Motivation

Let $K=\mathbb{Q}\left(\alpha_{1}, \cdots, \alpha_{t}\right) \cong \mathbb{Q}\left[u_{1}, \cdots, u_{t}\right] /\left\langle m_{1}, \cdots, m_{t}\right\rangle$ be a number field with $t>1$ extensions.

How should we perform arithmetic over K ? (ex. multiply $f, g \in K[x]$)?

Overview of Strategy

1. Find a primitive element $\gamma=c_{1} \alpha_{1}+c_{2} \alpha_{2}+\cdots+c_{t} \alpha_{t}$ of $\mathbb{Q}\left(\alpha_{1}, \cdots, \alpha_{t}\right)$ satisfying $\mathbb{Q}\left(\alpha_{1}, \cdots, \alpha_{t}\right) \cong \mathbb{Q}(\gamma)$, where $c_{1}, \cdots, c_{t} \in \mathbb{Z}$, and the minimal polynomial for $m_{\gamma}(x) \in \mathbb{Q}[x]$.
2. Express α_{i} 's as elements in $\mathbb{Q}(\gamma), 1 \leq i \leq t$
3. Perform arithmetic in $\mathbb{Q}(\gamma)$.
4. Convert the result back to $\mathbb{Q}\left(\alpha_{1}, \cdots, \alpha_{t}\right)$.

In this poster, we only consider the case of $t=2$. This idea is easily generalized to arbitrarily (finitely) many extensions. Moreover, for efficiency purposes we map the coefficient field \mathbb{Q} to \mathbb{Z}_{p}, for an appropriate primes p and perform arithmetic over \mathbb{Z}_{p}, then convert the solution back to K using rational number reconstruction [3]

Example

Let $K=\mathbb{Q}(\alpha, \beta) \cong \mathbb{Q}[x, y] /\left\langle m_{1}, m_{2}\right\rangle$ where $m_{1}(y)=y^{2}-2$ and $m_{2}(x, y)=x^{2}-3$ are minimal polynomials for α and β respectively. Let $p=17$ and let

$$
r(x)=\operatorname{res}_{y}\left(m_{2}(x-1 \cdot y, y), m_{1}(y)\right)=x^{4}+7 x^{2}+1 \in \mathbb{Z}_{p}[x] .
$$

Since $r(x)$ is square-free, $\mathbb{Z}_{p}(\alpha, \beta) \cong \mathbb{Z}_{p}(\gamma=\beta+1 \cdot \alpha) \cong \mathbb{Z}_{p}[x] /\langle r(x)\rangle$ and $r(x) \in$ $\mathbb{Z}_{p}[x]$ is the minimal polynomial $(\bmod p)$ for γ. Furthermore, let
$G:=\operatorname{gcd}\left(m_{2}(\gamma-1 \cdot y, y), m_{1}(y)\right)=\operatorname{gcd}\left(\gamma^{2}-3 \gamma y+1, y^{2}-2\right)=y+8 \gamma^{3}+13 \gamma$
Thus $\alpha(\gamma)=y-G=-8 \gamma^{3}+13 \gamma$ and $\beta(\gamma)=\gamma-1 \cdot \alpha(\gamma)=8 \gamma^{3}+14 \gamma$.
Now we can work over one extension $K(\gamma)$ rather than in two extensions $K(\alpha, \beta)$,

Step 1: Finding a Primitive Element using Resultants

In what follows we let K be a field of characteristic 0 and let $m_{1}(x) \in K[x]$ and $m_{2}(x) \in K(\alpha)[x]$ be the minimal polynomials for α and β respectively.
Lemma 1. Let $f, g \in K[x, y]$. The resultant of f and g with respect to y, denoted by $\operatorname{res}_{y}(f, g)$, is the polynomial r in $K[x]$ that satisfies

$$
r(\alpha)=0 \Longleftrightarrow \operatorname{gcd}(f(\alpha, y), g(\alpha, y)) \neq 1 .
$$

Definition 2. Let $f \in K[x] \backslash\{0\}$. We say that f is square-free iff res ${ }_{x}\left(f, f^{\prime}\right) \neq 0$.
To find a primitive element γ satisfying $K(\alpha, \beta) \cong K(\gamma)$, we utilize Lemma 2:

