
Solving Multivariate Diophantine
Equations and Their Role In Multivariate

Polynomial Factorization.
by

YUSUF BARIS TUNCER

M.Sc., Tuebingen University, 2002
B.Sc., Bogazici University, 1999

Dissertation Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
Department of Mathematics

Faculty of Science

c© YUSUF BARIS TUNCER 2017
SIMON FRASER UNIVERSITY

Spring 2017

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,
research, education, satire, parody, criticism, review and news reporting is likely

to be in accordance with the law, particularly if cited appropriately.

Approval

Name: YUSUF BARIS TUNCER

Degree: Doctor of Philosophy (Mathematics)

Title: Solving Multivariate Diophantine Equations and
Their Role In Multivariate Polynomial
Factorization.

Examining Committee: Chair: Tom Archibald
Professor

Michael Monagan
Senior Supervisor
Professor

Marni Mishna
Supervisor
Associate Professor

Tamon Stephen
Internal Examiner
Associate Professor

Keith Geddes
External Examiner
Professor Emeritus
David R. Cheriton School of Computer
Science
University of Waterloo

Date Defended: 14 August 2017

ii

Abstract

Multivariate polynomial factorization over integers via multivariate Hensel lifting (MHL) is
one of the central areas of research in computer algebra.

Most computer algebra platforms, such as Maple, Magma and Singular, implement Wang’s
incremental design of MHL which lifts the factors one variable at a time and one degree at
a time. At each step MHL must solve a multivariate diophantine problem (MDP) which
Wang solves using the same idea; lifting the solutions one variable and one degree at a time.

Although this performs well when the evaluation points are mostly zero, it performs poorly
when there are many non-zero evaluation points as the number of MDP problems to be
solved can be exponential in the number of variables. In this thesis we introduce a new
non-recursive solution to the MDP which explicitly exploits the sparsity of the solutions to
the MDP.

We use sparse interpolation techniques and exploit the fact that at each step of MHL, the
solutions to MDP’s are structurally related. We design a probabilistic sparse Hensel lifting
algorithm (MTSHL) and give a complete average case complexity analysis for it.

We describe a series of experiments based on our implementation of MTSHL, compare its
efficiency with Wang’s algorithm, and show that MTSHL performs better for many practi-
cal applications. We also show that previous probabilistic approaches proposed for MHL as
an alternative to Wang’s algorithm are not practical whereas MTSHL is practical and the
running time is predictable.

Keywords: Multivariate Polynomial Factorization; Multivariate Hensel Lifting; Multivari-
ate Polynomial Diophantine problem; Sparse Interpolation; Sparse Hensel Lifting.

iii

Dedication

�is thesis is dedicated to the loving memory of my father, Ali R¨a Tuncer.

iv

Acknowledgements

I would like to take immense pleasure in expressing my sincere and deep sense of gratitude
to my supervisor Michael Monagan for his invaluable guidance, creative suggestions and
generous support during my PhD studies at SFU.

I also thank the members of my thesis committee Marni Mishna, Tamon Stephen, Keith
Geddes for reading my thesis and Tom Archibald for being present at my defence session.

I extend my sincere thanks to Roman Pearce for his generous support and coding help,
John Hebron for his CECM support and John Ogilvie for his friendship.

I also take this opportunity to thank my high school mathematics teacher Suat Gencel
for being such a fantastic teacher and for being my inspiration.

I would like to extend my warmest gratitude to my close friends Gulsen Meral Yildirim
and Burcak Dogan for being caring and supportive at difficult times.

I owe a lot to my family, Gulderen Tuncer, Melek Burcu Tuncer Karabina and Koray
Karabina who encouraged and helped me at every stage of my PhD research.

Finally I am deeply thankful to Gokcen Yildiz. Without her psychological support this
dissertation would not have been possible.

v

Table of Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables ix

List of Figures x

List of Algorithms x

1 Introduction 1
1.1 Evolution of Multivariate Polynomial Factorization 1
1.2 The outline of the thesis . 3

1.2.1 Various approaches for sparse multivariate factorization 6
1.2.2 Efficiency and analysis of MTSHL 8

1.3 Univariate Hensel Lifting . 9
1.4 Leading Coefficient Correction (LCC) . 15
1.5 Multiterm Hensel Lifting . 19
1.6 The generalized Univariate Diophantine Problem (UDP) 21

2 Multivariate Factorization 24
2.1 The Steps of Multivariate Polynomial Factorization 24
2.2 An incremental design of Multivariate Hensel Lifting (MHL) 32
2.3 The Multivariate Diophantine Problem (MDP) 39

3 Solving Multivariate Diophantine Equations 42
3.1 Solution via polynomial remainder sequences 42
3.2 Solution via Groebner Basis . 44

vi

3.3 Wang’s solution . 46
3.3.1 On Wang’s MDP solver . 48

3.4 Solution via interpolation . 49
3.5 Sparse interpolation . 51
3.6 Solution via sparse interpolation . 53

3.6.1 First Improvement . 54
3.6.2 The evaluation cost . 55

4 Sparse Hensel Lifting (SHL) 59
4.1 The main assumption of SHL . 59
4.2 Sparse Hensel Lifting by Zippel (ZSHL) . 61

4.2.1 Some remarks on ZSHL . 66
4.3 Sparse Hensel Lifting by Kaltofen (KSHL) 67

4.3.1 Some remarks on KSHL . 72
4.4 Sparse Hensel Lifting by Monagan & Tuncer (MTSHL) 73

4.4.1 Bad evaluation points for MTSHL 75
4.4.2 Some remarks on MTSHL . 81

4.5 Reconsidering the case modulo pl with l > 1. 82
4.5.1 Data for sparse lifting . 87

5 The Distribution of Unlucky Points 88
5.1 Unlucky points in computer algebra . 88
5.2 An overview of the Chapter . 89

5.2.1 An overview of the first part . 90
5.2.2 An overview of the second part . 90

5.3 Generalization of the inclusion-exclusion principle 91
5.4 Results on the distribution of unlucky points 95

5.4.1 A comparison with the binomial distribution. 103
5.5 Results on the distribution of the roots of a monic polynomial in Zn[x] . . . 104
5.6 Summary . 106

6 Complexity of MTSHL 107
6.1 The steps of the analysis . 107
6.2 The expected number of terms after evaluation 107

6.2.1 On Zippel’s assumption . 116
6.3 The expected number of terms of Taylor coefficients 121
6.4 The complexity of the MDP . 124
6.5 The Complexity of MTSHL . 127

6.5.1 Before we go into the details . 127
6.5.2 In detail . 128

vii

6.6 Some Timing Data . 136
6.6.1 Factoring Toeplitz and Cyclic matrices: The state of art 136
6.6.2 Factoring Toeplitz and Cyclic matrices with MTSHL 138
6.6.3 Factoring Random sparse data with MTSHL and KSHL 139

7 Conclusion 141
7.1 Summary . 141
7.2 Future Work . 141

Bibliography 143

viii

List of Tables

Table 1.1 Factorization timings in CPU seconds for factoring dn the determinant
of the n by n Toeplitz matrix Tn evaluated at xn = 1. 4

Table 1.2 Factorization data and timings in CPU seconds for factoring dn the
determinant of the n by n Cyclic matrix Cn evaluated at xn = 1. . . . 5

Table 4.1 The timing table for D−MTSHL vs MTSHL 87

Table 5.1 Data for quadratic (f, g) in F7[x, y] 103

Table 6.1 Expected number of terms after evaluation 113
Table 6.2 Expected density ratio after evaluation 114
Table 6.3 The ratio of subsequent number of terms for a sparse case. 118
Table 6.4 The ratio of subsequent number of terms for a dense case. 118
Table 6.5 The bounds on the expected number of terms and the density ratio. . 123
Table 6.6 Factorization timings in CPU seconds for factoring dn the determinant

of the n by n Toeplitz matrix Tn evaluated at xn = 1 137
Table 6.7 Factorization data and timings in CPU seconds for factoring dn the

determinant of the n by n Cyclic matrix Cn evaluated at xn = 1 . . . 137
Table 6.8 Timings for factoring determinants of n×n symmetric Toeplitz matrices.139
Table 6.9 Timings for factoring determinants of n× n cyclic matrices. 139
Table 6.10 The timing table for random data with ideal type 2 140
Table 6.11 The timing table for random data with ideal type 1 140
Table 6.12 The timing table for KSHL . 140

ix

a

List of Figures

Figure 2.1 Main steps of Wang’s Algorithm 25

Figure 4.1 Wang’s Algorithm vs MTSHL . 83

Figure 5.1 Show sets C2, C3, B2 for three sets A0, A1, A2 92

x

List of Algorithms

1 Univariate Diophantine Solver (UniDio) . 11
2 Univariate Hensel Lifting (UHL) . 18
3 Choose Candidate Points (CCP) . 27
4 Choose Evaluation Points (CEP) . 27
5 jth step of Multivariate Hensel Lifting for j > 1. 39
6 WDS (Wang’s Diophant Solver) . 47
7 SparseInt . 56
8 BSDiophant . 57
9 jth step of optimized KSHL . 69
10 jth step of MTSHL . 77
11 LiftTheFactors . 86
12 LiftTheFactors (optimized) . 86

xi

Chapter 1

Introduction

1.1 Evolution of Multivariate Polynomial Factorization

Multivariate polynomial factorization arises in many applications in symbolic computation.
It is a significant sub-problem when computing primary decompositions of ideals, simplifica-
tion of large formulae, symbolic integration and solving systems of polynomial equations. It
also plays a significant role in other fields such as commutative algebra, algebraic geometry,
cryptography and algebraic coding theory.

Polynomial factorization has a long history; and as Kaltofen indicates [Kal85], it is a
success story. According to Knuth [Knu81], its beginnings can be traced back to 1707 Isaac
Newton’s Arithmetica Universalis and to the astronomer Schubert who in 1793 presented
a finite step algorithm to compute the factors of a univariate polynomial with integer co-
efficients. Kronecker rediscovered Schubert’s method in 1882 and also gave algorithms for
factoring polynomials with two or more variables or with coefficients in algebraic extensions
[Kro95].

In 1967 Berlekamp made an ingenious proposal for factoring univariate polynomials in
Zp[x] in which p is prime in [Ber67]. It is polynomial time in the degree of the polynomial
unlike all previous algorithms which are exponential in the degree. Two years later Zassen-
haus showed in [Zas69] how to apply the "Hensel lemma" to lift a factorization modulo a
prime p to a factorization modulo p2k in k iterations, provided that the integral polynomial
is square-free and remains square-free modulo p. For p2k sufficiently large, the integral
factors can then be found from the factorization modulo p2k.

In 1971 and 1975, Musser [Mus71, Mus75] formalized this idea, and described an outline
for the multivariate factorization based on Zassenhaus’s observations. Wang, in collabora-
tion with Rothschild [WR75], extended the ideas of Musser to obtain a multivariate factor-
ization algorithm for integral polynomials. Subsequently, Wang significantly improved this
multivariate factorization algorithm [Wan78] by developing an incremental design of multi-
variate Hensel lifting (MHL) and designing a coefficient correction algorithm (LCC). Today

1

many modern computer algebra systems such as Maple, Magma and Singular use Wang’s
incremental design of multivariate Hensel lifting (MHL) to factor multivariate polynomials
over integers. The details can be found in Chapters 6 and 8 of the Geddes, Czapor and
Labahn text [GCL92]. Only this textbook has the details. The Maple, Magma and Singular
implementations are all based on [GCL92].

As long as the necessary conditions are satisfied, Wang’s design of MHL invariably
returns the true unique lifting. In many practical applications the polynomials are sparse.
Although Wang’s method performs significantly better than the previous algorithm that
he developed with Rothschild in [WR75], it does not explicitly take sparsity into account.
Zippel’s sparse interpolation [Zip90] was the first probabilistic method aimed to take sparsity
into account. Based on sparse interpolation and multivariate Newton’s iteration, Zippel
then introduced a sparse Hensel lifting (ZSHL) algorithm in [Zip81], which uses an MHL
organization different from that of Wang. In this method Zippel suggested that one use
Wang’s LCC.

A new approach for sparse Hensel lifting for the sparse case was proposed by Kaltofen
(KSHL) in [Kal85]. Kaltofen’s method is based on Wang’s incremental design of MHL but
it uses a LCC different from Wang’s LCC and offers a distinct solution to the multivariate
diophantine problem (MDP) that appears as a significant sub-problem in Wang’s design of
MHL.

This thesis presents a new sparse Hensel lifting algorithm proposed by Monagan
and Tuncer (MTSHL) that appeared in [MT16-2]. It outperforms previous algorithms. It
is based also on Wang’s incremental design of MHL and LCC and offers a solution to the
MDP different from the solutions offered by Zippel and Kaltofen. To solve the MDP problem
appearing in MHL, the technique proposed by Monagan and Tuncer uses and improves the
sparse interpolation techniques developed by Zippel.

