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Efficient algorithms for computing greatest common divisors (GCD) of multi-
variate polynomials have been developed over the last 40 years. Many of the
general purpose computer algebra systems are using either Zippel’s GCD Algo-
rithm [4] or the EEZ-GCD [3] Algorithm or both. Both algorithms sequentially
interpolate variables one at a time which limits parallel speedup. Since multi-
core processors are now widely available, parallel algorithms are desirable. In
this poster, we present a first multivariate GCD computation algorithm over Z
which is based on the Ben-Or/Tiwari interpolation [1]. By using Ben-Or/Tiwari
interpolation, we reduce the number of points needed to interpolate the GCD
and improve parallelism.

Main idea:
Our algorithm considers multivariate GCD problems with at least three vari-
ables. The key of the algorithm is to determine the first modular GCD image
which tells the correct form of the true GCD, then we use Zippel’s sparse in-
terpolation with this form to compute more modular images and apply Chinese
remaindering to reconstruct the true GCD over Z.

The first modular image can obtained as follows. Suppose a, b ∈ Z[x1, . . . , xn]
are the input polynomials and let

g = gcd(a, b) =

l∑
i=1

ciMi(x1, x2)

where l is the number of terms of g(x1, x2), Mi is the ith monomial of g(x1, x2)
and ci ∈ Z[x3, ..., xn] is the ith coefficient of g(x1, x2). Our algorithm projects a
and b down to bivariate polynomials by evaluating {x3, . . . , xn} at specific point
{ek3, . . . , ekn} which satisfies the requirement of the Ben-Or/Tiwari interpolation.
Then we compute bivariate

gk = gcd(a(x1, x2, e
k
3 , . . . , e

k
n), b(x1, x2, e

k
3 , . . . , e

k
n)) ∈ Zp[x1, x2],

where p is a carefully chosen prime. We redo this for k = 0, 1, 2, . . . ,m un-
til m is large enough. Now all bivariate GCDs should have the same mono-
mials but different coefficients. For each monomial Mi(x1, x2) in the gk, we
form an integer sequence by collecting Mi’s coefficient in gk (0 ≤ k ≤ m).
Then the Ben-Or/Tiwari algorithm is applied to this sequence to interpolate the
coefficient ci ∈ Zp[x3, . . . , xn]. For this to work we require m ≥ 2t where
t = maxli=1(# terms ci), where t is not known in advance. So we must try
t = 2, 4, 8, 16, . . . stopping when we have redundancy. Obviously all polynomial
coefficients ci can be recovered in parallel. Moreover, all gk can be computed in
parallel as well. In general, this approach is easy to parallelize.

Instead of using powers of primes as evaluation points. We pick a smooth prime
p of the form p− 1 =

∏n
i=3 qi, where the qi are relatively prime and qi > degxi g.

For example, if degx3 g <= 6, degx4 g <= 6 and degx5 g <= 6, we could pick
p = 1 + q3 × q4 × q5 = 1 + 7× 8× 11 = 617.

A further problem is that all underlying bivariate GCDs are monic over Zp. The
leading coefficient of the true GCD is required to scale all bivariate GCDs con-
sistently. We use Wang’s leading coefficient algorithm [5] to solve this problem.
We compute and factor the gcd h ∈ Z[x3, . . . , xn] of the leading coefficients of
a, b ∈ Z[x3, . . . , xn][x1, x2]. This creates another sequential step in our algo-
rithm. This is the main reason why we reduce to bivariate GCDs instead of
univariate – we likely reduce the size of h. We also likely reduce t and hence
the number of gk needed. If a(x1, x2) and b(x1, x2) are dense (which they often
are in practice) we lose nothing by doing this.

Discrete logarithm method: Let ω be a primitive element in Zp and let ωi = ω(p−1)/qi so
that the ωi are primitive qi’th root of unity of relatively prime order. Suppose a monomial in ci is
M = xiyjzk where i, j, k are unknown and we have the value m = M(w1, w2, w3) over Zp. So

m = ωi3ω
j
4ω

k
5 = ωi(p−1)/q3ωj(p−1)/q4ωk(p−1)/q5.

We compute x = logwm by using Pohlig-Hellman which is easy because p is smooth. Now

x = i(p− 1)/q3 + j(p− 1)/q4 + k(p− 1)/q5 mod (p− 1) (1)

To solve for i, j, k, we take (1) mod q3 then q4 then q5. For example, (1) mod q3, we obtain

x = i(p− 1)/q3 + 0 + 0 mod q3,

and we can solve this linear equation for i since (p − 1)/q3 = q4q5 is relatively prime to q3.
Remarks: the requirement qi < degxi g means that two distinct monomials in ci have distinct
values at ω3, ω4, ω5 mod p.

Example:
We compute the first modular GCD of a = g × ā and b = g × b̄ ∈ Z[x, y, z, u], where

ā = zux + 1, b̄ = zuy + 1 and g = (z + u) x6y5 + (z4u3) xy2 + (u5z3 + u) y,

with pure lexgraphic order x > y > z > u. We also suppose all bivariate GCDs to compute are
over Zp[x, y].

