Some results on counting roots of polynomials and the Sylvester resultant.

 Michael Monagan and Baris Tuncer, Department of Mathematics, Simon Fraser University. mmonagan@cecm.sfu.ca and ytuncer@sfu.ca
Introduction

Let \mathbb{F}_{q} denote the finite field with q elements and let \mathbb{Z}_{n} denote the ring of integers modulo n. Let $\mathrm{E}[X]$ denote the expected value of a random variable X and let $\operatorname{Var}[X]$ denote the variance of X
Let f be a polynomial in $\mathbb{F}_{q}[x]$ of a given degree $d>0$ and let X be the number of distinct roots of f. Schmidt proves in Ch. 4 of [5] that $\mathrm{E}[X]=1$ and for $d>1, \operatorname{Var}[X]=1-1 / q$. This result has been generalized by A. Knopfmacher and J. Knopfmacher in [2] who count distinct irreducible factors of a given degree of f. The two main results presented in this poster are Theorems 1 and 2 .

Motivation

Our motivation comes from the following problems in computer algebra. Let A, B be polynomials in $\mathbb{Z}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ and $G=$ $\operatorname{gcd}(A, B)$. Thus $A=G \widehat{A}$ and $B=G \widehat{B}$ for some polynomials \widehat{A} and \widehat{B} called the cofactors of A and B. Modular GCD algorithms compute G modulo a sequence of primes $p_{1}, p_{2}, p_{3}, \ldots$ and recover the integer coefficients of G using Chinese remaindering. The fastest algorithms for computing G modulo a prime p interpolate G from univariate images. Maple, Magma and Mathematica all currently use Zippel's algorithm (see [6, 1]).
Let $G=\sum_{i=0}^{d} c_{i}\left(x_{1}, \ldots, x_{n}\right) x_{0}^{i}$. Zippel's algorithm picks a prime p and picks points $\alpha_{j} \in \mathbb{F}_{p}^{n}$, and computes monic univariate images

$$
g_{j}=\operatorname{gcd}\left(A\left(x_{0}, \alpha_{j}\right), B\left(x_{0}, \alpha_{j}\right)\right) \bmod p
$$

of G, scales them (details omitted), then interpolates $c_{i}\left(x_{1}\right.$, .,$\left.x_{n}\right)$, the coefficients of G, from the coefficients of these scaled images. But what if $\operatorname{gcd}\left(\widehat{A}\left(x_{0}, \alpha_{j}\right), \widehat{B}\left(x_{0}, \alpha_{j}\right)\right) \neq 1$ for some j ? Consider the following example in $\mathbb{Z}\left[x_{0}, x_{1}, x_{2}\right]$.

$$
\widehat{A}=x_{0}^{2}+x_{2}, \widehat{B}=x_{0}^{2}+x_{2}+\left(x_{1}-1\right) \text { and } G=x_{0}^{2}+x_{1} x_{2} .
$$

Observe that for any prime $p, \operatorname{gcd}(\widehat{A}, \widehat{B})=1$ in $\mathbb{F}_{p}\left[x_{0}, x_{1}, x_{2}\right]$ but $\operatorname{gcd}\left(\widehat{A}\left(x_{0}, 1, \beta\right), \widehat{B}\left(x_{0}, 1, \beta\right)\right) \neq 1$ for all $\beta \in \mathbb{F}_{p}$ and therefore we cannot use $\operatorname{gcd}\left(A\left(x_{0}, 1, \beta\right), B\left(x_{0}, 1, \beta\right)\right)$ to interpolate G.

We say α_{j} is unlucky if $\operatorname{gcd}\left(\widehat{A}\left(x_{0}, \alpha_{j}\right), \widehat{B}\left(x_{0}, \alpha_{j}\right)\right) \neq 1$ What is the expected number of unlucky evaluation points? How spread out is the distribution from the mean?

Unlucky evaluation points also arise in our current work in [3] where, given polynomials $a, b, c \in \mathbb{Z}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ with $\operatorname{gcd}(a, b)=$ 1 we want to solve the diophantine equation $\sigma a+\tau b=c$ for σ and τ in $\mathbb{Z}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ by interpolating σ and τ modulo a prime p from univariate images.

