Solving parametric linear systems using sparse rational function interpolation

Ayoola Jinadu (Joint work with Michael Monagan)

Department of Mathematics

August 29,2023

Problem Setup

Consider a parametric linear system

Ax = b

such that $A \in \mathbb{Z}[y_1, y_2, \dots, y_m]^{n \times n}$, $\operatorname{rank}(A) = n$ and $b \in \mathbb{Z}[y_1, y_2, \dots, y_m]^n$.

<u>Goal</u>: Interpolate the unique vector

$$x = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T = \begin{bmatrix} f_1 & f_2 & \cdots & f_n \\ g_1 & g_2 & \cdots & g_n \end{bmatrix}^T$$

such that for $f_k, g_k \in \mathbb{Z}[y_1, y_2, \ldots, y_m]$,

- $g_k \neq 0$, $g_k | \det(A)$, and
- $gcd(f_k, g_k) = 1$ for $1 \le k \le n$.

Applications: engineering, computer vision, computer graphics.

(1)

• Using Cramer's rule,

$$x_i = rac{\det(A^i)}{\det(A)} \in \mathbb{Z}(y_1, y_2, \dots, y_m)$$

where A^i is the matrix obtained by replacing the i-th column of A with b.

• Let
$$\tilde{x}_i := \det(A^i) = x_i \det(A) \in \mathbb{Z}[y_1, y_2, \dots, y_m].$$

Bareiss/Edmonds fraction free Gaussian elimination algorithm + Lipson's back substitution formula

 $B := [A|b]; B_{0,0} := 1;$ // fraction free triangularization begins for k = 1, 2, ..., n - 1 do for i = k + 1, k + 2, ..., n do for $i = k + 1, k + 2, \dots, n + 1$ do $B_{i,j} := \frac{B_{k,k}B_{i,j} - B_{i,k}B_{k,j}}{B_{k-1,k-1}};$ end do $B_{i,k} := 0$: end do end do // fraction free back substitution begins $\tilde{x}_n := B_{n,n+1}$: for $i = n - 1, n - 2, \dots, 2, 1$ do $N_i := B_{i,n+1}B_{n,n} - \sum_{i=i+1}^n B_{i,j}\tilde{x}_j;$ $D_i := B_{i,i}$ $\tilde{x}_i := \frac{N_i}{D};$

end do

Expression swell occurs at the final step, when k = n - 1, where

$$B_{n,n} = \frac{B_{n-1,n-1}B_{n,n} - B_{n,n-1}B_{n-1,n}}{B_{n-2,n-2}} = \det(A) \in \mathbb{Z}[y_1, y_2, \dots, y_m]$$

The same situation also holds

$$\tilde{x}_i := \frac{N}{D}$$

where $N_i = B_{i,n+1}B_{n,n} - \sum_{j=i+1}^n B_{i,j}\tilde{x}_j$; and $D_i = B_{i,i}$.

O To compute the unique vector x in simplest terms, we have to compute

 $h_i = \gcd(\tilde{x}_i, \det(A))$

which may be expensive.

A real example

Consider the following real linear system of 21 equations in variables x_1, x_2, \ldots, x_{21} and parameters y_1, y_2, \ldots, y_5 :

$$\begin{aligned} x_7 + x_{12} &= 1, \ x_8 + x_{13} = 1, \ x_{21} + x_6 + x_{11} = 1, \ x_{1}y_1 + x_1 - x_2 = 0 \\ x_3y_2 + x_3 - x_4 &= 0, \ x_{11}y_3 + x_{11} - x_{12} = 0, \ x_{16}y_5 - x_{17}y_5 - x_{17} = 0 \\ y_3(-x_{20} + x_{21}) + x_{21} &= 0, \ y_3(-x_5 + x_6) + x_6 - x_7 = 0, \ -x_8y_4 + x_9y_3 + x_9 = 0 \\ y_2(-x_{10} + x_{18}) + x_{18} - x_{19} = 0, \ y_4(x_{14} - x_{13}) + x_{14} - x_{15} = 0 \\ 2x_3(y_2^2 - 1) + 4x_4 - 2x_5 = 0, \ 2y_1^2(x_1 - 1) - 2x_{10} + 4x_2 = 0 \\ 2y_3^2(x_{19} - 2x_{20} + x_{21}) - 2x_{21} = 0, \ 2y_4^2(x_7 - 2x_8 + x_9) - 2x_9 = 0 \\ 2x_{11}(y_3^2 - 1) + 4x_{12} - 2x_{13} = 0, \ 2y_4^2(x_{12} - 2x_{13} + x_{14}) - 2x_{14} + 4x_{15} - 2x_{16} = 0 \\ 2y_3^2(x_4 - 2x_5 + x_6) - 2x_6 + 4x_7 - 2x_8 = 0, \ 2y_5^2(x_{15} - 2x_{16} + x_{17}) - 2x_{17} = 0 \\ 2y_2^2(-2x_{10} - x_{18} - x_2) - 2x_{18} + 4x_{19} - 2x_{20} = 0 \end{aligned}$$

where the solution defines a general cubic Beta-Spline in the study of modelling curves in Computer Graphics.