Lemma 2 [1]. Let the field be $K(\alpha, \beta)=K[x, y] /\left\langle m_{1}, m_{2}\right\rangle$. If $m_{2}(x, \alpha) \in K(\alpha)[x]$

 is square-free, then there exists $c \in \mathbb{Z}$ such that$$
r(x):=\operatorname{res}_{y}\left(m_{2}(x-c \cdot y), m_{1}(y)\right) \in K[x]
$$

is square-free. Furthermore, $r(x)$ is the minimal polynomial for a primitive element $\gamma=\beta+c \cdot \alpha$ of $K(\alpha, \beta)$ so that $K(\alpha, \beta) \cong K(\gamma)=K[x] /\langle r(x)\rangle$.

Let us call $c \in \mathbb{Z}$ which produces a non-square-free res ${ }_{y}\left(m_{2}(x-c y), m_{1}(y)\right)$ unlucky. One can characterize the number of unlucky $c \in \mathbb{Z}$ as follows. Lemma 3. Let $r(x)=\operatorname{res}_{y}\left(m_{2}(x-c \cdot y), m_{1}(y)\right) \in K[x]$ be as in Lemma 2. An element $c \in \mathbb{Z}$ is unlucky iff it is a root of

$$
\operatorname{res}_{x}\left(r(x), r^{\prime}(x)\right) \in K[c] .
$$

One can express the number of unlucky c 's in terms of the degrees of the minimal polynomials as follows.

Lemma 4. Let $d_{1}=\operatorname{deg}_{y}\left(m_{1}\right) \& d_{2}=\operatorname{deg}_{x}\left(m_{2}\right)$. The $\#$ of unlucky $c \in \mathbb{Z}$ is at most
 $$
\left[d_{1}^{2} d_{2}\left(d_{2}-1\right)\right] / 2
$$

By Lemma 2, to determine the minimal polynomial for a primitive element $\gamma=\beta+c \alpha$ we must compute the resultant of a bivariate $m_{2}(x-c y)$ and a univariate $m_{1}(y)$. For this we propose to use evaluation \& interpolation in x at $\sigma_{1}, \sigma_{2}, \ldots \in \mathbb{Z}$.
Evaluation \& interpolation reduces the problem of computing a bivariate resultant to that of computing a series of univariate resultants of $m_{2}\left(\sigma_{i}-c y, y\right)$ and $m_{1}(y)$ over K. To compute the univariate resultants, we use polynomial remainder sequences:
Definition 3. Let R be a ring and $f_{1}, f_{2}, \ldots, f_{k+1}$ be polynomials in $R[x]$. Then $\left\{f_{1}, f_{2}, \ldots, f_{k+1}\right\}$ is a Polynomial Remainder Sequence (PRS) if and only if: - $\operatorname{deg}\left(f_{1}\right) \geq \operatorname{deg}\left(f_{2}\right)$,

- $f_{i} \neq 0$ for $i=1, \ldots, k$ and $f_{k+1}=0$, and
- $f_{i}=a_{i} \cdot \operatorname{prem}\left(f_{i-2}, f_{i-1}\right)$ for $i=3, \ldots, k+1$ and $a_{i} \in R$.

There are numerous types of PRS's. We will use the subresultant PRS (sPRS) [2] The last non-zero polynomial of sPRS starting from $f_{1}(x)$ and $f_{2}(x)$ equals res ${ }_{x}\left(f_{1}, f_{2}\right)$.

Step 2: Finding $\alpha(\gamma), \beta(\gamma) \in K(\gamma)$

To perform arithmetic in $K(\gamma)$, one must represent α and β as elements in $K(\gamma)$, which we denote by $\alpha(\gamma)$ and $\beta(\gamma)$, respectively. For this we use the following lemma.

Lemma 5 [1]. Let $g(x, y)=m_{2}(x-c \cdot y, y)$ be square-free and let $\gamma=\beta+c \cdot \alpha$ (note that γ is a root of $g(x, \alpha)$). Then
$G(\gamma, y)=\operatorname{gcd}\left(g(\gamma, y), m_{1}(y)\right)=y-\alpha(\gamma) \in K(\gamma)[y]$.

