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Problem Setup

Consider a parametric linear system
Ax = b

such that A ∈ Z[y1, y2, . . . , ym]
n×n, rank(A) = n and b ∈ Z[y1, y2, . . . , ym]

n.

Goal: Interpolate the unique vector

x =
[
x1 x2 · · · xn

]T
=

[
f1
g1

f2
g2

· · · fn
gn

]T
(1)

such that for fk , gk ∈ Z[y1, y2, . . . , ym],

gk 6= 0, gk | det(A), and
gcd(fk , gk) = 1 for 1 ≤ k ≤ n.

Applications: engineering, computer vision, computer graphics.
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• Using Cramer’s rule,

xi =
det(Ai )

det(A)
∈ Z(y1, y2, . . . , ym)

where Ai is the matrix obtained by replacing the i-th column of A with b.

• Let x̃i := det(Ai ) = xi det(A) ∈ Z[y1, y2, . . . , ym].
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Bareiss/Edmonds fraction free Gaussian elimination algorithm + Lipson’s back substitution formula

B := [A|b ] ; B0,0 := 1;
// fraction free triangularization begins
for k = 1, 2, . . . , n − 1 do

for i = k + 1, k + 2, . . . , n do
for j = k + 1, k + 2, . . . , n + 1 do

Bi,j :=
Bk,kBi,j − Bi,kBk,j

Bk−1,k−1
;

end do
Bi,k := 0;

end do
end do
// fraction free back substitution begins
x̃n := Bn,n+1;
for i = n − 1, n − 2, . . . , 2, 1 do

Ni := Bi,n+1Bn,n −
∑n

j=i+1 Bi,j x̃j ;
Di := Bi,i ;

x̃i :=
Ni

Di
;

end do
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Problems with the Bareiss/Edmonds/Lipson algorithm

Expression swell occurs at the final step, when k = n − 1, where

Bn,n =
Bn−1,n−1Bn,n − Bn,n−1Bn−1,n

Bn−2,n−2
= det(A) ∈ Z[y1, y2, . . . , ym]

1 The same situation also holds
x̃i :=

Ni

Di

where Ni = Bi,n+1Bn,n −
∑n

j=i+1 Bi,j x̃j ; and Di = Bi,i .

2 To compute the unique vector x in simplest terms, we have to compute

hi = gcd(x̃i , det(A))

which may be expensive.
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A real example

Consider the following real linear system of 21 equations in variables x1, x2, . . . , x21 and parameters y1, y2, . . . , y5 :

x7 + x12 = 1, x8 + x13 = 1, x21 + x6 + x11 = 1, x1y1 + x1 − x2 = 0

x3y2 + x3 − x4 = 0, x11y3 + x11 − x12 = 0, x16y5 − x17y5 − x17 = 0

y3(−x20 + x21) + x21 = 0, y3(−x5 + x6) + x6 − x7 = 0, − x8y4 + x9y3 + x9 = 0

y2(−x10 + x18) + x18 − x19 = 0, y4(x14 − x13) + x14 − x15 = 0

2x3(y
2
2 − 1) + 4x4 − 2x5 = 0, 2y2

1 (x1 − 1)− 2x10 + 4x2 = 0

2y2
3 (x19 − 2x20 + x21)− 2x21 = 0, 2y2

4 (x7 − 2x8 + x9)− 2x9 = 0

2x11(y
2
3 − 1) + 4x12 − 2x13 = 0, 2y2

4 (x12 − 2x13 + x14)− 2x14 + 4x15 − 2x16 = 0

2y2
3 (x4 − 2x5 + x6)− 2x6 + 4x7 − 2x8 = 0, 2y2

5 (x15 − 2x16 + x17)− 2x17 = 0

2y2
2 (−2x10 − x18 − x2)− 2x18 + 4x19 − 2x20 = 0

where the solution defines a general cubic Beta-Spline in the study of modelling curves in Computer Graphics.
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Data for expression swell

Using the Bareiss/Edmonds/Lipson algorithm, we determined that
#Bn,n = #det(A) = 1033,
#Bn−2,n−2 = 672 and
#Bn,nBn−2,n−2 = 14348, so an expression swell factor of 14348/1033 = 14.

i 1 2 3 4 5 6 7 8 9 10 11
#Ni 586 1,172 1,197 1,827 2,142 1,666 2,072 1,320 1,320 2,650 2,543
#Di 2 3 6 9 9 9 9 9 18 18 27
#x̃i 293 586 504 693 882 686 840 536 424 879 638
swell 2 2 3 3 3 3 3 3 3 3 4
# fi 1 2 4 4 4 19 16 8 8 8 2
# gi 5 3 10 7 4 22 16 16 26 12 3

i 12 13 14 15 16 17 18 19 20 21
#Ni 3,490 3,971 5,675 7,410 4,940 7,072 11,793 12,802 11,211 9,620
#Di 36 36 117 153 153 432 672 672 672 672
#x̃i 834 1,033 871 1044 696 348 690 836 693 528
swell 4 4 7 7 7 20 17 15 16 18
# fi 1 1 1 1 1 2 14 4 1 1
# gi 3 3 5 5 3 3 23 7 4 7

Table: Number of polynomial terms in x̃i = Ni/Di and xi = fi/gi and expression swell factor for computing x̃i
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Methods that avoid expressison swell

1 Using lazy polynomial arithmetic approach [Monagan and Vrbik, 2009] : They compute

Bi,j :=
Bk,kBi,j − Bi,kBk,j

Bk−1,k−1
;

and

x̃i :=
Ni

Di

where Ni = Bi,n+1Bn,n −
∑n

j=i+1 Bi,j x̃j ; and Di = Bi,i .

