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A motivating problem about Φn(z)

Definition 1. The nth cyclotomic polynomial, Φn(z), is the
monic polynomial whose φ(n) roots are the nth primitive roots of
unity.

Φn(z) =

n∏
k=0

(k,n)=1

(z − e
2πi
n k) =

φ(n)∑
k=0

an(k)zk.

Definition 2. The nth inverse cyclotomic polynomial, Ψn(z),
is the monic polynomial whose roots are the nth nonprimitive roots of
unity. It is the polynomial satisying Φn(z)Ψn(z) = zn − 1 (see [3]).

Definition 3. We let A(n) denote the height of Φn(z): the magnitude
of its largest coefficient.

A(n) = max
0≤j≤φ(n)

|an(j)|.

The first six cyclotomic polynomials are

Φ1(z) = z − 1, Φ2(z) = z + 1, Φ3(z) = z2 + z + 1,

Φ4(z) = z2 + 1, Φ5(z) = z4 + z3 + z2 + z + 1, Φ6(z) = z2 − z + 1.

For n ≤ 6, we see that A(n) = 1. The following theorems tell us, how-
ever, that the cyclotomic polynomial coefficients can become arbitrarily large.

Theorem 4 (Erdos [1]). Let c > 0. Then there exists n such that
A(n) > nc.

Theorem 5 (Maier [2]). The set of n ∈ N satisfying A(n) > nc, for
any fixed c, has positive lower density.

The coefficients of cyclotomic polynomials that are easy to compute, however,
are typically very small. For n < 106, A(n) < 6 · 104. We were originally
motivated by the question: Given c > 0, what is the least n for which
A(n) > nc? To that end we implemented fast algorithms to compute Φn(z).
Here are our results:

Table 1: The least n for which A(n) > nc, for c = 1, 2, 3, 4

c n A(n)
1 1181895 14102773
2 43730115 862550638890874931
3 416690995 80103182105128365570406901971
4 1880394945 64540997036010911566826446181523888971563

Lemma 6. Let p - n be prime. Then Φnp(z) = Φn(zp)/Φn(z).

Lemma 7. Let q | n be prime. Then Φnq(z) = Φn(zq).

Lemma 8. Let n be odd. Then Φ2n(z) = Φn(−z).

By lemmas 7 and 8, we know if n̄ is the greatest squarefree odd divisor of n,
then A(n̄) = A(n). As such we only consider Φn(z) of odd, squarefree index.
Given n = p1p2 · · · pk, a product of k odd primes, lemma 6 outlines a way of
computing Φn(z) by a sequence of k polynomial divisions. We implemented
such a method using the Fast Fourier transform to perform fast polynomial
division (FFT, see timings); however, it was surpassed by the Sparse Power
Series (SPS) algorithm.

The palindromic property of Φn(z)
To obtainA(n), we need only compute the terms of Φn(z) up to degree φ(n)/2
and not φ(n). The coefficients of Φn(z), for n > 1 are palindromic. That

is, for Φn(z) =
∑φ(n)
k=0 an(k)zk, we have that a(φ(n) − k) = a(k). Thus it

is easy to generate the higher-degree terms of Φn(z). Lemma 9 is a more
general result which bodes useful in later algorithms.

Lemma 9. Let

f (z) =

s∏
j=1

Φnj(z) =

D∑
i=0

a(i)zi

be a degree D product of cyclotomic polynomials such that nj is odd

for 1 ≤ j ≤ s. Then a(i) = (−1)Da(D− i). In other words, the coef-
ficients of f (z) are palindromic if D is even, and antipalindromic
otherwise.

The sparse power series (SPS) method
The sparse power series (SPS or SPS1) method computes Φn(z) as
the product

Φn(z) =
∏
d|n

(1− zd)µ(n/d) (1)

We call the (1 − zd)±1 comprising Φn(z) in (1) the subterms of Φn(z).
To compute the product above efficiently, we compute Φn(z) as a truncated
power series. The sparse power series earns its name as the power series
expansion of nearly all of the subterms appearing in (1) are sparse.

As the power series expansion of (1− zd)−1 is (1 + zd + z2d + · · · ), we
can multiply a truncated power series of degree D by (1 − zd)−1 in O(D)
arithmetic operations in Z. Multiplying by (1−zd) is similarly easy. In addi-
tion, the operations on the coefficients are strictly additions and subtractions.
Using a dense representation for our truncated power series, these multiplica-
tions can be naturally done in memory; we write our resulting product over
our previous truncated power series.

