Counting \& Generating Irreducible Quadratics over $\mathbb{Z}_{n}[x]$

Robyn Hearn

Department of Mathematics, Simon Fraser University

Introduction

It is known that there are $\binom{p_{2}^{k}}{2}$ irreducible, quadratic, monic polynomials in $\operatorname{GF}\left(p^{k}\right)[x]$ where p is a prime and $k \in \mathbb{N}$. My research began with two questions.

- How many are there in $\mathbb{Z}_{n}[x]$ for any integer n ?
- How can we efficiently generate these
polynomials?
Example: Quadratics over \mathbb{Z}_{4}

Reducible		Irreducible
x^{2}	$=(x+0)^{2}=(x+2)^{2}$	$x^{2}+1$
$x^{2}+x$	$=(x+0)(x+1)$	$x^{2}+3$
$x^{2}+2 x$	$=(x+0)(x+2)$	$x^{2}+x+1$
$x^{2}+3 x$	$=(x+0)(x+3)$	$x^{2}+x+3$
$x^{2}+2 x+1$	$=(x+1)^{2}=(x+3)^{2}$	$x^{2}+2 x+2$
$x^{2}+3 x+2$	$=(x+1)(x+2)$	$x^{2}+2 x+3$
$x^{2}+3$	$=(x+1)(x+3)$	$x^{2}+3 x+1$
$x^{2}+x+2$	$=(x+2)(x+3)$	$x^{2}+3 x+3$

We may have expected to find $\binom{2^{2}}{2}=6$ irreducible quadratics, but in fact there are 8 .

Computational Experiments

Let $C(n)$ be the number of irreducible, quadratic, monic polynomials in $\mathbb{Z}_{n}[x]$.
Using Algorithm 1 coded in C, we found the following.

Sample Data from				$\begin{gathered} \text { Algorithm } \\ C\left(7^{i}\right) \end{gathered}$
	$C\left(2^{i}\right)$	$C\left(3^{i}\right)$	$C\left(5^{i}\right)$	
1	1	3	10	21
2	8	45	350	1323
3	36	432	9000	65856
4	160	4050	227500	3241350
	656	36693	5693750	158876571

Conjecture
Let p be an odd prime and $k \in \mathbb{N}$. Then
$C\left(2^{k}\right)=$$\left(\frac{1}{3} 2^{2 k+1}-\frac{4}{6} 2^{k}\right.$ if k is even $\frac{1}{3} 2^{2 k+1}-\frac{5}{6} 2^{k}$ if k is odd $C\left(p^{k}\right)= \begin{cases}p^{2 k}-p^{p^{k}\left(p^{k+1}+p+2\right)} & \text { if } k \text { is even } \\ p^{2 k}-\frac{p^{k}\left(p^{k+1+1)}\right.}{2(p+1)+1)} & \text { if } k \text { is odd }\end{cases}$

Next we wanted to prove this conjecture, determine a general formula, and write an efficient algorithm to generate irreducible quadratics.

Proof Approach

Consider the quadratic, monic polynomials in $\mathbb{Z}_{n}[x]$ We have

$$
n^{2}=C(n)+R(n)
$$

where $R(n)$ is the number of reducible.
Then $R(n)$ is equal to the number of integer pairs (b, c) such that $0 \leq b, c<n$ and

$$
x^{2}+b x+c \equiv 0 \quad(\bmod n)
$$

has a solution.
From Nagell, we see that this congruence has a solution if and only if the following system of congruences, has a solution.

$$
\begin{gathered}
y^{2} \equiv b^{2}-4 c \quad(\bmod 4 n) \\
y \equiv b \quad(\bmod 2)
\end{gathered}
$$

Counting $R(n)$

We use the following 3 observations from Stangl to count squares in $\mathbb{Z}_{p^{i}}$ where p is a prime and $i \geq 3$ an integer.

- Let $S(n)$ is the number of squares in \mathbb{Z}_{n} and $Q(n)$ the number of quadratic residues in \mathbb{Z}_{n}

$$
S\left(p^{i}\right)=Q\left(p^{i}\right)+S\left(p^{i-2}\right)
$$

- If p is an odd prime, then

$$
Q\left(p^{i}\right)=\frac{\phi\left(p^{i}\right)}{2}=\frac{p^{i}-p^{i-1}}{2}
$$

- For $p=2$ we have

$$
Q\left(2^{i}\right)=\frac{2^{i-1}}{4}=2^{i-3}
$$

Finally, by the previous congruences and the Chinese Remainder Theorem,

$$
R(n)=\frac{n}{2} S\left(2^{\alpha_{0}+2}\right) \Pi_{i=1}^{k} S\left(p_{i}^{\alpha_{i}}\right)
$$

when n has prime factorization

$$
n=p_{0}^{\alpha_{0}} \times p_{1}^{\alpha_{1}} \times \cdots \times p_{k}^{\alpha_{k}}
$$

Main Theorem

Suppose n has prime factorization

$$
n=2^{\alpha_{0}} \times p_{1}^{\alpha_{1}} \times p_{2}^{\alpha_{2}} \times \cdots \times p_{k}^{\alpha_{k}}
$$

where p_{i} are odd primes and α_{i} are non-negative integers.
Then the number of irreducible, quadratic, monic polynomials in $\mathbb{Z}_{n}[x]$ is

$$
C(n)=n^{2}-\frac{n}{2} S\left(2^{\alpha_{0}+2}\right) \Pi_{i=1}^{k} S\left(p_{i}^{\alpha_{i}}\right)
$$

where https://doi.org/10.1080/0025570X.1996.11996456

Nagell, T. (1964). Introduction to Number Theory (2nd ed.). New York: Chelsea Publishing Company

when p is an odd prime.

References

Acknowledgements
Stangl, W. D. (1996). Counting Squares in \mathbb{Z}_{n} Mathematics Magazine, 69(4), pp. 285-289.

Thank you to Michael Monagan for his supervision and contributions.

Generating Reducible Quadratics

Algorithm 1

1: $P \leftarrow \| ; i \leftarrow 0$
2: for $b \in \mathbb{Z}_{p^{k}}$ do
3: for $c \in \mathbb{Z}_{p^{k}}$ do
4: for $x_{0} \in \mathbb{Z}_{p^{k}}$ do
5: \quad if $x_{0}^{2}+b x_{0}+c \equiv 0\left(\bmod p^{k}\right)$ then
6: $\quad P[i] \leftarrow\left\{x^{2}+b x+c\right\} ; \quad i++$
7: break
8: end if
9: end for
10: end for
11: end for
12: return P

Algorithm 2

1: $P \leftarrow \square ; i \leftarrow 0$
2: for $s \in\left\{x^{2} \bmod 4 n: x \in \mathbb{Z}_{4 n}\right\}$ do
3: if $2 \mid s$ then
4: $B \leftarrow\left\{b \in \mathbb{Z}_{n}: 2 \mid b\right\}$
5: else
6: $B \leftarrow\left\{b \in \mathbb{Z}_{n}: 2 \nmid b\right\}$
7: end if
8: for $b \in B$ do
9: $\quad c \leftarrow \leftarrow^{b^{2}-s} \bmod n$
10: $\quad P[i] \leftarrow\left\{x^{2}+b x+c\right\} ; \quad i++$
11: end for
12: end for
13: return P
Implemented in C

- Algorithm 1 Algorithm 2

3

$$
\begin{aligned}
& \text { en } \\
& E_{2} \\
& \hline
\end{aligned}
$$

1

100200300400500600700800900

