
Timings and Maple implementation
I implemented the Euclidean-style and modular algorithms in Maple. I
tested them on dense randomly-generated polynomials a = ag and b = bg
where deg(a) = deg(b) = 2 deg(g). The modulus m(z) was the product of 3
randomly-generated irreducibles of degrees 1, 2, and 3. The following table
shows the results:

degree CPU time for modular CPU time for Euclidean
30 5.377 2.616
45 12.067 9.681
60 13.273 7.446
75 35.495 53.539
90 51.663 84.928
105 48.858 100.065
120 74.999 —

Timings for computing g = gcd(a, b) where deg(g) ≥ deg(a)/3. The last test for the
Euclidean algorithm ran for over 200 seconds of CPU time when halted.

It is also important to test with irreducible m(z) versus Encarnacion’s. If a
gcd(a, b) mod m(z) is needed and the reducibility of m(z) is unconfirmed,
it’d be nice to be able to run my new modular algorithm without any fear of
overhead. I generated polynomials the same way as above and obtained the
following results:

degree CPU time for modular CPU time for Encarnacion
30 3.601 3.624
45 10.773 10.816
60 21.372 21.294
75 35.098 35.519
90 50.823 50.956
105 57.227 57.187
120 64.345 66.241

Timings for computing g = gcd(a, b) where deg(g) ≥ deg(a)/3.

Conclusions
I proved sufficient conditions for the existence of GCDs in (Q[z]/m(z))[x].
I developed new and efficient algorithms for computing these GCDs, and
implemented them in Maple.

Acknowledgements
I would like to thank my supervisor Dr. Michael Monagan for tailor-making
this project for me as part of his Topics in Computer Algebra course.

References
[1] Lars Langemyr, Scott McCallum. The computation of polynomial greatest common

divisors over algebraic number fields. J. Symbolic Computation 8, (1989) 429–448.

[2] Mark Encarnacion. Computing GCDs of Polynomials over Algebraic Number Fields.
J. Symbolic Computation 20 (1995) pp. 299–313.

[3] W.S. Brown. On Euclid’s Algorithm and the Computation of Polynomial Greatest Com-
mon Divisors, J. ACM 18 (1971), pp. 476–504.

[4] Mark Hoeij, Michael Monagan. A Modular GCD Algorithm over Number Fields Pre-
sented with Multiple Field Extensions. Proceedings ISSAC ’2002, ACM Press (2002),
pp. 109–116.

Algorithm 1: The Euclidean-style GCD algorithm.

1. Set r1 := a and r2 := b and i := 2. Go to step 2.

2. Attempt to compute the remainder r of ri−1 divided by ri. If successful, go to step 3.
If a zero-divisor is encountered, go to step 4.

3. Set ri+1 := r and i := i + 1. If ri = 0, return ri−1; Else, go to step 2.

4. Let v be the zero-divisor. Set m1 := gcd(v,m) and m2 := m/m1. Recursively com-
pute g1 := gcd(ri, ri−1) mod m1 and g2 := gcd(ri, ri−1) mod m2. Combine results
using CRT to get g ∈ R[x] where g ≡ gi mod mi. Return g.

However, this algorithm, being a variant of the Euclidean algorithm, will suffer from co-
efficient explosion. Borrowing the ideas of Brown and Collins, a modular algorithm is
desired.

It is possible that gp = gcd(a, b) mod p isn’t the modular image of g = gcd(a, b). If it
is though, we call such a prime a good prime. We can detect if a prime is good. For the
algorithm to be viable, it is necessary for “most” primes to be good. This is indeed the
case.

Algorithm 2: The modular GCD algorithm.

Input: a, b ∈ R[x] where R = Q[z]/m(z)

Choose a prime p where reducing a, b,m mod p makes sense and m remains square-free.

Attempt to compute
gp = gcd(a, b) mod p

Let v be the zero-divisor.
Let m1 = gcd(m, v) mod p

Combine gp with prior gcds
using CRT and RR to get g

where g ≡ gp mod p.

Use Hensel lifting to
check if m1 lifts to Z. Check if g | a and g | b.

If so, output g; otherwise,
pick more primes.

Let m2 = m/m1. Recursively compute
g1 = gcd(a, b) mod m1, and
g2 = gcd(a, b) mod m2.