2 We can also use sparse polynomial interpolation algorithms to interpolate x̃ and det(A).

However, we still have to simplify the solutions (computing gcd(det(A), x̃i )).
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Using Gentleman & Johnson minor expansion algorithm

The Gentleman & Johnson minor expansion algorithm can also be used to compute

xi =
det(Ai )

det(A)

where Ai is obtained by replacing the i-th column of A with b.

Again, we still have to simplify the solutions (computing gcd(det(A), det(Ai )).
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Our sparse multivariate rational function interpolation method from CASC 2022

Suppose A = f /g such f , g ∈ Q[y1, y2, . . . , ym] is represented by a "modular" black box.
Our method is a modification of the Cuyt and Lee’s method + the Ben-Or/Tiwari algorithm.

Two main problems posed when the Ben-Or/Tiwari algorithm is used :
The points {(2i , 3i , . . . , pi

m) : i ≥ 0} can cause unlucky evaluation points problem.

The working prime p > p
deg(f )
m may be too large for machine arithmetic use.

Our new sparse rational function interpolation algorithm uses
1 A Kronecker substitution Kr : smaller primes are needed

We interpolate Kr (A) = A(y , y r1 , y r1r2 , . . . y
∏m−1

j=1 ri ) instead of A = f /g

Our new working prime must satisfy p >
∏m

j=1 ri where ri > max(deg(f , yi ), deg(g , yi )).

2 A new set of randomized evaluation points: we use
{
y = αŝ+j : j = 0, 1, 2, . . .

}
where ŝ ∈ [0, p − 2] is a

random shift and α is a generator for Z∗p .
Our method requires the interpolation of auxiliary rational functions

F (αŝ+i , z , β) = A(zαŝ+i + β1, zα
(ŝ+i)r1 + β2, . . . , zα

(ŝ+i)
∏m−1

j=1 ri + βm) ∈ Zp(z)

via calls to the black box, normalize them and then use their coefficients to recover A = f /g .
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Our new black box algorithm for solving Ax = b

Let

fk =

deg(fk )∑
i=0

fi,k(y1, y2, . . . , ym) and gk =

deg(gk )∑
j=0

gj,k(y1, y2, . . . , ym)

such that fi,k and gj,k are homogeneous polynomials of degree i and j respectively

Goal : to avoid gcd computations by interpolating xi = fi/gi directly using sparse rational function interpolation

Our new approach:
1 We use a "modular" black box BB : Zm

p → Zn
p for B = [A|b]

• It accepts accepts an evaluation point α and a prime p to first compute B(α) mod p
• then it solves x(α) = A−1(α)b(α) ∈ Zn

p using Gaussian elimination over Zp .

2 We pre-compute all the needed degree bounds : we need
total degrees deg(fk ), deg(gk ) 1 ≤ k ≤ n.
maximum partial degrees max(deg(fk , yi ), deg(gk , yi )) for 1 ≤ i ≤ m.
total degrees deg(fi,k ), deg(gi,k )

3 We interpolate x from the points x(α) using our sparse multivariate rational function interpolation algorithm
we interpolate fdeg(fk ),k and gdeg(gk ),k first then fdeg(fk )−1,k and gdeg(gk )−1,k, . . . , f0,k and g0,k .

4 We use rational number construction and Chinese remaindering if needed.
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Implementation and comparison to other algorithms

We have implemented our algorithm for solving Ax = b in Maple with some parts coded in C for efficiency.

• Maple’s in built commands : using LinearSolve and ReducedRowEchelon

• a Maple implementation of the Gentleman & Johnson algorithm

• a Maple implementation of the Bareiss/Edmonds/Lipson algorithm
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Benchmarks 1 (Artificial parametric linear systems)

We created a linear system Wx∗ = c which is equivalent to Ax = b such that
W = DA and c = Db for A is a diagonal matrix and rank(D) = n
The polynomial entries of D and A are small (it involves 10 parameters).
the solutions of Wx∗ = c is much smaller than the determinants of the matrices involved.

Table: CPU Timings for solving Wx∗ = c with #fi ,#gi ≤ 5 for 3 ≤ n ≤ 10.

n 3 4 5 6 7 8 9 10
#det(A) 125 625 3,125 15,500 59,851 310,796 1,923,985 9,381,213
#det(D) 40 336 3,120 38,784 518,009 8,477,343 156,424,985 NA
#det(W ) 5,000 209,960 9,741,747 NA NA NA NA NA

ParamLinSolve 0.079s 0.176s 0.154s 0.211s 0.220s 0.239s 0.259s 0.317s
LinearSolve 0.129s 1.26s 304.20s 124200s ! ! ! !
ReducedRow 0.01s 0.083 11.05s 3403.2s ! ! ! !

