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Mathematical Operations
Common manipulations (simplify,
factor, expand,…) Right-click expression and select from menu

Solve equations Right-click equation Solve

Solve numerically (floating-point) Right-click equation Numerically Solve 

Solve ODE Right-click DE expression Solve DE Interactively

Integrate, differentiate Right-click expression Integrate or Differentiate

Evaluate expression at a point Right-click expression Evaluate at a Point

Create a matrix or vector Matrix palette Choose Insert

Invert, transpose, solve matrix
Right-click matrix Standard Operations select
Inverse, Transpose, ...

Evaluate as floating-point Right-click expression Approximate

Various operations and tasks Use Task Templates: Tools Tasks Browse

Expressions vs. Functions
Operations Expression x2+y2 Function (operator) g(x,y) = x2+y2

Definition !"#$"%&'"(")&'* +"#$",%-)."/0""%&'()&'*

Evaluate at x=1, y=2 1234,!-"5%$6-)$'7.*"produces 5 +,6-'.*"produces 5

3-D plot for x from 0 to 1, y from 0 to 1 849:;<,!-%$=>>6-)$=>>6.* 849:;<,+,%-).-%$=>>6-)$=>>6.*

Conversion to other form
!'"#$"?@3884),!-%-).*

!',6-'.*

produces 5

+'"#$"+,%-6.*""

+'"("A*

produces x2+1+z

Units and Tolerances

Add units to value or expression
Place cursor to right of quantity. Use Units (SI) or 
Units (FPS) palette or right-click Units Affix unit.

Add arbitrary unit from Units (SI) or Units (FPS) palette and
enter desired unit

Simplify units in an expression Right-click expression Units Simplify

Convert units Right-click expression Units Convert

Enable automatic units simplification BC:D,E@C:F5G:3@<3H<7.*

Enable tolerance calculations BC:D,I941H3@J1F.*

Tolerance quantity in 2-D Math !"#$ %&% for 9 ± 1.1

Tolerance quantity in 1-D Math K"L(/"6>6* for 9 ± 1.1

Input and Output
Interactive data import assistant Tools Assistants Import Data

Import audio or image file Tools Assistants Import Data

Code generation (C, FORTRAN,
Java, Visual Basic®, MATLAB®)

Right-click expression Language Conversions. 
See ?CodeGeneration for help and details.

Publish document in HTML, PDF,
LaTeX, or Microsoft® Word-RTF

File Export As select HTML, PDF, LaTeX, 
or Rich Text Format

Select Interactive Tools and Utilities
Quick introductory tour Help Take a Tour of Maple

Show available task templates Tools Tasks Browse

Plot Builder
Right-click expression Plots Plot Builder, 
or Tools Assistants Plot Builder

ODE Analyzer Tools Assistants ODE Analyzer

Data Analysis Assistant Tools Assistants Data Analysis

Unit Conversion utility Tools Assistants Units Calculator

Back-Solving Assistant Tools Assistants BackSolver

Apply numeric formatting Right-click expression Numeric Formatting

Maple Portal Help      Manuals, Resources and more 
Maple Portal

Manuals Help Manuals, Resources, and more Manuals

Graphing Calculator Interface Installs as separate program. Launch from Start
Maple Maple Calculator

Interactive education tutors for 
topics in Calculus, Precalculus, 
and Linear Algebra

Tools Tutors
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Important Maple Syntax
#$ Assignment 3#$'*"M#$;(%*"J#$3(M* produces 5 + x for J

$ Mathematical equation F9421,'N%"("3"$"6-%.* produces x =
1-a
—
2

$ Boolean equality C!"3"$"="":D1@"O

Suppress display of output Terminate command with a colon, e.g. 6===P"#

[ ]  List (ordered) A#$5J-"M-"37*"A567* produces c

{ } Set (unordered, no duplicates) Q3-"M-"3-"JR* produces {a,b,c }

Display help on topic S:98CJ
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Plotting and Animation
Plot an existing expression - click expression Plots Plot Builder

Plot new expression Tools Assistants Plot Builder

Add new expression to existing plot Highlight and drag expression into plot

Add annotations to plots Click on plot, then on the toolbar

Animation and parameter plots for 
functions of several variables

Right-click expression Plots Plot Builder
and select a plot type
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Introduction
Let Fq denote the finite field with q elements and let Zn denote the
ring of integers modulo n. Let E[X ] denote the expected value of a
random variable X and let Var[X ] denote the variance of X .