MTSHL algorithm performs much better than the previous two approaches
ZSHL and KSHL. Also for many cases it is significantly faster than Wang’s
algorithm.

What do we mean by performing better? According to the best of our knowledge the
average complexity analysis of the approaches by Zippel and Kaltofen were not done likely
because of the complicated nature of the algorithms and also because the term sparse is
unclear in a mathematical sense. One can make worst case complexity estimates; these
estimates are not based on sparseness. The papers do not mention an implementation
and we are unaware of any implementation of these algorithms in the literature. We have
implemented these algorithms in Maple and optimized them. We recognized that they do
not behave as the authors expected. For many sparse examples Wang’s proposal is quicker
then these two algorithms. This effect led us to question the assumptions upon which ZSHL
and KSHL are based. According to our experiments these proposals bring new hidden costs
that are not negligible. We will discuss these details and give concrete examples to test

2

how these approaches work, to find their weak points and to compare their efficiency with
our and Wang’s algorithms to convince the reader. We note again that Wang’s second
algorithm [Wan78] performs better for the sparse case than the previous proposal by Wang
and Rothschild [WR75] and it is the standard algorithm. If one aims to develop a new
approach for a multivariate factorization for the sparse case, it should be compared with
Wang’s second algorithm [Wan78]. We compute the exact complexity analysis of MTSHL.
The complicated nature of the algorithms make the exact complexity analysis tedious and
difficult. Even for Wang’s algorithm in [Wan78] an exact satisfactory complexity analysis
was not done because of its highly recursive nature. For an attempt in this direction see
[Wit04]. This analysis does not take into account the decrease in the number of terms of
a polynomial after evaluation and therefore fails to give insight for the sparse cases. As
we claim that for all cases our MTSHL algorithm performs much better than the previous
two approaches ZSHL and KSHL and also Wang’s algorithm for many cases, we are in a
position not only to implement and to show that MTSHL is quicker for some data but also
to make the term sparse mathematically precise and to compute the average complexity and
to verify our claims by randomly generated sparse polynomials and families of polynomials
with sparse factors. We do not give an exact complexity analysis of ZSHL, KSHL or Wang’s
approaches. After we implemented our approach, we recognized that for the sparse cases,
and when the evaluation points chosen by the algorithm are not all zero, MTSHL performs
better, so we focused on a detailed complexity analysis of MTSHL. This was not an easy
task and required almost half of the thesis, namely Chapters 5 and 6.

For the examples in the thesis and the implementation of the algorithms presented in the
thesis we used Maple, with two key parts implemented in C. This raises an obvious question,
is the gain obtained by MTSHL because of an efficient implementation of MTSHL, but poor
implementation of Wang’s algorithm? Regarding other computer algebra platforms, three
computer algebra systems with multivariate factorization are Magma, Singular and Maple.
For multivariate factorization they all use Wang’s MHL following the representation in
[GCL92]. Table 1.1 and 1.2 below shows that the multivariate factorization timings of
Maple are quicker then Magma and Singular.

1.2 The outline of the thesis

Consider the symmetric Toeplitz matrix Tn below:

Tn =

x1 x2 · · · xn−1 xn

x2 x1 · · · xn−2 xn−1
.

xn−1 xn−2 · · · x1 x2

xn xn−1 · · · x2 x1

3

n #dn sizes of factors Maple # MDP MDP% Magma Singular
7 427 30, 56 0.035 161 30% 0.01 0.02
8 1628 167, 167 0.065 383 43% 0.04 0.05
9 6090 153, 294 0.166 1034 73% 0.10 0.28
10 23797 931, 931 0.610 2338 76% 0.89 1.77
11 90296 849, 1730 2.570 6508 74% 1.96 8.01
12 350726 5579, 5579 19.45 15902 80% 72.17 84.04
13 1338076 4983, 10611 84.08 45094 84% 181.0 607.99
14 5165957 34937, 34937 637.8 103591 77% 6039.0 20333.45
15 19732508 30458, 66684 4153.2 286979 84% 12899.2 –

Table 1.1: Factorization timings in CPU seconds for factoring dn the determinant of the n
by n Toeplitz matrix Tn evaluated at xn = 1.

Let dn be the determinant of Tn, a polynomial in Z[x1, . . . , xn]. The data in Table 1.1 for
factoring dn compares Maple 2017 with Magma 2.22–5 and Singular 3–1–6. Column #dn
is the number of terms in the determinant when expanded and the next column gives the
number of terms in the two factors. Column # MDP shows the number of calls (including
recursive calls) to Maple’s MDP algorithm and the column MDP% shows the percentage of
time in Hensel lifting spent solving MDPs. Notice that over 75% of the time is in solving
MDP’s. We also saw examples where over 90% of the time was in MDP. This was our initial
motivation for studying algorithms for solving MDP.

The determinant dn = det(Tn) is homogeneous. Since the difficulty of the factor-
ization of det(Tn) depends on which variable is used to de-homogenize the determinant,
we fixed xn = 1 for all three systems. That is, for det(Tn) we time the factorization of
dn(x1, x2, . . . , xn−1, 1).

The de-homogenization of d14 is of total degree 14 which has 2 factors. Both of them
are in 13 variables of total degree 7 and each has 34937 terms for a density ratio 0.450684.
The density ratio of a polynomial in n variables of total degree d with T non-zero terms is
given by the ratio T/

(n+d
d

)
.

The de-homogenization of d15 is of total degree 15 which has 2 factors. The first factor
computed is in 14 variables of total degree 8, has 66684 terms and density ratio 0.208537.
The second factor is in 14 variables of total degree 7, has 30458 terms and density ratio
0.261937.

Factoring dn is a challenging problem. We note that these factors are atypical sparse
examples. Their total degree is small and less than their total number of variables, which
is contrary to our intuition of sparse examples. They are huge and not too sparse; they
can be considered as dense in practical terms. Our natural expectation in this case is that
Wang’s approach is hence preferable to sparse approaches.

4

n #dn sizes of factors Maple # MDP MDP% Magma Singular
7 246 7,924 0.045 330 90% 0.01 0.02
8 810 8,8,20,86 0.059 218 46% 0.07 0.06
9 2704 9,45,1005 0.225 1810 74% 0.74 0.24
10 7492 10,10,715,715 0.853 1284 62% 8.44 2.02
11 32066 11,184756 7.160 75582 91% 104.3 11.39
12 86500 12,12,42,78,78,621 19.76 1884 76% 7575.1 30.27
13 400024 13, 2704156 263.4 1790701 92% 30871.90 NA
14 1366500 14,14,27132,27132 1664.4 50381 77% > 106 288463.17
15 4614524 15,120,3060,303645 18432. 477882 82% – NA

Table 1.2: Factorization data and timings in CPU seconds for factoring dn the determinant
of the n by n Cyclic matrix Cn evaluated at xn = 1.

As can be seen from Table 1.1, if we factor d14 and d15 using Maple that uses Wang’s
algorithm for multivariate factorization, the calculation will take 637 s. and 4153 s. respec-
tively. MTSHL factors d14 and d15 in 250s. and 1650 s. resp. 60% and 40% resp. spent
on solving diophantine equations. (Timings were obtained on an Intel Core i5–4670 CPU
running at 3.40GHz.)

Next, consider the Cyclic matrix Cn below:

Cn =

x1 x2 . . . xn−1 xn

xn x1 . . . xn−2 xn−1
...

...
...

...
...

x3 x4 . . . x1 x2

x2 x3 . . . xn x1

The data in Table 1.2 for factoring the determinant of Cn compares Maple 2017 with Magma
2.22–5 and Singular 3–1–6.

The determinant dn = det(Cn) is also homogeneous.
The de-homogenization of d14 is of total degree 14 and has 4 factors. 2 factors are in 13

variables of total degree 1, has 14 terms and density ratio 1; the other 2 factors are in 13
variables of total degree 6, has 27132 terms and density ratio 1.

The de-homogenization of d15 is of total degree 15 and has 4 factors. The first 3 factors
are of total degree 1, 2 and 4 with density ratio 1. The last factor is of total degree 8 with
density ratio 0.949573.

For these full dense examples, as can be seen from Table 1.2, if we factor d14 and
d15 using Maple that uses Wang’s algorithm for multivariate factorization, the calculation
took 1664 s. and 18432 s. respectively. MTSHL factors d14 and d15 in 523 s. and 7496 s.
resp. 0.16% and 0.06% resp. spent on solving diophantine equations.

5

To make this thesis accessible, we begin with a brief introduction to show how Maple,
Singular, Magma or other computer algebra platforms factor such huge multivariate poly-
nomials. We try to keep the requirements to read the thesis to a minimum and follow
a readable approach by giving non-trivial examples; these examples are important, since
as we will see in Chapter 4, without considering some concrete problems the complexity
estimates can be misleading. There can be hidden costs that are thought to be cheap but
that in practice are not. We have a computational problem and it is a natural wish of the
reader to see some live computations. We also supply pseudo-code so that a readers can
generate their own examples to convince themselves.

1.2.1 Various approaches for sparse multivariate factorization

As mentioned above, the most efficient multivariate polynomial factorization algorithm is
based on multivariate Hensel lifting (MHL), which is a natural generalization of univariate
Hensel Lifting. To begin we give an overview of the univariate Hensel lifting so that the
reader can see how the ideas behind univariate Hensel lifting naturally generalize to the
multivariate case. Leading coefficient correction (LCC) plays an important role in this
process; we will illustrate LCC with concrete examples.

In Chapter 2, we explain in detail the steps of the multivariate factorization developed
by Wang. We will see that LCC for the multivariate case and MHL play an important role in
multivariate factorization. We then observe that the MDP problem naturally appears as a
sub-problem during incremental design of MHL and we define the multivariate diophantine
problem (MDP) in detail.

Wang’s design of MHL is incremental; that is, it recovers the variables one at a time.
In a typical application of Wang’s multivariate factorization algorithm, one applies LCC
before the jth lifting step of the MHL. The total complexity of the factorization can then be
obtained as the cost of LCC + the cost of univariate factorization over Z[x1]+ the cost of
MHL. One can readily construct examples in which LCC or factorization in Z[x1] dominates
the total complexity. But such examples are atypical in practice. Generally among these, the
dominating cost is the total cost of MHL; moreover, within MHL solving the MDP dominates
the cost (see section 6.6). So, in Chapter 3 we investigate the ways of solving MDP. We first
discuss the natural attempts to solve the MDP via the use of Groebner bases and pseudo
remainder sequences and then show that these methods are inefficient. Next we will describe
Wang’s solution of the MDP. As we have discussed, although Wang’s approach is much
better than the previous approaches, its efficiency decreases significantly when the factors
to be computed are sparse but their number of terms are not that small and the evaluation
points that the algorithm chooses are non-zero. This leads us to probabilistic approaches
to solve the MDP to exploit the sparsity of the factors. We show that interpolation is an
option to solve the MDP. It may seem that solution via interpolation is a natural solution to
the MDP. But this idea is false. Solution to the MDP via interpolation is not deterministic

6

but probabilistic and the underlying probability is not immediate to see. Some evaluation
points of the interpolation algorithm will turn out to be unlucky, i.e. useless and in fact
we investigate the distribution of unlucky points. If the factors to be computed are sparse
then the solutions to the MDP are also sparse. Next we will show how to use Zippel’s
sparse interpolation idea to solve the MDP. Although this approach seems promising, it
comes with an additional evaluation cost that dominates as the number of terms in the
factors to be computed increases. One way to decrease the evaluation cost that we explore
in Chapter 3 is to decrease the number of evaluations required by evaluating to bivariate
images instead of univariate images and solve bivariate diophantine equations instead of
univariate ones. In the sparse interpolation one has to evaluate multivariate polynomials
at many points. The final section of Chapter 3 describes the evaluation method that we
have used for subsequent evaluation of a polynomial in sparse interpolation, which brings
a significant advantage over classical evaluation methods.

