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The Problem

The problem of interpolating multivariate polynomials over a finite field is one of the most chal-
lenging problems in computer algebra. It has been of interest for a long time and has many
applications and many solutions.

(g, ..., ) € R"

Let f be a multivariate polynomial in variables x1, ..., x,, with £ non-zero terms. The problem is
given a black box that on input «, . .., oy outputs f(x1 = aq,...,Ty = ay), we want to find the
target polynomial f(x1 ..., xy) by probing the black box at a series of evaluation points.

Newton’s Interpolation Algorithm

The classical method 1s Newton’s algorithm:

1 Let d be a bound on the degree of f in each variable x;
2 Choose (1, 59, . . ., 8441 random points
3 Recursively interpolate f; = f(zy = B, x9,...,x,) for1 <i < d+1

4 Use the Chinese remaindering algorithm to interpolate f from fi, ..., f4.1
Newton’s algorithm does (d + 1)" probes to the black box.

Example 1. For f = a:il + SCg oo x% + 1, Newton’s algorithm does (d+1)" probes even though
f has only n + 1 non-zero terms.

Zippel’s Sparse Interpolation Algorithm

The number of probes in Zippel’s sparse interpolation algorithm is polynomial in ¢, the number of
non-zero terms in the target polynomial f.

Idea: After interpolating the first image f; = f(xq = 1), one can use the form of f; to compute
Jo, ..., fgr1- This is done by solving systems of linear equations.

Example 2. Let [ = 4x13y? — 32° + 4y — 1. Let 31 = 2. We first interpolate f; = f (y = B1) =
16213 —32°+31 using 14 probes to the black box. We assume the form for f: g = Azl3+ Bro+C.
Each f; now can be computed using 3 probes to the black box.

Zippel’s algorithm does O(ndt) probes to the black box.

Problem: The number of probes in Zippel’s algorithm still depends on a bound d on the degree of
f in each variable.

Ben-Or/Tiwar1 Sparse Interpolation Algorithm

Let f be a polynomial with coefficients in Z. In Ben-Or/Tiwari sparse interpolation algorithm, the
number of probes does not depend on the degree. It only depends on I’, a bound on the number of
non-zero terms in f.
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1 Let pi, po, ..., p, be the first n prime numbers.

2Fori =0,...,27 — 1, Let b; be the output of black box on (p!, ..., p").
3 Find the )\z S.1. bt+¢ — >\t—1bt+7j—1 + )\t_gbpri_g = 000 = )\sz for all 2 > 0.

4Let A(z) = 28 — 12t — oo = .
5 Compute 71, . . ., 14, the integer roots of A(z).
6 Each 7; is equal to a monomial of f evaluated at (x1 = p1, X2 = po, ..., Ty = Dp).

Find the monomials using integer divisions.

7 Find the coefficients of f by solving a system of linear equations.

Ben-Or/Tiwari algorithm does 277" probes to the black box.

Example 3. Ler f(z,y) = 4213y? — 32° + 4y> — 1. We have p; = 2,py = 3. Let T = 4 be the
bound on the number of terms in f. We have

by = f(p?,p3) = 21743271779, by = f(p3, p3) = 1603087953277835,
by = f(p}, py) = 118192468620710277059, bs = f(p7, p3) = 8714094326467802463717803,
be = f(p,p3) = 642472746501818143233353336099,
by = f(pl, ph) = 47368230654086048064431853086526155.

Using the Berlekamp/Massey algorithm we find the linear generator for this sequence:
A(z) = 2* — 73788 2% + 4424603 2% — 68051808 z + 63700992.

The roots of this polynomial are 73728 = p%g X p%, 32 = p‘?, 27 = p% and 1. Hence the monomials
are x13y2, 0, y3 and 1.

