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Abstract

The Tutte polynomial of a graph is a generalization of famous graph polynomials such as
the chromatic and flow polynomials. One of the popular methods of computing it is imple-
menting Tutte’s deletion-contraction recurrence. Currently, the Tutte polynomial can only
be computed for small graphs within a reasonable amount of time. Since this problem is
NP-hard, an efficient universal algorithm is not likely to exist, but heuristics can improve
the speed of the deletion-contraction algorithm for graphs that satisfy certain properties.
We have significantly reduced the computation time of the Tutte polynomial for sparse
graphs, by storing intermediate results and developing an edge selection technique that in-
creases the number of identical graphs that appear in the computation tree. We provide
benchmarks comparing this technique to other recent deletion-contraction implementations
as well as other algorithms. This research should give further understanding into the types
of graphs which are more difficult for implementations based on deletion-contraction, par-
ticularly denser graphs with large girth. Additionally, we have found and experimented
with identities for splitting up the computation of the Tutte polynomial when a graph has
a small separating set, and we have also found recurrences for some families of graphs.

Keywords: Tutte polynomials, NP-hard, deletion-contraction, recurrence relations
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Chapter 1

Introduction

The Tutte polynomial of a graph is a bivariate polynomial that contains many connectivity
and combinatorial properties. It has wide range of applications in, for example, knot theory,
theoretical computer science, statistical physics, and chemistry. Due to this, computing
Tutte polynomials of graphs has long been of interest. Current algorithms that compute the
Tutte polynomial can only do so for small graphs within a reasonable amount of time, 144
vertices for planar lattice graphs [16], around 50 vertices for random sparse cubic graphs [12],
and up to 22 vertices for arbitrary graphs [4]. We are interested in finding faster methods
to compute the Tutte polynomial, particularly for sparse graphs.

To illustrate the wealth of information that the Tutte polynomial contains, we provide a
non-exhaustive list of graph invariants that the Tutte polynomial contains, which includes:

• the chromatic polynomial, which gives the number of proper λ-colourings that G has,
for any positive integer λ. In particular, the chromatic number of G is the least
positive integer which is not a root of the chromatic polynomial;

• the reliability polynomial, which gives the probability that G stays connected if each
edge is deleted independently with some probability 0 ≤ p ≤ 1;

• the flow polynomial, which gives the number of nowhere-zero flows of G;

• the number of spanning subgraphs, etc.

Having the Tutte polynomial of G allows us to obtain all the above information simply
by evaluating at points and lines on the xy-plane (the two variables of the Tutte polyno-
mial is canonically chosen to be x, y). However, computing the Tutte polynomial itself is
extremely computationally expensive, as the problem is #P-hard, so it is at least as dif-
ficult as NP-complete problems, and perhaps even more so. The fact that computing the
Tutte polynomial is NP-hard follows from that, if we are given the Tutte polynomial of G
then we can efficiently decide whether G is 3-colourable (by checking whether 3 is a root of
its chromatic polynomial), which is a well known NP-hard problem. While some NP-hard
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problems exhibit the property that only special instances are very difficult, this is not the
case for the Tutte polynomial, as it is NP-hard to calculate even evaluations of the Tutte
polynomial at almost the entire region of the xy-plane [10].

The Tutte polynomial can be equivalently defined in several different ways, which gives
rise to several different general methods of computing it. We go into further detail about
these definitions in the next section. A recursive algorithm based on the deletion-contraction
definition is the most popular method, and the main focus of this thesis. The basic imple-
mentation is shown by [16] to require time proportional to the number of edges multiplied
by the number of spanning trees. Both of these quantities are lower for sparse graphs
compared to dense graphs, and so deletion-contraction performs much better on sparse
graphs. Another method, by Björklund et al. [4], computes the multivariate Tutte poly-
nomial [17] through an evaluation/interpolation scheme, then evaluates the multivariate
version to recover the Tutte polynomial. This method computes the Tutte polynomial in
vertex-exponential time, however there is an exponential memory requirement that limits
the number of vertices to about 25 for practical purposes. The authors presented an experi-
ment which shows that it outperforms the deletion-contraction implementation of Haggard,
Pearce, and Royle [8] on some random dense graphs (complements of 4-regular graphs were
used) between 14 to 18 vertices.

Recent work has been made in improving upon the basic deletion-contraction algorithm
by identifying isomorphic subgraphs in the computation tree and reusing those intermediate
results. Graph isomorphism is a problem for which we do not know whether a polynomial
time algorithm exists, in November 2014 Babai [2] presents an algorithm in quasipolynomial
time. While a fast practical algorithm is available [11], graph isomorphism testing is still
expensive for identifying isomorphic graphs in the computation tree, as this needs to be
done at every step. Sekine, Imai, and Tani [16] restricted to 2-isomorphism with respect to
a fixed edge ordering, and were able to compute the Tutte polynomial of a 14 vertex graph
(with up to 91 edges) within an hour on a typical workstation (by 1995 standards), and the
planar 12x12 grid graph with the same resources. In 2010, Haggard, Pearce, and Royle [8]
used McKay’s nauty program [11] for isomorphism testing, and presented experiments on
several edge selection heuristics, which increased the number of isomorphic graphs seen in
the computation tree, particularly when the vertices are given an ordering (VORDER) and
edges are chosen based on the order of its incident vertices. In 2012, Monagan [12] presents
two heuristics, a variation of VORDER, and an actual vertex ordering called the Short Arc
(SHARC) ordering. He found that the combination of these two heuristics performs very
well on sparse graphs, and eliminated the need for isomorphism testing. His Maple code
computed the Tutte polynomial of the truncated isocahedron’s dual graph in 9 minutes on a
single desktop, compared to a previous result [8] of one week on 150 computers. In Chapter
2 we give an overview of the heuristics and describe a new variation of the SHARC ordering
that we found to be an improvement, and present benchmarks that support this.
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Another technique for reducing the computation tree is to apply identities which allow us
to split the graph into k-connected components (it has a separating set of size at most k−1),
and compute the Tutte polynomial of each part separately. While theoretical advancements
have been made in the area, the implementations of the algorithm mentioned above only
test for biconnected components. By splitting up the graph, we can take advantage of
parallelization as each part of the computation is mostly independent. Chapter 3 outlines
our method of finding these formulas, and some experiments we conducted using the formula
for graphs which can be split up this way.

Our final approach is to explore certain simple graph classes, since the Tutte polynomials
of some classes of graphs satisfy a linear recurrence and thus an explicit formula can be
found. Biggs et al. [3] have dubbed these classes as "recursive families of graphs". A list of
some known recurrences and formulas can be found in [19]. We construct recurrences for
two recursive families for which recurrences has yet to be proved in Chapter 4.

1.1 Preliminary Definitions

In this thesis, we assume that all graphs are undirected, but may contain multi-edges (more
than one edge with the same incident vertices) and loops (an edge from a vertex to itself).
We use the notation and definitions of the text Introduction to Graph Theory by West [20].
We also assume graphs are connected unless stated otherwise, since the Tutte polynomial is
multiplicative with respect to the components of the graph. We denote the Tutte polynomial
of a graph G as T (G, x, y), however to ease notation we use T (G) when there is no ambiguity
over the variables involved.

Previously we mentioned the information that the Tutte polynomial captures, we now
show the precise relations. Let n be the number of vertices and m be the number of edges
in G.

Chromatic polynomial χG(λ) = (−1)(n−1)λT (G, 1− λ, 0)
Reliability polynomial RG(p) = (1− p)(n−1)p(m−n+1)T (G, 1, p−1)
Flow polynomial CG(u) = (−1)(m−n+1)T (G, 0, 1− u)
Number of spanning subgraphs T (G, 1, 2)

G =

Tutte polynomial: T (G, x, y) = x3 + 2x2 + 2xy + y2 + x+ y

Chromatic polynomial: χG(λ) = λ(λ− 1)(λ− 2)2

Reliability polynomial: RG(p) = (4p2 + 3p+ 1)(1− p)3

Flow polynomial: CG(u) = u2 − 3u+ 2
Number of spanning subgraphs: 14

We begin with Tutte’s original definition for the Tutte polynomial, which at the time
he referred to as the dichromate. This definition relies on the concept of counting inter-
nally/externally active edges of a spanning tree. We will not define this concept here, but
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we note these quantities can be computed in polynomial time. From this definition, an
immediate consequence is that T (G, 1, 1) counts the number of spanning trees, and that
the Tutte polynomial can be computed in time proportional to a polynomial factor of the
number of the spanning trees.

