Solving parametric linear systems using sparse rational function interpolation

Ayoola Jinadu (Joint work with Michael Monagan)
 Department of Mathematics

August 29,2023

Problem Setup

Consider a parametric linear system

$$
A x=b
$$

such that $A \in \mathbb{Z}\left[y_{1}, y_{2}, \ldots, y_{m}\right]^{n \times n}, \operatorname{rank}(A)=n$ and $b \in \mathbb{Z}\left[y_{1}, y_{2}, \ldots, y_{m}\right]^{n}$.

Goal: Interpolate the unique vector

$$
x=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]^{T}=\left[\begin{array}{llll}
\frac{f_{1}}{g_{1}} & \frac{f_{2}}{g_{2}} & \cdots & \frac{f_{n}}{g_{n}} \tag{1}
\end{array}\right]^{T}
$$

such that for $f_{k}, g_{k} \in \mathbb{Z}\left[y_{1}, y_{2}, \ldots, y_{m}\right]$,

- $g_{k} \neq 0, g_{k} \mid \operatorname{det}(A)$, and
- $\operatorname{gcd}\left(f_{k}, g_{k}\right)=1$ for $1 \leq k \leq n$.

Applications: engineering, computer vision, computer graphics.

- Using Cramer's rule,

$$
x_{i}=\frac{\operatorname{det}\left(A^{i}\right)}{\operatorname{det}(A)} \in \mathbb{Z}\left(y_{1}, y_{2}, \ldots, y_{m}\right)
$$

where A^{i} is the matrix obtained by replacing the i-th column of A with b.

- Let $\tilde{x}_{i}:=\operatorname{det}\left(A^{i}\right)=x_{i} \operatorname{det}(A) \in \mathbb{Z}\left[y_{1}, y_{2}, \ldots, y_{m}\right]$.

Bareiss/Edmonds fraction free Gaussian elimination algorithm + Lipson's back substitution formula

$$
\begin{aligned}
& B:=[A \mid b] ; \quad B_{0,0}:=1 ; \\
& \text { // fraction free triangularization begins } \\
& \text { for } k=1,2, \ldots, n-1 \text { do } \\
& \quad \text { for } i=k+1, k+2, \ldots, n \text { do } \\
& \quad \text { for } j=k+1, k+2, \ldots, n+1 \text { do }
\end{aligned}
$$

end do
$B_{i, k}:=0$;
end do
end do
// fraction free back substitution begins $\tilde{x}_{n}:=B_{n, n+1}$;
for $i=n-1, n-2, \ldots, 2,1$ do
$N_{i}:=B_{i, n+1} B_{n, n}-\sum_{j=i+1}^{n} B_{i, j} \tilde{X}_{j} ;$
$D_{i}:=B_{i, i} ;$

$$
\tilde{x}_{i}:=\frac{N_{i}}{D_{i}} ;
$$

end do

Problems with the Bareiss/Edmonds/Lipson algorithm

Expression swell occurs at the final step, when $k=n-1$, where

$$
B_{n, n}=\frac{B_{n-1, n-1} B_{n, n}-B_{n, n-1} B_{n-1, n}}{B_{n-2, n-2}}=\operatorname{det}(A) \in \mathbb{Z}\left[y_{1}, y_{2}, \ldots, y_{m}\right]
$$

(1) The same situation also holds

$$
\tilde{x}_{i}:=\frac{N_{i}}{D_{i}}
$$

where $N_{i}=B_{i, n+1} B_{n, n}-\sum_{j=i+1}^{n} B_{i, j} \tilde{x}_{j}$; and $D_{i}=B_{i, i}$.
(2) To compute the unique vector x in simplest terms, we have to compute

$$
h_{i}=\operatorname{gcd}\left(\tilde{x}_{i}, \operatorname{det}(A)\right)
$$

which may be expensive.