Data for expression swell

Using the Bareiss/Edmonds/Lipson algorithm, we determined that

- $\#B_{n,n} = \#\det(A) = 1033$,
- $\#B_{n-2,n-2} = 672$ and
- $\#B_{n,n}B_{n-2,n-2} = 14348$, so an expression swell factor of 14348/1033 = 14.

i	1		2		3	4	4	5	5	6	ò	7	'	8		9	10	11
#N i	586	1,	172	1,1	197	1,8	327	2,1	42	1,6	66	2,0	72	1,320)	1,320	2,650	2,543
$\#D_i$	2		3		6	ç	9	ç)	g)	9)	9		18	18	27
₩ <i>x</i> i	293	586		5	504		93 882		32	686		84	0	536		424	879	638
swell	2		2		3	1	3	3	}	3	3	3		3		3	3	4
# f;	1		2		4	4	4	4	ł	19	9	16	6	8		8	8	2
# g i	5		3	1	.0		7	2	ł	2	2	10	6	16		26	12	3
i	12	2	13	3	14	4	1	5	1	6	1	.7		18		19	20	21
$\#N_i$	3,49	90	3,9	71	5,6	75	7,4	10	4,9	940	7,0)72	11	,793	12	2,802	11,211	9,620
$\#D_i$	36	õ	36	5	11	7	15	53	15	53	43	32	6	572		672	672	672
₩ <i>x̃i</i>	83	4	1,0	33	87	1	10	44	69	96	34	48	6	690	1	836	693	528
swell	4		4		7		7	7	1	7	2	20		17		15	16	18
# f _i	1		1		1		1		1	L	1	2		14		4	1	1
₿ # ₿i	3		3		5		1	5	3	3		3		23		7	4	7

Table: Number of polynomial terms in $\tilde{x}_i = N_i/D_i$ and $x_i = f_i/g_i$ and expression swell factor for computing \tilde{x}_i

Ayoola Jinadu

O Using lazy polynomial arithmetic approach [Monagan and Vrbik, 2009] : They compute

$$B_{i,j} := \frac{B_{k,k}B_{i,j} - B_{i,k}B_{k,j}}{B_{k-1,k-1}};$$

and

$$\tilde{x}_i := \frac{N_i}{D_i}$$

where $N_i = B_{i,n+1}B_{n,n} - \sum_{j=i+1}^n B_{i,j}\tilde{x}_j$; and $D_i = B_{i,i}$.

• We can also use sparse polynomial interpolation algorithms to interpolate \tilde{x} and det(A). However, we still have to simplify the solutions (computing gcd(det(A), \tilde{x}_i)). The Gentleman & Johnson minor expansion algorithm can also be used to compute

$$x_i = rac{\det(A^i)}{\det(A)}$$

where A^i is obtained by replacing the i-th column of A with b.

Again, we still have to simplify the solutions (computing $gcd(det(A), det(A^{i}))$).

Our sparse multivariate rational function interpolation method from CASC 2022

Suppose A = f/g such $f, g \in \mathbb{Q}[y_1, y_2, \dots, y_m]$ is represented by a "modular" black box.

• Our method is a modification of the Cuyt and Lee's method + the Ben-Or/Tiwari algorithm.

Two main problems posed when the Ben-Or/Tiwari algorithm is used :

- The points $\{(2^i, 3^i, \dots, p_m^i) : i \ge 0\}$ can cause unlucky evaluation points problem.
- The working prime $p > p_m^{deg(f)}$ may be too large for machine arithmetic use.

Our new sparse rational function interpolation algorithm uses

- A Kronecker substitution K_r : smaller primes are needed
 - We interpolate $K_r(A) = A(y, y^{r_1}, y^{r_1r_2}, \dots y^{\prod_{j=1}^{m-1} r_j})$ instead of A = f/g
 - Our new working prime must satisfy $p > \prod_{j=1}^m r_i$ where $r_i > \max(\deg(f, y_i), \deg(g, y_i))$.
- A new set of randomized evaluation points: we use $\left\{y = \alpha^{\hat{s}+j} : j = 0, 1, 2, \ldots\right\}$ where $\hat{s} \in [0, p-2]$ is a random shift and α is a generator for \mathbb{Z}_p^* .