Definition (Tutte [18]). Let G be a graph, and let S be the set of all spanning trees of G.
For a spanning tree T , let r(T ) and s(T ) be the number of edges of T which are internally
and externally active, respectively. Then

T (G, x, y) =
∑
T∈S

xr(T )ys(T )

The definition of the Tutte polynomial that we will mostly use is a recurrence based on
deletion-contraction. We first define edge deletion and contraction below.

Definition. Let G be a graph, and e = uv ∈ E(G) an edge incident to vertices u, v. Then
G − e is defined to be the graph obtained by deleting e from G. G/e is defined to be the
graph obtained by contracting e (removal of e then joining u, v into a single vertex).

e
u

v

u
u

uu u
u

uu u uu
G G− e G/e

As demonstrated, multi-edges can arise from edge contraction of a simple graph, and
loops arise from contracting a multiple edge. Graphs which are obtained from G through a
sequence of edge deletions/contractions are called minors of G. We are now ready to give
the definition of the Tutte polynomial in terms of deletion-contraction.

Definition (Tutte [18]). Let G be a connected undirected graph. The Tutte polynomial
T (G, x, y) is the unique bivariate polynomial which satisfies

T (G) =



1 if |E(G)| = 0,

xT (G/e) if e is a cut-edge in G,

y T (G− e) if e is a loop in G

T (G− e) + T (G/e) if the edge e is neither a loop nor a cut-edge in G.

A cut-edge e in G is defined as an edge such that G− e is not connected. Note that this
recurrence is well-defined, choosing any sequence of edges to apply the recurrence gives the
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T ( )

+T ( ) T ( )

+xT ( ) T ( ) T ( )

x2 x y

T (G, x, y) = x2 + x+ y

Figure 1.1: Example of applying the deletion-contraction recurrence to compute the Tutte
polynomial of the triangle graph.

same result. Also note that every intermediate graph in the comptuation tree is a minor.
Figure 1.1 shows an example of using this recurrence to compute the Tutte polynomial.

Certain graphs may be structured in a way that it is composed of several parts that
are, in a sense, loosely connected with each other. One area where these graphs may arise
from are networks which have to cross difficult geological features (such as rivers, mountain
ranges, etc.) and few crossing links are made due to the cost required. For these graphs,
there are formulas that allow us to split and recover the Tutte polynomial of the original
graph, which is discussed in detail in Chapter 3. This notion of having "loosely connected
parts" can be formally defined as a k-separation below.

Definition. A k-separation of a graph G are subgraphs (H1, H2) which satisfy: the union
of the subgraphs is G, there are no edges between the subgraphs, and the subgraphs share
exactly k vertices. A proper k-separation is one such that the subgraphs are non-empty.

G H1 H2

|V (H1) ∩ V (H2)| = k

A k-connected graph is a graph which does not have a proper (k−1)-separation. The 2-
connected (or biconnected) components of a graph are eloquently named as "blocks". Tutte
proved in his original paper that the Tutte polynomial is multiplicative over blocks.

Theorem (Tutte [18]). Let G be a graph with m blocks B1, B2, . . . , Bm.
Then

T (G, x, y) =
m∏

i=1
T (Bi, x, y). (1.1)
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This theorem allows us to split a graph into its blocks, compute the Tutte polynomial
of each block, and simply multiply them together to get the Tutte polynomial of the entire
graph. For this reason, we will generally assume that the graphs we are working with are
2-connected to avoid this trivial reduction.

1.2 Sparse Graphs

In this thesis, we will mostly be considering sparse graphs. Sparse graphs have relatively few
edges (as opposed to dense graphs, which have close to the maximum). There is no precise
universally accepted definition of a sparse graph, but for this thesis we will work with graphs
with average vertex degree around 3 and 4. Sparse graphs are interesting since they have
many applications, especially for communication networks. Building links is costly, so the
number of links need to be kept low while still maintaining a reliable and efficient network.
For example, graphs that represent the famous ARPANET [9] throughout its evolution
(images can be found at http://som.csudh.edu/cis/lpress/history/arpamaps/) are
sparse, as node generally has at most 3 links.

In addition, many theoretically interesting graphs are sparse. Most of the well-known
graphs in the literature have relatively few edges, including the elusive snarks, which are
3-regular (all vertices have degree 3). Studying these classes and computing their Tutte
polynomials may lead to intriguing experimental results. A concrete example of using the
Tutte polynomial in this way can be found in [8], where the authors find a counterexample
to a conjecture about flow polynomials by computing the Tutte polynomials of 3-regular
graphs.

6



Chapter 2

Edge Selection Heuristics

The minors that result from deletion-contraction depends on the choice of the edges used
to apply the recurrence, the aim is to develop heuristics that would end up in getting as
many isomorphic minors high up in the computation tree as possible, thereby increasing
the usage of cached results. The example in Figure 2.1 shows two possible sequences of
edge choices, one of which results in two isomorphic minors appearing in the second level,
whereas the other does not.

Figure 2.1: Two different deletion-contraction computation trees for the graph at the top.
The red edges show the selected edge that is used to apply the recurrence in the next step,
the blue boxes highlight the isomorphic minors that appear.

We will describe the various heuristics that have been experimented on, and we highlight
two main persisting ideas in these heuristics: working in a sparse area of the graph first and
maintaining locality in the edge selections. By starting in a sparse area, we delay operating
on the complex parts of the graph until much lower in the computation tree. However, this
is not always possible, if the graph is regular (all vertices have the same degree). By keeping
the selections local, we not only increase the number of isomorphic graphs, but the number
of identical graphs.

7



2.1 Existing Heuristics

2.1.1 Degree-based

Edge selection heuristics where the edges were chosen solely based on the degrees of its in-
cident vertices were investigated in [15]. Their idea was to test a group of heuristics which
chose edges that were incident to vertices of extremal degree. From their data (Figure 5
of [15]), they found that choosing an edge incident to a vertex of minimum degree (MINS-
DEG) performed the best (relatively) for sparse graphs, and choosing an incident edge to
a maximum degree vertex (MAXSDEG) was the best for dense graphs. See Figure 2.2 for
an example. The observed break-even point seems to be just over 70 edges for random
connected 14 vertex graphs. The authors also tested heuristics based on the the sum of
the degrees of the incident vertices. This was not found to be better than the previously
mentioned schemes.

5

1

3 4

26

5

1

3 4

26

Figure 2.2: MINSDEG heuristic on the left, MAXSDEG on the right. The vertex with the
minimum degree is vertex 1 so MINSDEG chooses an edge incident to 1, and the vertex
with the maximum degree is vertex 6.

2.1.2 Vertex ordering

The VORDER heuristic [15] (we will refer to this as VORDER-pull to distinguish it from
a variation we discuss in the next subsection) chooses edges with respect to some predeter-
mined ordering v1, ..., vn of the vertices. The edge is chosen so that it incident to v1 and
the first vertex adjacent to v1. When an edge is deleted, no adjustment needs to be made
to the ordering. When an edge is contracted, the ordering is adjusted by assigning v1 as
the resulting merged vertex (see Figure 2.3).

VORDER-pull

5

1

3 4

2

5

1

3 4

2 +

5

1

4

2

Figure 2.3: VORDER-pull heuristic.
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2.1.3 VORDER-push

A variation of the VORDER heuristic was developed in [12], called VORDER-push. The
distinction is as follows. Suppose we contract the edge incident to v1 and vi. Then the
merged vertex is given the order vi, as opposed to v1. Additionally, the vertices are canon-
ically re-numbered to v1, ..., vj , where j is the number of vertices in the minor. This is
demonstrated in Figure 2.4. The authors of [15] had considered this variation and men-
tioned that it "generally does not perform as well", however Monagan [12] found that if
VORDER-push is used in tandem with the SHARC vertex ordering (see Subsection 2.1.5),
then it works very well on sparse graphs.

VORDER-push

5

1

3 4

2

5

1

3 4

2 +

4 (5)

2 (3) 3 (4)

1 (2)

Figure 2.4: VORDER-push heuristic. On the far right, we relabel the vertices after con-
traction.