As noted above, sparse Hensel lifting was first introduced by Zippel [Zip81] and then
improved by Kaltofen [Kal85]. In Chapter 4, we inspect the general SHL ideas and discuss
ZSHL and KSHL in detail. At the jth step of the incremental design of MHL one computes
the Taylor expansion of factors at a random point in a for loop. At the ith step of the for
loop one computes the ith Taylor coefficient of the factors by solving an MDP problem.
Let us denote by fj one factor to be computed at the jth step and by αj the random point
chosen by the algorithm. So at the jth step the Taylor expansion fj =

∑degxj
fj

i=0 fji(xj−αj)i

is computed. The coefficients fji are polynomials in the variables x1, . . . , xj−1. We make
a key observation that Supp(fj,i) ⊆ Supp(fj,i−1) with large probability; by Supp(fj,i) we
mean the set of non-zero monomials in polynomial fji. Therefore, with high probability,
the number of terms of the polynomials to be computed by solving MDP decreases; so that
the sparse approach to solve MDP’s proposed in Chapter 3 becomes more effective as i
increases, even for cases in which the factor to be computed is dense. Moreover, while we
compute fj,i via solving the MDP, a sparse technique to solve the MDP can take fj,i−1 as
a skeleton. This observation means that solving a MDP reduces to solving linear equations
modulo p. Moreover, the linear systems are Vandermonde systems which can be solved very
efficiently. (See [Zip90].) In Chapter 4, we make these statements more precise, propose
and give the pseudo-code of MTSHL. Finally we reconsider the case in which the prime p
chosen by the algorithm is too small to compute the coefficients; in this case p-adic lifting
is needed. The current approach is the one described in [GCL92]. In this case, at the jth

step of MHL, one projects down and computes the solutions to the MDP first in Zp[x1]
then lifts them to Zpl [x1] and then by staying in Zpl arithmetic iterates the solutions to
Zpl [x1, . . . , xj−1]. At the end of Chapter 4 we show that a sparse MDP solver developed
in Chapter 3 renders an improved option. Suppose one factor f ∈ Z[x1, . . . , xn] has a p-
adic representation f =

∑l
k=0 fkp

k. We show that in this case also with high probability
Supp(fk) ⊆ Supp(fk−1) if p is chosen randomly. Therefore we propose first computing the

7

factorization in Zp[x1, . . . , xn] by doing all arithmetic mod p where p is a machine prime (e.g
63 bits on a 64 bit computer), i.e. run the entire Hensel lifting modulo a machine prime.
Then lift the solution to Zpl [x1, . . . , xn] by computing fk, again by solving each MDP appear
in the lifting process using the sparse interpolation developed. By this approach we stay
in modulo p to recover integer coefficients. We confirm with experimental data that this
approach brings a significant gain over the previous approach.

Our solution to MDP via sparse interpolation was first presented as a poster at IS-
SAC 2015; then MTSHL was first presented in detail in CASC 2016 and published in the
Proceedings of CASC 2016 [MT16-2]. The final chapter considering the pl case will be
submitted soon.

1.2.2 Efficiency and analysis of MTSHL

MTSHL is a probabilistic approach, like ZSHL and KSHL. To investigate the efficiency of
the MTSHL algorithm we must consider the probabilistic assumptions made in the design
of MTSHL. Given two multivariate polynomials in Fq[x1, . . . , xn] in which Fq is a finite field
of q elements and a random evaluation point γ = (γ2, . . . , γn) ∈ Fn−1

q , the solution to the
MDP proposed by MTSHL requires that gcd(f(x1, γ), g(x1, γ)) = 1. This condition is true
with high probability if q is big enough. A point γ which does not satisfy this condition is
called an unlucky point. Let X be a random variable that counts the unlucky points for
a given multivariate polynomial pair (f, g). In Chapter 5, we consider the distribution of
unlucky points and calculate the expected value E[X] of X. It was a surprise to us that
E[X] = 1 independent of the degrees of f and g. One should also consider how smooth is
the distribution. To see it we must calculate the variance Var[X] of X, which is difficult to
compute. To attain this goal we must investigate techniques to compute Var[X]. Chapter
5 shows also a pertinent result. Suppose in the discussion above, n = 2 and we change the
field Fq with Zm in which m is a composite number and X is the random variable which
counts the number of roots of f(x) in Zm. This case is interesting, because as we see in
Chapter 5, in this case too, the expected value E[X] = 1, but we have not a small variance
as one might expect because of the zero divisors. The existence of such zero divisors makes
the computation of Var[X] difficult, but the techniques we developed in Chapter 5 allow us
to compute the variance in this case and to give an explanation to sequence A006579 in the
On-line Encyclopedia of Integer Sequences. Most of the work explained in Chapter 5 was
presented at FPSAC 2016 and published in DMTCS, see [MT16-1].

As a final step we give a precise complexity analysis of MTSHL. As the inner structure
of the algorithm is complicated and as we claim that MTSHL behaves well for computing
sparse factors we must be careful in our complexity analysis. As Chapter 2 makes clear, the
incremental design of MHL is based on the evaluation of one variable of the input polynomial
to be factored at a random point. Each time, the number of terms in the polynomial
hence decreases after evaluation. To have an effective estimate of the complexity we must

8

estimate the number of terms of a polynomial after each evaluation. For this purpose,
we will make the term sparse more precise by defining the density ratio of a polynomial.
Let f ∈ Zp[x1, . . . , xn] be a randomly chosen multivariate polynomial in which p is a large
prime. Suppose that the total degree of f is d, that f has Tf non-zero terms and that
γ ∈ Zp is chosen at random. Let X be the random variable that counts the number of
terms of f(x1, . . . , xn−1, γ). We first compute the expected value E[X] of X and then give
a good estimate for it. We also discuss the variance Var[X] of X. Each time we make an
observation we confirm our theoretical estimations with experimental data. A well-known
result of Zippel is the sparse interpolation [Zip79] paper. Many gcd computation algorithms
implemented in computer algebra platforms use this approach, including Maple, Magma
and Singular. Our observations in Chapter 6 show that one of the assumptions made by
Zippel in his complexity analysis of sparse interpolation [Zip79] is false. We revise this
assumption and correct the analysis. We hopefully modify the common perception that
in Zippel’s variable by variable sparse interpolation,that most of the work is done when
interpolating the last variable xn: For most sparse polynomials, the number of evaluation
points needed to interpolate the last n/2 variables is the same. Next we investigate further
and compute the expected number of terms of Taylor coefficients of f expanded around a
non-zero random point γ. Then we compute the complexity of solving a single MDP. As
the complexity analysis is tedious, we hope it will help the reader to follow the section in
which we compute the complexity of MTSHL. Eventually we present some timing data to
compare our factorization algorithms with Wang’s algorithm, which is currently used in
Maple. Most of the work explained in Chapter 6 has been submitted (to JSC) recently.

1.3 Univariate Hensel Lifting

The aim of this section is to give an overview of univariate Hensel lifting so that the reader
can see how the ideas behind univariate Hensel lifting naturally generalize to the multivariate
case which we will describe later. It is intended to be self-complete. For a comprehensive
introduction and a detailed discussion on the subject we refer the reader to [GCL92]. We
follow their treatment.

Suppose that we are given a polynomial a(x) ∈ Z[x], a prime number p and a pair of
relatively prime factors u0(x), w0(x) ∈ Zp[x] such that

a(x) = u0(x)w0(x) mod p,

and our aim is to lift these factors to a pair of factors u(x), w(x) ∈ Z[x] such that u(x) =
u0(x) mod p and w(x) = w0(x) mod p.

In other words, we want to invert the modular homomorphism

φp : Z[x]→ Zp[x].

9

where φp(f) = f mod p. The idea of Hensel lifting is to choose l ∈ N big enough so
that pl/2 is bigger than any of the integer coefficients of a(x) and the possible factors
u(x), w(x) ∈ Z[x]. This is done to identify Z with Zpl for this specific problem.

Before we explain this approach, it is important to note that such a solution pair in
Z[x] may not exist, even if the polynomial in Z[x] splits into irreducible factors over some
prime p. For example the polynomial a(x) = x4 + 1 ∈ Z[x] is irreducible over Z and splits
into quadratic factors for p = 5: a(x) = (x2 + 2)(x2 − 2) ∈ Z5[x]. In fact, a(x) splits into
quadratic factors for any choice of p > 2.

Now we explain the lifting process using the bivariate Newton iteration: We start by
assuming that the polynomial solutions ũ(x), w̃(x) ∈ Z[x] to the problem exist. Given
a(x) ∈ Z[x] , it is possible to determine such a bound l ∈ N as described above by using the
Mignotte’s bound [Mig74] which is given in the Theorem 1 below.

For a given univariate polynomial f =
∑n
i=0 fix

i ∈ Z[x] the ∞-norm is defined as
‖f‖∞ = max0≤i≤n |fi|.

Theorem 1. (Mignotte’s bound [Mig74]) Let f, g, h ∈ Z[x] be univariate polynomials where
degree of f, g, h is d,m, k respectively. If the product gh divides f in Z[x] then we have

‖g‖∞‖h‖∞ ≤ 2m+k√d+ 1‖f‖∞.

Corollary 2. Applying Theorem 1 to g = 1 and keeping f, h as before leads to the following
bound for every coefficient of every factor h of f .

‖h‖∞ ≤ 2d
√
d+ 1‖f‖∞.

Now consider the p-adic representations

ũ = u0 + u1p+ · · ·+ ulp
l

w̃ = w0 + w1p+ · · ·+ wlp
l.

For 1 ≤ k ≤ l, let us define u(1) = u0 and

u(k) = ũ mod pk = u0 + u1p+ · · ·+ uk−1p
k−1

and ∆u(k) = ukp
k. Then we have u(k+1) = u(k) + ∆u(k). We define similar notation for w.

We want to obtain the factorization a = u(k+1)w(k+1) mod pk+1 given a factorization
a = u(k)w(k) mod pk. We have

a− u(k+1)w(k+1) = a− (u(k) + ukp
k)(w(k) + wkp

k)

= a− u(k)w(k) − (ukw(k) + wku
(k))pk − ukwkp2k

= a− u(k)w(k) − (ukw(k) + wku
(k))pk mod pk+1.

10

Algorithm 1 Univariate Diophantine Solver (UniDio)

Input: A field F, a, b, c ∈ F[x] such that gcd(a, b) | c with g = gcd(a, b).

Output: σ, τ ∈ F[x] such that σa + τb = c with deg σ < deg b − deg g. Moreover if
deg c < deg a+ deg b− deg g then τ satisfies deg τ < deg a− deg g.

1: Find s, t ∈ F[x] such that sa+ tb = g via the extended Euclidean algorithm.
2: Set σ̃ := sc/g and τ̃ = tc/g.
3: Divide σ̃ by b/g so that σ̃ = (b/g)q + r for some unique q, r ∈ F[x].
4: Set σ := r and τ := τ̃ + q(a/g).
5: return (σ, τ).

Therefore if a = u(k+1)w(k+1) mod pk+1 we should have

ukw
(k) + wku

(k) = a− u(k)w(k)

pk
mod p.

Observe that φp(u(k)) = u0 and φp(w(k)) = w0. Hence we get

w0uk + u0wk = φp

(
a− u(k)w(k)

pk

)
. (1.1)

It turns out that solving Eqn (1.1) for uk and wk is crucial to get the factors u and w.
Eqn (1.1) is an instance of a univariate diophantine problem (UDP) in Zp[x]. We state it
formally and give an algorithm for its solution :

Theorem 3. Let F[x] be the Euclidean domain of univariate polynomials over a field F.
Let a, b ∈ F[x] be given non-zero polynomials and let g = gcd(a, b) ∈ F[x]. Then for any
given polynomial c ∈ F[x] such that g | c there exist unique polynomials σ, τ ∈ F[x] such that

σa+ τb = c (1.2)

where deg σ < deg b − deg g. Moreover if deg c < deg a + deg b − deg g then τ satisfies
deg τ < deg a− deg g.

Proof. An algorithm to find the unique solution pair is described in Algorithm 1, UniDio.
Correctness: After finding s, t ∈ F[x] such that sa+tb = g via extended Euclidean algorithm
(EAA) we have s(a/g) + t(b/g) = 1⇒ sc(a/g) + tc(b/g) = c⇒ sa(c/g) + tb(c/g) = c. Then
let σ̃ := s(c/g) and τ̃ := t(c/g). By dividing σ̃ by b/g we get s(c/g) = (b/g)q + r for some
unique q, r ∈ F[x] so that degx(r) < degx(b/g) = degx(b) − degx(g). Now set σ := r and
τ := τ̃ + q(a/g). Then in F[x] we have

σa+τb = ra+(t(c/g)+q(a/g))b = (s(c/g)−q(b/g))a+(t(c/g)+q(a/g))b = s(c/g)a+t(c/g)b = c.

11

Uniqueness: Suppose one also has σ̄, τ̄ ∈ F[x] such that deg σ̄ < deg b − deg g satisfying
σ̄a+ τ̄ b = c. Then (σ− σ̄)(a/g) = −(τ − τ̄)(b/g). Since gcd(a/g, b/g) = 1 ⇒ (b/g) | (σ− σ̄).
Then deg(b/g) ≤ deg(σ−σ̄) < deg(b/g). This is possible only if σ−σ̄ = 0⇒ σ = σ̄ ⇒ τ = τ̄ .

Finally suppose that deg(c) < deg(a) + deg(b) − deg(g). We have shown above the
existence of the solution. So we can write τ = (c−σa)/b. Then deg(τ) = deg(c−σa)−deg(b).
Now if

• deg c ≥ deg(σa)⇒ deg τ ≤ deg c− deg b < deg a− deg g.

• deg c < deg(σa) ⇒ deg τ ≤ deg σ + deg a − deg b < (deg b − deg g) + deg a − deg b =
deg a− deg g.

