
Resolving Zero-Divisors using Hensel Lifting

John Kluesner and Michael Monagan

Department of Mathematics
Simon Fraser University

Burnaby, Canada

September 23 2017

John Kluesner and Michael Monagan Resolving Zero-Divisors using Hensel Lifting September 23 2017 1 / 21

Motivation From Algebraic Number Theory

Consider an algebraic number field Q(α) with minimal polynomial t(x).
Let a, b ∈ Q(α)[x]. How should be compute gcd(a, b)?

1 Use the Euclidean algorithm.

The polynomials in the remainder sequence have large integer
coefficients.
Inefficient!

2 Researchers developed modular algorithms.

This is a divide and conquer algorithm.
Langemyr and McCallum solved the algebraic integer case.
Encarnacion solved the algebraic number field case.
Monagan and van Hoeij solved the multiple extension case.

John Kluesner and Michael Monagan Resolving Zero-Divisors using Hensel Lifting September 23 2017 2 / 21

Encarnacion’s Algorithm

Input: a, b ∈ Q(α)[x] with t(α) = 0.
Output: gcd(a, b).

1 Pick a prime p that satisfies

lc(a)lc(b)den(a)den(n)den(t) 6≡ 0 (mod p)
t(x) is square-free modulo p

2 Compute gp := gcd(a, b) (mod p) using EA

If a zero-divisor is encountered, pick a new prime.

3 Combine gcds

Combine all gp of lowest degree using CRT and RR and store in
g ∈ Q(α)[x].

4 Division Test

If g | a and g | b, output g .

John Kluesner and Michael Monagan Resolving Zero-Divisors using Hensel Lifting September 23 2017 3 / 21

Triangular Sets

Encarnacion’s problem solves the problem of computing gcds over
Q[z]/〈t(z)〉[x] where t is irreducible.

What if t were possible reducible? Or more generally, we had multiple
extensions?

T = {t1(z1), t2(z1, z2), . . . , tn(z1, . . . , zn)} where each ti is possibly
reducible.

T is called a triangular set.

This is the problem we solved.

John Kluesner and Michael Monagan Resolving Zero-Divisors using Hensel Lifting September 23 2017 4 / 21

Troublesome Example: Why is this hard?

T = {z21 + 1, z22 + 1} and R = Q[z1, z2]/T .

Note that z1 − z2 and z1 + z2 are zero-divisors in R.

a = x4 + (z1 + 18 z2) x3 + (−z2 + 3 z1) x2 + 324 x + 323

b = x3 + (z1 + 18 z2) x2 + (−19 z2 + 2 z1) x + 324

EA over Q EA mod primes

r0 := a, r1 := b

r2 = (z1 + 18z2)x2 + 323

r3 = (z1 − z2)x + 1

Terminate with an error
since z1 − z2 is a
zero-divisor.

In Z11, we terminate with the
modular image of z1 − z2

In Z17, we terminate earlier since
z1 + 18z2 is a zero-divisor

The CRT and RR can NOT
combine these into a zero-divisor
over Q

John Kluesner and Michael Monagan Resolving Zero-Divisors using Hensel Lifting September 23 2017 5 / 21

Objective

Let T be a radical triangular set of Q[z1, . . . , zn] and
R = Q[z1, . . . , zn]/T .

That is, T = {t1(z1), t2(z1, z2), . . . , tn(z1, . . . , zn)} where ti is monic in
zi , and 〈T 〉 is a radical ideal.

Our goal is to create a technique for resolving zero-divisors so that we
may create efficient modular algorithms for computation modulo T .

This paper uses Hensel lifting to resolve zero-divisors for a modular
gcd algorithm in R[x].

John Kluesner and Michael Monagan Resolving Zero-Divisors using Hensel Lifting September 23 2017 6 / 21

Known algorithms

Please see the article “Computations Modulo Regular Chains” by Xin Li, Marc

Moreno Maza, and Wei Pan in Proceedings of ISSAC ’09, pp. 239–246, 2009.

The RegularChains package uses subresultant-based algorithms.

The last non-zero subresultant of a and b will be a gcd(a, b).

This isn’t a fully modular algorithms. They don’t have to worry about
zero-divisors modulo primes.

John Kluesner and Michael Monagan Resolving Zero-Divisors using Hensel Lifting September 23 2017 7 / 21

Notation

T := {t1, t2, . . . , tn} is a radical triangular set over Q.

R := Q[z1, . . . , zn]/T .

Tk := {t1, . . . , tk}.

p will be a prime number.

John Kluesner and Michael Monagan Resolving Zero-Divisors using Hensel Lifting September 23 2017 8 / 21

Definitions

Definition

A prime number p is a radical prime if T mod p remains radical.

Definition

Let a, b ∈ R[x] and g = gcd(a, b). A prime number p is an unlucky prime
if g 6= gcd(a, b) (mod p). A prime number p is bad if
den(a)den(b)lc(a)lc(b) ≡ 0 (mod p).