2.1.4 Possible vertex orderings

The performance of the algorithm using the VORDER heuristic relies on the initial ordering
of the vertices. Random ordering immediately comes to mind, and was tested in [12].
Ordering by ascending vertex degree is another possibility, but this does not maintain
locality well. One idea to increase locality is using by starting a breadth-first search (BFS)
algorithm at a vertex v, and ordering vertices by the order that the algorithm encounters
them. BFS ordering was tested in [12], but in his experiments it was not as good as the
SHARC ordering that he later presented.

2.1.5 SHARC vertex ordering

The SHARC (Short Arc) vertex ordering was introduced by Monagan [12] and extends
the idea of breadth-first search. The scheme first picks a vertex v and uses breadth-first
search to find a shortest cycle that includes v. The ordering algorithm starts with the
vertices of that cycle, and those vertices are added in a set S. Then we iteratively search
breadth-first from S to look for the first path that starts and ends at vertices in S, and we
append that path to the ordering and add those vertices to S for the next iteration. The
stopping condition is when V (G) \ S = ∅. This algorithm repeatedly adds shortest arcs to
the ordering, lending its name. We consider an example of applying the SHARC order on
the graph G (left side of Figure 2.5). BFS starts at 1 and finds 1 → 7 → 8 → 1 as the

9



shortest cycle involving 1, so the ordering starts 1, 7, 8 and S = {1, 7, 8}. Next, the path
1 → 4 → 6 → 8 is found as the shortest path from S back to S (note that the left side
path isn’t chosen as it requires one more edge to get back to S), then 4, 6 is appended to
both the ordering and S. In the final iteration, 1 → 3 → 2 → 5 → 8 is found, and so
SHARC(G, 1) = [1, 7, 8, 4, 6, 3, 2, 5].

7

1 8

4 6

3

2 5

SHARC
2

1 3

4 5

6

7 8

Figure 2.5: Relabelling the vertices of a graph based on a computed SHARC ordering.

Monagan [12] performed experiments with VORDER-push and SHARC on random 3-
regular graphs, generalized Petersen graphs P (n, k) for k up to 6, and the dual of the
truncated icosahedron. He observed that VORDER-push and SHARC performed much
better on these sparse graphs compared to the heuristics that Haggard, Pearce, and Royle
were using, and obtained much better timings.

2.2 ModSHARC - An improvement to SHARC

Assembling the above ideas, we aimed to find an ordering which starts in a region of the
graph that is relatively sparse, and runs through as short cycles/arcs as we can find.

2.2.1 Vertex Scores

For each vertex v, we assign it scores based on these two factors, and compute the score so
that it reflects whether a SHARC ordering that starts at v has these desirable properties.
Hence we begin by computing a SHARC ordering starting at v = v1, and suppose it is
[v1, v2, ..., vn]. The idea behind computing the score is to weight heavily the properties that
occur early in the ordering.

We note that, since the score depends on a given SHARC ordering (which is not unique),
our vertex scores is not well-defined. In a sense, we are computing scores for the SHARC
orderings themselves, and imposing the score on its start vertex for convenience of notation.
As we are interested in the behaviour of a SHARC ordering when it reaches that vertex,
using the data from another SHARC ordering that starts at that vertex is reasonable for
practical purposes.
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To capture the relative sparsity of the area, we let the DegreeScore of v be a weighted
sum of the vertices in its ordering as follows:

DegreeScore(v) =
n∑

i=1

1√
i

deg(vi)

For example, going back to the graph in Figure 2.5, DegreeScore(1) is 4+ 2√
2 + 4√

3 + 2√
4 +

2√
5 + 2√

6 + 2√
7 + 2√

8 ≈ 11.90. On the same graph, we compute that the SHARC ordering
[6, 7, 8, 1, 3, 2, 4, 5] will achieve the lowest DegreeScore of ≈ 10.64.

CycleScore is determined by the lengths of the initial cycle and the first c cycles/arcs
of that SHARC ordering. Suppose the SHARC ordering starting at v starts with a cycle of
length a0 and then arcs of length a1, a2, ..., ac, in that order.

CycleScore(v) = a0 +
c∑

i=1

1√
i+ 1

(ai − 2)

For example, if we take c = 2, and suppose the first iteration of the SHARC ordering starting
at v takes a cycle of length 5, then the second to third iterations takes an arc of length 4
and an arc of length 6, respectively. In this case CycleScore(v) would be 5+ 2√

2 + 4√
3 ≈ 8.72.

In our data, we find that c = 4 worked the best for random biconnected graphs, and c as
large as possible for random regular graphs.

We compute an aggregate TotalScore for v from a linear combination of the normalized
DegreeScore and CycleScore.

TotalScore(v) = α1 DegreeScore(v) + α2 CycleScore(v)

We have found that taking α1 = 2α2 (as we only use the scores for comparison, only their
ratio is relevant) works well.

2.2.2 Visualization of Scores

The scores are constructed so that low scores correspond to low degree vertices and short
cycles, in Figure 2.6 we present a visual demonstration of the correlation between the scores
and Tutte polynomial computation times using a SHARC order starting at each vertex.

The correlation is not perfect, as we can see that some high scores have been assigned
to vertices which turned out to be reasonable candidates for starting the ordering. It is
extremely important that the worst vertices are identified (for example, the red vertex
in the center of the graph on the right of Figure 2.6), since the time difference between
starting from the best and worst vertices can be orders of magnitude. On the other hand,
if we falsely proclaim a good starting vertex to be bad, that error is much more tolerable.
In our example, we can see that most vertices are in the blue/cyan range, so using any of
them is acceptable.
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Computation times using SHARC
ordering starting at vertex

Low
score

(9.310)

Fast
time
(4.46 s)

High
score

(10.026)

Slow
time
(454.88 s)

(9.618) (43.84 s)

Scores

Figure 2.6: Comparison of scores and computation time.

2.2.3 Algorithm

Our implementation is based on the one described in Section 3 of [12], similarly we use
an adjacency list representation of the graph as input and cache intermediate results with
Maple’s option remember. One difference is that we do not use any isomorphism test,
since the experiments from [12] show that for sparse graphs, almost all isomorphic graphs
will be handled by option remember.

Given an input graph G, the algorithm first splits the graph into blocks and handles
each block separately. While some implementations such as [8] test for blocks at every step,
we chose to only do it at the start as this does not seem to offer a significant improvement
for sparse graphs. Then, starting from every vertex, the SHARC ordering is executed to
collect the scores as outlined above. After this analysis has been done, SHARC order is run
for a final time, starting at the vertex with the lowest TotalScore. In the final ordering, if
at any step the SHARC algorithm needs to choose between multiple cycle/arcs of the same
length, then we use the average scores of the vertices involved to be a tiebreaker. We will
call this the Modified SHARC ordering.

The algorithm then relabels the graph based on the computed ModSHARC ordering,
canonically from 1 to n. This allows us to simply choose the edge that is incident to
vertex 1 and its first neighbor, and we readjust the vertex numbers after applying deletion
and edge contraction (using VORDER-push). The recurrence is now ready to be applied.
At each step of the recurrence, the algorithm checks if the graph has any multi-edge or
loop, and processes those first. Otherwise, an edge is selected (as described above) and
the deletion/contraction graphs are constructed by adjusting the relevant entries in the
adjacency list, and their Tutte polynomial are recursively computed. If at any point in
the recursion, a graph has already been seen, option remember will find it and return the
cached result.

Our Maple code along with a help file for this algorithm is included in Appendix A.
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2.3 Benchmarks

As the ModSHARC ordering specifically looks for differences in vertex degree, to see po-
tential improvement we tested on graphs which had non-uniform degree sequences. The
natural choice was sparse random graphs, for which we used Maple’s RandomGraph(n,m)

command to get a random graph on n vertices and m edges. Since we chose m such that
the result graph is sparse, we found that many of our generated graphs contained trivial
blocks consisting of a single edge (which we immediately split off from the computation due
to Equation 1.1). Hence we restricted our testing to biconnected random graphs.

For 24 ≤ n ≤ 39, we generated 200 random biconnected graphs with average degree
10
3 ≈ 3.33. For the experiments below, we used a server with 2 Intel Xeon E5-2660 8
core CPUs at 2.2/3.0 GHz with 64 GB RAM. Table 2.1 shows the average, median, and
maximum time needed to compute the Tutte polynomial using VORDER-push with SHARC
and ModSHARC orderings.