Now we continue our discussion on univariate Hensel lifting (UHL).
Since gcd(u0, w0) = 1 ∈ Zp[x], we can solve Eqn(1.1) using Algorithm UniDio to find

unique polynomials σk, τk ∈ Zp[x] such that

σku0 + τkw0 = φp

(
a− u(k)w(k)

pk

)

where deg σk < degw0.
We then claim that the order k + 1 p-adic approximations to the solutions ũ and w̃ are

u(k+1) = u(k) + τkp
k and w(k+1) = w(k) + σkp

k.

Let us state and prove it formally.

Theorem 4. (Hensel’s Lemma). Let p be a prime in Z and let a(x) ∈ Z[x] be a given
polynomial over the integers. Let u(1), w(1) ∈ Zp[x] be two relatively prime polynomials over
the field Zp such that

a(x) = u(1)w(1) mod p.

Then for any integer k ≥ 1 there exists polynomials u(k), w(k) ∈ Zpk [x] such that

a(x) = u(k)w(k) mod pk

and
u(k) = u(1) mod p and w(k) = w(1) mod p.

Proof. The case k = 1 is already given. Assume that claim is true for k ≥ 1 and we have
u(k), w(k) ∈ Zpk [x] satisfying the conditions given in the theorem. We define

ck(x) = φp

(
a(x)− u(k)w(k)

pk

)
(1.3)

12

where all operations are performed in Z[x] before applying φp. Since gcd(u(1), w(1)) = 1, by
using Algorithm UniDio we can find the unique polynomials σk, τk ∈ Zp[x] such that

σku
(1) + τkw

(1) = ck mod p (1.4)

where deg σk < degw(1). We then define

u(k+1) = u(k) + τkp
k and w(k+1) = w(k) + σkp

k. (1.5)

Let u(k) =
∑k−1
s=0 usp

s and w(k) =
∑k−1
s=0 wsp

s where u0 = u(1) and w0 = w(1). Now passing
to mod pk+1 we have

u(k+1)w(k+1) = (u(k) + τkp
k)(w(k) + σkp

k) mod pk+1

= u(k)w(k) + (σku(k) + τkw
(k))pk mod pk+1

= u(k)w(k) + (σk
k−1∑
s=0

usp
s + τk

k−1∑
s=0

wsp
s)pk mod pk+1

= u(k)w(k) + (σku(1) + τkw
(1))pk mod pk+1

= u(k)w(k) + ckp
k mod pk+1, by Eqn(1.4)

= a mod pk+1, by Eqn(1.3).

From Eqn (1.5) it is clear that

u(k+1) = u(k) mod pk and w(k+1) = w(k) mod pk.

Hence by the induction hypothesis

u(k+1) = u(1) mod p and w(k+1) = w(1) mod p.

Example 5. This example considers the uniqueness of Hensel construction described in
Theorem 4. Consider the example where a(x) = x2 − 1 ∈ Z[x] and p = 5. Also let

u
(1)
1 = x− 1, w(1)

1 = x+ 1, u(2)
1 = x− 1, w(2)

1 = x+ 1

and
u

(1)
2 = x− 1, w(1)

2 = x+ 1, u(2)
2 = −9(x− 1), w(2)

2 = 11(x+ 1).

13

Since −9 = 11 = 1 mod 5 we have u(1)
1 = u

(1)
2 mod 5 , w(1)

1 = w
(1)
2 mod 5 and

a(x) = u
(2)
1 w

(2)
1 = u

(2)
2 w

(2)
2 mod 52

a(x) = u
(1)
1 w

(1)
1 = u

(1)
2 w

(1)
2 mod 5.

Thus, even if we impose monicness on a(x) ∈ Z[x] and the factors u(1), w(1) ∈ Zp[x], the
conditions in Theorem 4 do not imply uniqueness of the factors u(k), w(k) ∈ Zpk [x] for k > 1.

On the other hand, note that u(2)
2 and u(2)

1 are associates in the ring Zp2 [x]. The same
is true for w(2)

1 and w
(2)
2 . In fact one can show that in such a case different liftings must

be associates. (See [GCL92]). This observation will be important to solve the leading
coefficient problem.

If we impose monicness on u(k), w(k) for each k ≥ 1, then we have the uniqueness
property of the Hensel construction as shown below.

Corollary 6. (Uniqueness of the Hensel Construction) In Theorem 4, if the given polyno-
mial a(x) ∈ Z[x] is monic and correspondingly if the relatively prime factors u(1), w(1) ∈
Zp[x] are chosen to be monic, then for any natural number k ≥ 1, monic polynomials
u(k), w(k) ∈ Zpk [x] in Theorem 5 are unique.

Proof. The proof is again by induction. For the case k = 1 the given polynomials are clearly
unique since the solution pairs are relatively prime over Zp[x]. Assume that claim is true
for k ≥ 1 and we have unique monic u(k), w(k) ∈ Zpk [x] satisfying the conditions given in the
theorem. We need to prove the uniqueness of the monic polynomials u(k+1), w(k+1) ∈ Zpk [x]
satisfying

a(x) = u(k+1)w(k+1) mod pk+1

and
u(k+1) = u(1) mod p and w(k+1) = w(1) mod p.

We have

a(x) = u(k+1)w(k+1) mod pk+1 ⇒ a(x) = u(k+1)w(k+1) mod pk.

But then by induction we also have a(x) = u(k)w(k) mod pk . Hence by induction assump-
tion on the uniqueness of lifting over pk we have

u(k+1) = u(k) mod pk and w(k+1) = w(k) mod pk.

Therefore pk divides both u(k+1) − u(k) and w(k+1) − w(k) . Hence we can write

u(k+1) = u(k) + τ(x)pk and w(k+1) = w(k) + σ(x)pk (1.6)

for some polynomials σ(x), τ(x) ∈ Zp[x] and it remains to prove the uniqueness of σ and τ .

14

For a given polynomial f , let us by LCxi(f) we denote the leading coefficient of f w.r.t
variable xi. We don’t use the subscript if f is univariate. According to Eq (1.6) if deg σ ≥
degw(k) then 1 = LC(w(k+1)) = LC(w(k) + σ(x)pk) 6= 1 because of the multiple pk and
monicness of w(k). The argument is similar for τ . So, since a, u(1), w(1) are all monic for
k ≥ 1, we must have

deg σ < degw(1) and deg τ < deg u(1).

This means that u(k+1) and w(k+1) must always have the same leading terms as u(1) and
w(1) respectively (This observation is important for the next section where we discuss the
leading coefficient problem.). Now as before, over Zpk+1 [x] we have

a = u(k)w(k) + (σu(1) + τw(1))pk mod pk+1.

It follows that
σu(1) + τw(1) = a− u(k)w(k)

pk
mod p.

But any solution σ satisfying this equation with

deg(σ(x)) < deg(w(1)(x))

is unique by Theorem 3. By the uniqueness of univariate division in Zp[x], it follows that
τ(x) is also unique.

1.4 Leading Coefficient Correction (LCC)

Corollary 6 that we have proved in the last section shows the uniqueness of the Hensel
lifting in the monic case. We consider the non-monic case now. For a detailed discussion
we refer [GCL92]. Here we sketch the idea behind the LCC.

A polynomial is called primitive, if the greatest common divisor of its coefficients is
equal to 1. Let a = uw with a, u, w ∈ Z[x] all primitive and let

α = LC(a); µ = LC(u); ν = LC(w).

Suppose also p - α. We should satisfy α = µν. Now we define ã := αa. Then

ã = µνuw = [νu][µw].

So if we define ũ := νu and w̃ := µw, then there is a factorization of the form ã = ũw̃ ∈ Z[x]
where both factors have the leading coefficient α. This observation suggests that we can
solve the leading coefficient problem by simply correcting the leading coefficient of the lifted
factors by α mod pk, i.e. each time we compute ũ(k), w̃(k) in the for loop in the Algorithm

15

UHL and update the correct the leading coefficients by α mod pk. In other words, if
u(k), w(k) denote modulo pk factors ũ(k), w̃(k) which maintain the conditions of Hensel’s
lemma, we simply define

ũ(k) = φpk(αLC(u(k))−1u(k))

w̃(k) = φpk(αLC(w(k))−1w(k)).

Note that if p - LC(a) = α then p - LC(u(k)) and p - LC(w(k)) so LC(u(k))−1 and
LC(w(k))−1 exist modulo pk.

Finally since a ∈ Z[x] was assumed to be primitive, after the last step of lifting we define
the actual factors as u = pp(ũ), w = pp(w̃), where pp(f(x)) denotes the primitive part of
a given polynomial f(x) ∈ Z[x].

But there is an ingenious modification described by Yun [Yun74] which is attributed to
a suggestion by J. Moses. Modulo p the factors of ã must be of the form

ũ(1) = αpx
m + βm−1x

m−1 + · · ·+ β0

w̃(1) = αpx
n + γn−1x

n−1 + · · ·+ γ0

where αp = φp(α). Now suppose that the factors ũ(1), w̃(1) are simply changed by replacing
the leading coefficients αp by α. To this end we define the replaceLC as follows:

Given a polynomial a(x) ∈ R[x] over a coefficient ring R and a given r ∈ R, re-
placeLC(a(x), r) is the polynomial replacing the leading coefficient of a(x) by r.

Then after applying replaceLC we get

ũ(1) = αxm + βm−1x
m−1 + · · ·+ β0

w̃(1) = αxn + γn−1x
n−1 + · · ·+ γ0.

In other words the leading coefficients of ũ(1), w̃(1) are no longer represented as elements of
the field Zp, but nonetheless we still have ã = ũw̃ ∈ Zp[x].

The Hensel construction can therefore be applied using this modified factors: Let us
consider the step 9 in the algorithm in the for loop. We first compute

c = ã− ũ(1)w̃(1)

p
.

Note that the domain of this operation is Z[x]. Since LC(ã) = α2 we have

deg c < deg ã = deg ũ(1) + deg w̃(1).

16

This means that the solution to the diophantine equation

σũ(1) + τw̃(1) = c

will satisfy the usual condition deg σ < deg w̃(1) and also satisfy the additional condition
(See Theorem 3)

deg τ < deg ũ(1).

Before we give a concrete example which covers what we explained so far, note that this
last idea allows us to handle LCC outside the for loop as described in the algorithm UHL
below. The fact that LCC can be handled outside the for loop will remain valid for the
generalization of Hensel’s construction for the multivariate case.

Univariate Hensel lifting algorithm described as Algorithm 2, UHL. It is based on
[GCL92]. A concrete example is in order.

Example 7. Suppose that we are trying to factor

a(x) = 12x3 + 10x2 − 36x+ 35 ∈ Z[x].

We choose p = 5. Note that LC(a) = α = 12 and p - α. Observe that a is primitive and

a = u(1)w(1) mod 5 (1.7)

where u(1) = 2x, w(1) = x2 + 2 ∈ Z5[x]. Now we define

ã(x) = 12a = 144x3 + 120x2 − 432x+ 420 ∈ Z[x].

Now, if there is a factorization a = uw ∈ Z[x] satisfying Eqn (1.7) then there is a factoriza-
tion of ã where 12 is the leading coefficient of each factor .

As a first step we update u(1) ← φ5(12 · 2−1 · u(1)) = 2x and w(1) ← φ5(12 · 1−1 ·w(1)) =
2x2− 1. Then by solving su(1) + tw(1) = 1 via EEA we get s = x, t = −1 ∈ Z5[x] such that
su(1) + tw(1) = 1. Then by applying replaceLC we get

ũ(1) = 12x , w̃(1) = 12x2 − 1.

Now the error is e1 = ã− ũ(1)w̃(1) = 120x2−420x+ 420. In iteration step k = 1 we first get

c1 = e1/5 = 24x2 − 84x+ 84.

17

Algorithm 2 Univariate Hensel Lifting (UHL)

Input

1. A primitive polynomial a ∈ Z[x].

2. A prime p such that p - LC(a).

3. u(1), w(1) ∈ Zp[x] such that gcd(u(1), w(1)) = 1 and a = u(1)w(1) mod p.

4. An integer B which bounds the magnitudes of all integer coefficients appearing in a
and its possible factors with degrees not exceeding max{deg u(1),degw(1)}.

Output

1. Polynomials u,w ∈ Z[x] such that a = uw ∈ Z[x] and

monic(u) = monic(u(1)) mod p, monic(w) = monic(w(1)) mod p

where monic denotes the function which makes the polynomial monic as an element
of the domain Zp[x].