Moreover, $\beta(\gamma)=\gamma-c \cdot \alpha(\gamma) \in K(\gamma)$.

Thus to obtain $\alpha(\gamma)$ and $\beta(\gamma)$ one could compute a gcd over $K(\gamma)$. For efficiency, we instead propose to use the sPRS's computed in Step 1 as follows.

1. Obtain $\operatorname{deg}_{y}\left(m_{1}\right) \cdot \operatorname{deg}_{x}\left(m_{2}\right)$ next-to-last polynomials appearing in the sPRS starting from $m_{2}(\beta-c y, y)$ and $m_{1}(y)$, which are linear in y.
2. Interpolate polynomials in step 1 to get $G(x, y) \in K[y][x]$.
3. Solve $G(x=\gamma, y)=0$ to obtain $\alpha(\gamma)$.
4. Find $\beta(\gamma)$ using the formula $\gamma-c \alpha(\gamma)$,

Recall that $K=\mathbb{Q}(\alpha, \beta) \cong \mathbb{Q}[x, y] /\left\langle m_{1}, m_{2}\right\rangle$. One can show that all the above lemmas apply to the $\operatorname{ring} \Phi_{p}(K)=\mathbb{Z}_{p}[x, y] /\left\langle m_{1} \bmod p, m_{2} \bmod p\right\rangle$ as long as p is "appropriately" chosen and no zero divisors are encountered during computation.

Unfortunately, not all elements in \mathbb{Z}_{p} can be used as evaluation points:

Bad and Unlucky Evaluation points

1) For the resultant computation, we must not choose any evaluation points that decrease the degree of y in m_{2} (called bad evaluation points).
(2) For the gcd computation, we must also not choose evaluation points that decreas the degree of y in any polynomial in the sPRS (called unlucky evaluation points). We provide two example cases in which unlucky evaluation points are encountered.

Ex 1. The sPRS starting from $m_{1}(y)=y^{3}-2 y^{2}-1$ and $g(x, y)=x^{2}-5 x y^{2}-x+4$ over $\mathbb{Z}_{17}[x]$ is: $\boldsymbol{f}_{1}(\boldsymbol{x}, \boldsymbol{y})=m_{1}(y)=y^{3}-2 y^{2}-1, \boldsymbol{f}_{\mathbf{2}}(\boldsymbol{x}, \boldsymbol{y})=g(x, y)=x^{2}-5 x y^{2}-x+4$, $f_{3}(x, y)=\left(5 x^{3}+12 x^{2}+3 x\right) y+7 x^{3}+2 x^{2}+11 x$ $\boldsymbol{f}_{4}(\boldsymbol{x}, \boldsymbol{y})=x^{6}+11 x^{5}+6 x^{4}+8 x^{3}+7 x^{2}+6 x+13, \boldsymbol{f}_{5}(\boldsymbol{x}, \boldsymbol{y})=0$.