SHARC Mod-DegreeScore Only Mod-TotalScore
n m avg med max avg med max avg med max
24 40 1.8 1.1 13.1 0.9 0.7 3.1 0.9 0.7 4.5
27 45 6.3 3.9 75.5 2.6 1.8 33.3 2.3 1.7 14.9
30 50 30.3 13.1 494.0 7.9 4.1 98.5 8.5 4.9 85.5
33 55 775.2 47.7 81157.1 23.1 11.2 393.6 27.3 12.7 511.3
36 60 956.3 49.2 144790.1 227.0 53.4 9365.1
39 65 2193.7 182.6 55095.4

Table 2.1: Timings in CPU seconds for random biconnected graphs with n vertices, m edges
using VORDER-push and variations of ModSHARC.

We tested with using DegreeScore only, and the TotalScore as described above. Intro-
ducing the CycleScore component seems to have a negligible effect until we reach n = 36,
but does improve the worse case graph in that set by at least 2 orders of magnitude over
DegreeScore. The main observation is that we have significant improvement over SHARC
as n grows, particularly the gains on SHARC’s slowest times. This validates our attempt
to avoid the worst case.

2.4 Comparison with an evaluation/interpolation approach

We compared our algorithm with a method developed Björklund et al. [4] that does not
use the deletion-contraction recurrence. Instead, the multivariate Tutte polynomial [17] is
computed using the Fortuin-Kasteleyn identity [7] that relates the multivariate Tutte poly-
nomial to the q-state Potts model in statistical physics. They presented several variations
of their algorithm which computes the Tutte polynomial in vertex-exponential time, and
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they have made available an implementation (a C program called tutte_bhkk uploaded
to GitHub) which takes time and space σ(G)nO(1), where σ(G) denotes the number of
connected induced subgraphs.

We implemented one variation of their algorithm in C++ described in Section 4.1 of [4].
We briefly list the some implementation details, which includes:

• using classical arithmetic polynomial arithmetic over 31-bit primes, using Chinese
Remainder Theorem as necessary;

• observing that powers of z past n were not being used, so polynomial multiplication
was done modulo zn+1;

• caching results that needed reuse (in particular F (X, 1, i) for all X ⊆ V (G), i from 0
to n).

• avoid taking powers of polynomials by using the identity F (X, q, n) = F (X, q −
1, n)F (X, 1, n) for q > 1

The experiments below use three methods, our Maple code using the ModSHARC order-
ing, our C++ implementation, and tutte_bhkk. Computations in this section were done
on a 2.66 GHz i7 desktop with 6 GB RAM. The data we collected for computing the Tutte
polynomial of complete graphs Kn is shown in Table 2.2, and we also tested five 3-regular
graphs on 16 vertices. The average time taken for Maple was 0.0826s, compared to 15.8s
for C++, and 10.9s for tutte_bhkk.

n ModSHARC C++ tutte_bhkk
10 0.323 0.2 0.18
12 1.69 2.91 3.45
14 9.21 21.35 29.8

Table 2.2: Timings in CPU seconds for complete graph Kn

While Table 2.2 shows that our C++ code is faster, we do not claim to have a superior
implementation, as our code was developed for experimental purposes and does not handle
general cases well. In the above tests, our Maple code was much faster, this was expected
for the types of graphs that we tested with, as the authors of [4] said that graphs which are
fairly sparse (i.e. 3-regular graphs) and graphs which have many symmetries (i.e. complete
graphs) are "amenable to many of the previously existing techniques".

Their main experiment used dense graphs without such symmetries, in particular com-
plements of 4-regular graphs. We generated a random graph with 14 vertices and 63 edges,
and computed its Tutte polynomial with the three methods. Our Maple code took 207s,
compared to 16.87s for our C++ code, and 19.22s for tutte_bhkk.
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Chapter 3

Splitting Formulas

Graphs with a small vertex separation allow us to split the graph into minors, compute the
Tutte polynomial of the smaller minors, and reassemble the solution. This dramatically
reduces the computation tree, and gives a natural parallel algorithm for these types of
graphs. For example, consider the graph G in Figure 3.1 containing a proper 2-separation
(H,K) and decomposing it into minors that are necessary to compute its Tutte polynomial.

H Ku

v
G

H K

H′ K′

Figure 3.1: Splitting a graph G by its 2-separation.

3.1 Formulas

We used a constructive strategy to find a formula that reassembles the Tutte polynomial
in this manner. For more details, we included a proof in Section 3.3, and we verified
the formula experimentally for thousands of graphs that contain a 2-separation. We then
found that analogous formulas have been discovered by Brylawski [6] in 1971, later formally
stated by Oxley and Welsh [14]. Their formulas are stated in terminology of matroids, we
will restate it in terms of graphs.

Theorem (Oxley,Welsh [14]). Let G be a graph with a 2-separation (H,K) and separation
pair u, v ∈ V (G) such that H,K are connected. Let H ′,K ′ be the graphs obtained from
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H,K, respectively, by identifying u, v.

Define A11 = (x− 1)T (H ′)− T (H) and A00 = (y − 1)T (H)− T (H ′).

Then
T (G) = 1

xy − x− y
(A11T (K ′) +A00T (K)).

We extended our strategy to find a formula for the case of a 3-separation. For 2-
separations, we needed to construct an additional graph for each side. Here we need four
additional graphs for each side, one for each possible set of identified vertices. We then
discovered that in 1997 Andrzejak [1] proves the splitting formula for 3-sum of matroids,
and the matrix he presents is simply a permutation of the one we found, shown in the
theorem below.

Theorem (Andrzejak [1]). Let G be a graph with a 3-separation (H,K) and separating
set {1, 2, 3} ⊂ V (G) such that H,K are connected. Let HS, where S is a sequence of
vertex names, be the graph obtained from H by identifying the vertices in S (and define KS

similarly). For example, K12 is the graph obtained from K by identifying 1 and 2.

Let C = xy − x− y, and let

A

A12

A23

A13

A123


= 1
C(C − 1)



(1− y)2 1− y 1− y 1− y 2
1− y C 1 1 1− x
1− y 1 C 1 1− x
1− y 1 1 C 1− x

2 1− x 1− x 1− x (1− x)2





T (H)
T (H12)
T (H23)
T (H13)
T (H123)



Then T (G) =



A

A12

A23

A13

A123


•



T (K)
T (K12)
T (K23)
T (K13)
T (K123)


.

3.2 Experiments

We’ve conducted experiments to test the performance gain from using these theorems, by
generating random biconnected graphs H,K and joining k of their vertices to construct a
graph G with a k-separation.

3.2.1 2-separations

We ran our Tutte polynomial code on G, and then compared the computation time with
running the code on the four minors H,H ′,K,K ′ then assembling the Tutte polynomial of
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G by applying the formula. This was repeated for 48 graphs, Figure 3.2 shows a plot of the
data we collected [13] for the 10 worst times of each scheme.

0

1,000
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3,000

4,000

39 40 41 42 43 44 45 46 47 48
ith fastest time

C
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pu
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n
tim

e
(s
ec
on

ds
)

ModSHARC

ModSHARC with 2-sep Thm

Figure 3.2: Timings (in seconds) of biconnected graphs with a 2-separation (H,K) where
H and K both have 32 vertices and 54 edges

We observe that most of the times are very similar except for the very worst ones. This
is likely due to the fact that the SHARC ordering is localized, so that in most cases it orders
one side of the separation before the other side. However, even in these cases it may still be
better to split up the graph as it lends an opportunity for parallelization. Since the bulk of
the work is done in the computation of the Tutte polynomials of the four minors (applying
the formulas themselves requires only arithmetic of bivariate polynomials), we are likely to
get an excellent speedup by processing each minor in parallel.