Our method requires the interpolation of auxiliary rational functions

$$F(\alpha^{\hat{s}+i}, z, \beta) = A(z\alpha^{\hat{s}+i} + \beta_1, z\alpha^{(\hat{s}+i)r_1} + \beta_2, \dots, z\alpha^{(\hat{s}+i)\prod_{j=1}^{m-1}r_j} + \beta_m) \in \mathbb{Z}_p(z)$$

via calls to the black box, normalize them and then use their coefficients to recover A = f/g.

Let

$$f_k = \sum_{i=0}^{\deg(f_k)} f_{i,k}(y_1, y_2, \dots, y_m) \text{ and } g_k = \sum_{j=0}^{\deg(g_k)} g_{j,k}(y_1, y_2, \dots, y_m)$$

such that $f_{i,k}$ and $g_{j,k}$ are homogeneous polynomials of degree *i* and *j* respectively

<u>Goal</u>: to avoid gcd computations by interpolating $x_i = f_i/g_i$ directly using sparse rational function interpolation

Our new approach:

• We use a "modular" black box **BB** : $\mathbb{Z}_p^m \to \mathbb{Z}_p^n$ for B = [A|b]

- It accepts accepts an evaluation point α and a prime p to first compute $B(\alpha) \mod p$
- then it solves $x(\alpha) = A^{-1}(\alpha)b(\alpha) \in \mathbb{Z}_p^n$ using Gaussian elimination over \mathbb{Z}_p .
- We pre-compute all the needed degree bounds : we need
 - total degrees $\deg(f_k), \deg(g_k) \ 1 \le k \le n$.
 - maximum partial degrees $\max(\deg(f_k, y_i), \deg(g_k, y_i))$ for $1 \le i \le m$.
 - total degrees $\deg(f_{i,k}), \deg(g_{i,k})$
- We interpolate x from the points $x(\alpha)$ using our sparse multivariate rational function interpolation algorithm
 - we interpolate $f_{\deg(f_k),k}$ and $g_{\deg(g_k),k}$ first then $f_{\deg(f_k)-1,k}$ and $g_{\deg(g_k)-1,k}, \ldots, f_{0,k}$ and $g_{0,k}$.
- We use rational number construction and Chinese remaindering if needed.

- We have implemented our algorithm for solving Ax = b in Maple with some parts coded in C for efficiency.
- Maple's in built commands : using LinearSolve and ReducedRowEchelon
- a Maple implementation of the Gentleman & Johnson algorithm
- a Maple implementation of the Bareiss/Edmonds/Lipson algorithm

Benchmarks 1 (Artificial parametric linear systems)

We created a linear system $Wx^* = c$ which is equivalent to Ax = b such that

- W = DA and c = Db for A is a diagonal matrix and rank(D) = n
- The polynomial entries of D and A are small (it involves 10 parameters).
- the solutions of $Wx^* = c$ is much smaller than the determinants of the matrices involved.

n	3	4	5	6	7	8	9	10
$\# \det(A)$	125	625	3,125	15,500	59,851	310,796	1,923,985	9,381,213
$\# \det(D)$	40	336	3,120	38,784	518,009	8,477,343	156,424,985	NA
$\# \det(W)$	5,000	209,960	9,741,747	NA	NA	NA	NA	NA
ParamLinSolve	0.079s	0.176s	0.154s	0.211s	0.220s	0.239s	0.259s	0.317s
LinearSolve	0.129s	1.26s	304.20s	124200s	ļ	!		!
ReducedRow	0.01s	0.083	11.05s	3403.2s	ļ	!		!
Bareiss	2.02s	ļ	!	!	ļ	!	!	!
Gentleman	0.040s	3.19s	239.40s	!	!	!	!	!
time-det(A)	0s	0s	0.003s	0.08s	0.898s	0.703s	17.03s	25.32s
time -det(D)	0s	0s	0.007s	1.21s	1.39s	601.8s	2893.8s	!
time-det(W)	0s	0.310s	20.44s	!	!	!	l	!

Table: CPU Timings for solving $Wx^* = c$ with $\#f_i, \#g_i \le 5$ for $3 \le n \le 10$.

