
4

S I M O N F R A S E R U N I V E R S I T Y

SFU Logo

A Parallel Algorithm to Compute the Greatest Common Divisor of Sparse Multivariate Polynomials.
Jiaxiong Hu and Michael Monagan. Department of Mathematics, Simon Fraser University, British Columbia, Canada.

Mathematical Operations
Common manipulations (simplify,
factor, expand,…) Right-click expression and select from menu

Solve equations Right-click equation Solve

Solve numerically (floating-point) Right-click equation Numerically Solve

Solve ODE Right-click DE expression Solve DE Interactively

Integrate, differentiate Right-click expression Integrate or Differentiate

Evaluate expression at a point Right-click expression Evaluate at a Point

Create a matrix or vector Matrix palette Choose Insert

Invert, transpose, solve matrix
Right-click matrix Standard Operations select
Inverse, Transpose, ...

Evaluate as floating-point Right-click expression Approximate

Various operations and tasks Use Task Templates: Tools Tasks Browse

Expressions vs. Functions
Operations Expression x2+y2 Function (operator) g(x,y) = x2+y2

Definition !"#$"%&'"(")&'* +"#$",%-)."/0""%&'()&'*

Evaluate at x=1, y=2 1234,!-"5%$6-)$'7.*"produces 5 +,6-'.*"produces 5

3-D plot for x from 0 to 1, y from 0 to 1 849:;<,!-%$=>>6-)$=>>6.* 849:;<,+,%-).-%$=>>6-)$=>>6.*

Conversion to other form
!'"#$"?@3884),!-%-).*

!',6-'.*

produces 5

+'"#$"+,%-6.*""

+'"("A*

produces x2+1+z

Units and Tolerances

Add units to value or expression
Place cursor to right of quantity. Use Units (SI) or
Units (FPS) palette or right-click Units Affix unit.

Add arbitrary unit from Units (SI) or Units (FPS) palette and
enter desired unit

Simplify units in an expression Right-click expression Units Simplify

Convert units Right-click expression Units Convert

Enable automatic units simplification BC:D,E@C:F5G:3@<3H<7.*

Enable tolerance calculations BC:D,I941H3@J1F.*

Tolerance quantity in 2-D Math !"#$ %&% for 9 ± 1.1

Tolerance quantity in 1-D Math K"L(/"6>6* for 9 ± 1.1

Input and Output
Interactive data import assistant Tools Assistants Import Data

Import audio or image file Tools Assistants Import Data

Code generation (C, FORTRAN,
Java, Visual Basic®, MATLAB®)

Right-click expression Language Conversions.
See ?CodeGeneration for help and details.

Publish document in HTML, PDF,
LaTeX, or Microsoft® Word-RTF

File Export As select HTML, PDF, LaTeX,
or Rich Text Format

Select Interactive Tools and Utilities
Quick introductory tour Help Take a Tour of Maple

Show available task templates Tools Tasks Browse

Plot Builder
Right-click expression Plots Plot Builder,
or Tools Assistants Plot Builder

ODE Analyzer Tools Assistants ODE Analyzer

Data Analysis Assistant Tools Assistants Data Analysis

Unit Conversion utility Tools Assistants Units Calculator

Back-Solving Assistant Tools Assistants BackSolver

Apply numeric formatting Right-click expression Numeric Formatting

Maple Portal Help Manuals, Resources and more
Maple Portal

Manuals Help Manuals, Resources, and more Manuals

Graphing Calculator Interface Installs as separate program. Launch from Start
Maple Maple Calculator

Interactive education tutors for
topics in Calculus, Precalculus,
and Linear Algebra