On the other hand, the sPRS starting from $m_{1}(y)$ and $g(x=6, y)$ is
$\hat{\boldsymbol{f}}_{1}(\boldsymbol{y})=y^{3}+15 y^{2}+10, \quad \hat{\boldsymbol{f}}_{2}(\boldsymbol{y})=4 y^{2}, \hat{\boldsymbol{f}}_{3}(\boldsymbol{y})=13, \quad \hat{\boldsymbol{f}}_{4}(\boldsymbol{y})=0$
The next-to-last polynomial \hat{f}_{2} is not linear and is not equal to $f_{3}(x=6, y)$.
Ex 2. The sPRS starting with $m_{1}(y)=y^{4}+15+11 y^{2}$ and $g(x, y)=x^{3}+8 y x+15 y^{3}$ over $\mathbb{Z}_{17}[x]$ is:
$\boldsymbol{f}_{1}(\boldsymbol{x}, \boldsymbol{y})=m_{1}(y)=y^{4}+15+11 y^{2}, \boldsymbol{f}_{\mathbf{2}}(\boldsymbol{x}, \boldsymbol{y})=g(x, y)=x^{3}+8 y x+15 y^{3}$,
$f_{3}(x, y)=(10+16 x) y^{2}+2 x^{3} y+9$,
$f_{4}(x, y)=\left(15 x^{6}+11+2 x^{3}+11 x^{2}\right) y+13 x^{5}+12 x^{4}+16 x^{3}$,
$f_{4}(\boldsymbol{x}, \boldsymbol{y})=\left(15 x^{6}+11+2 x^{3}+11 x^{2}\right) y+13 x^{5}+12 x^{4}+16 x^{3}$,
$f_{5}(\boldsymbol{x}, \boldsymbol{y})=x^{12}+8+7 x^{8}+5 x^{7}+12 x^{6}+2 x^{4}+11 x^{3}+4 x^{2}+5 x, \boldsymbol{f}_{6}(\boldsymbol{x}, \boldsymbol{y})=0$
On the other hand, the sPRS starting with $m_{1}(y)$ and $g(x=10, y)$ is:
$\hat{f}_{1}(\boldsymbol{y})=m_{1}(y), \hat{\boldsymbol{f}}_{2}(\boldsymbol{y})=15 y^{3}+12 y+14, \hat{\boldsymbol{f}}_{3}(\boldsymbol{y})=11 y+9, \hat{\boldsymbol{f}}_{4}(\boldsymbol{y})=11, \hat{f}_{5}(\boldsymbol{y})=0$. The next-to-last polynomial is linear, but corresponds to the degree 2 polynomial, f_{3}.

Theorem 1. Let $d_{1}=\operatorname{deg}_{y}\left(m_{1}\right)$ and $d_{2}=\operatorname{deg}_{x}\left(m_{2}\right)$

The number of bad evaluation points in \mathbb{Z} is at most d_{2}.
The number of unlucky evaluation points in \mathbb{Z} is at most $d_{2} d_{1}\left(d_{1}+1\right) / 2$.
Theorem 1 implies that the number of unlucky evaluation points is "small" We do not know a priori the number of polynomials in the sPRS of $m_{1}(y)$ and $g(x, y)$. Hence to detect an unlucky evaluation point, we proceed as follows.
Let $k=\#$ of polynomials in the sPRS obtained using the first evaluation point.

1. Compute sPRS using the next evaluation point. Let $S=$ (\# polynomials in sPRS) 2. a) If $S<k$, discard current sPRS.
b) If $S>k$, discard all previous sPRS's. Set k to S.
c) If $S=k$, keep the sPRS. Go to step 1 .

Cost
Theorem 2. Let $d_{1}=\operatorname{deg}\left(m_{1}\right)$ and $d_{2}=\operatorname{deg}\left(m_{2}\right)$. The overall cost of computing the resultant over \mathbb{Z}_{p} and the gcd above over $\mathbb{Z}_{p}[x] /\left\langle m_{\gamma}(x) \bmod p\right\rangle$ is

$$
\left.\mathcal{O}\left(\left[d_{1}^{3} d_{2}+d_{1}^{2} d_{2}^{2}\right)\right]+d_{1}^{4}\right) \text { arithmetic operations in } \mathbb{Z}_{p} .
$$

[Remark: if $d_{1} \leq d_{2}$, this cost simplifies to $\mathcal{O}\left(d_{1}^{2} d_{2}^{2}\right)$.]
n comparison, the costs of computing the resultant and the gcd using the Euclidean algorithm are $\mathcal{O}\left(d_{1}^{4} d_{2}^{2}\right)$ each.

References

11 Trager, B. Algebraic Factoring and Rational Function Integration. Proceedings of the 1976 ACM Symposium on Symbolic I1 Trager, B. Alfebbraic F Factoring
[2] Collins, G.E. The calculation of multivariate polynomial resultants. J. Assoc. Comput. Mach. 18 (1971), $515-532$. 3] Monagan, M. Maximal Quotient Rational Reconstruction: An Almost Optimal Algorithm for Rational Reconstruction 3] Monagan, M. Maximal Quotient Rational Reconstruction
Proceedings of ISSAC '04, ACM Press, p. 243-249, 2004.