A real example

Consider the following real linear system of 21 equations in variables $x_{1}, x_{2}, \ldots, x_{21}$ and parameters $y_{1}, y_{2}, \ldots, y_{5}$:

$$
\begin{aligned}
& x_{7}+x_{12}=1, x_{8}+x_{13}=1, x_{21}+x_{6}+x_{11}=1, x_{1} y_{1}+x_{1}-x_{2}=0 \\
& x_{3} y_{2}+x_{3}-x_{4}=0, x_{11} y_{3}+x_{11}-x_{12}=0, x_{16} y_{5}-x_{17} y_{5}-x_{17}=0 \\
& y_{3}\left(-x_{20}+x_{21}\right)+x_{21}=0, y_{3}\left(-x_{5}+x_{6}\right)+x_{6}-x_{7}=0,-x_{8} y_{4}+x_{9} y_{3}+x_{9}=0 \\
& y_{2}\left(-x_{10}+x_{18}\right)+x_{18}-x_{19}=0, y_{4}\left(x_{14}-x_{13}\right)+x_{14}-x_{15}=0 \\
& 2 x_{3}\left(y_{2}^{2}-1\right)+4 x_{4}-2 x_{5}=0,2 y_{1}^{2}\left(x_{1}-1\right)-2 x_{10}+4 x_{2}=0 \\
& 2 y_{3}^{2}\left(x_{19}-2 x_{20}+x_{21}\right)-2 x_{21}=0,2 y_{4}^{2}\left(x_{7}-2 x_{8}+x_{9}\right)-2 x_{9}=0 \\
& 2 x_{11}\left(y_{3}^{2}-1\right)+4 x_{12}-2 x_{13}=0,2 y_{4}^{2}\left(x_{12}-2 x_{13}+x_{14}\right)-2 x_{14}+4 x_{15}-2 x_{16}=0 \\
& 2 y_{3}^{2}\left(x_{4}-2 x_{5}+x_{6}\right)-2 x_{6}+4 x_{7}-2 x_{8}=0,2 y_{5}^{2}\left(x_{15}-2 x_{16}+x_{17}\right)-2 x_{17}=0 \\
& 2 y_{2}^{2}\left(-2 x_{10}-x_{18}-x_{2}\right)-2 x_{18}+4 x_{19}-2 x_{20}=0
\end{aligned}
$$

where the solution defines a general cubic Beta-Spline in the study of modelling curves in Computer Graphics.

Data for expression swell

Using the Bareiss/Edmonds/Lipson algorithm, we determined that

- $\# B_{n, n}=\# \operatorname{det}(A)=1033$,
- $\# B_{n-2, n-2}=672$ and
- $\# B_{n, n} B_{n-2, n-2}=14348$, so an expression swell factor of $14348 / 1033=14$.

i	1	2	3	4	5	6	7	8	9	10	11
$\# N_{i}$	586	1,172	1,197	1,827	2,142	1,666	2,072	1,320	1,320	2,650	2,543
$\# D_{i}$	2	3	6	9	9	9	9	9	18	18	27
$\# \tilde{x}_{i}$	293	586	504	693	882	686	840	536	424	879	638
swell	2	2	3	3	3	3	3	3	3	3	4
$\# f_{i}$	1	2	4	4	4	19	16	8	8	8	2
$\# g_{i}$	5	3	10	7	4	22	16	16	$\mathbf{2 6}$	12	3

i	12	13	14	15	16	17	18	19	20	21
$\# N_{i}$	3,490	3,971	5,675	7,410	4,940	7,072	11,793	12,802	11,211	9,620
$\# D_{i}$	36	36	117	153	153	432	672	672	672	672
$\# \tilde{x}_{i}$	834	1,033	871	1044	696	348	690	836	693	528
swell	4	4	7	7	7	20	17	15	16	18
$\# f_{i}$	1	1	1	1	1	2	14	4	1	1
$\# g_{i}$	3	3	5	5	3	3	23	7	4	7

Table: Number of polynomial terms in $\tilde{x}_{i}=N_{i} / D_{i}$ and $x_{i}=f_{i} / g_{i}$ and expression swell factor for computing \tilde{x}_{i}

Methods that avoid expressison swell

(1) Using lazy polynomial arithmetic approach [Monagan and Vrbik, 2009] : They compute

$$
B_{i, j}:=\frac{B_{k, k} B_{i, j}-B_{i, k} B_{k, j}}{B_{k-1, k-1}} ;
$$

and

$$
\tilde{x}_{i}:=\frac{N_{i}}{D_{i}}
$$

where $N_{i}=B_{i, n+1} B_{n, n}-\sum_{j=i+1}^{n} B_{i, j} \tilde{x}_{j}$; and $D_{i}=B_{i, i}$.
(2) We can also use sparse polynomial interpolation algorithms to interpolate \tilde{x} and $\operatorname{det}(A)$. However, we still have to simplify the solutions (computing $\left.\operatorname{gcd}\left(\operatorname{det}(A), \tilde{x}_{i}\right)\right)$.