Theorems 5, 8

Only finitely many primes are unlucky, nonradical, or bad.

John Kluesner and Michael Monagan Resolving Zero-Divisors using Hensel Lifting September 23 2017 9 / 21

Hensel Lifting

We will be resolving zero-divisors using Hensel lifting.

This is used to compute factorizations of polynomials.

Input: f ∈ R[x] and a0, b0 ∈ R/p[x] where p is a radical prime and
f = a0b0 (mod p) and gcd(a0, b0) = 1 (mod p).

The Hensel construction computes ak , bk ∈ R/pk+1[x] where
f ≡ akbk (mod pk+1), ak ≡ a0 (mod p), and bk ≡ b0 (mod p).

Use rational reconstruction on ak . If succesful, store result as u.
If u | f over R, terminate and output u, f /u.

Continue until pk+1 ≥ B where B is a bound on integer coefficients
of any monic factorization of f .

If the bound is reached, output with failure.

John Kluesner and Michael Monagan Resolving Zero-Divisors using Hensel Lifting September 23 2017 10 / 21

Modular Algorithm Framework

Let Algo be a modular algorithm that may encounter a zero-divisor
modulo a prime p.

Algo could be a modular gcd algorithm, an inversion algorithm, or a
matrix inversion algorithm, for instance.

If Algo encounters a zero-divisor mod a prime, lift it from Zp to Q
using Hensel lifting.

Hensel lifting succeeds =⇒ gives a factorization tk = uv (mod Tk−1),
so split T into Tu, Tv where tk is replaced by u and v , respectively.
Hensel lifting fails =⇒ pick a new prime.
Hensel lifting encounters a new zero-divisor =⇒ resolve that instead.

If Algo doesn’t encounter a zero-divisor, let Algo continue.

John Kluesner and Michael Monagan Resolving Zero-Divisors using Hensel Lifting September 23 2017 11 / 21

ModularC-GCD

Input: Polynomials a, b ∈ R[x]. Output: gcd(a, b).

Pick a new prime p that is not bad.

Test if p is a radical prime.

If a zero-divisor is encountered, resolve it using Hensel lifting.

If p is not radical, pick a new prime. Otherwise, continue as p is a
radical prime.

Use the monic Euclidean algorithm to compute gcd(a, b) (mod p).

If a zero-divisor is encountered, resolve it using Hensel lifting.

Combine all gcds computed modulo primes of lowest degree using
Chinese remaindering and rational reconstruction into a polynomial h
over Q.

Test if h | a and h | b over Q. If the division test succeeds, return h.
Otherwise, we need more primes, so pick a new one.

John Kluesner and Michael Monagan Resolving Zero-Divisors using Hensel Lifting September 23 2017 12 / 21

Proof of Correctness for ModularC-GCD

Proposition 9

A finite number of zero-divisors are encountered when running
ModularC-GCD(a, b).

Lemma 11

Suppose f , u ∈ R[x] are monic such that u | f . Let

S = {prime numbers p ∈ Z : p isn’t radical or divides den(f)}.

Then, u ∈ ZS [z1, . . . , zn, x]/T .

Theorem 12

ModularC-GCD(a, b) returns a gcd(a, b).

John Kluesner and Michael Monagan Resolving Zero-Divisors using Hensel Lifting September 23 2017 13 / 21

Implementation

We have implemented all algorithms in Maple’s recden package.

We compare our implementation with the procedure RegularGcd

from the RegularChains package in Maple.

John Kluesner and Michael Monagan Resolving Zero-Divisors using Hensel Lifting September 23 2017 14 / 21

Time Complexity

Let M be the number of primes needed by ModularC-GCD.

The gcd computation modulo primes costs an expected
O(M deg(a) deg(b)) operations in Zp[z1, . . . , zn]/T .

The division test over Q[z1, . . . , zn]/T costs an expected
O(deg(a) deg(b)) operations in Q[z1, . . . , zn]/T .

Note: we’ve done a more proper time complexity analysis, but there’s
not enough room in the paper.

John Kluesner and Michael Monagan Resolving Zero-Divisors using Hensel Lifting September 23 2017 15 / 21

Timings for GCDs

Input: Polynomials a, b, g with degrees 6, 5, 4. We compute gcd(ag , ab).
All polynomials and extensions are dense.

extension ModularC-GCD RegularGcd

n degrees time divide #primes time real cpu #terms
1 [4] 0.013 0.006 3 0.064 0.064 170
2 [2, 2] 0.029 0.022 3 0.241 0.346 720
2 [3, 3] 0.184 0.138 17 1.73 4.433 2645
3 [2, 2, 2] 0.218 0.204 9 10.372 29.357 8640
2 [4, 4] 0.512 0.391 33 12.349 40.705 5780
4 [2, 2, 2, 2] 1.403 1.132 33 401.439 758.942 103680
3 [3, 3, 3] 2.755 1.893 65 413.54 1307.46 60835
3 [4, 2, 4] 1.695 1.233 33 39.327 86.088 19860
1 [64] 6.738 5.607 65 43.963 160.021 3470
2 [8, 8] 13.321 11.386 129 1437.76 5251.05 30420
3 [4, 4, 4] 17.065 14.093 129 7185.85 22591.4 196520

All timings are in seconds.