2. If there is no factorization of a ∈ Z[x] such that a = u(1)w(1) mod p, it returns ’no
such factorization’.

1: α← lcoeff(a)
2: a← αa
3: u(1) ← φp(αmonic(u(1))), w(1) ← φp(αmonic(w(1)))
4: u(1) ← mods(u(1), p), w(1) ← mods(w(1), p). (Symmetric range)
5: u← replaceLC(u(1), α), w ← replaceLC(w(1), α)
6: e(x)← a− uw
7: modulus← p
8: while e 6= 0 and modulus < 2Bα do
9: c← (e/modulus) mod p

10: (σ, τ)← UniDio(u(1), w(1), c) (Algorithm 1 with F = Zp).
11: σ ← mods(σ, p), τ ← mods(τ, p). (Symmetric range)
12: u← u+ τ ·modulus, w ← w + σ ·modulus
13: e← a− uw
14: modulus← modulus · p
15: end while
16: if e = 0 then
17: return (primpart(u),primpart(w))
18: else
19: return no such factorization exists
20: end if

18

By solving σw(1) + τu(1) = c1 by Algorithm UniDio we get σ = 1, τ = x− 2 ∈ Z5[x] and

u(2) = ũ(1) + 1 · 5 = 12x+ 5

w(2) = w̃(1) + (x− 2) · 5 = 12x2 + 5x− 11.

Now the error is e2(x) = ã− ũ(2)w̃(2) = −325x+ 475. In iteration step k = 2 we first get

c2 = e2/52 = −13x+ 19.

By solving σw(1) + τu(1) = c2 by Algorithm UniDio we get σ = 1, τ = 1− x ∈ Z5[x] and

u(3) = ũ(2) + (1) · 52 = 12x+ 30

w(3) = w̃(2) + (1− x) · 52 = 12x2 − 20x+ 14.

At this point the error is e3 = ã− ũ(3)w̃(3) = 0⇒ ã = ũ(3)w̃(3). Finally taking the primitive
parts we get the actual factors

u(x) = pp(ũ(3)(x)) = ũ(3)(x)/6 = 2x+ 5

w(x) = pp(w̃(3)(x)) = w̃(3)(x)/2 = 6x2 − 10x+ 7.

1.5 Multiterm Hensel Lifting

A generalization of the two-term univariate Hensel lifting described in the previous sections
is straightforward. This time we will start with the factorization

a = u
(1)
1 · · ·u

(1)
r ∈ Zp[x]

where gcd(u(1)
i , u

(1)
j) = 1 inZp[x] for i 6= j.

Then during the multiterm Hensel lifting, for each lifting step k > 0 we will find σ(k+1)
i ∈

Zp[x] to get

u
(k+1)
i = u

(k)
i + σ

(k)
i pk ∈ Zpk+1 [x] so thatu(k)

i = u
(1)
i ∈ Zp[x]

where deg(σ(k)
i) < deg(u(k)

i). Note that

r∏
i=1

u
(k+1)
i =

r∏
i=1

(u(k)
i + σ

(k)
i pk) =

r∏
i=1

u
(k)
i + pk

 r∑
i=1

σ
(k)
i

r∏
j=1,j 6=i

u
(k)
j

 mod pk+1,

hence (
r∏
i=1

u
(k+1)
i −

r∏
i=1

u
(k)
i

)
/pk =

r∑
i=1

σ
(k)
i

r∏
j=1,j 6=i

u
(k)
j mod p.

19

Therefore we are faced with the multiterm version of the univariate diophantine problem:
Suppose that we are given polynomials u1, . . . , ur ∈ Zp[x] where p - LC(

∏r
i=1 ui). Let

bj =
∏r
i=1,i 6=j ui so that bjuj =

∏r
i=1 ui. Let c ∈ Zp[x] such that deg c < deg(

∏r
i=1 ui). The

aim is to find σj ∈ Zp[x], j = 1, . . . , r such that

σ1b1 + · · ·+ σrbr = c

where σj = 0 or deg σj < deg uj .
The solution is obtained by first solving the multiterm version of the EEA: Find sj ∈

Zp[x], j = 1, . . . , r such that
s1b1 + · · ·+ srbr = 1

where deg sj < deg uj .
Before we describe the general solution to the multiterm EEA, let us first consider the

case where r = 4, to see the idea behind: The task is to find s1, s2, s3, s4 ∈ Zp[x] such that

s1b1 + s2b2 + s3b3 + s4b4 = 1

⇒ s1u2u3u4 + s2u1u3u4 + s3u1u2u4 + s4u1u2u3 = 1

⇒ s1u2u3u4 + u1(s2u3u4 + s3u2u4 + s4u2u3) = 1

⇒ s1u2u3u4 + u1(s2u3u4 + u2(s3u4 + s4u3)) = 1

We start by defining β0 := 1 and solve the diophantine equation

s1u2u3u4 + u1β1 = 1 mod p

for s1,β1 ∈ Zp[x] such that deg s1 < deg u1. Then we solve the diophantine equation

s2u3u4 + u2β2 = β1 mod p

for s2, β2 ∈ Zp[x]such that deg s2 < deg u2. Finally we solve the diophantine equation

s3u4 + u3β3 = β2 mod p

for s3, β3 ∈ Zp[x] such that deg s3 < deg u4 and define s4 = β3.
So, we can describe the general procedure to solve the multiterm EEA: We define β0 := 1.

Then for j from 1 to r − 1 we solve the diophantine equation

βjuj + sj

r∏
i=j+1

ui = βj−1 mod p

for βj ,sj ∈ Zp[x] such that deg sj < deg uj . Finally define sr := βr−1.

20

The first task is done. Now we have

r∑
j=1

sjbj = 1⇒
r∑
j=1

csjbj = c.

Then, since p - LC(ui) we can apply by univariate division to find the quotient and remainder
qj , rj ∈ Zp[x] such that

csj = ujqj + rj

where rj = 0 or deg rj < deg uj . Then we define σj := rj . Observe that

csj = ujqj + σj

⇒
r∑
j=1

bjcsj =
r∑
j=1

bjujqj +
r∑
j=1

bjσj

⇒ c
r∑
j=1

bjsj =
r∑
j=1

r∏
i=1

uiqj +
r∑
j=1

bjσj

⇒ c =
r∏
i=1

ui

r∑
j=1

qj +
r∑
j=1

bjσj

Since deg c < deg(
∏r
i=1 ui), it follows that

∑r
j=1 qj = 0 and c =

∑r
j=1 bjσj where deg σj <

deg uj .
The leading coefficient problem is solved in a similar way as in two-term univariate

Hensel lifting algorithm UHL. So, the algorithm for multiterm univariate Hensel lifting is
a simple modification of the UHL algorithm by multiterm EEA and multiterm diophantine
equations as we have described above.

1.6 The generalized Univariate Diophantine Problem (UDP)

We will see in Chapter 2 that during the process of MHL, Wang’s algorithm needs to solve
univariate diophantine problem Eq (1.4) over Zpl [x] which is not an Euclidean domain for
l > 1. Instead, we will use the following Theorem.

Theorem 8. [GCL92] For a prime integer p and a positive integer l, let u,w ∈ Zpl [x] be
univariate polynomials satisfying

(i) p - LC(u) and p - LC(w) and

(ii) gcd(φp(u), φp(w)) = 1 in Zp[x].

Then for any polynomial c ∈ Zpl [x] there exist unique polynomials σ, τ ∈ Zpl [x] such that

σu+ τw = c (1.8)

21

where deg σ < degw.
Moreover if deg c < deg u+ degw then τ satisfies deg τ < deg u.

To find the solution in the ring Zpl [x] for l > 1, the idea is to find the solution in Zp[x]
and lift it by using Newton iteration. We give the sketch of the proof.
The first step is to find s̃, w̃ ∈ Zpl [x1] such that s̃u + t̃w = 1 mod pl. To reach this
aim, assume a context in which a polynomial solution is known to exist, and let the p-adic
expansions of the solutions s̃ and t̃ be

s̃ = s+ s1p+ · · ·+ skp
k + · · ·+ slp

l

t̃ = t+ t1p+ · · ·+ tkp
k + · · ·+ tlp

l.

Let also s(k) := s̃ mod pk and t(k) := t̃ mod pk. The equation that we will apply Newton’s
iteration is: G(s, t) = su+ tw − 1 ∈ Z[x1] for the unknowns s, t. As we did in Section 1, if
we have order k p−adic approximations s(k), t(k) to the actual solution pair (s̃, t̃) and if we
obtain the correction terms 4s(k) := skp

k,4t(k) := tkp
k by solving

Gs(s(k), t(k))4s(k) +Gt(s(k), t(k))4s(k) = −G(s(k), t(k)) mod pk+1,

then the order (k + 1) p-adic approximations will be s(k+1) = s(k) + 4s(k) and t(k+1) =
t(k) +4t(k). By substituting the derivatives we get

usk + wtk = 1− s(k)u− t(k)w

pk
mod p. (1.9)

Since gcd(u(1), w(1)) = 1 inZp[x1] we can apply Algorithm UniDio algorithm to find s, t ∈
Zp[x] such that su+ tw = 1 mod p. Let s(1) := s and t(1) := t. Then for k = 1, 2, . . . , l−1
Eqn (1.9) can be used to compute sk, tk’s. This recursive step will be finite. Then s̃ = s(l)

and τ̃ = t(l).
The next step is to compute σ and τ . We proceed as before. Let σ̃ := s(l)c and τ̃ := t(l)c.

We have p - LC(w) so LC(w) is a unit in Zpl [x]. Then we can apply Euclidean division
to compute σ̃ = wq + r mod pl for some q, r ∈ Zpl [x] such that r = 0 or deg r < degw.
Finally we define σ := r and τ := τ̃ + qu.

It remains to show the uniqueness of the solution and the degree constraints. Let
σ1, τ1 ∈ Zpl [x1] and σ2, τ2 ∈ Zpl [x1] be two solution pairs satisfying the conditions (i) and
(ii). Then we have

(σ1 − σ2)u = −(τ1 − τ2)w mod pl

⇓

φp(σ1 − σ2)φp(u) = −φp(τ1 − τ2)φp(w) mod p.

22

But we have gcd(φp(u), φp(w)) = 1 mod p. Then φp(w) | φp(σ1−σ2). Note that p - LC(w),
it follows that deg(φp(w)) = deg(w). On the other hand, by assumption we have

deg(σ1 − σ2) ≤ max{deg(σ1),deg(σ2)} < deg(w).

Thus σ1 − σ2 = 0 mod p ⇒ τ1 − τ2 = 0 mod p. Our aim is to show by induction that
pk | (σ1 − σ2) and pk | (τ1 − τ2) for each 1 ≤ k ≤ l. We have already proved the case k = 1.
For the case k ⇒ k + 1: We define

α = (σ1 − σ2)/pk and β = −(τ1 − τ2)/pk

⇓

αu = βw mod pl−k.

By repeating the degree argument above we get α = 0 mod p and β = 0 mod p. This
means pk+1 | (σ1 − σ2) and pk+1 | (τ1 − τ2).

Finally we need to prove remaining degree constraints: p - LC(w) implies that LC(w) is
a unit in Zpl . Hence the following division will be valid in Zpl [x1]:

τ(x) = (c− σu)/w.

Then deg(τ(x)) = deg(c− σu)− deg(w ≤ max{deg(c),deg(σ) + deg(u)} − deg(w)
Now if deg(c) < deg(u) + deg(w) we have 2 cases:
(i) deg(c) ≥ deg(σ) + deg(u)⇒ deg(τ) ≤ deg(c)− deg(w < deg(u).
(ii) deg(c) < deg(σ) + deg(u)⇒ deg(τ) ≤ deg(σ) + deg(u)− deg(w) < deg(u) since we

have already seen that deg(σ) < deg(w). This completes the proof.

23

Chapter 2

Multivariate Factorization

2.1 The Steps of Multivariate Polynomial Factorization

In this section we will describe the steps of multivariate polynomial factorization as devel-
oped by Wang [Wan78]. This algorithm is currently being used by many computer algebra
systems including Maple, Magma and Singular. Their implementations are all based on the
description of the algorithm in Chapter 6 and 8 of the Geddes, Czapor and Labahn text
[GCL92]. For the mathematics behind MHL we will follow the treatment of [GCL92] and
also [Wan78] by providing concrete examples.

Suppose that the aim is to factor a polynomial a ∈ Z[x1, . . . , xn]. By choosing a main
variable, say x1, we may write a as a polynomial in x1,

a(x1, . . . , xn) = cmx
m
1 + cm−1x

m−1
1 + · · ·+ c1x1 + c0

with coefficients ci ∈ Z[x2, . . . , xn] for 0 ≤ i ≤ m and the leading coefficient of a, LCx1(a) =
cm 6= 0. The content of a, contx(a), with respect to the main variable x1 is defined as

contx1(a) = gcd(c0, c1, . . . , cm).

The primitive part of a, ppx1(a), is defined as a/contx1(a). We say a is primitive if
contx1(a) = 1.

We also say a is square-free if a has no repeated factors, that is there is no b ∈
Z[x1, . . . , xn] with deg(b) > 0 such that b2 | a. We have the following useful lemma to
determine whether a polynomial is square-free. For a proof of it see [GCL92].