Using Gentleman \& Johnson minor expansion algorithm

The Gentleman \& Johnson minor expansion algorithm can also be used to compute

$$
x_{i}=\frac{\operatorname{det}\left(A^{i}\right)}{\operatorname{det}(A)}
$$

where A^{i} is obtained by replacing the i-th column of A with b.
Again, we still have to simplify the solutions (computing $\operatorname{gcd}\left(\operatorname{det}(A), \operatorname{det}\left(A^{i}\right)\right)$.

Our sparse multivariate rational function interpolation method from CASC 2022

Suppose $A=f / g$ such $f, g \in \mathbb{Q}\left[y_{1}, y_{2}, \ldots, y_{m}\right]$ is represented by a "modular" black box.

- Our method is a modification of the Cuyt and Lee's method + the Ben-Or/Tiwari algorithm.

Two main problems posed when the Ben-Or/Tiwari algorithm is used :

- The points $\left\{\left(2^{i}, 3^{i}, \ldots, p_{m}^{i}\right): i \geq 0\right\}$ can cause unlucky evaluation points problem.
- The working prime $p>p_{m}^{\operatorname{deg}(f)}$ may be too large for machine arithmetic use.

Our new sparse rational function interpolation algorithm uses
(1) A Kronecker substitution K_{r} : smaller primes are needed

- We interpolate $K_{r}(A)=A\left(y, y^{r_{1}}, y^{r_{1} r_{2}}, \ldots y^{\prod_{j=1}^{m-1} r_{i}}\right)$ instead of $A=f / g$
- Our new working prime must satisfy $p>\prod_{j=1}^{m} r_{i}$ where $r_{i}>\max \left(\operatorname{deg}\left(f, y_{i}\right), \operatorname{deg}\left(g, y_{i}\right)\right)$.
(2) A new set of randomized evaluation points: we use $\left\{y=\alpha^{\hat{s}+j}: j=0,1,2, \ldots\right\}$ where $\hat{s} \in[0, p-2]$ is a random shift and α is a generator for \mathbb{Z}_{p}^{*}.
Our method requires the interpolation of auxiliary rational functions

$$
F\left(\alpha^{\hat{s}+i}, z, \beta\right)=A\left(z \alpha^{\hat{s}+i}+\beta_{1}, z \alpha^{(\hat{s}+i) r_{1}}+\beta_{2}, \ldots, z \alpha^{(\hat{s}+i) \prod_{j=1}^{m-1} r_{i}}+\beta_{m}\right) \in \mathbb{Z}_{p}(z)
$$

via calls to the black box, normalize them and then use their coefficients to recover $A=f / g$.

Our new black box algorithm for solving $A x=b$

Let

$$
f_{k}=\sum_{i=0}^{\operatorname{deg}\left(f_{k}\right)} f_{i, k}\left(y_{1}, y_{2}, \ldots, y_{m}\right) \text { and } g_{k}=\sum_{j=0}^{\operatorname{deg}\left(g_{k}\right)} g_{j, k}\left(y_{1}, y_{2}, \ldots, y_{m}\right)
$$

such that $f_{i, k}$ and $g_{j, k}$ are homogeneous polynomials of degree i and j respectively
Goal : to avoid gcd computations by interpolating $x_{i}=f_{i} / g_{i}$ directly using sparse rational function interpolation

Our new approach:

(1) We use a "modular" black box $\mathrm{BB}: \mathbb{Z}_{p}^{m} \rightarrow \mathbb{Z}_{p}^{n}$ for $B=[A \mid b]$

- It accepts accepts an evaluation point α and a prime p to first compute $B(\alpha) \bmod p$
- then it solves $x(\alpha)=A^{-1}(\alpha) b(\alpha) \in \mathbb{Z}_{p}^{n}$ using Gaussian elimination over \mathbb{Z}_{p}.
(2) We pre-compute all the needed degree bounds: we need
- total degrees $\operatorname{deg}\left(f_{k}\right), \operatorname{deg}\left(g_{k}\right) 1 \leq k \leq n$.
- maximum partial degrees $\max \left(\operatorname{deg}\left(f_{k}, y_{i}\right), \operatorname{deg}\left(g_{k}, y_{i}\right)\right)$ for $1 \leq i \leq m$.
- total degrees $\operatorname{deg}\left(f_{i, k}\right), \operatorname{deg}\left(g_{i, k}\right)$
(3) We interpolate x from the points $x(\alpha)$ using our sparse multivariate rational function interpolation algorithm - we interpolate $f_{\operatorname{deg}\left(f_{k}\right), k}$ and $g_{\operatorname{deg}\left(g_{k}\right), k}$ first then $f_{\operatorname{deg}\left(f_{k}\right)-1, k}$ and $g_{\operatorname{deg}\left(g_{k}\right)-1, k, \ldots, f_{0, k}}$ and $g_{0, k}$.
(9) We use rational number construction and Chinese remaindering if needed.