3.2.2 3-separations

To construct graphs with a 3-separation, we generated two random biconnected graphs H
and K, added 3 vertices for the separating set, and added 12 edges (4 for each vertex) from
the separation vertices to random vertices of H and K. We are interested in investigating
the effect of parallel computation, so we used Maple’s Grid:-Map command which spawns
parallel processes to apply a function to each element of the input list. In this case, the
function is our Tutte polynomial procedure using ModSHARC, and the list contains the
graphs of the ten minors H,H12, ...,K123 as required by the formula. We generated twenty
sets of random graphs, and ran the experiments on a server with 2 Intel Xeon E5-2680 10
core CPUs at 3.0/3.6 GHz and 128 GB RAM. The data is shown in Figure 3.3.
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Figure 3.3: Timings (in seconds, logarithmic scale) of biconnected graphs with a 3-
separation (H,K) where H and K both have 23 vertices and 46 edges

We observe that the CPU time (summed over the computations on the minors) is often
actually higher than simply processing the entire graph, however, looking at the real time
(with 10+ cores used) there does seem to be an improvement. Still, only for very few graphs
do we see a 10x speedup, and the reason for this seems to be that there is sometimes a
large variation in the computation time between the related minors. Although these minors
clearly have very similar structure, our algorithm can take much longer to process one over
the other (in this dataset, one of the H13 graphs took 2s compared to 41s for the related
H123). This gives rise to a possibility of further improving the ModSHARC ordering, by
studying how and why these similar graphs behave so differently under our heuristic, and
whether it is possible to change the slow computation trees to resemble the faster ones.

3.3 Alternative Proof for 2-separation formula

We present an alternative proof to the formula for 2-separation. First recall the theorem
conditions: G is a graph with a proper 2-separation (H,K) and separation pair u, v ∈
V (G) such that H,K are connected. We call H ′,K ′ the graphs obtained from H and K,
respectively, by identifying the separation pair.

Proof. We claim T (G) is of the form

T (G) = p1(x, y)T (K) + p2(x, y)T (K ′), (3.1)
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where p1 and p2 are bivariate polynomials. Further, we claim that p1 and p2 relies on
H only (i.e. no dependence on K).

Consider a computation tree of the deletion-contraction recurrence on G using only
edges of H, until all edges of H are deleted/contracted. In the computation tree, there are
only two minors that remain, K and K ′. The computation expresses the Tutte polynomial
of G as a sum of bivariate monomials multiplied by T (K) or T (K ′), and by collecting the
T (K), T (K ′) terms we obtain p1 and p2. Since K is assumed to be connected, the structure
of K does not affect whether the selected edges in H are loops/cut-edges, so it does not
affect p1 and p2, establishing our claims.

Construct the graph G1 by adding an edge from u to v (possibly creating a multiedge),
and G2 by adding two edges from u to v, as shown in Figure 3.4. Now we denote L1 be the
single edge graph on 2 vertices u and v, and L2 be the double edge graph on u and v. Then
G1 and G2 has 2-separations (H,L1) and (H,L2), respectively.

H

uv

H

uv

G1 G2

Figure 3.4: Constructing G1 and G2

Then let L′1 be L1 with u, v identified (loop on a single vertex), and L′2 similarly (double
loop on a single vertex). Since we showed that p1, p2 do not depend on K, we have the
following equations:

T (G1) = p1T (L1) + p2T (L′1)

T (G2) = p1T (L2) + p2T (L′2)

To keep our notation consistent with the theorem statement, we let A00 = p1 and
A11 = p2. Then we have

T (G1) = T (L1)A00 + T (L′1)A11

T (G2) = T (L2)A00 + T (L′2)A11

We substitute the known Tutte polynomials of L1, L
′
1, L2, L

′
2 to obtain the following

system of linear equations.
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T (G1) = xA00 + yA11 (3.2)

T (G2) = (x+ y)A00 + y2A11 (3.3)

We want to express T (G1) and T (G2) in terms of T (H) and T (H ′), so we apply deletion-
contraction on G1 and G2 on edge uv.

T (G1) = T (H) + T (H ′)

T (G2) = T (G1) + yT (H ′) = T (H) + (y + 1)T (H ′)

Substituting into Equation 3.2 and 3.3, we get:

T (H) + T (H ′) = xA00 + yA11

T (H) + (y + 1)T (H ′) = (x+ y)A00 + y2A11

Solving the above linear system, we obtain A11 = (xy − x − y)−1((x − 1)T (H ′, x, y) −
T (H,x, y)) and A00 = (xy − x − y)−1((y − 1)T (H,x, y) − T (H ′, x, y)). Substituting into
Equation 3.1 and factoring out (xy − x− y)−1 gives the result as stated.

We have developed a similar result for a 4-separation, using techniques analogous to our
proof of the 2-separation case. Note that, the formula for the Tutte polynomial of k-sums
of matroids has been solved in general in [5], however the theorem is very complex and
requires substantial background in matroid theory. We have not seen the formula for a
4-separation stated explicitly in the literature.

Theorem. Let G be a graph with a 4-separation (H,K) and separation set {1, 2, 3, 4} ∈
V (G) such that H,K are connected. For i, j, k, l ∈ {1, 2, 3, 4}, let Hij ,Kij be the graphs
obtained from H,K by identifying vertices i and j. Let Hijk,Kijk be the graphs obtained
from H,K by identifying vertices i, j, k. Let Hij,kl,Kij,kl be the graphs obtained from H,K

by first identifying vertices i, j then identifying k, l. Let H1234,K1234 be the graphs obtained
from H,K by identifying the vertices 1, 2, 3, 4.

Let X = x − 1, Y = y − 1, C = xy − x − y,D = C2 − C − 1, Z = C − 1, let M be the
matrix shown in Figure 3.5.
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Let ~H =



T (H,x, y)
T (H12, x, y)
T (H13, x, y)
T (H14, x, y)
T (H23, x, y)
T (H24, x, y)
T (H34, x, y)
T (H123, x, y)
T (H124, x, y)
T (H134, x, y)
T (H234, x, y)
T (H12,34, x, y)
T (H13,24, x, y)
T (H14,23, x, y)
T (H1234, x, y)



, ~K =



T (K,x, y)
T (K12, x, y)
T (K13, x, y)
T (K14, x, y)
T (K23, x, y)
T (K24, x, y)
T (K34, x, y)
T (K123, x, y)
T (K124, x, y)
T (K134, x, y)
T (K234, x, y)
T (K12,34, x, y)
T (K13,24, x, y)
T (K14,23, x, y)
T (K1234, x, y)



, ~A =



A

A12

A13

A14

A23

A24

A34

A123

A124

A134

A234

A12−34

A13−24

A14−23

A1234



= 1
C(C − 1)(C − 2)M

~H

Then T (G, x, y) = ~A· ~K.

Due to the length, we will not present a proof of this, but we have tested the formula
using Maple on many graphs constructed with a 4-separation. Additionally, we observe that
the patterns in the matrix with respect to the previous formulas suggests its correctness.

In particular, there seems to be a factor of
k∏

i=2
1

C−i+2 appearing in the formula for a k-
separation.
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Chapter 4

Recurrences and Explicit Formulas
for Restricted Families

We will denote the path graphs on n vertices as Pn, and the cycle graphs on n vertices as
Cn. To ease our notation, an equation involving graphs will denote the equations of the
Tutte polynomials of the respective graphs.

4.1 Ladder Graph

The class of ladder graphs Ln is defined as the Cartesian product of the paths P2 and Pn.

1 n

We will show the construction of the recurrence for the Tutte polynomials of ladder
graphs, to illustrate the methodology that we will apply to the graphs in the following
sections. We apply deletion-contraction strategically to decompose the main graph into
graphs from a small set of intermediate classes. This will give us a system of recurrences
in which we algebraically manipulate to obtain a single recurrence for the main graph. We
begin by applying deletion-contraction to Ln on the edge e highlighted in red.

1 n

e =

1 n

+

1 n

We will denote the graph resulting from contracting e as a triangle ladder An (simply
a ladder with the final . Observe that in the graph, we have two cut edges, and deleting
them we get Ln−1. Thus,
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T (Ln) = x2T (Ln−1) + T (An) (4.1)

Now we apply deletion-contraction on An

1 n

e
=

1 n

+

1 n-1

1 n-1

e =

1 n-1

+

1 n-1

So we have that

T (An) = xT (Ln−1) + T (Ln−1) + yT (An−1) (4.2)

This gives us a system of recurrence relations, and we want a single recurrence relation
involving only the Tutte polynomials of ladder graphs. First add (1) + (2) to obtain

T (Ln) = (x2 + x+ 1)T (Ln−1) + yT (An−1) (4.3)

Then we observe that by lowering the index n in (1) to n − 1 and multiplying the
equation by y, we have

yT (Ln−1) = x2yT (Ln−2) + yT (An−1)

yT (An−1) = yT (Ln−1)− x2yT (Ln−2) (4.4)

Adding (3) + (4), giving us an order two recurrence for the Tutte polynomials of ladder
graphs

T (Ln) = (x2 + x+ y + 1)T (Ln−1)− x2yT (Ln−2) (4.5)

For the initial conditions of the recurrence, observe that T (L1) = T (P2) = x and
T (L2) = T (C4) = x3 + x2 + x+ y. Now we can solve this recurrence (for example, by using
the characteristic polynomial λ2 − (x2 + x+ y + 1)λ+ x2y) and obtain the formula

T (Ln) = 1
2n
√
u

(
(x
√
u+ v)(w +

√
u)n−1 + (x

√
u− v)(w −

√
u)n−1

)
(4.6)

where w = x2 + x+ y + 1, u = w2 − 4x2y, and v = xw + 2(y − xy).
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4.2 Prism Graph

The class of prism graphs Prn are the Cartesian products of P2 and Cn, they correspond to
the prisms with an n-polygon base in geometry. An example of a prism graph (hexagonal
prism) Pr6 is shown in Figure 4.1.