Leading coefficient: The GCD of the leading coefficients of a(x, y) and b(x, y) is zu(z +
u). Wang’s algorithm heuristically determines that the leading coefficient of the true GCD is
C(z, u) = (z + u).

A smooth prime: We compute one univariate image of g in each variable (in parallel) and
obtain degz g = 4 and degu g = 5. A smooth prime p for the discrete logarithm is 31 since
31 − 1 = 30 = 5 × 6 where 5 > degz g, 6 > degu g and gcd(5, 6) = 1. A generator of Z31 is 17
which is randomly chosen. The evaluation point for (z, u) is

ek = (8k ≡ 17k(31−1)/5 mod 31, 26k ≡ 17k(31−1)/6 mod 31).

The Ben-Or/Tiwari: All computations below are over Z31.

First iteration: We compute g0 and g1 in parallel:

g0 = C(e0) gcd(a(x, y, e0), b(x, y, e0)) = 2x6y5 + 1 xy2 + 2 y,

g1 = C(e1) gcd(a(x, y, e1), b(x, y, e1)) = 3x6y5 + 27 xy2 + 29 y.

We apply Berlekamp/Massey Algorithm(BMA) to sequences {1, 27} and {2, 29} in parallel and
obtain the connection polynomials 4v + 1 and v + 1.

Second iteration: We compute g2 and g3 in parallel:

g2 = C(e2) gcd(a(x, y, e2), b(x, y, e2)) = 27x6y5 + 16 xy2 + 3 y,

g3 = C(e3) gcd(a(x, y, e3), b(x, y, e3)) = 15x6y5 + 29 xy2 + 26 y.

We apply BMA to {1, 27, 16, 29} and {2, 29, 3, 26} in parallel and obtain the connection polyno-
mials 4v + 1 and 16v2 + 2v + 1. The first connection polynomial remains the same and has degree
1, so there is 1 term in the coefficient of xy2.

Third iteration: We compute gk (4 ≤ k ≤ 7) in parallel:

g4 = C(e4) gcd(a(x, y, e4), b(x, y, e4)) = 9x6y5 + 8 xy2 + 24 y,

g5 = C(e5) gcd(a(x, y, e5), b(x, y, e5)) = 7x6y5 + 30 xy2 + 1 y,

g6 = C(e6) gcd(a(x, y, e6), b(x, y, e6)) = 9x6y5 + 4 xy2 + 17 y,

g7 = C(e7) gcd(a(x, y, e7), b(x, y, e7)) = 28x6y5 + 15 xy2 + 12 y.

We run BMA with input {2, 29, 3, 26, 24, 1, 17, 12} and obtain 16v2 + 2v + 1.
Since the connection polynomial is unchanged and has degree 2, there are 2
terms in the coefficient of y. The next step of the Ben-Or/Tiwari algorithm
is to compute the roots of v + 4 and v2 + 2v + 16 (reversing the coefficients
of connection polynomials). The roots of v + 4 and v2 + 2v + 16 are 27 and
{3, 26}, which are the evaluated monomials in the coefficients of xy2 and y
respectively. By discrete logarithm method, 27 is corresponding to z4u3, 3 is
corresponding to u5z3 and 26 is corresponding to u1. The coefficient C1 of
z4u3 can be computed by equation C1× 270 = 1. So C1 = 1. The coefficients
C2, C3 of u5z3, u can be obtained by linear system C2× 30 +C3× 260 = 2 and
C2 × 31 + C3 × 261 = 29. So C2 = 1 and C3 = 1. Finally, we conclude that

G = (z + u) x6y5 + (z4u3) xy2 + (u5z3 + u) y mod 31.

Maple implementation and benchmark:
We have implemented our algorithm in Maple without any parallelism and
have compared it with Maple’s default algorithm, an implementation of a
Zippel based algorithm by de Kleine, Monagan and Wittkopf[2]. For most
large problems, our algorithm outperforms Maple’s. For example, for input
polynomials having 40 variables and 4000 terms, our algorithm is almost 20
times faster. But it is an unfair game because the Maple’s default algorithm
is almost entirely coded in C. So a timing comparison makes no sense and
is not provided here. We plan to do a parallel implementation of our algo-
rithm in C by using Cilk in the future. However, Compared with Zippel’s
algorithm, it’s obvious that our algorithm uses fewer evaluation points – O(t)
instead of O((n− 2)dt) and fewer trial divisions – O(1) instead of O(n). The
numbers of evaluations (probes to the black box) to compute gcd(āg, b̄g) by
both algorithms are provided below, where

ā =randpoly(X, degree = 10, terms = 20) + 1,

b̄ =randpoly(X, degree = 10, terms = 20) + 1,

g =randpoly(X, degree = d, terms = T) + 1.

# variables (|X|) d T Zippel’s algorithm New algorithm
3 10 10 67 32
6 20 20 474 13
12 40 40 2038 14
12 40 100 3438 32
15 80 500 33653 50
20 50 200 17394 69
30 80 500 DNF 119
30 100 1000 DNF 176
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