First Result

Theorem 1. Let $\phi(n)=|\{1 \leq i \leq n: \operatorname{gcd}(i, n)=1\}|$ denote Euler's totient function. Let X be a random variable which counts the number of distinct roots of a monic polynomial in $\mathbb{Z}_{n}[x]$ of degree $m>0$. Then
(a) $\mathrm{E}[X]=1$ and
(b) if $m=1$ then $\operatorname{Var}[X]=0$, otherwise $\operatorname{Var}[X]=\sum_{d \mid n, d \neq n} \frac{d}{n} \phi\left(\frac{n}{d}\right)=\sum_{d \mid n} \frac{d-1}{n} \phi\left(\frac{n}{d}\right)$. In particular, if $n=p^{k}$ where p is a prime number and $k \geq 1, \operatorname{Var}[X]=k(1-1 / p)$.

Remark 1. We found this result by direct computation and using the Online Encylopedia of Integer Sequences (OEIS) see [4]. For polynomials of degree 2,3,4,5 in $\mathbb{Z}_{n}[x]$ we computed $\mathrm{E}[X]$ and $\operatorname{Var}[X]$ for $n=2,3,4, \ldots, 20$ using Maple and found that $\mathrm{E}[X]=1$ in all cases. Values for the variance are given in the table below.

When we first computed $\operatorname{Var}[X]$ we did not recognize the numbers. Writing $\operatorname{Var}[X]=$ $a(n) / n$ we computed the sequence for $a(n)$ (see the table) and looked it up in the OEIS. We found it is sequence A006579 and that $a(n)=\sum_{k=1}^{n-1} \operatorname{gcd}(n, k)$. The OEIS also has the formula $a(n)=\sum_{d \mid n}(d-1) \phi\left(\frac{n}{d}\right)$.

Second Result

Theorem 2. Let $f, g \in \mathbb{F}_{q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be $f=c_{l} x_{1}^{l}+\sum_{i=0}^{l-1} c_{l-i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i}$ and $g=d_{m} x_{1}^{m}+\sum_{i=0}^{m-1} d_{m-i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i}$ where $c_{l} \neq 0, d_{m} \neq 0, \operatorname{deg} c_{l-i} \leq l-i$, and $\operatorname{deg} d_{m-i} \leq m-i$, thus f and g have total degree l and m respectively. Let X be a random variable which counts the number of $\gamma=\left(\gamma_{2}, \ldots, \gamma_{n}\right) \in \mathbb{F}_{q}^{n-1}$ such that $\operatorname{gcd}\left(f\left(x_{1}, \gamma_{2}, \ldots, \gamma_{n}\right), g\left(x_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)\right) \neq 1$. If $n>1, l>0$ and $m>0$ then
(a) $\mathrm{E}[X]=q^{n-2}$ and
(b) $\operatorname{Var}[X]=q^{n-2}(1-1 / q)$.

It follows from (a) that if γ is chosen at random from \mathbb{F}_{q}^{n-1} then

$$
\operatorname{Prob}\left[\operatorname{gcd}\left(f\left(x_{1}, \gamma_{2}, \ldots, \gamma_{n}\right), g\left(x_{1}, \gamma_{2}, \ldots, \gamma_{n}\right) \neq 1\right]=\frac{q^{n-2}}{q^{n-1}}=\frac{1}{q} .\right.
$$

Remark 2. We found this result by computation. For quadratic polynomials f, g of the form $f=x^{2}+\left(a_{1} y+a_{2}\right) x+a_{3} y^{2}+a_{4} y+a_{5}$ and $g=x^{2}+\left(b_{1} y+b_{2}\right) x+b_{3} y^{2}+b_{4} y+b_{5}$ over finite fields of size $q=2,3,4,5,8,9,11$ we generated all q^{10} pairs and computed $X=\left|\left\{\alpha \in \mathbb{F}_{q}: \operatorname{gcd}(f(x, \alpha), g(x, \alpha)) \neq 1\right\}\right|$. We repeated this for cubic polynomials $\left.X=\mid \alpha, \alpha \in \mathbb{F}_{q} \cdot \operatorname{gcd}(x, \alpha), g(x, \alpha) \neq 1\right\}$. We repeated this for cubic polynomials
and some higher degree bivariate polynomials for $q=2,3$ to verify that $\mathrm{E}[X]=1$ and $\operatorname{Var}[X]=1-1 / q$ holds more generally. For yet higher degree polynomials we used random samples. That $\mathrm{E}[X]=1$ independent of the degrees of f and g was a surprise to us. We had expected a logarithmic dependence on the degrees of the polynomials f and g.