! =out of memory and NA means Not Attempted

Benchmarks 2 (Real parametric linear systems)

system names	n	m	max	ParamLinSolve	Gentleman	LinearSolve	ReducedRow	Bareiss	$\# \det(A)$
Bspline	21	5	26	0.220s	2623.8s	0.021s	0.026s	0.500s	1033
Bigsys	44	48	58240	7776s	ļ	17.85s	1.66s	ļ	6037416
Caglar	12	56	23072	1685.57s	NA	1232.40s	15480.35s	NA	15744
Sysбба	66	34	145744	665507.32s	!	!	!	ļ	NA
Sys66b	66	31	107468	255819.27s	ļ	!	ļ	ļ	NA

! =out of memory and NA means Not Attempted

Table: Breakdown of CPU timings for all individual algorithms for computing bigsys

	Time(ms)	Percentage
Matrix Evaluation	151.48s	1.9 %
Gaussian Elimination	110.71s	1.4 %
Univariate Rational Function Interpolation	706.07s	9 %
Finding $\lambda \in \mathbb{Z}_p[z]$ using the Berlekamp-Massey Algorithm	208.25s	2.6 %
Roots of λ over \mathbb{Z}_p	4856.96s	62 %
Solving Vandermonde systems	434.46s	5.6 %
Multiplication and Addition of Evaluation points	257.40s	3.3 %
Computing Discrete logarithms	586.64s	7.6 %
Miscellaneous	464.67s	9.4 %
Overall Time	7776s	100 %

Theorem

- Let $\deg(b_j), \deg(A_{ij}), \deg(f_i), \deg(g_i) \leq d$.
- Let $\#A_{ij}, \#b_j, \#f_i, \#g_i \le t$ and let $\|A_{ij}\|_{\infty}, \|b_j\|_{\infty} \le h$.
- Let N_a be greater than the required number of auxiliary rational function needed to interpolate x.
- Let e be the Euler number where e = 2.718.
- Suppose all the precomputed degree bounds obtained to interpolate x are correct.
- Suppose our new black box algorithm for solving Ax = b only needs one prime to interpolate x.

If prime p is chosen at random from the list of N primes $P = \{p_1, p_2, ..., p_N\}$ such that $p_{\min} = \min(P)$ then the probability that our new black box algorithm returns FAIL is at most

$$\frac{6N_{a}n^{2}d\left(\log_{p_{\min}}(th\sqrt{n})\right)+2N_{a}n^{2}md\log_{p_{\min}}\left(e\right)}{N}+\frac{2n(1+d)^{m}\left(N_{a}+t^{2}+t^{2}d\right)+5n^{2}N_{a}d^{2}}{p_{\min}-1}.$$

Theorem

- Let $\deg(b_j), \deg(A_{ij}), \deg(f_i), \deg(g_i) \leq d$.
- Let $\#A_{ij}, \#b_j, \#f_i, \#g_i \le t$ and let $\|A_{ij}\|_{\infty}, \|b_j\|_{\infty} \le h$.
- Let N_a be greater than the required number of auxiliary rational functions needed to interpolate x.
- Let e = 2.718 be the Euler number.

Suppose our new black box algorithm for solving Ax = b gets the support of the x_i but it needs more primes to recover the coefficients.

If our algorithm selects a new prime at random from the list of N primes $P = \{p_1, p_2, ..., p_N\}$ such that $p_{\min} = \min(P)$ to reconstruct the coefficients of x using rational number reconstruction

Then probability that our new black box algorithm for solving Ax = b returns FAIL

$$\leq \frac{6N_an^2d\left(\log_{p_{\min}}\left(th\sqrt{n}\right)\right) + 2N_an^2md\log_{p_{\min}}\left(e\right)}{N} + \frac{7n^2d^2N_a + 4nd^2t^2}{p_{\min} - 1}$$

Theorem

Suppose

$$f_k = \sum_{i=0}^{\deg(f_k)} f_{i,k}(y_1, y_2, \dots, y_m)$$
 and $g_k = \sum_{j=0}^{\deg(g_k)} g_{j,k}(y_1, y_2, \dots, y_m)$

such that $f_{i,k}$ and $g_{j,k}$ are homogeneous polynomials of degree i and j respectively

- Let $\hat{N}_{\max} = \max_{k=1}^{n} (\max_{i=0}^{\deg(f_k)} \{ \#f_{i,k} \}, \max_{j=0}^{\deg(g_k)} \{ \#g_{i,k} \})$
- Let $e_{\max} = 2 + \max_{k=1}^{n} \{ \deg(f_k) + \deg(g_k) \}$ (#points needed for univariate rational function interpolation)
- Let $H = \max_k(\|f_k\|_{\infty}, \|g_k\|_{\infty})$

The number of black box probes required by our algorithm to interpolate the solution vector x is

 $O(e_{\max}\hat{N}_{\max}\log H).$

- A new black box algorithm to solve parametric linear systems that uses sparse rational function interpolation.
 Implementation done in Maple with several parts coded in C for efficiency.
- A detailed failure probability & complexity analysis in terms of number of black box probes used.