Tools Tutors

P-
06

48
-1

3-
E

Important Maple Syntax
#$ Assignment 3#$'*"M#$;(%*"J#$3(M* produces 5 + x for J

$ Mathematical equation F9421,'N%"("3"$"6-%.* produces x =
1-a
—
2

$ Boolean equality C!"3"$"="":D1@"O

Suppress display of output Terminate command with a colon, e.g. 6===P"#

[] List (ordered) A#$5J-"M-"37*"A567* produces c

{ } Set (unordered, no duplicates) Q3-"M-"3-"JR* produces {a,b,c }

Display help on topic S:98CJ

www.maplesoft.com | info@maplesoft.com

© Maplesoft, a division of Waterloo Maple Inc., 2009. Maplesoft and Maple are trademarks of Waterloo Maple Inc. All other trademarks are property of their respective owners.

t. 519.747.2373 | f. 519.747.5284
800.267.6583 (US & Canada)

Plotting and Animation
Plot an existing expression - click expression Plots Plot Builder

Plot new expression Tools Assistants Plot Builder

Add new expression to existing plot Highlight and drag expression into plot

Add annotations to plots Click on plot, then on the toolbar

Animation and parameter plots for
functions of several variables

Right-click expression Plots Plot Builder
and select a plot type

!"#$%&'(&)*+,-&.%/%0%1,%&2"03& Windows® version

Efficient algorithms for computing greatest common divisors (GCD) of multi-
variate polynomials have been developed over the last 40 years. Many of the
general purpose computer algebra systems are using either Zippel’s GCD Algo-
rithm [4] or the EEZ-GCD [3] Algorithm or both. Both algorithms sequentially
interpolate variables one at a time which limits parallel speedup. Since multi-
core processors are now widely available, parallel algorithms are desirable. In
this poster, we present a first multivariate GCD computation algorithm over Z
which is based on the Ben-Or/Tiwari interpolation [1]. By using Ben-Or/Tiwari
interpolation, we reduce the number of points needed to interpolate the GCD
and improve parallelism.

Main idea:
Our algorithm considers multivariate GCD problems with at least three vari-
ables. The key of the algorithm is to determine the first modular GCD image
which tells the correct form of the true GCD, then we use Zippel’s sparse in-
terpolation with this form to compute more modular images and apply Chinese
remaindering to reconstruct the true GCD over Z.

The first modular image can obtained as follows. Suppose a, b ∈ Z[x1, . . . , xn]
are the input polynomials and let

g = gcd(a, b) =

l∑
i=1

ciMi(x1, x2)

where l is the number of terms of g(x1, x2), Mi is the ith monomial of g(x1, x2)
and ci ∈ Z[x3, ..., xn] is the ith coefficient of g(x1, x2). Our algorithm projects a
and b down to bivariate polynomials by evaluating {x3, . . . , xn} at specific point
{ek3, . . . , ekn} which satisfies the requirement of the Ben-Or/Tiwari interpolation.
Then we compute bivariate

gk = gcd(a(x1, x2, e
k
3 , . . . , e

k
n), b(x1, x2, e

k
3 , . . . , e

k
n)) ∈ Zp[x1, x2],

where p is a carefully chosen prime. We redo this for k = 0, 1, 2, . . . ,m un-
til m is large enough. Now all bivariate GCDs should have the same mono-
mials but different coefficients. For each monomial Mi(x1, x2) in the gk, we
form an integer sequence by collecting Mi’s coefficient in gk (0 ≤ k ≤ m).
Then the Ben-Or/Tiwari algorithm is applied to this sequence to interpolate the
coefficient ci ∈ Zp[x3, . . . , xn]. For this to work we require m ≥ 2t where
t = maxli=1(# terms ci), where t is not known in advance. So we must try
t = 2, 4, 8, 16, . . . stopping when we have redundancy. Obviously all polynomial
coefficients ci can be recovered in parallel. Moreover, all gk can be computed in
parallel as well. In general, this approach is easy to parallelize.

Instead of using powers of primes as evaluation points. We pick a smooth prime
p of the form p− 1 =

∏n
i=3 qi, where the qi are relatively prime and qi > degxi g.

For example, if degx3 g <= 6, degx4 g <= 6 and degx5 g <= 6, we could pick
p = 1 + q3 × q4 × q5 = 1 + 7× 8× 11 = 617.