Output g ∈ R[x] with
g ≡ g1 mod m1 and
g ≡ g2 mod m2.

Pick more
primes

otherwise,
if p is good

if a zero-divisor
is encountered

if lifting
succeeded

if lifting
failed

Theorem 3. Let a, b ∈ R[x]. Suppose the Euclidean algorithm doesn’t encounter any
zero-divisors. All but finitely many primes are good primes.

The assumption that the Euclidean algorithm doesn’t encounter any zero-divisors may
seem to make this result weak. However, if the Euclidean algorithm does encounter a
zero-divisor, that gives a factor m1 of m modulo p. We can then check if m1 lifts to a
factor of m over Q using Hensel lifting. If it does, recursively run the algorithm similarly
to the naive algorithm above. If it doesn’t, simply discard the prime. The number of primes
that will be discarded in this fashion can also be proven to be finite.

GCDs of polynomials over algebraic number fields
Let L = Q(α) where α is an algebraic number; that is, there is an irreducible
monic polynomial m(z) ∈ Q[z] such that m(α) = 0. Given a, b ∈ L[x], we’d
like to compute gcd(a, b). Since L is a field, the Euclidean algorithm will work.
For example, let α =

√
2 with a = 2x4 − x3 − 3x2 + (14α− 2)x − α + 1 and

b = 4αx3 + (α− 1)x2 + (α− 4)x− α− 1. The Euclidean algorithm proceeds
by repeatedly computing remainders: set r1 := a, r2 := b, and then

r3 :=

(
3

4
α− 49

16

)
x2 +

(
215

16
α− 7

8

)
x− 9

8
α +

11

16
,

r4 :=

(
932781440

4464769
α +

745931632

4464769

)
x− 62941056

4464769
α− 25830208

4464769
,

r5 :=
3785009996727209

175119625637890952
α +

23782663312092435

350239251275781904
,

which shows gcd(a, b) = 1 since r5 is a unit. The problem is clear: the coeffi-
cients explode. This is typical for the Euclidean algorithm — it’s not a special
case.

In [1] Lars Langemyr, Scott McCallum, and [2] Mark Encarnacion gave new al-
gorithms for computing the GCDs of polynomials over algebraic number fields.
Their algorithms are applications of the ideas of Brown and Collins [3]. Given
a, b ∈ Q(α)[x], compute gcd(a, b) by reconstructing it from modular images
gcd(a mod p, b mod p) ∈ Zp(α)[x] for sufficiently many primes p. Since the
coefficients are bounded in size in Zp(α)[x], it circumvents coefficient explo-
sion. Additionally, Michael Monagan and Mark Hoeij [4] gave algorithms for
computing over multiple algebraic numbers, such as Q(

√
2,
√
3).

GCDs of polynomials over univariate quotient rings
The computational model for an algebraic number field Q(α) is Q[z]/m(z).
With that in mind, a natural generalization is to consider m(z) that is reducible.
This comes up naturally when solving systems of polynomial equations as well.

Questions: Let R = Q[z]/m(z).

•Does gcd(a, b) exist for all a, b ∈ R[x]?
•Will the Euclidean algorithm still work?

•Can we generalize the modular algorithms above?

Theorem 1. If m(z) is square-free, then gcd(a, b) exists for all a, b ∈ R[x].

The next step is to develop an algorithm to compute it. To use the Euclidean
algorithm, some form of the division algorithm is required.

Theorem 2. Suppose m(z) is square-free, and a, b ∈ R[x] where b 6= 0. Then,
there exists q, r where deg(r) < deg(b) and a = qb+ r. Such r and q are unique
if and only if lc(b) is a unit. In the latter case, the standard division algorithm
can compute r and q.

The last sentence of the prior theorem is important: if lc(b) isn’t a unit, the
standard division algorithm can not be used. Instead, pass to smaller rings if a
non-unit is encountered; see Algorithm 1.

The value of m(z) being square-free should be apparent. From here out, this
will be assumed.

John Kluesner. Mathematics Graduate Student, Simon Fraser University, British Columbia.

Computing GCDs of polynomials over univariate quotient rings

4

S I M O N F R A S E R U N I V E R S I T Y

SFU Logo

