SFU

Efficient algorithms for computing greatest common divisors (GCD) of multi-
variate polynomials have been developed over the last 40 years. Many of the
general purpose computer algebra systems are using either Zippel’s GCD Algo-
rithm [4] or the EEZ-GCD [3] Algorithm or both. Both algorithms sequentially
interpolate variables one at a time which limits parallel speedup. Since multi-
core processors are now widely available, parallel algorithms are desirable. In
this poster, we present a first multivariate GCD computation algorithm over Z
which 1s based on the Ben-Or/Tiwari interpolation [1]. By using Ben-Or/Tiwari
interpolation, we reduce the number of points needed to interpolate the GCD
and 1improve parallelism.

Main 1dea:

Our algorithm considers multivariate GCD problems with at least three vari-
ables. The key of the algorithm 1s to determine the first modular GCD image
which tells the correct form of the true GCD, then we use Zippel’s sparse in-
terpolation with this form to compute more modular images and apply Chinese
remaindering to reconstruct the true GCD over Z.

The first modular image can obtained as follows. Suppose a, b € Z|x1, ..., x,]
are the input polynomials and let

z
g = ged(a,b) = > ¢;M;(zy, x2)
i—1

where [is the number of terms of g(x1, x2), M; is the ith monomial of g(z, z-)
and ¢; € Z|xs, ..., x,) is the ith coefficient of g(x1, x5). Our algorithm projects a
and b down to bivariate polynomials by evaluating {x3, ..., z,} at specific point

{ek ..., e~} which satisfies the requirement of the Ben-Or/Tiwari interpolation.
Then we compute bivariate

gp = ged(a(zy, 22, €5, .. en),b(x1, 32, €5, .., ey)) € Lpla1, 23],
where p 1s a carefully chosen prime. We redo this for £ = 0,1,2,...,m un-

til m 1s large enough. Now all bivariate GCDs should have the same mono-
mials but different coefficients. For each monomial M;(x;, x5) in the g, we
form an integer sequence by collecting M;’s coefficient in g (0 < k < m).
Then the Ben-Or/Tiwar1 algorithm 1s applied to this sequence to interpolate the
coefficient ¢; € Z,|zs,...,x,). For this to work we require m > 2t where
t = maxﬁzl(# terms ¢;), where t is not known in advance. So we must try
t =2,4,8,10, ... stopping when we have redundancy. Obviously all polynomial
coetficients ¢; can be recovered 1n parallel. Moreover, all g, can be computed 1n
parallel as well. In general, this approach 1s easy to parallelize.

Instead of using powers of primes as evaluation points. We pick a smooth prime
p of the form p — 1 = []'_, ¢;, where the ¢; are relatively prime and ¢; > deg, g.
For example, if deg,, g <= 6,deg, g <= 6 and deg, g <= 6, we could pick
p=1l4+qgXqxXg=1+7x8x 11 =0617.

A turther problem is that all underlying bivariate GCDs are monic over Z,. The
leading coeftficient of the true GCD is required to scale all bivariate GCDs con-
sistently. We use Wang’s leading coefficient algorithm [5] to solve this problem.
We compute and factor the gcd h € Z|xs, ..., x,| of the leading coefficients of
a,b € Z|xs,...,x,||x1, 5. This creates another sequential step in our algo-
rithm. This i1s the main reason why we reduce to bivariate GCDs instead of
univariate — we likely reduce the size of A. We also likely reduce ¢ and hence
the number of g; needed. If a(x1, x5) and b(x1, x5) are dense (which they often
are 1n practice) we lose nothing by doing this.

Discrete logarithm method: Let w be a primitive element in Z, and let w; = w?~1/% 5o
that the w; are primitive ¢; th root of unity of relatively prime order. Suppose a monomial in ¢; 18

M = z'y’ 2" where 4, j, k are unknown and we have the value m = M (w1, ws, w3) over Z,. So

m = w%wi]g — wi<p_1)/Q3wj(p_1)/Q4wk(p_1)/Q5.

We compute = = log,, m by using Pohlig-Hellman which is easy because p is smooth. Now

r=i(p—1)/q3+jlp—1)/as+k(p—1)/g5 mod (p—1) (1)

To solve for 7, 7, k, we take (1) mod ¢3 then g4 then ¢5;. For example, (1) mod g3, we obtain

r=1ip—1)/g3+0+0 mod g3,

and we can solve this linear equation for ¢ since (p — 1)/q3 = quqs is relatively prime to gs.
Remarks: the requirement ¢; < deg, g means that two distinct monomials in ¢; have distinct
values at w3, wy, ws mod p.

Example:
We compute the first modular GCD of a = g x @ and b= g x b € Z[x,y, 2, u], where

a=zur+1, b=zuy+1 and g¢=(z+u) 2%’ + (") zy® + (W2 +u) y,

with pure lexgraphic order x > y > 2z > u. We also suppose all bivariate GCDs to compute are
over Z,|x, y|.

Leading coetficient: The GCD of the leading coefficients of a(z,y) and b(z,y) is zu(z +
u). Wang’s algorithm heuristically determines that the leading coefficient of the true GCD is

C(z,u) = (2 + u).