Bareiss 2.02s ! ! ! ! ! ! !
Gentleman 0.040s 3.19s 239.40s ! ! ! ! !
time-det(A) 0s 0s 0.003s 0.08s 0.898s 0.703s 17.03s 25.32s
time -det(D) 0s 0s 0.007s 1.21s 1.39s 601.8s 2893.8s !
time-det(W ) 0s 0.310s 20.44s ! ! ! ! !

! = out of memory and NA means Not Attempted
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Benchmarks 2 (Real parametric linear systems)

system names n m max ParamLinSolve Gentleman LinearSolve ReducedRow Bareiss #det(A)
Bspline 21 5 26 0.220s 2623.8s 0.021s 0.026s 0.500s 1033
Bigsys 44 48 58240 7776s ! 17.85s 1.66s ! 6037416
Caglar 12 56 23072 1685.57s NA 1232.40s 15480.35s NA 15744
Sys66a 66 34 145744 665507.32s ! ! ! ! NA
Sys66b 66 31 107468 255819.27s ! ! ! ! NA

! = out of memory and NA means Not Attempted

Table: Breakdown of CPU timings for all individual algorithms for computing bigsys

Time(ms) Percentage
Matrix Evaluation 151.48s 1.9 %

Gaussian Elimination 110.71s 1.4 %
Univariate Rational Function Interpolation 706.07s 9 %

Finding λ ∈ Zp [z] using the Berlekamp-Massey Algorithm 208.25s 2.6 %
Roots of λ over Zp 4856.96s 62 %

Solving Vandermonde systems 434.46s 5.6 %
Multiplication and Addition of Evaluation points 257.40s 3.3 %

Computing Discrete logarithms 586.64s 7.6 %
Miscellaneous 464.67s 9.4 %
Overall Time 7776s 100 %
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Failure probability

Theorem
Let deg(bj), deg(Aij), deg(fi ), deg(gi ) ≤ d .

Let #Aij ,#bj ,#fi ,#gi ≤ t and let ‖Aij‖∞, ‖bj‖∞ ≤ h.

Let Na be greater than the required number of auxiliary rational function needed to interpolate x .

Let e be the Euler number where e = 2.718.

Suppose all the precomputed degree bounds obtained to interpolate x are correct.

Suppose our new black box algorithm for solving Ax = b only needs one prime to interpolate x .

If prime p is chosen at random from the list of N primes P = {p1, p2, . . . , pN} such that pmin = min(P) then the
probability that our new black box algorithm returns FAIL is at most

6Nan
2d
(
logpmin

(th
√
n)
)
+ 2Nan

2md logpmin
(e)

N
+

2n(1+ d)m
(
Na + t2 + t2d

)
+ 5n2Nad

2

pmin − 1
.
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Theorem
Let deg(bj), deg(Aij), deg(fi ), deg(gi ) ≤ d .

Let #Aij ,#bj ,#fi ,#gi ≤ t and let ‖Aij‖∞, ‖bj‖∞ ≤ h.

Let Na be greater than the required number of auxiliary rational functions needed to interpolate x .

Let e = 2.718 be the Euler number.

Suppose our new black box algorithm for solving Ax = b gets the support of the xi but it needs more primes to
recover the coefficients.

If our algorithm selects a new prime at random from the list of N primes P = {p1, p2, . . . , pN} such that
pmin = min(P) to reconstruct the coefficients of x using rational number reconstruction

Then probability that our new black box algorithm for solving Ax = b returns FAIL

≤
6Nan

2d
(
logpmin

(th
√
n)
)
+ 2Nan

2md logpmin
(e)

N
+

7n2d2Na + 4nd2t2

pmin − 1
.
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Complexity analysis (in terms of the number of black box probes used)

Theorem
Suppose

fk =

deg(fk )∑
i=0

fi,k(y1, y2, . . . , ym) and gk =

deg(gk )∑
j=0

gj,k(y1, y2, . . . , ym)

such that fi,k and gj,k are homogeneous polynomials of degree i and j respectively

Let N̂max = maxnk=1(max
deg(fk )
i=0 {#fi,k},max

deg(gk )
j=0 {#gi,k})

Let emax = 2+maxnk=1{deg(fk) + deg(gk)} (#points needed for univariate rational function interpolation)

Let H = maxk(‖fk‖∞, ‖gk‖∞)

The number of black box probes required by our algorithm to interpolate the solution vector x is

O(emaxN̂max logH).
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Conclusion

1 A new black box algorithm to solve parametric linear systems that uses sparse rational function interpolation.
2 Implementation done in Maple with several parts coded in C for efficiency.
3 A detailed failure probability & complexity analysis in terms of number of black box probes used.
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