Lemma 9. Let f(x) be a primitive polynomial in R[x] where R is a unique factorization
domain of characteristic 0. Let g = gcd(f, ∂f/∂x). Then a(x) is square-free if and only if
degx(g) = 0.

Now we describe the steps of multivariate factorization:

24

Figure 2.1: Main steps of Wang’s Algorithm

a ∈ Z[x1, . . . , xn] a = fg ∈ Z[x1, . . . , xn]
↓ ↑

xn = αn
...

↓ ↑
ãn−1 ∈ Z[x1, . . . , xn−1] aj = fjgj ∈ Zpl [x1, x2 . . . , xj]

↓ ↑
... (xj-αj)-adic lift

xj = αj ↑

↓
...

ãj−1 ∈ Z[x1, . . . , xj−1] ↑
↓ a3 = f3g3 ∈ Zpl [x1, x2, x3]
... ↑

x2 = α2 (x3-α3)-adic lift
↓ ↑

ã1 ∈ Z[x1] a2 = f2g2 ∈ Zpl [x1, x2]
↓ ↑

Factor inZ (x2-α2)-adic lift
↓ ↑

ã = u = f̃ g̃ ∈ Z[x1] Pass to mod pl
−−−−−−−−−−→

a1 = f1g1 ∈ Zpl [x1]

Example 10. With the choice of p = 11, l = 1 and I = [x2 = 2, x3 = 5] the steps to factor

a = 27x1
7x2x3

6 + 18x1
4x2

2x3
8 + · · ·+ 48x3

4 + 18x2
3 + 36x1 + 36 (48terms)

1. Determine the coefficient bound and factor in Z

u(x1) =
(
15x1

3 + 4x1 + 20
)

(750x1 + 2503)
(
75x1

3 + 12x1
2 + 2503

)
∈ Z[x1]

2. Determine the leading coefficients and pass to mod p

ũ(x1) = (2x1 − 5)
(
−2x1

3 + x1
2 − 5

) (
4x1

3 + 4x1 − 2
)
∈ Zp[x1]

3. After the first step of MHL in Zp[x1, x2](
4x1

3 + 2x2
3 + 4x1 + 4

)
(x1x2 − 5)

(
3x1

2x2
2 − 2x1

3 − 4x2 + 3
)

4. After the second step of MHL in Zp[x1, x2, x3](
3x1

3x3 + 2x2
3 + 4x1 + 4

) (
3x1x2x3

3 + 4x3
4 + 3

) (
3x1

3x3
2 + 2x2x3

4 + 3x1
2x2

2 + 3
)

These are in fact the true factors of a.

25

Step 1. Make the polynomial a primitive and square-free: If a is not primitive
the contx1(a) and ppx1(a) can be factored separately. Hence we may assume that a is
primitive. Let

g = gcd(a(x1, . . . , xn), ∂a/∂x1).

Note that a has a repeated factor f if and only if f | g and a/g is square-free. Then
factorization can be continued by factoring a and a/g separately. Thus we may assume a
is square-free.

Step 2. Determine the leading coefficients of factors: The leading coefficient of
a is LCx1(a) = cm ∈ Z[x2, . . . , xn]. By a recursive call, cm is factored over Z. Let

cm = Ωfe1
1 fe2

2 · · · f
ek
k

where the fi’s are distinct irreducible polynomials of positive degree in Z[x2, . . . , xn] and Ω
is an integer. Let us assume that cm is not an integer, for that case is trivial. As a next
step, a set of integers {α2, . . . , αn} will be found satisfying the following conditions:

1. c̃m = cm(α2, . . . , αn) 6= 0;

2. a1(x1) = a(x1, α2, . . . , αn) is square-free;

3. For each fi, f̃i = fi(α2, . . . , αn) has at least one prime divisor pi which does not divide
any f̃j for j < i, Ω or the content of a(x1, α2, . . . , αn) ∈ Z[x1].

This can be done without factoring any integers by the Choose Evaluation Points (CEP)
algorithm described below. CEP calls the algorithm Choose Candidate Points (CCP) which
is also described below. CCP is a slight modification of an algorithm proposed by Musser
[Mus71, Mus75] . It chooses αn until a(x1, . . . , xn−1, αn) has the same degree in x1 as a and
is square-free. In the same way αn−1, . . . , α2 are chosen so that the evaluated polynomial
remains of the same degree and square-free at each stage. Therefore (α2, . . . , αn) satisfies
the conditions (1) and (2) of Wang’s LCC.

Termination of CCP can be shown by considering step 6: Note that ã(x1, . . . , xk) is
square-free, so gcd(ã, ∂ã/∂x1) 6= 1 =⇒ r = resultantx1(ã, ∂ã/∂x1) = 0. Note that r ∈
Z[x2, . . . , xk] and at step 4 αk is chosen so that LCx1(ã(x1, . . . , xk−1, αk)) 6= 0. Now, if at
step 6 g = gcd(B, ∂B/∂x1) with degx1 g > 0, then B is not square-free and r(xk = γ) = 0
as a polynomial in Z[x2, . . . , xk]. If we write r ∈ Z[x2, . . . , xk] as r =

∑l
i=1 ci(xk)Mi for

some l ≥ 0, where Mi ∈ Z[x2, . . . , xk−1] are distinct monomials, then r = 0 ⇔ ci(xk) = 0
for each 1 ≤ xk ≤ l. Then r = 0⇐⇒ cont[x2,...,xk−1](r)(xk = αk) = 0. Hence the number of
choices of αk ∈ Z which do not make ã(x1, . . . , xk−1, αk) square-free is finite. (See Example
11 below.)

26

Algorithm 3 Choose Candidate Points (CCP)

Input A square-free polynomial a ∈ Z[x1, . . . , xn].

Output Returns an ordered set of candidate evaluation points α2, . . . , αn such that
a(x1, α2, . . . , αn) has the same degree in x1 as a and is square-free.

1: Set ã← a and d← degx1(a)
2: for k from n to 2 by −1 do
3: repeat
4: Pick αk in Z at random (In practice from a large set.)
5: B ← ã(xk = αk)
6: Let g ← gcd(B, ∂B/∂x1))
7: until LCx1B 6= 0, degx1 = d and degx1 g = 0
8: Set ã← B
9: end for

10: return (α2, . . . , αn)

Algorithm 4 Choose Evaluation Points (CEP)

Input a ∈ Z[x1, . . . , xn].

Output Returns an ordered set of evaluation points (α2, . . . , αn) for MHL and primes
(p1, . . . , pk) satisfying the condition (3) of Wang’s LCC.

1: Set L = (α2, . . . , αn)← CCP(a)
2: Set δ ← cont(a(x1, α2, . . . , αn)) ∈ Z
3: Factor LCx1(a) ∈ Z[x2, . . . , xn]. Let LCx1(a) = Ωfe1

1 fe2
2 · · · f

ek
k

4: for i from 1 to k do f̃i ← fi(α2, . . . , αn) end for
5: Set d0 ← δ ·Ω
6: for i from 1 to k do
7: q ← |f̃i|.
8: for j from i− 1 to 0 by −1 do
9: r ← dj .

10: while r 6= 1 do
11: r ← gcd(r, q), q ← q/r
12: if q = 1 then
13: return CEP(a) (Restart)
14: end if
15: end while
16: end for
17: di ← q
18: end for
19: for i from 1 to k do
20: pk ← any prime divisor of dk
21: end for
22: return L and (p1, . . . , pk)

27

Example 11. Consider the polynomial f below which is primitive in the variable x1:

f = x4x1
2 + 2x1x2x4

2 + 2x1x3x4 + x2
2 + 2x2x3 + x3

2 + 2x1 + 2x2 + 2x3 + x4.

We have LCx1(f) = x4 and

∂f/∂x1 = 2x2x4
2 + 2x1x4 + 2x3x4 + 2.

Then gcd(f, ∂f/∂x1) = 1, and hence f is a square-free polynomial. Let r = resultantx1(f, ∂f/∂x1).
If we compute r we get

r = (−4x4
5+4x4

2)x2
2+(−8x4

4+8x4
2)x2x3+(−8x4

3+8x4
2)x2+(−4x4

3+4x4
2)x3

2+4x4
3−4x4.

We have cont[x2,x3](r) = 4x4(x4 − 1).
In fact, for x4 = 1, f(x1, x2, x3, 1) = (1 + x1 + x2 + x3)2 and for x4 = 0 (which makes

LCx1(f)(x2, x3, 0) = 0) one has f(x1, x2, x3, 0) = x2
2 + 2x2x3 + x3

2 + 2x1 + 2x2 + 2x3

which is square-free. Thus 0 and 1 are not viable choices for α4.
If we pick α4 = −1 then

f(x1, x2, x3,−1) = −x1
2 + 2x1x2 − 2x1x3 + x2

2 + 2x2x3 + x3
2 + 2x1 + 2x2 + 2x3 − 1

which is a square-free polynomial and LCx1(f)(x4 = −1) 6= 0.

Ideally the random integers at steps 4 of CCP are chosen to be small integers including
zero. This is to make the factorization of a(x1, α2, . . . , αn) ∈ Z[x1] easier. Any possible
choice of αi = 0 helps retain the sparseness in the intermediate steps of the multivariate
Hensel lifting. This will be described later in Chapter 3 in detail.

As a next step CEP tests whether the choice (α2, . . . , αn) is suitable for choosing primes
satisfying the condition (3) of Wang’s LCC. It avoids integer factorization and instead uses
integer gcd computations since factoring large integers is not easy. It first computes integers
di for i = 1, . . . , k which satisfy condition (3). Then any prime divisor of di serves as pi.

Correctness and termination of CEP can be shown easily by considering step 11. Com-
mon factors are simply removed by taking gcd’s.

Now let δ = cont(a1(x1)) and u(x) = pp(a1(x1)). Then u(x1) is factored over integers
[Ber48, Ber67].

u(x) = u1(x1) · · ·ur(x1) ∈ Z[x1].

It follows from Hilbert’s irreducibility theorem [[Lang62], p.14], that for any irreducible
polynomial h(x1, . . . , xn) over Z the subset {(α2, . . . , αn)} ⊂ Zn−1 of points such that
h(x1, α2, . . . , αn) remains irreducible over Z is dense. Therefore with high probability a
factorization of u(x) ∈ Z[x1] reflects the factorization pattern of a.

28

Now if none of ui(x1), i = 1, . . . , r is extraneous, then a factors into r distinct irreducible
polynomials,

a =
r∏
i=1

gi(x1, . . . , xn).

Let bi(x2, . . . , xn) = LC(gi) and b̃i = bi(α2, . . . , αn). Then

gi(x1, α2, . . . , αn) = δiui(x)

for some divisor δi of δ. The following observation is central in Wang’s LCC.

Lemma 12. Following the notation above, if there are no extraneous factor, then for all i
and m,

fmk | bi ⇐⇒ f̃mk | LC(ui)δ.

Proof. If fmk | bi, then f̃mk | b̃i. We have gi(x1, α2, . . . , αn) = δiui(x) ⇒ b̃i = δiLC(ui).
Hence f̃mk | LC(ui)δi ⇒ f̃mk | LC(ui)δ. Suppose on the other hand fmk - bi. Then note
that

bi = LC(gi) |
r∏
j=1

LC(gj) = Ω
k∏
j=1

f
ej

j .

Therefore bi = ωfs1
1 fs2

2 · · · fskk ⇒ b̃i = ωf̃s1
1 f̃s2

2 · · · f̃
sk
k where ω | Ω, si ≥ 0 and sk < m.

Thus by the choice of pk, pmk - b̃i ⇒ f̃mk - LC(ui)δi ⇒ f̃mk - LC(ui)δ.

This lemma enables us to distribute all fk first, then all fk−1, etc. Thus all di(x2, . . . , xn) =
pp(bi) can be determined as products of powers of fi’s. Then it comes to distribute Ω. Let
d̃i = di(α2, . . . , αn). If δ = 1 then bi = (LC(ui)/d̃i)di. Otherwise if δ 6= 1 the following steps
are carried out for i = 1, . . . , r.

1. Let d = gcd(LC(ui), d̃i) and bi = (LC(ui)/d)di.

2. Let ui = (d̃i/d)ui.

3. Let δ = δ/(d̃i/d).

Now if δ = 1 the process ends. Otherwise, let ui = δui, bi = δbi and a = δr−1a. In this
case when the true factors over a are found they may have integer contents which should
be removed.

Example 13. Returning to the polynomial of Example 10, consider factoring the following
polynomial a below and where we have only the knowledge of the expanded form of it.

a = (3x1
3x3 + 2x2

3 + 4x1 + 4)(3x1x2x3
3 + 4x3

4 + 3)(3x1
3x3

2 + 2x2x3
4 + 3x1

2x2
2 + 3).

Our aim is to get the correct distribution of the leading coefficients [3x3, 3x2x
3
3, 3x2

3] where
the leading coefficient of a, LCx1(a) = 27x2x

6
3.