Implementation and comparison to other algorithms

- We have implemented our algorithm for solving $A x=b$ in Maple with some parts coded in C for efficiency.
- Maple's in built commands : using LinearSolve and ReducedRowEchelon
- a Maple implementation of the Gentleman \& Johnson algorithm
- a Maple implementation of the Bareiss/Edmonds/Lipson algorithm

Benchmarks 1 (Artificial parametric linear systems)

We created a linear system $W x^{*}=c$ which is equivalent to $A x=b$ such that

- $W=D A$ and $c=D b$ for A is a diagonal matrix and $\operatorname{rank}(D)=n$
- The polynomial entries of D and A are small (it involves 10 parameters).
- the solutions of $W x^{*}=c$ is much smaller than the determinants of the matrices involved.

Table: CPU Timings for solving $W x^{*}=c$ with $\# f_{i}, \# g_{i} \leq 5$ for $3 \leq \mathbf{n} \leq 10$.

n	3	4	5	6	7	8	9	10
$\# \operatorname{det}(A)$	125	625	3,125	15,500	59,851	310,796	$1,923,985$	$9,381,213$
$\# \operatorname{det}(D)$	40	336	3,120	38,784	518,009	$8,477,343$	$156,424,985$	NA
$\# \operatorname{det}(W)$	5,000	209,960	$9,741,747$	NA	NA	NA	NA	NA
ParamLinSolve	0.079 s	0.176 s	0.154 s	0.211 s	0.220 s	0.239 s	0.259 s	0.317 s
LinearSolve	0.129 s	1.26 s	304.20 s	124200 s	$!$	$!$	$!$	$!$
ReducedRow	0.01 s	0.083	11.05 s	3403.2 s	$!$	$!$	$!$	$!$
Bareiss	2.02 s	$!$	$!$	$!$	$!$	$!$	$!$	$!$
Gentleman	0.040 s	3.19 s	239.40 s	$!$	$!$	$!$	$!$	$!$
time-det (A)	0 s	0 s	0.003 s	0.08 s	0.898 s	0.703 s	17.03 s	25.32 s
time $-\operatorname{det}(D)$	0 s	0 s	0.007 s	1.21 s	1.39 s	601.8 s	2893.8 s	$!$
time-det (W)	0 s	0.310 s	20.44 s	$!$	$!$	$!$	$!$	$!$

! = out of memory and NA means Not Attempted

Benchmarks 2 (Real parametric linear systems)

system names	n	m	\max	ParamLinSolve	Gentleman	LinearSolve	ReducedRow	Bareiss	$\# \operatorname{det}(A)$
Bspline	21	5	26	0.220 s	2623.8 s	0.021 s	0.026 s	0.500 s	1033
Bigsys	44	48	58240	7776 s	$!$	17.85 s	1.66 s	$!$	6037416
Caglar	12	56	23072	1685.57 s	NA	1232.40 s	15480.35 s	NA	15744
Sys66a	66	34	145744	665507.32 s	$!$	$!$	$!$	$!$	NA
Sys66b	66	31	107468	255819.27 s	$!$	$!$	$!$	$!$	NA

$$
!=\text { out of memory and NA means Not Attempted }
$$

Table: Breakdown of CPU timings for all individual algorithms for computing bigsys

	Time (ms)	Percentage
Matrix Evaluation	151.48 s	1.9%
Gaussian Elimination	110.71 s	1.4%
Finding $\lambda \in \mathbb{Z}_{p}[z]$ using the Berlekamp-Massey Algorithm	706.07 s	908.25 s
Roots of λ over \mathbb{Z}_{p}	2.6%	
Solving Vandermonde systems	4856.96 s	62%
Multiplication and Addition of Evaluation points	434.46 s	5.6%
Computing Discrete logarithms	257.40 s	3.3%
Miscellaneous	586.64 s	7.6%
Overall Time	464.67 s	9.4%
	7776 s	100%

Failure probability

Theorem

- Let $\operatorname{deg}\left(b_{j}\right), \operatorname{deg}\left(A_{i j}\right), \operatorname{deg}\left(f_{i}\right), \operatorname{deg}\left(g_{i}\right) \leq d$.
- Let $\# A_{i j}, \# b_{j}, \# f_{i}, \# g_{i} \leq t$ and let $\left\|A_{i j}\right\|_{\infty},\left\|b_{j}\right\|_{\infty} \leq h$.
- Let N_{a} be greater than the required number of auxiliary rational function needed to interpolate x.
- Let e be the Euler number where $e=2.718$.
- Suppose all the precomputed degree bounds obtained to interpolate x are correct.
- Suppose our new black box algorithm for solving $A x=b$ only needs one prime to interpolate x.

