Introduction

It is known that there are $\binom{p^{\kappa}}{2}$ irreducible, quadratic, monic polynomials in $GF(p^k)[x]$ where p is a prime and $k \in \mathbb{N}$. My research began with two questions.

- How many are there in $\mathbb{Z}_n[x]$ for any integer n?
- How can we efficiently generate these
- polynomials?

Example: Quadratics over \mathbb{Z}_4

	Reducible	Irreducible
x^2	$(x+0)^2 = (x+2)^2$	$x^2 + 1$
$x^2 + x$	= (x+0)(x+1)	$x^2 + 3$
$x^2 + 2x$	= (x+0)(x+2)	$x^2 + x + 1$
$x^2 + 3x$	= (x+0)(x+3)	$x^2 + x + 3$
$x^2 + 2x + 1$	$(x+1)^2 = (x+3)^2$	$x^2 + 2x + 2$
$x^2 + 3x + 2$	= (x+1)(x+2)	$x^2 + 2x + 3$
$x^2 + 3$	= (x+1)(x+3)	$x^2 + 3x + 1$
$x^2 + x + 2$	= (x+2)(x+3)	$x^2 + 3x + 3$

We may have expected to find $\binom{2^2}{2} = 6$ irreducible quadratics, but in fact there are 8.

Computational Experiments

Let C(n) be the number of irreducible, quadratic, monic polynomials in $\mathbb{Z}_n[x]$.

Using Algorithm 1 coded in C, we found the following.

Sample Data from Algorithm 1

i	$C(2^i)$	$C(3^i)$	$C(5^i)$	$C(7^i)$
1	1	3	10	21
2	8	45	350	1323
3	36	432	9000	65856
4	160	4050	227500	3241350
5	656	36693	5693750	158876571

Conjecture

Let p be an odd prime and $k \in \mathbb{R}$	N. Then
$C(2^k) = \begin{cases} \frac{1}{3}2^{2k+1} - \frac{4}{6}2^k & \text{if} \\ \frac{1}{3}2^{2k+1} - \frac{5}{6}2^k & \text{if} \end{cases}$	k is even
$C(2) = \begin{bmatrix} \frac{1}{3}2^{2k+1} - \frac{5}{6}2^k & \text{if} \end{bmatrix}$	k is odd
$p^{2k} - \frac{p^k(p^{k+1}+p+2)}{2(p+1)}$	if k is even
$C(p^k) = \begin{cases} p^{2k} - \frac{p^k(p^{k+1}+p+2)}{2(p+1)} \\ p^{2k} - \frac{p^k(p^{k+1}+2p+1)}{2(p+1)} \end{cases}$	if k is odd

Next we wanted to prove this conjecture, determine a general formula, and write an efficient algorithm to generate irreducible quadratics.

Robyn Hearn

Department of Mathematics, Simon Fraser University

Proof Approach

Consider the quadratic, monic polynomials in $\mathbb{Z}_n[x]$.	We
We have	COI
$n^2 = C(n) + R(n)$	an
where $R(n)$ is the number of reducible.	• L
Then $R(n)$ is equal to the number of integer pairs	4
(b,c) such that $0 \le b, c < n$ and	
$x^2 + bx + c \equiv 0 \pmod{n}$	• It
has a solution.	
From Nagell, we see that this congruence has a	
solution if and only if the following system of	• F
congruences, has a solution.	- 1
$y^2 \equiv b^2 - 4c \pmod{4n} \tag{1}$	
$\mathbf{I} (\mathbf{I} \mathbf{I} \mathbf{O}) (\mathbf{O})$	Fin
$y \equiv b \pmod{2} \tag{2}$	Re

Congruence (1) suggests that solving for R(n) and C(n) begins by counting squares in \mathbb{Z}_{4n}

when n has prime factorization

Main Theorem

Suppose n has prime factorization

 $n = 2^{\alpha_0} \times p_1^{\alpha_1} \times p_2^{\alpha_2} >$

where p_i are odd primes and α_i are non-negative integers. Then the number of irreducible, quadratic, monic polynomials in $\mathbb{Z}_n[x]$ is

$$C(n) = n^2 - \frac{n}{2}S(2^{\alpha_0+2})\prod_{i=1}^k S(p_i^{\alpha_i})$$

where

$$p^{i}) = \begin{cases} \frac{p^{i+1}+p+2}{2(p+1)} \\ \frac{p^{i+1}+2p+1}{2(p+1)} \end{cases}$$

if i is even if i is odd

when p is an odd prime.

References

Stangl, W. D. (1996). Counting Squares in \mathbb{Z}_n . Mathematics Magazine, 69(4), pp. 285-289. https://doi.org/10.1080/0025570X.1996.11996456

Nagell, T. (1964). Introduction to Number Theory (2nd ed.). New York: Chelsea Publishing Company.

Counting & Generating Irreducible Quadratics over $\mathbb{Z}_n[x]$

Counting R(n)

Ve use the following 3 observations from Stangl to ount squares in \mathbb{Z}_{p^i} where p is a prime and $i \geq 3$ n integer.

Let S(n) is the number of squares in \mathbb{Z}_n and Q(n) the number of quadratic residues in \mathbb{Z}_n .

$$S(p^{i}) = Q(p^{i}) + S(p^{i-2})$$

If p is an odd prime, then

$$Q(p^{i}) = \frac{\phi(p^{i})}{2} = \frac{p^{i} - p^{i-1}}{2}$$

For p = 2 we have

$$Q(2^i) = \frac{2^{i-1}}{4} = 2^{i-3}$$

inally, by the previous congruences and the Chinese emainder Theorem,

$$R(n) = \frac{n}{2} S(2^{\alpha_0 + 2}) \prod_{i=1}^{k} S(p_i^{\alpha_i})$$

$$n = p_0^{\alpha_0} \times p_1^{\alpha_1} \times \cdots \times p_k^{\alpha_k}$$

$$\times \cdots \times p_k^{\alpha_k}$$

$$S(2^{i}) = \begin{cases} rac{2^{i-1}+4}{3} & \text{if } i \text{ is even} \\ rac{2^{i-1}+5}{3} & \text{if } i \text{ is odd} \end{cases}$$

Acknowledgements

Thank you to Michael Monagan for his supervision and contributions.

8:

9:

gor	Alg
P	1:
fo	2:
if	3:
	4:
e	5:
	6:
e	7:
fo	8:
(9:
	10:
e	11:
er	12:
re	13:

 (\mathbf{S}) time

Generating Reducible Quadratics

```
Algorithm 1
1: P \leftarrow []; i \leftarrow 0
2: for b \in \mathbb{Z}_{p^k} do
 3: for c \in \mathbb{Z}_{p^k} do
 4: for x_0 \in \mathbb{Z}_{p^k} do
 5: if x_0^2 + bx_0 + c \equiv 0 \pmod{p^k} then
 6: P[i] \leftarrow \{x^2 + bx + c\}; i + +
        break
       end if
     end for
10: end for
11: end for
12: return P
```

```
rithm 2
 \leftarrow []; i \leftarrow 0
or s \in \{x^2 \mod 4n : x \in \mathbb{Z}_{4n}\} do
f 2|s then
B \leftarrow \{b \in \mathbb{Z}_n : 2 \mid b\}
else
B \leftarrow \{b \in \mathbb{Z}_n : 2 \nmid b\}
end if
for b \in B do
c \leftarrow rac{b^2 - s}{4} \mod n
P[i] \leftarrow \{x^2 + bx + c\}; \quad i + +
end for
nd for
 eturn P
```