Problem: Unfortunately one can not use this algorithm for a polynomial over a finite field unless
the characteristic p is very large. Let f = Zgzl C;M; € Zp|x1, ..., xn). Choose (aq,...,ap) €
Zg at random. One can use Steps 1 to 5 of the Ben-Or/Tiwari algorithm to find the images of the
monomials r; = M;(aq, ..., an) mod p. The problem is that we can not uniquely determine the
degrees of the monomials by their images 71, . . ., 7+ using only integer divisions in Z,.

Our New Sparse Interpolation Algorithm

Our sparse interpolation algorithm 1s a modification of the Ben-Or/Tiwari algorithm for polyno-
mials over finite fields. It costs an extra factor of O(n) probes.

Idea: We choose the evaluation point (aq,...,qp, ani1) € Zgﬂ at random. We first run
the first five steps of the Ben-Or/Tiwar1 algorithm to find the images of the monomials r; =
M;(cv, . .., ap). To find the degrees of the monomials in the variable z ;, we replace a; by o, 41.
We run the first 5 steps again and we find 7; = M;(aq, . . ., Q15 Q15 Qg s - e , Q).

Observation: We have

Y

_ )di
) Un+1

where d; = deg, (M;). We will use this fact to find the degrees of all the monomials in x;. The
problem is we need to match the root r; with the corresponding root 7;. To do this, we use bipartite
matching algorithm from graph theory.

Our new algorithm does 2n’’ probes to the black box.
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Example 4. Let f = 25y2z 4F 9Oyz2 + 93x2y22 + 6Oy4z +492° € Zioil|x,y, z|. Heret = 5,n = 3.
Suppose we now that the degree bound on the degree of f in each variable is d = 40. We choose
the following evaluation points avy = 85, a9 = 96, ag = 58 and oy = 99. Suppose we want to find
the degrees of the monomials in y. We run the first steps of the Ben-Or/Tiwari algorithm for both
B1=(r=aqa1,y=qay,z=a3)and Py = (r = a1,y = ay, 2z = a3). We obtain two sets of roots
R = {36,47,25,92,87} and R = {30,39,4,19,87}. Let the graph G be a bipartite graph with
nodes R and R such that r; is connected to rj if and only if
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for some ) < e < d = 40. We have
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We try to find a perfect matching in this graph. The edges which are in the perfect matching are
highlighted in red. We find that the degrees of the monomials in y are 2, 1,2, 4 and 0.

Protobox

In 2000, Kaltofen et al., presented a hybrid of Zippel and Ben-Or Tiwari algorithms which they call
a racing algorithm. To interpolate the next variable, their algorithm runs a Newton interpolation
and univariate Ben-Or/Tiwari algorithm, stopping when the first succeeds to reduce the number of
probes. The purpose of the early termination technique 1s to avoid using bounds for determining
the termination point in an algorithm. Instead the racing algorithm stops when the interpolated
polynomial does not change after a certain number of probes to the black box.

Benchmarks

fi € Zyp|z1, ..., x¢) where p = 3037000453. We have # f; ~ 2 and d = 30. DNF means “Did Not
Finish”.

.

# f | New Algorithm Zippel ProtoBox
Time | Probes | Time | Probes | Probes

12 1000 24 | 0.01 | 496 37

2 3 1000 36 | 0.0 | 651 59

3/ 8 000 96 | 0.01 1364 140
4 16 | 0.00 | 192 | 0.02 | 2511 284
5| 31 1000 372 | 0.05 4340 521

6| 64 002 768 | 0.15 | 8060 | 995
71127 1 0.06 | 1524 | 0.44 14601 1871
8 1 255 | 0.21 | 3060 | 1.51 27652 3615
91511 | 0.81 | 6132 | 5.19 50530 6692
10/ 1016 3.10 | 12192 | 17.94 | 90985 12591
112037 12.20 | 24444 | 65.35 1168299 DNF
1214083 | 48.06 | 48996 1230.60 301320, DNF
13 8151|189.21| 97812 | 803.26|532549 DNF
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