Figure 4.1: Prism graph

In [3], the recurrence for the Tutte polynomials of prism graphs was given but not
proved. Using the strategy outlined in Section 4.1, we have constructed the same recurrence
and used Maple to obtain the formula, shown below (for convenience we let u = x4 + 2x3−
2x2y + 3x2 + 2xy + y2 + 2x+ 2y + 1 and v = x2 − 2xy + y2 + 4x+ 4y + 4).

T (Prn) =x2y2 + xn+1y − 2x2y − 2xy2 − xn+1 − xny + x2 + xy + y2 + x+ y − 1
x− 1 +

(xy − x− y)
(
(x+ y + 2 +

√
v)n + (x+ y + 2−

√
v)n)

2n (x− 1) +(
x2 + x+ y + 1 +

√
u
)n +

(
x2 + x+ y + 1−

√
u
)n

2n (x− 1)

We will repeatedly make use of several intermediate families in constructing the recur-
rence (including the ladder graphs Ln), which we name below. The subscript n denotes the
number of polygons in the graph.

n

Prn

n

N
(4,4)
n

n

N
(4,3)
n

n

N
(3,3)
n

In order to keep our figures of the construction from being too complex, we use some
simplifications. First we drop the T (..) when referring to the Tutte polynomial, and any
ellipsis will also be dropped. In the figures, red edges denote the edge that we will apply
deletion-contraction to in the next step, and the arrows point to the resulting graphs in the
computation tree. Our convention is that, when applying deletion-contraction to edge e,
the top (or left) arrow goes G− e, and the bottom (or right) arrow goes to G/e. When we
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encounter cut edges and loops, instead of showing the intermediate graph, we automatically
delete the cut edge/loop and show the factor that the edge introduced by labeling the arrow.
These factors are accumulated at the leaves of our computation trees. We also process more
than one edge per step when we encounter situations outlined by the following lemmas [8].

Lemma. Let E = v1 → v2 → ... → vs+1 be a path in G such that the end vertices have
degree higher than 2, and all internal vertices have degree exactly 2 (such a path is called an
ear). Then T (G) = (xs−1 + ...+ x+ 1)T (G−E) + T (G/E), where G/E denotes the graph
with the entire ear contracted (all edges of ear removed, and the end vertices are joined).

Lemma. Let E be a multi-edge of G with multiplicity s. Then T (G) = (ys−1 + ... + y +
1)T (G− E) + T (G/E).

These lemma can be proven by induction on s, in both cases applying basic deletion-
contraction on one of the edges. We begin the construction by applying deletion-contraction
on a general prism graph:

Prn =

n n-1 n-1
Ln

n-1
N

(4,4)
n−1

n

n-1

N
(4,4)
n−1

n-1
y

n-1
Prn−1

n-1
yN

(3,3)
n−1

N
(4,4)
n =

n

x

n-1
x(Ln +N

(4,4)
n−1 )

n
N

(4,3)
n
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N
(4,3)
n =

n

x

n-1

n

N
(3,3)
n

n-1

x(Ln − x2Ln−1) (see Eqn 4.1)

n-1
xN

(4,3)
n−1

N
(3,3)
n =

n n-1
Ln − x2Ln−1 +N

(4,3)
n−1

n-1
y

n-1
N

(4,3)
n−1

n-1
yN

(3,3)
n−1

For each of the four figures above, we sum up the results at the leaves of the computation
tree (labeled with blue rectangles), which results in the following four linear equations:

T (Prn) = T (Ln) + T (Prn−1) + 2T (N (4,4)
n−1 ) + yT (N (3,3)

n−1 ) (4.1)

T (N (4,4)
n ) = xT (Ln) + xT (N (4,4)

n−1 ) + T (N (4,3)
n ) (4.2)

T (N (4,3)
n ) = xT (Ln)− x3T (Ln−1) + xT (N (4,3)

n−1 ) + T (N (3,3)
n ) (4.3)

T (N (3,3)
n ) = T (Ln)− x2T (Ln−1) + 2T (N (4,3)

n−1 ) + yT (N (3,3)
n−1 ) (4.4)

This system of recurrence relations can then be algebraically manipulated to get a linear
homogeneous recurrence relation involving only the T (Prn). We omit the details but note
that an immediate first step is rewriting Equation 4.2 as T (N (4,3)

n ) = T (N (4,4)
n )−xT (Ln−1)+

xT (N (4,4)
n−1 ) and substituting all instances to T (N (4,3)

n ) to eliminate it. Continuing in this
manner, we obtain an order 6 recurrence for T (Prn) that matches the one presented in [3].
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4.3 Double Ladder Graph

We will call the double ladder graphs DLn as the Cartesian product of the paths P3 and
Pn.

1 n

We will construct an order 5 recurrence, but since the characteristic polynomial of the
recurrence does not factor, the formula obtained does not seem to have any practical usage.
In the proof we will repeatedly make use of several intermediate families, which we name
below (the names have no special meaning and were simply chosen alphabetically, here An

and Cn no longer refer to the triangle ladder and cycle graphs).

1 n 1 n 1 n 1 n

An = DLn Bn Cn Dn

The figures below will follow the notation and conventions of the previous section. We
begin with applying deletion-contraction on An.

An =

n

x

n

Bn

n

x2 + x + 1

y
n-1

x(x2 + x+ 1)An−1

n-1

xyBn−1

Bn =

n

x

n

x + 1

y

n

Cn

n-1

x(x+ 1)An−1

n-1

xyBn−1
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Cn =

n n

(x+ 1)An−1 + yBn−1

n-1

n-1
y

n-1

An−1

n-1

yBn−1

n

x y2 + y + 1

n-1

xDn−1

n-1

(y2 + y + 1)Cn−1

Dn =

n

x + 1

n-1

(x+ 1)An−1

n

y + 1

n-1

xDn−1

n-1

(y + 1)Cn−1

Again we sum up the results from each of the figures to get a system of linear equations:

T (An) = (x3 + x2 + x)T (An−1) + T (Bn) + xyT (Bn−1) (4.1)

T (Bn) = (x2 + x)T (An−1) + xyT (Bn−1) + T (Cn) (4.2)

T (Cn) = (x+ 2)T (An−1) + 2yT (Bn−1) + (y2 + y + 1)T (Cn−1) + xT (Dn−1) (4.3)

T (Dn) = (x+ 1)T (An−1) + (y + 1)T (Cn−1) + xT (Dn−1) (4.4)

We transform this into a recurrence for T (DLn) with the techniques described previously.
We let

a1 = x3 + 2x2 + xy + y2 + 4x+ 3y + 3

a2 = x4y + x3y2 + x4 + 3x3y + 2x2y2 + xy3 + 3x3 + 4x2y + 4xy2 + 4x2 + 5xy + 3x

a3 = x4y3 + x5y + 2x4y2 + 3x4y + 2x3y2 + x2y3 + 2x3y + 2x2y2 + x2y

a4 = x5y3

Then T (DLn) = a1T (DLn−1)− a2T (DLn−2) + a3T (DLn−3)− a4T (DLn−4).
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Chapter 5

Conclusion

5.1 Summary of Contributions

We have developed a new edge selection heuristic based on the SHARC vertex ordering [12]
that performs well on random sparse graphs. We implemented a deletion-contraction Tutte
polynomial algorithm using this heuristic in Maple and compared it to existing implemen-
tations, as well as investigating an algorithm that does not use the deletion-contraction
method to see the limitations of our algorithm. In addition, we proved splitting formulas
for the Tutte polynomial over vertex separations of size two to four, and compared them
to the more general results for matroids have already been discovered. We also presented a
family of graphs whose Tutte polynomials satisfy a linear homogeneous recurrence relation,
and proved the recurrence constructively.