A smooth prime: We compute one univariate image of g in each variable (in parallel) and
obtain deg.g = 4 and deg, g = 5. A smooth prime p for the discrete logarithm 1s 31 since
31 —1=30=>5x6where 5 > deg. g, 6 > deg, g and ged(5,6) = 1. A generator of Zg; is 17
which is randomly chosen. The evaluation point for (z, u) is

e = (8% = 17RBI=D/5 1mod 31, 26F = 17°6G1-D/6 1169 31).

The Ben-Or/Tiwart: All computations below are over Zs.
First iteration: We compute gy and g; 1n parallel:

g0 = C(e") ged(a(x, y, "), b(z,y,e")) = 22%° + 1ay* + 29,
g1 = C(eh) ged(a(z, y, et), b(z, y,e)) = 32%° + 27 xy* + 20 .

We apply Berlekamp/Massey Algorithm(BMA) to sequences {1,27} and {2, 29} in parallel and
obtain the connection polynomials 4v 4+ 1 and v + 1.

Second iteration: We compute g> and g; in parallel:

g2 = C(e?) ged(alz, y,), b(z, y, %)) = 2720 + 16 2y + 3y,
g3 = C(eg) ged(a(x, v, eg), b(x,y, eg)) = 15x6y5 + 29 :z:yz + 20 .

We apply BMA to {1,27,16,29} and {2, 29, 3,26} in parallel and obtain the connection polyno-
mials 4v + 1 and 160° + 20 + 1. The first connection polynomial remains the same and has degree
1, so there is 1 term in the coefficient of zy~.

Third iteration: We compute g, (4 < k < 7) 1n parallel:

g4 = C(e4) ged(a(z, y, e4), b(x,y, e4)) = 92%° + Szy® + 21y,
g, = C’(e5) ged(a(z, v, e5), b(x,y, e5)) = 72%° +30 2y + 1,
g6 = C’(eG) ged(a(z, v, e6), b(x,y, e6)) = 92%° + dxy’ + 17y,
g7 = C’(e7) ged(a(z, v, e7), b(x,y, e7)) = 2829° + 15 2> + 129

A Parallel Algorithm to Compute the Greatest Common Divisor of Sparse Multivariate Polynomials.

Jiaxiong Hu and Michael Monagan. Department of Mathematics, Simon Fraser University, British Columbia, Canada.

We run BMA with input {2, 29, 3,26, 24, 1,17, 12} and obtain 160° + 20 + 1.
Since the connection polynomial is unchanged and has degree 2, there are 2
terms 1n the coefficient of y. The next step of the Ben-Or/Tiwari algorithm
is to compute the roots of v + 4 and v* + 2v + 16 (reversing the coefficients
of connection polynomials). The roots of v + 4 and v + 2v + 16 are 27 and
{3,26}, which are the evaluated monomials in the coefficients of zy* and y

respectively. By discrete logarithm method, 27 is corresponding to z*u’, 3 is

corresponding to u’z” and 26 is corresponding to u'. The coefficient C; of

z*u? can be computed by equation C; x 27" = 1. So C} = 1. The coefficients

Cy, Cs of u’z°, u can be obtained by linear system Cs x 3" + C5 x 26" = 2 and
Cy x 3L+ C5 x 26! = 29. So Cy = 1 and C5 = 1. Finally, we conclude that

G =(z+u) 2% + (%) 2y* + (WP +u)y mod 31.

Maple implementation and benchmark:

We have implemented our algorithm in Maple without any parallelism and
have compared i1t with Maple’s default algorithm, an implementation of a
Zippel based algorithm by de Kleine, Monagan and Wittkopf[2]. For most
large problems, our algorithm outperforms Maple’s. For example, for input
polynomials having 40 variables and 4000 terms, our algorithm 1s almost 20
times faster. But it 1s an unfair game because the Maple’s default algorithm
1s almost entirely coded in C. So a timing comparison makes no sense and
1s not provided here. We plan to do a parallel implementation of our algo-
rithm 1n C by using Cilk in the future. However, Compared with Zippel’s
algorithm, it’s obvious that our algorithm uses fewer evaluation points — O(t)

instead of O((n — 2)dt) and fewer trial divisions — O(1) instead of O(n). The

numbers of evaluations (probes to the black box) to compute ged(ag, bg) by
both algorithms are provided below, where

a =randpoly(X,degree = 10, terms = 20) + 1,

b =randpoly(X,degree = 10, terms = 20) + 1,

g =randpoly(X,degree =d,terms =T) + 1.
variables (| X|) d T Zippel’s algorithm New algorithm
3 10| 10 67 32
6 200 20 474 13
12 40 40 2038 14
12 40 100 3438 32
15 80 500 33653 50
20 501 200 17394 69
30 80 500 DNF 119
30 100 1000 DNF 176

References:

[1] M. Ben-Or, P. Tiwari. A deterministic algorithm for sparse multivariate polynomial
interpolate. Proc. 20th annual ACM Symp Theory Comp, 1988, 301-3009.

[2]]J. de Kleine, M. B. Monagan, A. D. Wittkopt. Algorithms for the Non-monic case of the
Sparse Modular GCD Algorithm. ISSAC’05, ACM Press, 2005, 124—-131.

[3] P. Wang. The EEZ-GCD Algorithm. SIGSAM Bulletin, 14, 1980, 50-60.

[4] R. E. Zippel. Probabilistic algorithms for sparse polynomials. EUROSAM °79, Springer-
Verlag LNCS, 2, 1979, 216-226.

Manlé‘sf)ft“

Mathematics ¢ Modeling « Simulation