Input: n a squarefree, odd integer

Output: a(0), . . . , a(
φ(n)

2 ), the first half of the coefficients of Φn(z)
// we compute terms up to degree D

D ←− φ(n)
2 , (a(0), a(1), . . . , a(D)←− (1, 0, 0, . . . , 0)

for d|n such that d < n do

if µ(nd) = 1 then // multiply by 1− zd
for i = D down to d by −1 do a(i)←− a(i)− a(i− d)

else // divide by 1− zd
for i = d to D do a(i)←− a(i) + a(i− d)

return a(0), a(1), . . . a(D)
Procedure SPS(n), computing Φn(z) as a product of sparse power
series

The operation cost of the SPS method is O(2kφ(n)).

Making SPS faster
Let n = p1p2 · · · pk be a product of k distinct odd primes. Let d1, d2, · · · d2k

be the divisors of n in the order by which the SPS algorithm iterates through
them all. The SPS algorithm computes the truncated power series of

fs(z) =

s∏
i=1

(1− zdi)µ(n/di)

for 0 ≤ s ≤ 2k, all truncated to degree φ(n)/2. If, however, for some s, fs(z)
is a polynomial of degree Ds, then we need only truncate ft, where t ≤ s, to
degree at most Ds. Moreover, if fs is a polynomial, then fs(z) is a product
of cyclotomic polynomials satisfying lemma 9, hence we need only truncate
to degree bD/2c.

More generally, if fs1, fs2, . . . , fsj are polynomials of degree
Ds1, Ds2, . . . , Dsj, then for t ≤ min1≤i≤j sj, we need only truncate ft(z)
to degree bD/2c, where D = min1≤i≤jDj. We call the degree to which we
truncate ft the degree bound of ft.

Aim: Order the divisors d|n in a manner which reduces the degree bound
over the computation of Φn(z).

The improved SPS algorithm (SPS2)
Let p be the largest prime divisor of n = mp. Then Φn(z) =
Ψm(z)Φm(zp)(zm−1)−1. We can reexpresses Ψm(z) and Φm(z) as products
of subterms of Φn(z):

Φn(z) =

( ∏
d|m,d<m

(1 − zd)−µ(md )

)(∏
d|m

(1 − zdp)µ(md )

)
(zm − 1)−1. (2)

If compute the product of subterms appearing in Ψm(z) first, we can reduce

the degree bound to bm−φ(m)
2 c when multiplying by these subterms. For n a

product of k distinct odd primes, Ψm(z) comprises 2k−1−1 of the 2k subterms
of Ψm(z). We then apply lemma 9 to compute the higher-degree terms of
Ψm(z). We then truncate to degree φ(n)/2 for the remaining subterms.
This method, which we call the improved SPS method or SPS2, saves
us roughly a factor of 2 time over SPS in practice.

The iterative SPS (SPS3)
Towards further lowering the degree bound, we introduce a cumbersome
identity. Let n = p1p2 · · · pk, a product of k distinct odd primes. For
1 ≤ i ≤ k, let mi = p1p2 · · · pi−1 and ei = pi+1 · · · pk. We set m1 = ek = 1,
and let e0 = n. Note that eipimi = n for 1 ≤ i ≤ k. By repeated appliation
of (2), we can show that

Φn(z) =

(
k∏
j=2

Ψmj(z
ej)

)(
k∏
j=1

(zn/pj − 1)−1

)
(zn − 1) (3)

For example, for n = 105 = 3 · 5 · 7,

Φ105(z) = Ψ15(z)Ψ3(z7)(z15 − 1)−1(z21 − 1)−1(z35 − 1)−1(z105 − 1)

In the iterative SPS method (SPS3), we first compute the product
Ψmk(z

ek) · · ·Ψm2(z
e2) from left to right, raising the degree bound everytime

we move onto the next Ψmj(z
ej) and leveraging lemma 9 to generate higher

degree terms of our intermediate polynomial as necessary. For the remaining
k + 1 subterms we still truncate to degree φ(n)/2 as before.

The gains SPS3 has over SPS2 are more substantial when computing
Φn(z) for n with many distinct prime factors. Timings suggest, for n with 6
or more factors, computing Φn(z) using SPS3 is between 2 and 5 times faster
than SPS2.

The recursive SPS algorithm (SPS4)
We establish an analagous identity to (3) for Ψn(z).