5.2 Future Work

As the ModSHARC vertex ordering was developed experimentally, it’s likely possible that
further improvements can be made to increase the range of graphs (both in terms of size
and structure) for which it is effective. From the data we observed by splitting graphs
with a 3-separation, computing the Tutte polynomials of very similar graphs using our
implementation resulted in drastically different timings, investigating this area could lead
to both an improved heuristic and a much higher speedup from parallel processing.
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Appendix A

Code

Included in this appendix is our Maple implementation of the Tutte polynomial algorithm
that is outlined in Section 2.2.3. The first line contains the required Maple libraries that
need to be loaded in order for the procedures to work.

The code is a collection of procedures, and the main procedure is TuttePoly(G,x,y), which
computes the Tutte polynomial of G. The function names are chosen so that none of them
are protected by Maple as of Maple 2015 (for this reason the ordering procedure was named
ModSHARCorder as SHARCorder was protected).

One method to use this code is to insert the functions into a worksheet and call the pro-
cedures. Note that there may be bugs due to character conversions when viewing this
document; single quotation marks are supposed to be used in the code, and the quotations
in the third-last line of the LBlocks procedure are supposed to be grave accents.

The main procedure TuttePoly(G,x,y) expects an adjacency list input for G, this can be
obtained by the Neighbors(G) command in Maple. The example below shows a simple
experiment for computing the Tutte polynomial of a random graph (the ... represents the
our Tutte polynomial procedures) in a Maple worksheet.

>restart; with(GraphTheory): with(ListTools): with(RandomGraphs):

...

>G := RandomGraph(20,40);
>AdjListG := Neighbors(G);
>st := time(): TuttePoly(AdjListG,x,y)); time()-st;

This will print out the Tutte polynomial of G along with the CPU time required for the
computation.
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with(GraphTheory): with(ListTools):

# Output a shortest path (as a list) from a vertex in S to a vertex in S
# that has at least one vertex z not in S.
# For example, consider the cycle [[2,6],[1,3],[2,4],[3,5],[1,4]]
# The shortest path from {1,3} to {1,3} is 1 -> 2 -> 3 not 1 -> 5 -> 4 -> 3
ModSHARC_BFS := proc(G::list,S::set(posint))
local n,m,P,Q,QQ,s,e,u,v,w,base,savepath,count;

n := nops(G);
m := add( nops(G[u]), u=1..n )/2;
Q := Array(1..m+n);
P := Array(1..n);
base := Array(1..n);
s := 1;
e := 0;
count := 0;
savepath := [];
for u in S do e := e+1; Q[e] := u; P[u] := u; base[u] := u; od;
while s <= e do

u := Q[s]; s := s+1; # remove from front of queue
for v in {op(G[u])} do

if member(u,S) and member(v,S) then next fi; # skip these edges
if P[v] = 0 then # new vertex

P[v] := u;
if member(u,S) then base[v] := v; else base[v] := base[u] fi;
e := e+1; Q[e] := v; # insert at back of queue

elif P[u] <> v and base[u] <> base[v] then
QQ := copy(Q);
# Build path in Q in the order from S to u to v to S
m := 1;
w := u;
while P[w] <> w do w := P[w]; m := m+1; od;
n := m;
QQ[n] := u;
w := u;
while P[w] <> w do w := P[w]; n := n-1; QQ[n] := w; od;
n := m+1;
QQ[n] := v;
w := v;
while P[w] <> w do w := P[w]; n := n+1; QQ[n] := w; od;
if (n mod 2) = 0 and n < nops(savepath) then

return [seq( QQ[n-w+1], w=1..n )];
elif count = 0 then

savepath := [seq( QQ[n-w+1], w=1..n )]; count := 1 fi;
fi;

od;
od;
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savepath;
end:

# Output the final ordering that the ModSHARC ordering will use
# based on the scores computed
FinalSHARC_BFS := proc(G::list,S::set(posint),scores::list)
local a1,j,n,m,P,Q,QQ,s,e,u,v,w,base,path,savepath,count,arcscore;

n := nops(G);
m := add( nops(G[u]), u=1..n )/2;
Q := Array(1..m+n);
P := Array(1..n);
base := Array(1..n);
s := 1;
e := 0;
count := 0;
savepath := []; arcscore := 0;
for u in S do e := e+1; Q[e] := u; P[u] := u; base[u] := u; od;
while s <= e do

u := Q[s]; s := s+1; # remove from front of queue
for v in {op(G[u])} do

if member(u,S) and member(v,S) then next fi; # skip these edges
if P[v] = 0 then # new vertex

P[v] := u;
if member(u,S) then

base[v] := v;
else

base[v] := base[u]
fi;
e := e+1; Q[e] := v; # insert at back of queue

elif P[u] <> v and base[u] <> base[v] then
QQ := copy(Q);
# Build path in Q in the order from S to u to v to S
m := 1;
w := u;
while P[w] <> w do w := P[w]; m := m+1; od;
n := m;
QQ[n] := u;
w := u;
while P[w] <> w do w := P[w]; n := n-1; QQ[n] := w; od;
n := m+1;
QQ[n] := v;
w := v;
while P[w] <> w do w := P[w]; n := n+1; QQ[n] := w; od;
if count = 0 then

savepath := [seq( QQ[n-w+1], w=1..n )]; count := 1;
for j in savepath[2..-2] do

arcscore := arcscore + scores[j];
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od;
elif n < nops(savepath) then

savepath := [seq( QQ[n-w+1], w=1..n )]; arcscore = 0;
for j in savepath[2..-2] do

arcscore := arcscore + scores[j];
od;

elif n = nops(savepath) then
path := [seq( QQ[n-w+1], w=1..n )]; a1 := 0;
for j in path[2..-2] do

a1 := a1 + scores[j];
od;
if a1 < arcscore then

savepath := path; arcscore := a1
fi;

fi;
fi;

od;
od;
savepath;

end:

# Build a vertex ordering by shortest cycles back to the set of
# vertices seen so far.
ModSHARC := proc(G::list,s::posint,CYC,scores::list)
local score, left, seen, n, P, i, u, path, cyc, k, m, a1, a2, cycle, pos,
deg, Deg, minc, maxc, mind, maxd;

n := nops(G);
if nargs=1 then

cycle := []; Deg := [];
for i to n do

cyc,deg := CycleTester(G,i); m := min(5,nops(cyc));
a1 := add(cyc[k]/sqrt(k*1.0),k=1..m);
cycle := [op(cycle),a1];
a2 := add(deg[k]/sqrt(k*1.0),k=1..nops(deg));
Deg := [op(Deg),a2];

od;
minc := FindMinimalElement(cycle);
maxc := FindMaximalElement(cycle);
mind := FindMinimalElement(Deg);
maxd := FindMaximalElement(Deg);
if mind = maxd and minc <> maxc then

score := cycle;
elif minc = maxc and mind <> maxd then

score := Deg;
elif minc = maxc and mind = maxd then

score := cycle;
else
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score := Deg/(maxd-mind)+0.5*cycle/(maxc-minc);
fi;
pos := FindMinimalElement(score,’position’);
return ModSHARC(G,pos[2],’cyc’,score);

fi;
P[1] := s;
seen := {s};
left := {$1..n} minus seen;
n := 1;
cyc := [];
while left <> {} do

path := FinalSHARC_BFS(G,seen,scores);
if cyc=[] then cyc := [nops(path)-1]
else cyc := [op(cyc),nops(path)-2]; fi;
if path=[] then u := left[1]; path := [u];
else path := path[2..-2] fi;
for u in path do n := n+1; P[n] := u; od;
left := left minus {op(path)};
seen := seen union {op(path)};

od;
if nargs=3 then CYC := cyc; fi;
[seq( P[u], u=1..n )];

end:

CycleTester := proc(G::list,s::posint)
local left, P, seen, n, u, path, cyc, deg;
P[1] := s;
n := nops(G);
seen := {s};
left := {$1..n} minus seen;
n := 1;
cyc := [];
while left <> {} do

path := ModSHARC_BFS(G,seen); # find next path from seen back to seen
if cyc=[] then cyc := [nops(path)-1];

deg := [seq(nops(G[path[i]]),i=1..nops(path)-1)]
else

cyc := [op(cyc),nops(path)-2];
deg := [op(deg), seq(nops(G[path[i]]),i=2..nops(path)-1)]

fi;
if path=[] then

u := left[1]; path := [u];
else

path := path[2..-2]
fi;
for u in path do n := n+1; P[n] := u; od;
left := left minus {op(path)};
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seen := seen union {op(path)};
od;
cyc,deg;

end:

ModSHARCorder := proc(G::Graph) local V,i,n,A,N,C,H,sigma,e;
sigma := NULL;
for C in ConnectedComponents(G) do

if nops(C) < 3 then sigma := sigma,op(C);
else

H := InducedSubgraph(G,C);
V := op(3,H);
n := nops(V);
A := op(4,H);
N := [seq( [op(A[i])], i=1..n )];
if NumberOfEdges(G) > numelems(Edges(G)) then

for i to nops(N) do
e := N[i];
if member(i,e) then

N := subsop(i=subs(i=NULL,e),N);
end if;

od;
fi;
sigma := sigma, seq( V[i], i=ModSHARC(N) ); # use ModSHARC

fi;
od;
[sigma];

end:

# Convert a Graph into a list of lists
NConvert := proc(G::Graph)

return Neighbors(G);
end:

# BFS on a single component
BFS := proc(L::list,v::integer,A::Array)

local Q; local N; local w;
local front;
local back;
A[v] := 1;
Q := Array(1..nops(L));
front := 1;
back := 1;
Q[1] := v;
while front <= back do

N := L[Q[front]]; front := front + 1;
for w in N do
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if A[w] = 0 then
Q[back+1] := w; A[w] := 1; back := back + 1

end if;
od;

od;
return [seq(Q[i],i=1..back)];

end:

# BFS on multiple components
FullBFS := proc(L::list)

local A;
local Q;
local i;
A := Array(1..nops(L));
Q := [];
for i to nops(L) do

if i = 1 then
Q := [[op(BFS(L,i, A))]];

elif A[i] = 0 then
Q := [op(Q),BFS(L,i, A)]

end if;
od;
return Q;

end:

# Relabelling a graph based on a given ordering
Relabel := proc(L::list,O::list)
local i, j, p, N;

N := [seq([],i=1..nops(O))];
for i to nops(L) do

N[i] := L[O[i]];
for j to nops(N[i]) do

member(N[i][j], O, ’p’);
N[i][j] := p;

od;
N[i] := sort(N[i]);

od;
return N;

end:

# Finds the blocks of a graph
LBlocks := proc(L::list,A::name)
local i, n, mark, M, bcount, blocks, lowpt, stack, DFS, artp, root, dfi, dfic;

n := nops(L);
mark := Array(1..n);
lowpt := Array(1..n);
stack := Array(1..n);
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blocks := Array(1..n);
artp := Array(1..n);
dfi := Array(1..n);
DFS := proc(u,parent)

local v, top;
mark[u] := 1;
if u <> root then

lowpt[u] := dfi[parent]
end if;
M := M + 1; stack[M] := u;
dfi[u] := dfic; dfic := dfic + 1;
for v in L[u] do

if v = parent then
elif mark[v] = 1 then lowpt[u] := min(lowpt[u],dfi[v]);
else top := M; DFS(v,u); lowpt[u] := min(lowpt[u],lowpt[v]);

if lowpt[v] = dfi[u] then
bcount:=bcount+1; artp[u] := artp[u]+1;
blocks[bcount]:=[u,seq(stack[i],i=top+1..M)];
M:=top

end if;
end if;

od;
end;
bcount:=0; dfic := 1;
for root to n do

if mark[root]=0 and 0<nops(L[root]) then M:=0; DFS(root,0);
if artp[root] < 2 then artp[root] := 0 end if;

elif mark[root]=0 and nops(L[root])=0 then
bcount:=bcount+1; blocks[bcount]:=[root]

end if ;
od;
if 1 < nargs then

A := [seq(‘if‘(artp[u] = 0, NULL, u), u = 1 .. n)]
end if;
blocks:=[seq([seq(u,u=blocks[i])],i=1..bcount)]

end:

# Splits a graph into its blocks
BlockInduce := proc(L::list,blocks::list,artp::list)

local i, j, k, m, N, BlockRelabel;
N := [];
BlockRelabel := proc(L::list,b::list)

local i, j, p, N;
N := [seq([],i=1..nops(L))];
for i to nops(L) do

N[i] := L[i];
for j to nops(N[i]) do
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member(N[i][j], b, ’p’);
N[i][j] := p;

od;
N[i] := sort(N[i]);

od;
return N;
end:
for i to nops(blocks) do

if nops(blocks[i]) = 1 then
N := [op(N),[]];

elif nops(blocks[i]) = 2 then
m := Occurrences(blocks[i][1],L[blocks[i][2]]);
N := [op(N),[[seq(2,i=1..m)],[seq(1,i=1..m)]]];

else
N := [op(N),[]];
for j to nops(blocks[i]) do

if blocks[i][j] in artp then
N[i] := [op(N[i]),[]];
for k to nops(L[blocks[i][j]]) do

if L[blocks[i][j]][k] in blocks[i] then
N[i][j] := [op(N[i][j]), L[blocks[i][j]][k]];

end if;
od;

else
N[i] := [op(N[i]),L[blocks[i][j]]];

end if;
od;
N[i] := BlockRelabel(N[i],blocks[i]);

end if;
od;
return N;

end:

EdgeDeletion := proc(L::list,u::integer,v::integer)
local N;

N := subsop(u = L[u][1..nops(L[u])-1], v = L[v][1..nops(L[v])-1], L);
return N;

end:

EdgeContraction := proc (G, i, j)
local H, k;

H := subsop(i = NULL, j = [op(G[i]), op(subs(i = NULL, G[j]))], G);
H := map(sort, subs([i = j-1, seq(k = k-1, k = i+1 .. nops(G))], H));
return H

end:

ECutTest := proc(L::list,u::integer,v::integer)
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local i, seen, new, neighboors;
if nops(L[v]) = 0 then return true fi;
seen := {};
new := {u};
while new <> {} do

seen := seen union new;
neighboors := {seq(op(L[i]),i=new)};
new := neighboors minus seen;
if member(v,new) then return false fi;

od;
return true

end:

TuttePoly := proc(G::list,x::algebraic,y::algebraic)
local B, BB, L, TPoly, T, GG, z;
TPoly := proc(L::list,x::algebraic,y::algebraic)

option remember;
local EDel, ECon, e, c, i, j, k, f, l, N;

# Case 1 (e = 0)
if nops(L) = 1 and nops(L[1]) = 0 then return 1 end if;

# Case 2 (Loop or MultiCutEdge)
for i to nops(L) do

e := L[i];
if e=[] then

N:=subs([seq(k=k - 1,k=i+1..nops(L))],subsop(i=NULL,L));
return TPoly(N,x,y)

elif member(i,e) then
c := numboccur(e,i);
N := subsop(i=subs(i=NULL,e),L);
return expand(y^c*TPoly(N,x,y))

elif e[1] = e[-1] then
c := nops(e); j := e[1];
ECon := subsop(i = [], j = subs(i = NULL, L[j]), L);
return normal(x+add(y^i, i = 1 .. c-1))*TPoly(ECon,x,y);

end if;
od;

# Failing the three above cases, we choose an edge
EDel := subsop(1 = L[1][2..nops(L[1])],

L[1][1] = L[L[1][1]][2..nops(L[L[1][1]])], L);
if ECutTest(EDel,1,L[1][1]) then

return expand(x*TPoly(EdgeContraction(EDel,1,L[1][1]),x,y))
else

return expand(TPoly(EdgeContraction(EDel,1,L[1][1]),x,y))+
expand(TPoly(EDel,x,y))
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end if;
end:

B := LBlocks(G,’A’);
if nops(B) > 1 then

BB := BlockInduce(G,B,A);
GG := Array(1..nops(B));
for z to nops(B) do

GG[z] := Graph(BB[z]);
BB := subsop(

z = Relabel(BB[z],ModSHARCorder(GG[z])),
BB);

od;
return expand(mul(TPoly(BB[i],x,y),i=1..nops(BB)));

end if;
L := Relabel(G,ModSHARCorder(Graph(G)));
T := TPoly(L,x,y);
TPoly := subsop(4=NULL,eval(TPoly));
return T;

end:
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