29

We have Ω = 27, f1 = x2, f2 = x3. If we choose L = [α2 = 2, α3 = 5] and then factor
a1 = a(x1, L) over Z we get

a1 = u(x1) = (15x1
3 + 4x1 + 20)(750x1 + 2503)(75x1

3 + 12x1
2 + 2503).

Note that a1 is square-free and we have δ = cont(a1) = 1 , f̃1 = 2, f̃2 = 5 so p1 = 2, p2 = 5
and hence the choice of L satisfies the conditions of Wang’s LCC.
We start with the distribution of f2:

f̃3
2 = 125 | LC(u2) = 750 ⇒ f3

2 = x3
3 | b2

f̃2
2 = 25 | LC(u3) = 75 ⇒ f2

2 = x2
3 | b3

f̃2 = 5 | LC(u1) = 15 ⇒ f2 = x3 | b1.

We continue with the distribution of f1:

f̃1 = 2 | LC(u2) = 750 ⇒ f1 = x2 | b2.

Therefore we get

d1 = pp(b1) = x3, d2 = pp(b2) = x2x
3
3, d3 = pp(b3) = x2

3.

As a final step

b1 = (LC(u1)/d̃1)d1 = (15/5)x3 = 3x3

b2 = (LC(u2)/d̃2)d2 = (750/250)x2x
3
3 = 3x2x

3
3

b3 = (LC(u1)/d̃1)d1 = (75/25)x2
3 = 3x2

3.

These are the correct leading coefficients of the factors of a.

Actually the idea behind this process is simple. The aim is first to decompose (LC(a)/Ω) =
x2x

6
3 into a product of 3 functions images of which will be [LC(u1),LC(u2),LC(u3)] =

[15, 750, 75] at the evaluation points L = [α2 = 2, α3 = 5]. This is done by choosing a prime
p that divides f̃i which does not divide any f̃j with j 6= i. Then Ω is distributed in an
obvious way. See also [GCL92], Chapter 8, page 377.

Step 3. Construction of multivariate factors:
(i) Coefficient bound: A coefficient bound, B, can be computed such that for any

integer coefficient b of any divisor of a, B > |b|. The following bound can be used in the
choice of a prime to lift the factors [Gel60].

Lemma 14. Suppose P1(x1, . . . , xn), . . . , Pm(x1, . . . , xn) are arbitrary polynomials in n

variables with ‖.‖∞ norms H1, . . . ,Hm. Denoting the ‖.‖∞ norm of and the degrees of

30

the polynomial P =
∏m
i=1 Pi as H and d1, . . . , dn in the variables x1, . . . , xn respectively

then the following inequality holds.

H ≥ e−dH1H2 · · ·Hm where d =
n∑
i=1

di with e =
∑∞

i=0 1/i!.

Corollary 15. Let Pi(x1, . . . , xn) be an irreducible factor of the polynomial P (x1, . . . , xn)
and the the total degree of P be d. Then the following inequality holds.

‖Pi‖∞ ≤ ed‖P‖∞.

(ii) Construction of factors: Recall that in step 2 we have defined δ = cont(a1(x1))
and u(x) = pp(a1(x1)) and then factored u(x1) over integers.

u(x1) = u1(x1) · · ·ur(x1) ∈ Z[x1].

If r = 1, then a is irreducible and we are done. Otherwise, we choose a prime p such that
pl > 2B and ũ = u mod p has the same degree as u and is square-free modulo p. Then
define ũk = uk mod p so that

ũ(x1) = ũ1(x1) · · · ũr(x1) mod 〈p, I〉

where I = 〈x2 − α2, . . . , xn − αn〉. This partial factorization of u mod p is used as a basis
for the multivariate Hensel lifting (MHL) to get relatively prime polynomials Ui(x1, . . . , xn)
for i = 1, . . . , r where Ui = ũi mod 〈p, I〉 satisfying

a(x1, . . . , xn) = U1(x1, . . . , xn) · · ·Ur(x1, . . . , xn) mod
〈
pl, Ih

〉
where h = 1 + deg(x2,...,xn)(a). Details of MHL will be described in detail in Section 2.2.

The univariate factoring algorithm determines some primes in the process of factoring
u and can be used as a prime p as described above. But it is not necessary to choose p
equal to this prime. In fact, as indicated in [Mus75], it is better to choose a larger prime
(since we are not looking for the complete factorization over Zp) to reduce the number of
Hensel construction iterations. We could in fact choose p large enough to eliminate entirely
the phase of construction which lifts from p to pl but this might mean that p would be a
multiple precision integer. The best approach seems to be to choose p as big as possible
while constrained to be a single precision integer [Mus75]. The architecture of modern
computers now allows us to choose a 64 bit prime (or 63 bit prime if signed 64 bits integers
are used) which is big enough to handle the coefficients of the polynomial a to be factored
for many practical multivariate problems.

(iii) Finding actual factors: If a is monic (with respect to the main variable x1)
then any irreducible factor of a over Z either is equal to some Ui or is equal to the product

31

of two or more Ui’s mod
〈
pl, Ih

〉
. If a is not monic these equivalences are up to the

units in the coefficient domain of a. In any case, the irreducible factors of a are found from
combinations of these Ui’s by trial divisions.

2.2 An incremental design of Multivariate Hensel Lifting (MHL)

In this section we will give the mathematical details of Multivariate Hensel Lifting (MHL)
which is the core of multivariate factorization. Then we will discuss Wang’s incremental
design of MHL. We start by the main theorem.

Theorem 16. (Multivariate Hensel construction). Let p be a prime number, l be a positive
integer. Suppose a, u, w ∈ Zpl [x1, . . . , xj] where p - lcoeff(φI(a)) and I = 〈x2 − α2, . . . , xj − αj〉
is an ideal in Zpl [x1, . . . , xj] with αi ∈ Z. Let u(1)(x1), w(1)(x1) ∈ Zpl [x1] be two univariate
polynomials in Zpl [x1] satisfying

(i) a(x1, . . . , xj) = u(1)(x1)w(1)(x1) mod
〈
I, pl

〉
with

(ii) gcd
(
φp(u(1)(x1)), φp(w(1)(x1))

)
= 1 inZp[x1].

Then for any k ≥ 1, there exist u(k), w(k) ∈ Zpl [x1, . . . , xj]/Ik such that

(iii) a(x1, . . . , xj) = u(k)w(k) mod
〈
Ik, pl

〉
and

(iv)u(k) = u(1)(x1) mod
〈
I, pl

〉
, w(k) = w(1)(x1) mod

〈
I, pl

〉
.

Proof. The proof is by induction on k. The case k = 1 is given by the condition (i). For
k ⇒ k + 1: Suppose that we have u(k), w(k) ∈ Zpl [x1, . . . , xj]/Ik satisfying the conditions
(iii) and (iv). We define the error

e(k) = a(x1, . . . , xj)− u(k)w(k) ∈ Zpl [x1, . . . , xj]/Ik.

Then we have e(k) ∈ Ik. Note that Ik is generated by all possible k-combinations of
(xi − αi) for 2 ≤ i ≤ k. Then for some ci(x1) ∈ Zpl [x1] where the index i is defined as
i = (i1, i2, . . . , ik) we have

e(k) =
j∑

i1=2

j∑
i2=i1

· · ·
j∑

ik=ik−1

ci(x1)(xi1 − αi1)(xi2 − αi2) · · · (xik − αik)

Since p - lcoeff(φI(a)), by using Theorem 8, for each i we can find unique pairs σi(x1), τi(x1) ∈
Zpl [x1] such that

σi(x1)u(1)(x1) + τi(x1)w(1)(x1) = ci(x1)

32

where degx1(σi(x1)) < degx1(ci(x1)). Now define

u(k+1) = u(k) +
j∑

i1=2

j∑
i2=i1

· · ·
j∑

ik=ik−1

τi(x1)(xi1 − αi1)(xi2 − αi2) · · · (xik − αik)

w(k+1) = w(k) +
j∑

i1=2

j∑
i2=i1

· · ·
j∑

ik=ik−1

σi(x1)(xi1 − αi1)(xi2 − αi2) · · · (xik − αik).

Then, we compute u(k+1)w(k+1) and pass to modulo I(k) and get

u(k+1)w(k+1) = u(k)w(k)

+
j∑

i1=2

j∑
i2=i1

· · ·
j∑

ik=ik−1

(
σi(x1)u(1)(x1) + τi(x1)w(1)(x1)

)
(xi1 − αi1)(xi2 − αi2) · · · (xik − αik)

mod (Ik+1, pl).

Hence
u(k+1)w(k+1) = u(k)w(k) + e(k) = a(x1, . . . , xj) mod (Ik+1, pl).

By definition of u(k+1), w(k+1) above we have

u(k+1) = u(1)(x1) mod
〈
I, pl

〉
, w(k+1) = w(1)(x1) mod

〈
I, pl

〉
.

The idea of the constructive proof of Theorem 16 was used in multivariate polynomial
factorization by Wang and Rotschild [WR75]. One major difficulty in this approach is the
intermediate expression swell when we compute the error term where we need to use non-
zero’s for αi’s. Let I = 〈x2 − 1, x3 − 2, x4 − 3〉 and consider the I-adic expansion of the
monomial xr2xs3xt4. It has (r + 1)(s + 1)(t + 1) many terms. So when non-zero evaluation
points are used an intermediate expression swell is inevitable. However it is not always
possible to choose the evaluations points to be zero, because in applications of the MHL
for multivariate polynomial factorization, the leading coefficient must not vanish under the
evaluation homomorphism. As one may guess, for many applications the leading coefficient
is a monomial which maps to zero for any choice of zero for one of its indeterminates.

A construction was proposed by Wang in [Wan78] behaves better in comparison with
the previous approach. Before we explain it, let us state and prove the uniqueness of the
multivariate Hensel construction.

Corollary 17. (Uniqueness of the multivariate Hensel construction). In Theorem 16, if the
given polynomial a ∈ Zpl [x1, . . . , xj] is monic in the variable x1 and correspondingly if the
univariate factors u(1)(x1), w(1)(x1) ∈ Zpl [x1] are chosen to be monic, then for any integer

33

k ≥ 1 conditions (i), (ii) of the Theorem 13 uniquely determine the factors u(k), w(k) ∈
Zpl [x1, . . . , xj]/Ik which are monic in the variable x1.

Proof. We follow the idea of the proof of Corollary 6 in Chapter 1 and use induction on k.
Let

(u(k)
1 , w

(k)
1), (u(k)

2 , w
(k)
2) ∈ Zpl [x1, . . . , xj]/Ik

be two monic solution pairs in the variable x1 which satisfy the conditions (i) and (ii) of
the Theorem 16.

For the case k = 1 note that Zpl [x1, . . . , xj]/I = Zpl [x1, . . . , xj]/ 〈x2 − α2, . . . , xj − αj〉 ∼=
Zpl [x1]. So the uniqueness follows from the uniqueness of univariate Hensel construction
given by Corollary 6.

For the case k ⇒ k + 1 : Let (u(k), w(k)) ∈ Zpl [x1, . . . , xj]/Ik be a solution pair. Note
that

a(x1, . . . , xj) = u(k+1)w(k+1) mod
〈
Ik+1, pl

〉
⇒ a(x1, . . . , xj) = u(k+1)w(k+1) mod

〈
Ik, pl

〉
Then by the induction assumption on uniqueness we have

u(k+1) = u(k) mod
〈
Ik, pl

〉
andw(k+1) = w(k) mod

〈
Ik, pl

〉
.

Then u(k+1) − u(k) and w(k+1) − w(k) are both in Ik. Hence for some for some pairs
σi(x1), τi(x1) ∈ Zpl [x1] where the index i is defined as i = (i1, i2, . . . , ik), we can write

u(k+1) = u(k) +
j∑

i1=2

j∑
i2=i1

· · ·
j∑

ik=ik−1

τi(x1)(xi1 − αi1)(xi2 − αi2) · · · (xik − αik)

w(k+1) = w(k) +
j∑

i1=2

j∑
i2=i1

· · ·
j∑

ik=ik−1

σi(x1)(xi1 − αi1)(xi2 − αi2) · · · (xik − αik).

Now if for some index i, degx1(σi) ≥ degx1(w(k)
1) then LCx1(w(k+1)) 6= 1 which is against

the induction hypothesis. The argument is similar for τi(x1). Hence for all indices i, we
have degx1(σi) < degx1(w(k)

1) and degx1(τi) < degx1(u(k)
1). Therefore the leading coefficient

of w(k+1) in x1, is the leading coefficient of w(1) in x1 which is 1. Similarly for u(k+1). (This
observation is important and indicates that Yun’s replaceLC procedure can be
applied to the multivariate case as well).

