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Introduction

Let I, denote the finite field with ¢ elements and let Z,, denote the
ring of integers modulo n. Let E|X| denote the expected value of a
random variable X and let Var|.X| denote the variance of X.

Let f be a polynomial in [F |x| of a given degree d > 0 and let X
be the number of distinct roots of f. Schmidt proves in Ch. 4 of [5]
that E[X]| = 1 and for d > 1, Var|X| = 1 — 1/q. This result has
been generalized by A. Knoptfmacher and J. Knopfmacher in [2]
who count distinct irreducible factors of a given degree of f. The
two main results presented 1n this poster are Theorems 1 and 2.

Motivation

Our motivation comes from the following problems in computer
algebra. Let A, B be polynomials in Z|xg, x1,...,x,] and G =
ocd(A, B). Thus A = GA and B = GB for some polynomials
A and B called the cofactors of A and B. Modular GCD algo-
rithms compute G modulo a sequence of primes p, ps, p3, ... and
recover the integer coefficients of G using Chinese remaindering.
The fastest algorithms for computing G modulo a prime p interpo-
late GG from univariate images. Maple, Magma and Mathematica all
currently use Zippel’s algorithm (see [6, 1]).

Let G = ch'l:o ci(z1,...,x,)x). Zippel’s algorithm picks a prime p
and picks points «; € I, and computes monic univariate images

g; = ged(A(xo, a;), B(xg, ;) mod p,

of (G, scales them (details omitted), then interpolates c;(x1, . .., z,),
the coefficients of &, from the coefficients of these scaled images.
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But what if ged(A(xo, o), B(xo, o)) # 1 for some j ?
Consider the following example in Z|xg, z1, T2|.
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A:x%+az2, B:x%+x2+(az1—1) and G:x%+x1x2.

Observe that for any prime p, gcd(g, E) = 11in F,|zg, x1, 25| but

gcd(g(xo, 1,5), E(xo, 1,8)) # 1 for all B € F, and therefore we
cannot use ged(A(x, 1, 8), B(x, 1, 5)) to interpolate G.
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We say «; is unlucky if ged(A(zo, ), B(x, a;)) # 1.
What is the expected number of unlucky evaluation points?
How spread out 1s the distribution from the mean?

Unlucky evaluation points also arise in our current work in [3]

where, given polynomials a, b, ¢ € Z|xy, x1, . . ., x,| with ged(a, b) =

1 we want to solve the diophantine equation ca+7b = cfor o and 7
in Z|xy, x1, . . ., ;| by interpolating ¢ and 7 modulo a prime p from
univariate images.
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First Result

Theorem 1. Let p(n) = [{ 1<i<n:gcd(z,n) = 1}| denote Euler’s totient function.
Let X be a random variable which counts the number of distinct roots of a monic
polynomial in Z,|z| of degree m > 0. Then

(a) E|X| =1 and
(b) if m =1 then Var|X| = 0, otherwise Var|X| = >, .., dop(2) = D dn Elp(m).
In particular, if n = p* where p is a prime number and k& > 1, Var[X] = k(1 — 1/p).

Remark 1. We found this result by direct computation and using the Online Ency-
lopedia of Integer Sequences (OEIS) see [4]. For polynomials of degree 2,3,4,5 1in
Z.,|x] we computed E|X| and Var| X | for n = 2,3,4,...,20 using Maple and found
that E| X | = 1 in all cases. Values for the variance are given in the table below.

n 234567 8 9 10 11 12 13 14 15 16
1 2 4 3 6 3 4 17 10 7 12 25
Var[X]1 531555 5 3 % 71 5 5 11 2 2
a(n) 124496121217 10 28 12 25 30 32

When we first computed Var| X | we did not recognize the numbers. Writing Var| X | =

a(n)/n we computed the sequence for a(n) (see the table) and looked it up in the
OEIS. We found it is sequence A006579 and that a(n) = 37~ gcd(n, k). The OEIS
also has the formula a(n) =} _;,(d — 1)o(5).

Second Result

Theorem 2. Let f,g € F,[x1,20,...,2,) be f =zt + Zi;é ci—i(Ta, ..., x,)x} and
g = dpx" + 22161 dp—i(T, ..., x,)xt where ¢; # 0, d,,, # 0, deg_; < 1 — 1, and
degd,,_; < m — 1, thus f and g have total degree [ and m respectively. Let X be
a random variable which counts the number of v = (75,...,7,) € ]FZ‘1 such that
ocd(f(z1,%2, oy Yn), g(1, %0, ., Vn)) #£ 1. If m > 1,1 > 0 and m > 0 then

(a) E[X]| = ¢"* and
(b) Var[X] = ¢" (1 — 1/q).

It follows from (a) that 1f v 1s chosen at random from IF";_l then

n—2 1

q
PfOb[ng(f(I17727 e 7771)79(:517727 s 7,771) 7& 1] — qn_l — 5

Remark 2. We found this result by computation. For quadratic polynomials f, g of

the form [ = z*+ (a1y+as)z+azy’*+ayy+as and g = x°+ (b1y+bo)x + b3y +byy +bs
over finite fields of size ¢ = 2, 3,4, 5,8, 9, 11 we generated all ¢'" pairs and computed
X =H{aelF,: gd(f(z,a),g(x,a)) # 1}|. We repeated this for cubic polynomials
and some higher degree bivariate polynomials for ¢ = 2,3 to verify that E|.X| = 1
and Var|X| = 1 — 1/q holds more generally. For yet higher degree polynomials we
used random samples. That E|X| = 1 independent of the degrees of f and g was
a surprise to us. We had expected a logarithmic dependence on the degrees of the
polynomials f and g.
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A comparison with the binomial distribution.

Let Y be a random variable from a binomial distribution B(n,p) with n trials and
probability p. So 0 <Y < n, ProblY = k] = (})p"(1 — p)" ", E[Y] = np and
Var|Y] = np(1 — p). Note that if f and g are bivariate then Theorem 2 implies that
E|X] = 1 and Var[X] = 1 — 1/q which is the same as the mean and variance of the
binomial distribution B(n, p) with n = ¢ trials and probability p = 1/¢. In the table
below we compare the two distributions for

f ="+ (a1y + as)x + (azy” + ayy + as) and
g ="+ (b + bo)x + (bsy” + byy + bs)

in F,[x,y] with ¢ = 7. Note that there are 7" pairs for f, g. In the table F}, is the
number of pairs for which ged(f(x, «), g(x, «)) # 1 for exactly k values for o € F-.
We computed Fj by computing this ged for all distinct pairs using Maple. The val-

ues for By, come from B(7,1/7). They are given by B;, = 7''Prob[Y" = k.

k 0 1 2 3 4 S 6 7
F1 196606636 110666892 56053746 17287200 1728720 0 0 132055
B 196018048 112021056 56010528 15558480 2593080 259308 14406 343

The two zeros I'5 and Fi can be explained as follows:
Let R(y) be the Sylvester resultant of f and g. We have

R(a) =0 < gcd(f(z,a),9(x,a)) # 1 fora € F,.

For our quadratic polynomials f and g one has deg R < deg f degg = 4. Hence
R(y) can have at most 4 distinct roots unless f and g are not coprime in F7|z, 3| in
which case R(y) = 0 and it has 7 roots. Therefore F; = 0, F; = 0 and F; = 132055

is the number pairs f, g which are not coprime in [F7|x, y].
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