If prime p is chosen at random from the list of N primes $P=\left\{p_{1}, p_{2}, \ldots, p_{N}\right\}$ such that $p_{\min }=\min (P)$ then the probability that our new black box algorithm returns FAIL is at most

$$
\frac{6 N_{\mathrm{a}} n^{2} d\left(\log _{\rho_{\text {min }}}(t h \sqrt{n})\right)+2 N_{\mathrm{a}} n^{2} m d \log _{p_{\text {min }}}(\mathrm{e})}{N}+\frac{2 n(1+d)^{m}\left(N_{\mathrm{a}}+t^{2}+t^{2} d\right)+5 n^{2} N_{\mathrm{a}} d^{2}}{p_{\text {min }}-1} .
$$

Theorem

- Let $\operatorname{deg}\left(b_{j}\right), \operatorname{deg}\left(A_{i j}\right), \operatorname{deg}\left(f_{i}\right), \operatorname{deg}\left(g_{i}\right) \leq d$.
- Let $\# A_{i j}, \# b_{j}, \# f_{i}, \# g_{i} \leq t$ and let $\left\|A_{i j}\right\|_{\infty},\left\|b_{j}\right\|_{\infty} \leq h$.
- Let N_{a} be greater than the required number of auxiliary rational functions needed to interpolate x.
- Let $e=2.718$ be the Euler number.

Suppose our new black box algorithm for solving $A x=b$ gets the support of the x_{i} but it needs more primes to recover the coefficients.

If our algorithm selects a new prime at random from the list of N primes $P=\left\{p_{1}, p_{2}, \ldots, p_{N}\right\}$ such that $p_{\text {min }}=\min (P)$ to reconstruct the coefficients of x using rational number reconstruction

Then probability that our new black box algorithm for solving $A x=b$ returns FAIL

$$
\leq \frac{6 N_{a} n^{2} d\left(\log _{p_{\min }}(t h \sqrt{n})\right)+2 N_{a} n^{2} m d \log _{p_{\min }}(\mathrm{e})}{N}+\frac{7 n^{2} d^{2} N_{a}+4 n d^{2} t^{2}}{p_{\min }-1}
$$

Complexity analysis (in terms of the number of black box probes used)

Theorem

Suppose

$$
f_{k}=\sum_{i=0}^{\operatorname{deg}\left(f_{k}\right)} f_{i, k}\left(y_{1}, y_{2}, \ldots, y_{m}\right) \text { and } g_{k}=\sum_{j=0}^{\operatorname{deg}\left(g_{k}\right)} g_{j, k}\left(y_{1}, y_{2}, \ldots, y_{m}\right)
$$

such that $f_{i, k}$ and $g_{j, k}$ are homogeneous polynomials of degree i and j respectively

- Let $\hat{N}_{\max }=\max _{k=1}^{n}\left(\max _{i=0}^{\operatorname{deg}\left(f_{k}\right)}\left\{\# f_{i, k}\right\}, \max _{j=0}^{\operatorname{deg}\left(g_{k}\right)}\left\{\# g_{i, k}\right\}\right)$
- Let $e_{\max }=2+\max _{k=1}^{n}\left\{\operatorname{deg}\left(f_{k}\right)+\operatorname{deg}\left(g_{k}\right)\right\}$ (\#points needed for univariate rational function interpolation)
- Let $H=\max _{k}\left(\left\|f_{k}\right\|_{\infty},\left\|g_{k}\right\|_{\infty}\right)$

The number of black box probes required by our algorithm to interpolate the solution vector x is

$$
O\left(e_{\max } \hat{N}_{\max } \log H\right) .
$$

Conclusion

(1) A new black box algorithm to solve parametric linear systems that uses sparse rational function interpolation.
(3) Implementation done in Maple with several parts coded in C for efficiency.

- A detailed failure probability \& complexity analysis in terms of number of black box probes used.