A further problem is that all underlying bivariate GCDs are monic over Zp. The
leading coefficient of the true GCD is required to scale all bivariate GCDs con-
sistently. We use Wang’s leading coefficient algorithm [5] to solve this problem.
We compute and factor the gcd h ∈ Z[x3, . . . , xn] of the leading coefficients of
a, b ∈ Z[x3, . . . , xn][x1, x2]. This creates another sequential step in our algo-
rithm. This is the main reason why we reduce to bivariate GCDs instead of
univariate – we likely reduce the size of h. We also likely reduce t and hence
the number of gk needed. If a(x1, x2) and b(x1, x2) are dense (which they often
are in practice) we lose nothing by doing this.

Discrete logarithm method: Let ω be a primitive element in Zp and let ωi = ω(p−1)/qi so
that the ωi are primitive qi’th root of unity of relatively prime order. Suppose a monomial in ci is
M = xiyjzk where i, j, k are unknown and we have the value m = M(w1, w2, w3) over Zp. So

m = ωi3ω
j
4ω

k
5 = ωi(p−1)/q3ωj(p−1)/q4ωk(p−1)/q5.

We compute x = logwm by using Pohlig-Hellman which is easy because p is smooth. Now

x = i(p− 1)/q3 + j(p− 1)/q4 + k(p− 1)/q5 mod (p− 1) (1)

To solve for i, j, k, we take (1) mod q3 then q4 then q5. For example, (1) mod q3, we obtain

x = i(p− 1)/q3 + 0 + 0 mod q3,

and we can solve this linear equation for i since (p − 1)/q3 = q4q5 is relatively prime to q3.
Remarks: the requirement qi < degxi g means that two distinct monomials in ci have distinct
values at ω3, ω4, ω5 mod p.

Example:
We compute the first modular GCD of a = g × ā and b = g × b̄ ∈ Z[x, y, z, u], where

ā = zux + 1, b̄ = zuy + 1 and g = (z + u) x6y5 + (z4u3) xy2 + (u5z3 + u) y,

with pure lexgraphic order x > y > z > u. We also suppose all bivariate GCDs to compute are
over Zp[x, y].

Leading coefficient: The GCD of the leading coefficients of a(x, y) and b(x, y) is zu(z +
u). Wang’s algorithm heuristically determines that the leading coefficient of the true GCD is
C(z, u) = (z + u).

A smooth prime: We compute one univariate image of g in each variable (in parallel) and
obtain degz g = 4 and degu g = 5. A smooth prime p for the discrete logarithm is 31 since
31 − 1 = 30 = 5 × 6 where 5 > degz g, 6 > degu g and gcd(5, 6) = 1. A generator of Z31 is 17
which is randomly chosen. The evaluation point for (z, u) is

ek = (8k ≡ 17k(31−1)/5 mod 31, 26k ≡ 17k(31−1)/6 mod 31).

The Ben-Or/Tiwari: All computations below are over Z31.

First iteration: We compute g0 and g1 in parallel:

g0 = C(e0) gcd(a(x, y, e0), b(x, y, e0)) = 2x6y5 + 1 xy2 + 2 y,

g1 = C(e1) gcd(a(x, y, e1), b(x, y, e1)) = 3x6y5 + 27 xy2 + 29 y.

We apply Berlekamp/Massey Algorithm(BMA) to sequences {1, 27} and {2, 29} in parallel and
obtain the connection polynomials 4v + 1 and v + 1.

Second iteration: We compute g2 and g3 in parallel:

g2 = C(e2) gcd(a(x, y, e2), b(x, y, e2)) = 27x6y5 + 16 xy2 + 3 y,

g3 = C(e3) gcd(a(x, y, e3), b(x, y, e3)) = 15x6y5 + 29 xy2 + 26 y.

We apply BMA to {1, 27, 16, 29} and {2, 29, 3, 26} in parallel and obtain the connection polyno-
mials 4v + 1 and 16v2 + 2v + 1. The first connection polynomial remains the same and has degree
1, so there is 1 term in the coefficient of xy2.