Ψn(z) =

k∏
j=1

Φmj(z
ej). (4)

(3) and (4) suggest a recursive method of computing Φn(z). Consider the
example of Φn(z), for n = 1155 = 3 · 5 · 7 · 11. To obtain the coefficients of
Φ1105(z) by way of SPS3, we construct the product

Ψ105(z) · Ψ15(z11)Ψ3(z77) · (1− z385)−1

· (1− z231)−1 · (1− z165)−1 · (1− z105)−1 · (1− z1155) (5)

from left to right. However, in light of (4), we know this method computes
Ψ105(z) in a wasteful manner. We can treat Ψ105(z) as a product of
cyclotomic polynomials of smaller index:

Ψ105(z) = Φ15(z)Φ5(z7)Φ1(z35) (6)

One could apply (3) yet again, now to Φ15(z), giving us

Φ15(z) = Ψ5(z) · (1− z5)−1 · (1− z3)−1 · (1− z15). (7)

Upon computing Ψ105(z), we can break the next term of (5), Ψ15(z11) into
smaller products in a similar fashion. We effectively compute Φn(z) by re-
cursion into the factors of n. We call this approach the recursive sparse
power series method or SPS4.

A visual comparison of SPS1-4
We show the growth of the degree bound over the computation of Φ43730115(z)
and Φ3234846615(z). In each version of the SPS2-4 the degree bound is at most
that of its predecessor over the computation of Φn(z). The degree bound for
SPSk, where 1 ≤ k ≤ 4 is the height of the 4 − (k − 1) darkest regions of
the plots; moreover, we think of the area of these 4 − (k − 1) regions as a
heuristic measure of the time cost of SPSk.

Figure 1: Growth of the degree bound of SPS1-4 over the computation of
Φn(z) for n = 43730115 (left) and n = 3234846615 (right)

Timings
Table 2: Time to calculate Φn(z) (in seconds*)

algorithm
n (factorization of n) FFT SPS SPS2 SPS3 SPS4 A(n)

255255 = 3 · 5 · 7 · 11 · 13 · 17 0.40 0.00 0.00 0.00 0.00 532

1181895 = 3 · 5 · 11 · 13 · 19 · 29 1.76 0.01 0.00 0.00 0.00 14102773

4849845 = 3 · 5 · 7 · 11 · 13 · 17 · 19 7.74 0.12 0.06 0.02 0.01 669606

37182145 = 5 · 7 · 11 · 13 · 17 · 19 · 23 142.37 1.75 0.95 0.23 0.19 2286541988726

43730115 = 3 · 5 · 11 · 13 · 19 · 29 · 37 140.62 1.69 0.93 0.23 0.19 (see table 1)
111546435 = 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 295.19 6.94 3.88 1.45 0.94 8161018310

1078282205 = 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 - 105.61 58.25 12.34 9.29 1558645698271916

3234846615 = 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 - 432.28 244.44 81.32 49.18 2888582082500892851

A look at cyclotomic coefficients
The plots in table 3 were produced by plotting a random subset of the terms
of Φn(z). We plot degree s on the horizontal axis and the coefficient of the
term of degree s on the vertical. The terms of some Φn(z) appear highly
structured whereas others exhibit more ”noise”.

Table 3: Plots of cyclotomic coefficients

Legend: The plots are of coefficients of Φn(z) for select n. 1st row (left to right): n =
30489595, n = 327845. 2nd row: n = 4849845, n = 111546435, n = 3234846615. 3rd row:
n = 1311052155, n = 40324935, n = 1181895, n = 43730115.

A challenge problem
The least two integers such that A(n) > n4 only differ by one prime factor.
Those are 1880394945 = 43s and 2317696095 = 53s, where s = 43730115.
We computed Φn(z), where n = s · 43 · 53 = 99660932085. A limitation of
this problem is memory. Storing the coefficients of Φn(z) as 320-bit integers
requires over 750 GB of space.

To compute Φn(z), we first compute the image of −Ψm(z) modulo
five 64-bit primes q0, · · · , q4, where m = 1880394945. We then compute
gj mod qi for 0 ≤ j < 53, 0 ≤ i < 5, where the coefficients of gj comprise

those of terms of −Ψm(z)(1− zm)−1 whose degree
52∑
j=0

zjgj(z
53) = Ψm(z)(1− zm)−1 (mod zφ(n)/2+1), (8)

We thus have that, by lemma 6,
52∑
j=0

zjgj(z
53)Φm(z53) ≡ Φn(z) mod zφ(n)/2+1. (9)

We computed gj(z)Φm(z) mod qi, 0 ≤ j < 53, 0 ≤ i < 5, and recon-
structed gj by Chinese remaindering. We distributed the computation to
three desktop computers.

A(99660932085) = 612672087174078366708962023243952601

2472525473338153078678961755149378773915536447185370,

which is roughly 2291.6 or n7.98. The computation took roughly 2 days. Two
hard disks valiantly died in previous, naive attempts to compute Φn(z).
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