Let f be a polynomial in Fq[x] of a given degree d > 0 and let X
be the number of distinct roots of f . Schmidt proves in Ch. 4 of [5]
that E[X ] = 1 and for d > 1, Var[X ] = 1 − 1/q. This result has
been generalized by A. Knopfmacher and J. Knopfmacher in [2]
who count distinct irreducible factors of a given degree of f . The
two main results presented in this poster are Theorems 1 and 2.

Motivation
Our motivation comes from the following problems in computer
algebra. Let A,B be polynomials in Z[x0, x1, . . . , xn] and G =
gcd(A,B). Thus A = GÂ and B = GB̂ for some polynomials
Â and B̂ called the cofactors of A and B. Modular GCD algo-
rithms compute G modulo a sequence of primes p1, p2, p3, . . . and
recover the integer coefficients of G using Chinese remaindering.
The fastest algorithms for computing G modulo a prime p interpo-
lateG from univariate images. Maple, Magma and Mathematica all
currently use Zippel’s algorithm (see [6, 1]).

Let G =
∑d

i=0 ci(x1, . . . , xn)x
i
0. Zippel’s algorithm picks a prime p

and picks points αj ∈ Fnp , and computes monic univariate images

gj = gcd(A(x0, αj), B(x0, αj)) mod p,

of G, scales them (details omitted), then interpolates ci(x1, . . . , xn),
the coefficients of G, from the coefficients of these scaled images.
But what if gcd(Â(x0, αj), B̂(x0, αj)) 6= 1 for some j ?
Consider the following example in Z[x0, x1, x2].

Â = x20 + x2, B̂ = x20 + x2 + (x1 − 1) and G = x20 + x1x2.

Observe that for any prime p, gcd(Â, B̂) = 1 in Fp[x0, x1, x2] but
gcd(Â(x0, 1, β), B̂(x0, 1, β)) 6= 1 for all β ∈ Fp and therefore we
cannot use gcd(A(x0, 1, β), B(x0, 1, β)) to interpolate G.

We say αj is unlucky if gcd(Â(x0, αj), B̂(x0, αj)) 6= 1.
What is the expected number of unlucky evaluation points?
How spread out is the distribution from the mean?

Unlucky evaluation points also arise in our current work in [3]
where, given polynomials a, b, c ∈ Z[x0, x1, . . . , xn] with gcd(a, b) =
1 we want to solve the diophantine equation σa+τb = c for σ and τ
in Z[x0, x1, . . . , xn] by interpolating σ and τ modulo a prime p from
univariate images.

First Result
Theorem 1. Let φ(n) = |{ 1≤ i≤n : gcd(i, n) = 1}| denote Euler’s totient function.
Let X be a random variable which counts the number of distinct roots of a monic
polynomial in Zn[x] of degree m > 0. Then

(a) E[X ] = 1 and
(b) if m = 1 then Var[X ] = 0, otherwise Var[X ] =

∑
d|n,d6=n

d
nφ(

n
d) =

∑
d|n

d−1
n φ(

n
d).

In particular, if n = pk where p is a prime number and k ≥ 1, Var[X ] = k(1− 1/p).

Remark 1. We found this result by direct computation and using the Online Ency-
lopedia of Integer Sequences (OEIS) see [4]. For polynomials of degree 2,3,4,5 in
Zn[x] we computed E[X ] and Var[X ] for n = 2, 3, 4, . . . , 20 using Maple and found
that E[X ] = 1 in all cases. Values for the variance are given in the table below.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Var[X] 1

2
2
3 1 4

5
3
2

6
7

3
2

4
3

17
10

10
11

7
3

12
13

25
14 2 2

a(n) 1 2 4 4 9 6 12 12 17 10 28 12 25 30 32

When we first computed Var[X ] we did not recognize the numbers. Writing Var[X ] =
a(n)/n we computed the sequence for a(n) (see the table) and looked it up in the
OEIS. We found it is sequence A006579 and that a(n) =

∑n−1
k=1 gcd(n, k). The OEIS

also has the formula a(n) =
∑

d|n(d− 1)φ(nd).

