
Algorithms for Computations in Finite Groups
Shraddha Ramesh Michael Monagan
sramesh@sfu.ca mmonagan@cecm.sfu.ca

Introduction
The group package in Maple already has a representation for permutation groups,
permgroup, which requires users to specify the generators and degree of the per-
mutation group. We are building a new package called FiniteGroups. We have
implemented new forms of representing a groupG, PermGroup andMatrixGroup,
where the user has the option of defining a number of properties of G, including:
group multiplication operation, procedure to find the inverse of an element, iden-
tity, and characteristic.

Procedures for group computations have been implemented, such as: generat-
ing the elements in a group, drawing the Cayley table of a group, and generating a
random element in a group, all of which require the user to simply provide a set of
generators of the group, as well as the degree in the case of a permutation group.
These are input in the form of permgroup, PermGroup or MatrixGroup.

Generating Elements of a Group
Given a set of generators for a group G, GenerateGroup will generate the ele-
ments in G using Dimino’s Algorithm, and display the list of elements.

> S3 := permgroup(3, { [[1,2]], [[1,3]] }):
> GenerateGroup(S3);

[[], [[1, 2]], [[1, 3]], [[1, 2, 3]], [[1, 3, 2]], [[2, 3]]]

> Quaternion := MatrixGroup({ Matrix([[I,0],[0,-I]]),
Matrix([[0,1],[-1,0]]) }):
> GenerateGroup(Quaternion);[[

1 0
0 1

]
,
[
I 0
0 −I

]
,
[
−1 0
0 −1

]
,
[
−I 0
0 I

]
,
[

0 1
−1 0

]
,
[

0 −I
−I 0

]
,
[
0 −1
1 0

]
,
[
0 I
I 0

]]

Dimino’s Algorithm can quickly generate groups of orders of up to hundreds of
thousands. The number of group multiplications that Dimino’s Algorithm per-
forms is related to the order of the group: m ≈ n1.012 for the highest order groups
tested, where m is the number of multiplications and n is the order of the group.

Order of Group Number of Multiplications Time (seconds)

6 12 0.001
24 40 0.002
60 100 0.004

720 1080 0.056
5040 6048 0.260

20160 22848 2.202
40320 45696 3.546

362880 423360 33.945

Table 1: The number of multiplications performed and the time taken by Dimino’s Algorithm for
permutation groups of various orders.

Group Representation
We show an example of the representation for a matrix group. If the user does not
supply group information, defaults are used.

> Quaternion := MatrixGroup({ Matrix([[I,0],[0,-I]]),
Matrix([[0,1],[-1,0]]) }):

Quaternion := MatrixGroup
(

generators =
{[

I 0
0 −I

]
,

[
0 1
−1 0

]}
,

characteristic = 0, multiply = proc(A::Matrix, B::Matrix) ‘.‘(A, B) end proc,

inverse = proc(A::Matrix) 1/A end proc, identity =
[
1 0
0 1

]
,

hashfunction = proc(A::Matrix) convert(A, list) end proc)

Cayley Table
An algorithm to display the Cayley table of a group has been implemented. Each
element of the group is given a separate colour, and the user can specify whether
or not the elements will be labelled, as well as the size of the labels.

We draw the Cayley table of S3, the symmetric group of degree 3.

>CayleyTable(S3, labels=true, labelsize=12);

Orbit of an Element
The group package on Maple already has a function orbit that, given α and the
generators of a permutation group G, returns the orbit of α in G. Denote the orbit
of α by αG. We have implemented a function OrbitStabilizer that outputs, along
with each element β ∈ αG, an element uβ ∈ G such that αuβ = β. That is, for
each element β ∈ αG, we also give an element in G that takes α to β.

> G := permgroup(6, { [[1,2],[3,5]], [[1,4]] })

Compute the orbit of 2 in G using Maple’s orbit function:

> orbit(G, 2);

{1, 2, 4}

> OrbitStabilizer(G, 2);

{{1, [[1,2],[3,5]]}, {2,[]}, {4, [[1,2,4],[3,5]]}}

Random Element
Given a set S of generators of a group G, RandomElement returns a random
element in G. The algorithm used for the implementation is based on the product
replacement algorithm found in Holt [1]. For a given groupG, RandomElement
first executes an initialization step, as follows:

An array A is initialized, containing the generators s1...sk ∈ S repeated a number
of times, r. We take r = 5. For example, if S = {s1, s2} then A would be the
following array:

[s1 s2 s1 s2 s1 s2 s1 s2 s1 s2]

The initialization step then does the following basic operation a given number of
times to move away from the original generating set: random distinct integers u
and v are picked, with 1 ≤ u, v ≤ r · k. A[u] is then replaced by one of the
following, chosen randomly: A[u] ·A[v], A[u] ·A[v]−1, A[v] ·A[u], or A[v]−1 ·A[u].
Note that the entries inAwill still generate all the elements ofG. We use a default
value of 50 repetitions of the basic operation, but for large groups this may not
be sufficient. Therefore the user has the option of inputting how many repetitions
will take place.

After the initialization step, to generate a random element, RandomElement
simply carries out the basic operation another time, and returns the new value
of A[u].

An example:

> RandElem := RandomElement(Quaternion):

> RandElem(), RandElem(), RandElem();[
0 −1
1 0

]
,

[
−I 0
0 I

]
,

[
I 0
0 −I

]

References

[1] D.F. Holt, B. Eick, and E.A. O’Brien. Handbook of Computational Group
Theory. Boca Raton: Chapman & Hall/CRC Press, 2005.

[2] D. Joyner. Adventures in Group Theory: Rubik’s Cube, Merlin’s Machine, and
Other Mathematical Toys. 2007.

