocks of size T into a $2 T$ block we use:

$$
\begin{equation*}
B_{L}+B_{R}=\underbrace{\frac{N_{L}}{D_{L}}+\frac{N_{R}}{D_{R}}}_{\text {from prev step }}=\underbrace{\frac{N_{L} D_{R}+N_{R} D_{L}}{D_{L} D_{R}}}_{\text {use fast multiplication }}=\frac{N}{D} \tag{1}
\end{equation*}
$$

We illustrate an example of the computation for $\widehat{A}=\left(3 y^{6}\right) x_{0}^{2} x_{1}+\left(y^{13}+8 y^{2}+14 y^{14}+\right.$ 12) $x_{0}^{3}+\left(5 y^{7}+y^{4}+11 y\right) x_{0} x_{1}$ over \mathbb{Z}_{17}, with $\alpha=3$:

Parallelize each level for N cores (using Cilk C):

- Count the number of total blocks b_{T} which require computing their N / D using (1). In the example $b_{1}=8, b_{2}=3$ and $b_{4}=2$. Assign $\left\lceil\frac{b_{T}}{N}\right\rceil$ blocks to each core.
- For the series expansion, we divide the buckets into N subsets of roughly equal work.

Benchmarks

- Generating random sparse polynomials with s terms and 9 variables
- degree in each variable ≤ 10, total degree ≤ 60
- run the algorithm until we get at least t images
- using an Intel Xeon server at $2.8 / 3.6 \mathrm{GHz}$, max theoretical speedup is $\mathbf{1 2 . 4 4}=2.8 / 3.6 \times 16$

		Matrix			Fast		
s	t	1 core	16 cores	Speedup	1 core	16 cores	
Speedup							
10^{7}	10^{2}	7.35	0.73	10.0 x	11.18	1.45	
10^{7}	500	32.67	2.71	12.0 x	27.83	2.77	
10^{7}	100^{3}	64.32	5.29	12.2 x	38.94	3.63	
10^{7}	100^{4}	633.51	51.43	12.3 x	92.25	7.77	
10^{7}	100^{5}	6335.26	516.44	12.3 x	155.58	12.72	
10^{8}	10^{4}	6198.68	553.84	11.2 x	890.20	74.48	
10^{8}	10^{5}	-5852.47	-	12.0 x			
10^{8}	10^{6}	-	-	-2045.74	112.52	12.2 x	

We inserted our fast evaluation implementation into the GCD code of [3]. Polynomials G, \bar{A}, \bar{B} were created with $\# G, \# \bar{A}, \# \bar{B}$ terms (respectively), 9 variables, degree in each variable ≤ 20, and total degree ≤ 60.

We then constructed $A=G \cdot \bar{A}$ and $B=G \cdot \bar{B}$ as inputs to the GCD algorithm. t is the number of images required, and (eval) is the $\%$ of time spent in the evaluations. 16 cores were used for the Fast/Matrix timings

$\# A$	$\# G$	t	Fast (eval)	Matrix (eval)	Maple	Magma
10^{5}	10^{3}	36	$0.1(76 \%)$	$0.1(55 \%)$	341.9	63.6
10^{6}	10^{3}	40	$0.5(88 \%)$	$0.2(66 \%)$	5553.5	FAIL
10^{6}	10^{4}	264	$0.8(82 \%)$	$0.6(74 \%)$	62520.1	FAIL
10^{7}	10^{4}	256	$5.8(90 \%)$	$4.5(88 \%)$	-	-
10^{7}	10^{5}	2334	$13.5(77 \%)$	$36.1(91 \%)$	-	-
10^{7}	10^{6}	24214	$91.1(32 \%)$	$395.7(85 \%)$	-	-
10^{8}	10^{4}	246	$46.2(89 \%)$	$45.8(91 \%)$	-	-
10^{8}	10^{5}	2328	$96.3(92 \%)$	$369.2(98 \%)$	-	-
10^{8}	10^{6}	24214	$214.9(69 \%)$	$3691.1(98 \%)$	-	-
10^{8}	10^{7}	242574	$3058.1(11 \%)$	$39643.0(93 \%)$	-	-

References

[1] A. Bostan, G. Lecerf, É. Schost. Tellegen's principle into practice. Proceedings of ISSAC 2003, ACM, 37-44, 2013.
[2] Joris van der Hoeven and Grégoire Lecerf. On the bitcomplexity of sparse polynomial and series multiplication. J. Symbolic Comput., 9:227-254, 2013.
[3] Jiaxiong Hu and Michael Monagan. A fast sparse parallel polynomial GCD algorithm. Accepted for ISSAC 2016, 2016.