Second Result
Theorem 2. Let f, g ∈ Fq[x1, x2, . . . , xn] be f = clx

l
1 +
∑l−1

i=0 cl−i(x2, . . . , xn)x
i
1 and

g = dmx
m
1 +

∑m−1
i=0 dm−i(x2, . . . , xn)x

i
1 where cl 6= 0, dm 6= 0, deg cl−i ≤ l − i, and

deg dm−i ≤ m − i, thus f and g have total degree l and m respectively. Let X be
a random variable which counts the number of γ = (γ2, . . . , γn) ∈ Fn−1q such that
gcd(f (x1, γ2, . . . , γn), g(x1, γ2, . . . , γn)) 6= 1. If n > 1, l > 0 and m > 0 then

(a) E[X ] = qn−2 and
(b) Var[X ] = qn−2(1− 1/q).

It follows from (a) that if γ is chosen at random from Fn−1q then

Prob[ gcd(f (x1, γ2, . . . , γn), g(x1, γ2, . . . , γn) 6= 1 ] =
qn−2

qn−1
=

1

q
.

Remark 2. We found this result by computation. For quadratic polynomials f, g of
the form f = x2+(a1y+a2)x+a3y

2+a4y+a5 and g = x2+(b1y+b2)x+b3y
2+b4y+b5

over finite fields of size q = 2, 3, 4, 5, 8, 9, 11 we generated all q10 pairs and computed
X = |{α ∈ Fq : gcd(f (x, α), g(x, α)) 6= 1}| . We repeated this for cubic polynomials
and some higher degree bivariate polynomials for q = 2, 3 to verify that E[X ] = 1
and Var[X ] = 1 − 1/q holds more generally. For yet higher degree polynomials we
used random samples. That E[X ] = 1 independent of the degrees of f and g was
a surprise to us. We had expected a logarithmic dependence on the degrees of the
polynomials f and g.

A comparison with the binomial distribution.
Let Y be a random variable from a binomial distribution B(n, p) with n trials and
probability p. So 0 ≤ Y ≤ n, Prob[Y = k] =

(
n
k

)
pk(1 − p)n−k, E[Y ] = np and

Var[Y ] = np(1 − p). Note that if f and g are bivariate then Theorem 2 implies that
E[X ] = 1 and Var[X ] = 1 − 1/q which is the same as the mean and variance of the
binomial distribution B(n, p) with n = q trials and probability p = 1/q. In the table
below we compare the two distributions for

f = x2 + (a1y + a2)x + (a3y
2 + a4y + a5) and

g = x2 + (b1y + b2)x + (b3y
2 + b4y + b5)

in Fq[x, y] with q = 7. Note that there are 710 pairs for f, g. In the table Fk is the
number of pairs for which gcd(f (x, α), g(x, α)) 6= 1 for exactly k values for α ∈ F7.
We computed Fk by computing this gcd for all distinct pairs using Maple. The val-
ues for Bk come from B(7, 1/7). They are given by Bk = 710Prob[Y = k].

k 0 1 2 3 4 5 6 7
Fk 96606636 110666892 56053746 17287200 1728720 0 0 132055
Bk 96018048 112021056 56010528 15558480 2593080 259308 14406 343

The two zeros F5 and F6 can be explained as follows:
Let R(y) be the Sylvester resultant of f and g. We have

R(α) = 0 ⇐⇒ gcd(f (x, α), g(x, α)) 6= 1 for α ∈ Fq.

For our quadratic polynomials f and g one has degR ≤ deg f deg g = 4. Hence
R(y) can have at most 4 distinct roots unless f and g are not coprime in F7[x, y] in
which case R(y) = 0 and it has 7 roots. Therefore F5 = 0, F6 = 0 and F7 = 132055
is the number pairs f, g which are not coprime in F7[x, y].
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