John Kluesner and Michael Monagan Resolving Zero-Divisors using Hensel Lifting September 23 2017 16 / 21

Timings for GCDs, continued

Input: Polynomials a, b, g with degrees 6, 5, 4. We compute gcd(ag , ab).
All polynomials and extensions are dense, but g is monic.

extension ModularC-GCD RegularGcd

n degrees time divide #primes time real cpu #terms
1 [4] 0.01 0.006 2 0.065 0.065 170
2 [2, 2] 0.02 0.016 2 0.238 0.329 715
2 [3, 3] 0.048 0.041 2 1.771 4.412 2630
3 [2, 2, 2] 0.05 0.041 2 11.293 31.766 8465
2 [4, 4] 0.077 0.068 2 11.521 36.854 5750
4 [2, 2, 2, 2] 0.117 0.097 2 321.859 431.368 99670
3 [3, 3, 3] 0.222 0.201 2 508.465 1615.28 57645
3 [4, 2, 4] 0.05 0.032 2 34.358 71.351 16230
1 [64] 0.304 0.282 2 27.55 98.354 3450
2 [8, 8] 0.482 0.455 2 1628.7 5979.51 29505
3 [4, 4, 4] 0.525 0.477 2 2989.18 4751.04 192825

All timings are in seconds.

John Kluesner and Michael Monagan Resolving Zero-Divisors using Hensel Lifting September 23 2017 17 / 21

Input: Polynomials a, b, g with degrees 9, 8, 4. We compute gcd(ag , ab).
All polynomials and extensions are dense.

extension ModularC-GCD RegularGcd

n degrees time divide #primes time real cpu #terms
1 [4] 0.021 0.011 5 0.124 0.13 260
2 [2, 2] 0.043 0.031 5 0.968 1.912 1620
2 [3, 3] 0.214 0.163 17 10.517 34.513 6125
3 [2, 2, 2] 0.287 0.204 9 64.997 173.53 29160
2 [4, 4] 0.638 0.427 33 67.413 245.789 13520
4 [2, 2, 2, 2] 2.05 1.613 33 2725.13 3528.41 524880
3 [3, 3, 3] 3.35 2.731 33 3704.61 11924.0 214375
3 [4, 2, 4] 2.399 1.793 33 334.201 869.116 68940
1 [64] 10.097 8.584 65 171.726 658.518 5360
2 [8, 8] 21.890 18.086 129 10418.4 38554.9 72000
3 [4, 4, 4] 37.007 31.369 129 > 50000 – –

All timings are in seconds.

John Kluesner and Michael Monagan Resolving Zero-Divisors using Hensel Lifting September 23 2017 18 / 21

Summary

In summary, we

Developed a new technique for handling zero-divisors modulo
triangular sets.

Used this technique to create an efficient modular algorithm.

Implemented and analyzed the algorithms.

Compared them with procedures implemented in Maple.

Concluded that our new algorithms are much more efficient.

John Kluesner and Michael Monagan Resolving Zero-Divisors using Hensel Lifting September 23 2017 19 / 21

Conclusion

What still needs to be done?

Multivariate polynomial gcd computation in
Q[x1, . . . , xm][z1, . . . , zn]/T where T is a triangular set of
Q[z1, . . . , zn].

A bound on monic factors for the Hensel lifting.

Currently, we use an “engineering”-esque approach with a bound B
that grows at every function call of the Hensel lifting procedure.

Optimizations to the division test.

John Kluesner and Michael Monagan Resolving Zero-Divisors using Hensel Lifting September 23 2017 20 / 21

Conclusion

We have shown that the technique of using Hensel lifting for modular
algorithms is one worth pursuing and should allow for more modular
algorithms to be created.

Examples of more ideas for modular algorithms:

Inversion in R,

Triangular Decomposition of T ,

Resultant computation modulo T using a Euclidean algorithm,

Matrix Inversion,

Linear System Solver.

Thank you!

John Kluesner and Michael Monagan Resolving Zero-Divisors using Hensel Lifting September 23 2017 21 / 21

	Objective
	Theoretical Framework
	Known Algorithms
	Notation
	Definitions

	Methodology
	A Modular Algorithm Framework
	ModularC-GCD

	Findings
	Proofs of Correctness
	Timing Results

	Conclusion and Future Work