A comparison with the binomial distribution.
Let Y be a random variable from a binomial distribution $B(n, p)$ with n trials and probability p. So $0 \leq Y \leq n$, $\operatorname{Prob}[Y=k]=\binom{n}{k} p^{k}(1-p)^{n-k}, \mathrm{E}[Y]=n p$ and $\operatorname{Var}[Y]=n p(1-p)$. Note that if f and g are bivariate then Theorem 2 implies that $\mathrm{E}[X]=1$ and $\operatorname{Var}[X]=1-1 / q$ which is the same as the mean and variance of the binomial distribution $B(n, p)$ with $n=q$ trials and probability $p=1 / q$. In the table below we compare the two distributions for

$$
\begin{aligned}
& f=x^{2}+\left(a_{1} y+a_{2}\right) x+\left(a_{3} y^{2}+a_{4} y+a_{5}\right) \text { and } \\
& g=x^{2}+\left(b_{1} y+b_{2}\right) x+\left(b_{3} y^{2}+b_{4} y+b_{5}\right)
\end{aligned}
$$

in $\mathbb{F}_{q}[x, y]$ with $q=7$. Note that there are 7^{10} pairs for f, g. In the table F_{k} is the number of pairs for which $\operatorname{gcd}(f(x, \alpha), g(x, \alpha)) \neq 1$ for exactly k values for $\alpha \in \mathbb{F}_{7}$. We computed F_{k} by computing this gcd for all distinct pairs using Maple. The values for B_{k} come from $B(7,1 / 7)$. They are given by $B_{k}=7^{10} \mathrm{Prob}[Y=k]$.

k	0	1	2	3	4	5	6	7
F_{k}	96606636	110666892	56053746	17287200	1728720	0	0	132055

$B_{B_{k}} 960180481120210565601052815558480259308025930814406$
The two zeros F_{5} and F_{6} can be explained as follows:
Let $R(y)$ be the Sylvester resultant of f and g. We have

$$
R(\alpha)=0 \Longleftrightarrow \operatorname{gcd}(f(x, \alpha), g(x, \alpha)) \neq 1 \text { for } \alpha \in \mathbb{F}_{q}
$$

For our quadratic polynomials f and g one has $\operatorname{deg} R \leq \operatorname{deg} f \operatorname{deg} g=4$. Hence $R(y)$ can have at most 4 distinct roots unless f and g are not coprime in $\mathbb{F}_{7}[x, y]$ in which case $R(y)=0$ and it has 7 roots. Therefore $F_{5}=0, F_{6}=0$ and $F_{7}=132055$ is the number pairs f, g which are not coprime in $\mathbb{F}_{7}[x, y]$.

References

[1] J. de Kleine, M. B. Monagan, A. D. Wittkopf. Algorithms for the Non-monic case of the Sparse Modular GCD Algorithm. Proc. ISSAC '05, ACM Press, (2005), 124-131.
[2] Arnold Knopfmacher and John Knopfmacher. Counting irreducible factors of polynomials over finite fields. Discrete Mathematics 112 (1993) 103-118.
[3] Michael Monagan and Baris Tuncer. Using Sparse Interpolation in Hensel Lift ing. To appear in the Proceedings of CASC 2016, Springer-Verlag LNCS, 2016.
[4] Sequence http://oeis.org/A006579 in The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2010.
[5] Wolfgang Schmidt. Equations over Finite Fields: An Elementary Approach Springer-Verlag LNCS 536 (1976) Ch 4 pp. 157-159.
[6] Richard. Zippel. Probabilistic Algorithms for Sparse Polynomials, Proc. EUROSAM '79, Springer-Verlag LNCS, 2, 216-226, 1979.