Third iteration: We compute gk (4 ≤ k ≤ 7) in parallel:

g4 = C(e4) gcd(a(x, y, e4), b(x, y, e4)) = 9x6y5 + 8 xy2 + 24 y,

g5 = C(e5) gcd(a(x, y, e5), b(x, y, e5)) = 7x6y5 + 30 xy2 + 1 y,

g6 = C(e6) gcd(a(x, y, e6), b(x, y, e6)) = 9x6y5 + 4 xy2 + 17 y,

g7 = C(e7) gcd(a(x, y, e7), b(x, y, e7)) = 28x6y5 + 15 xy2 + 12 y.

We run BMA with input {2, 29, 3, 26, 24, 1, 17, 12} and obtain 16v2 + 2v + 1.
Since the connection polynomial is unchanged and has degree 2, there are 2
terms in the coefficient of y. The next step of the Ben-Or/Tiwari algorithm
is to compute the roots of v + 4 and v2 + 2v + 16 (reversing the coefficients
of connection polynomials). The roots of v + 4 and v2 + 2v + 16 are 27 and
{3, 26}, which are the evaluated monomials in the coefficients of xy2 and y
respectively. By discrete logarithm method, 27 is corresponding to z4u3, 3 is
corresponding to u5z3 and 26 is corresponding to u1. The coefficient C1 of
z4u3 can be computed by equation C1× 270 = 1. So C1 = 1. The coefficients
C2, C3 of u5z3, u can be obtained by linear system C2× 30 +C3× 260 = 2 and
C2 × 31 + C3 × 261 = 29. So C2 = 1 and C3 = 1. Finally, we conclude that

G = (z + u) x6y5 + (z4u3) xy2 + (u5z3 + u) y mod 31.

Maple implementation and benchmark:
We have implemented our algorithm in Maple without any parallelism and
have compared it with Maple’s default algorithm, an implementation of a
Zippel based algorithm by de Kleine, Monagan and Wittkopf[2]. For most
large problems, our algorithm outperforms Maple’s. For example, for input
polynomials having 40 variables and 4000 terms, our algorithm is almost 20
times faster. But it is an unfair game because the Maple’s default algorithm
is almost entirely coded in C. So a timing comparison makes no sense and
is not provided here. We plan to do a parallel implementation of our algo-
rithm in C by using Cilk in the future. However, Compared with Zippel’s
algorithm, it’s obvious that our algorithm uses fewer evaluation points – O(t)
instead of O((n− 2)dt) and fewer trial divisions – O(1) instead of O(n). The
numbers of evaluations (probes to the black box) to compute gcd(āg, b̄g) by
both algorithms are provided below, where

ā =randpoly(X, degree = 10, terms = 20) + 1,

b̄ =randpoly(X, degree = 10, terms = 20) + 1,

g =randpoly(X, degree = d, terms = T) + 1.

variables (|X|) d T Zippel’s algorithm New algorithm
3 10 10 67 32
6 20 20 474 13
12 40 40 2038 14
12 40 100 3438 32
15 80 500 33653 50
20 50 200 17394 69
30 80 500 DNF 119
30 100 1000 DNF 176

References:
[1] M. Ben-Or, P. Tiwari. A deterministic algorithm for sparse multivariate polynomial

interpolate. Proc. 20th annual ACM Symp Theory Comp, 1988, 301–309.

[2] J. de Kleine, M. B. Monagan, A. D. Wittkopf. Algorithms for the Non-monic case of the
Sparse Modular GCD Algorithm. ISSAC’05, ACM Press, 2005, 124–131.

[3] P. Wang. The EEZ-GCD Algorithm. SIGSAM Bulletin, 14, 1980, 50–60.

[4] R. E. Zippel. Probabilistic algorithms for sparse polynomials. EUROSAM ’79, Springer-
Verlag LNCS, 2, 1979, 216–226.