It remains to show the uniqueness of σi(x1), τi(x1) ∈ Zpl [x1]. But this is easy by consid-
ering u(k+1)w(k+1) as in the proof of Theorem 16 above and using Theorem 8 which states
that the solution to the generalized univariate diophantine problem has unique solutions
σi(x1), τi(x1) ∈ Zpl [x1] where degx1(σi) < degx1(w(k)

1) and degx1(τi) < degx1(u(k)
1).

34

We can now describe Wang’s incremental design of MHL in [Wan78] to find u(k), w(k).
It behaves much better when the factors to be computed are sparse. The idea is to lift the
solution over Zp[x1] to Zpl [x1] and then lift the solutions one variable at a time

from Zpl [x1] to Zpl [x1, x2]

from Zpl [x1, x2] to Zpl [x1, x2, x3]
...

then from Zpl [x1, . . . , xj−1] to Zpl [x1, . . . , xj]

Assuming that a polynomial solution is known to exist, the idea is to use Newton’s
iteration. Consider the (xj − αj)-adic representation of the solution polynomial

u = u(1) + u1(xj − αj) + u2(xj − αj)2 + · · ·+ uk(xj − αj)k + · · ·

with u(1), uj ∈ Zpl [x1, . . . , xj−1]. We define

u(k) := u(1) + u1(xj − αj) + u2(xj − αj)2 + · · ·+ uk−1(xj − αj)k−1.

At this point we want to give an example to emphasize how important the choice of the
evaluation point is. Let p = 31 and let

f = x4 − xyz2 − z4.

be the factor to be computed. Notice f is sparse in z. The solutions to the MDP’s are
the Taylor coefficients of the factors. This means if z = 0 is the evaluation then at the 3rd

step of MHL the solutions to the MDP’s will be simply the coefficients of f in z, namely,
−1, 0,−xy and 0. That is, one needs to solve only two MDP’s. This is why, for Wang’s
design of MHL zero evaluation points are desirable. However it is not always possible to
choose 0 as an evaluation point. For z = 5 the Taylor expansion of f is

f = x4 + 6xy − 5︸ ︷︷ ︸
given f2

+ (−10xy − 4)︸ ︷︷ ︸
Solution to the 1st MDP

(z − 5)

+ (−xy + 5)︸ ︷︷ ︸
Solution to the 2nd MDP

(z − 5)2

+ (+11)︸ ︷︷ ︸
Solution to the 3rd MDP

(z − 5)3

+ (−1)︸ ︷︷ ︸
Solution to the 4th MDP

(z − 5)4

which is no longer sparse in z and one needs to solve 4 MDP’s.

35

We continue our discussion. We have

u(k) = umod (xj − αj)k.

Let us define
u(k+1) := u(k) +4u(k), 4u(k) := uk(xj − αj)k

w(k+1) := w(k) +4w(k), 4w(k) := wk(xj − αj)k.

where uk, wk ∈ Zpl [x1, . . . , xj−1].
To compute u(k+1)and w(k+1)from u(k)and w(k), we first define F (u,w) = a(x1, . . . , xn)−

uw ∈ Z[x1, . . . , xn][u,w] . As before we apply Newton iteration to the function F and get

F (u(k) +4u(k), w(k) +4w(k)) = F (u(k), w(k)) + Fu(u(k), w(k))4u(k)

+ Fw(u(k), w(k))4w(k) + E

where the term E contains terms (xj − αj)s with s ≥ k + 1. Observe that F (u,w) =
0 mod (xj − αj)k ⇒ F (u(k), w(k)) = 0 mod (xj − αj)k for all k ≥ 1. So, passing to modulo
(xj − αj)k+1 we get

Fu(u(k), w(k))4u(k) + Fw(u(k), w(k))4w(k) = −F (u(k), w(k))

where 4u(k) and 4w(k) are to be solved. Let e(k)(x1, . . . , xn) = a(x1, . . . , xn) − u(k)w(k).
We have Fu = −w and Fw = −u. Hence we get

w(x1, . . . , xj)uk(x1, . . . , xj−1)(xj − αj)k + u(x1, . . . , xj)wk(x1, . . . , xj−1)(xj − αj)k

= e(k)(x1, . . . , xn)

This shows that at the kth step (xj − αj)k divides ek(x1, . . . , xn) and we obtain

w(x1, . . . , xj)uk(x1, . . . , xj−1)+u(x1, . . . , xj)wk(x1, . . . , xj−1) = e(k)(x1, . . . , xn)/(xj−αj)k.

Evaluating this equation at xj = αj we get

w(x1, . . . , xj−1, αj)uk(x1, . . . , xj−1) + u(x1, . . . , xj−1, αj)wk(x1, . . . , xj−1) = e
(k)
k (2.1)

where e(k)
k is the kth Taylor coefficient of e(k), that is

e
(k)
k = e(k)(x1, . . . , xn)

(xj − αj)k
|xj=αj

Suppose that a ∈ Zpl [x1, . . . , xj−1] is monic in x1 and we have the factorization of

36

a(x1, . . . , xj−1, αj) = u(x1, . . . , xj−1, αj)w(x1, . . . , xj−1, αj).

Then if we can solve Eqn (2.1), we can lift u(x1, . . . , xj−1, αj) and w(x1, . . . , xj−1, αj) to
get a(x1, . . . , xj−1, xj) = u(x1, . . . , xj−1, xj)w(x1, . . . , xj−1, xj) as follows:

1. We start with u0 := u(x1, . . . , xj−1, αj),w0 := w(x1, . . . , xj−1, αj) and compute e(1) =
a(x1, . . . , xj)− u0w0.

2. Then we compute e(1)
1 = e(1)/(xj − αj)|xj=αj and solve the MDP u0w1 + w0u1 = e

(1)
1

for u1, w1 ∈ Zp[x1, . . . , xj−1].

3. Then we get u(1) = u0 + u1(xj − αj) and w(1) = w0 + w1(xj − αj).

4. The next step is to compute e(2) = a − u(1)w(1). If e(2) = 0 then we have the
factorization.

5. Else we compute e(2)
2 = e(2)/(xj − αj)2|xj=αj and solve the MDP u0w2 + w0u2 = e

(2)
2

for u2, w2 ∈ Zp[x1, . . . , xj−1].

6. Then we get u(2) = u(1) + u2(xj − αj)2 and w(2) = w(1) + w2(xj − αj)2.

7. The next step is to compute e(3) = a− u(2)w(2)...

We follow these steps above finitely many times until we get e(m) = 0 for some m ≥ 0 or we
stop when we exceed a bound. Algorithm 5 below describes the jth step of MHL for j > 1
and when the inputs are monic.

Eqn (2.1) is an example of a multivariate diophantine problem (MDP) which we will
investigate in Section 2.3 in detail. Hence Wang’s incremental design of MHL is reduced to
finding an effective solution to the MDP problem.

Example 18. Suppose we seek to factor a = fg where f = x1
5 + 3x1

2x2x3
2 − 7x1

4 −
4x1x3 + 1 and g = x1

5 + x1
2x2x3 − 7x3

4 − 6. Let α3 = 2 and p = 231 − 1, l = 1. Before
lifting we have

f (0) := f(x3 = 2) = x1
5 − 7x1

4 + 12x1
2x2 − 8x1 + 1

g(0) := g(x3 = 2) = x1
5 + 2x1

2x2 − 118.

In the following all operations will be in mod p and e(k)
k denotes the coefficient of (x3 − 2)k

in the Taylor expansion of the error e(k) about x3 = 2.
Let also f0 := f (0), g0 := g(0), f (k) :=

∑k
i=0 fi(x3 − 2)i, g(k) :=

∑k
i=0 gi(x3 − 2)i.

Step i = 1: e(1) = a− f (0)g(0). Then we compute the Taylor coefficient

e
(1)
1 = 13x1

7x2 − 7x1
6x2 − 4x1

6 + 36x1
4x2

2 − 224x1
5

+ 1568x1
4 − 16x1

3x2 − 4103x1
2x2 + 2264x1 − 224

37

and solve the MDP f0g1 + g0f1 = e
(1)
1 for (f1, g1). The solution pair is (the next Chapter

will show how to find f1 and g1). (f1, g1) = (12x1
2x2 − 4x1, 12x1

2x2 − 4x1). Now we
update

f (1) = f (0) + f1 · (x3 − 2)

= x1
5 − 7x1

4 + 12x1
2x2x3 − 12x1

2x2 − 4x1x3 + 1

g(1) = g(0) + g1 · (x3 − 2) = x1
5 + x1

2x2x3 − 224x3 + 330

Step i = 2: e(2) = a− f (1)g(1). Then we compute the Taylor coefficient

e
(2)
2 = 3x1

7x2 + 6x1
4x2

2 − 168x1
5 + 1176x1

4 − 2370x1
2x2 + 1344x1 − 168.

and solve the MDP f0g2+g0f2 = e
(2)
2 for (f2, g2). The solution pair is (f2, g2) = (3x1

2x2,−168).
Now we update

f (2) = f (1) + f2 · (x3 − 2)2 = x1
5 + 3x1

2x2x3
2 − 7x1

4 − 4x1x3 + 1

g(2) = g(1) + g2 · (x3 − 2)2 = x1
5 + x1

2x2x3 − 168x3
2 + 448x3 − 342

In fact, at the end of the 2nd iteration we have recovered f already. g = a/f can be obtained
by trial division. Maple does this. But let’s go further.
Step i = 3: e(3) = a− f (2)g(2). Then we compute the Taylor coefficient

e
(3)
3 = −56x1

5 + 392x1
4 − 672x1

2x2 + 448x1 − 56.

and solve the MDP f0g3 + g0f3 = e
(3)
3 for (f3, g3). The solution pair is (f3, g3) = (0,−56).

Now we update

f (3) = f (2) + f3 · (x3 − 2)3 = x1
5 + 3x1

2x2x3
2 − 7x1

4 − 4x1x3 + 1

g(3) = g(2) + g3 · (x3 − 2)3 = x1
5 + x1

2x2x3 − 56x3
3 + 168x3

2 − 224x3 + 106.

Step i = 4 : e(4) = a− f (3)g(3). Then we compute the Taylor coefficient

e
(4)
4 = −7x1

5 + 49x1
4 − 84x1

2x2 + 56x1 − 7

and solve the MDP f0g4 + g0f4 = e
(4)
4 . The solution pair is (f4, g4) = (0,−7). Now we

update

f (4) = f (3) + f4 · (x3 − 2)4 = x1
5 + 3x1

2x2x3
2 − 7x1

4 − 4x1x3 + 1

g(4) = g(3) + g4 · (x3 − 2)4 = x1
5 + x1

2x2x3 − 7x3
4 − 6

38

Algorithm 5 jth step of Multivariate Hensel Lifting for j > 1.
Input : αj ∈ Zpl , aj ∈ Zpl [x1, . . . , xj], fj−1, gj−1 ∈ Zpl [x1, . . . , xj−1] where aj , fj−1, gj−1
are monic in x1 and aj(xj = αj) = fj−1gj−1.
Output : fj , gj ∈ Zpl [x1, . . . , xj] such that aj = fjgj .

1: σj0 ← fj−1, τj0 ← gj−1, σj ← σj0, τj ← τj0, monomial ← 1
2: error ← aj − fj−1 gj−1
3: for i from 1 to deg(aj , xj) while error 6= 0 do
4: monomial ← monomial × (xj − αj)
5: c← Taylor coefficient of (xj − αj)i of error at xj = αj
6: if c 6= 0 then
7: Solve the MDP σjiτj0 + τjiσj0 = c in Zpl [x1, . . . , xj−1] for σji and τji.
8: (σj , τj)← (σj + σji ×monomial, τj + τji ×monomial).
9: error ← aj − σj τj .

10: end if
11: end for
12: fj ← σj and gj ← τj

Step i = 5: e(5) = a − f (4)g(4) = 0 and we have the factors! As explained in Section 1.2
following Yun’s idea, using the replaceLC procedure the leading coefficient correction can
be handled outside of the for loop for the non-monic case. So to make the explanation
easier, in the Algorithm 5 below, the jth step of Multivariate Hensel Lifting for j > 1 is
described for the monic case.

2.3 The Multivariate Diophantine Problem (MDP)

As seen in Section 2.2, Eqn (2.1) is an example of a multivariate diophantine problem which
we describe below in detail. We seek now an effective solution to the MDP problem.

Definition 19. (MDP) Let p be a prime number. Let j, l ≥ 1 and u,w, c ∈ Zpl [x1, . . . , xj].
Let Ij = 〈x2 − α2, . . . , xj − αj〉 be an ideal of Zpl [x1, . . . , xj] with αi ∈ Zpl (not dis-
tinct). Let φ〈Ij ,p〉 : Zpl [x1, . . . , xj] → Zp[x1] be an evaluation homomorphism and p -
LCx1(φIj (uw)). Let d be the maximum total degree of u and w wrt. the variables x2, . . . , xj .
Let also u(1)(x1) = φ〈Ij ,p〉(u), w(1)(x1) = φ〈Ij ,p〉(w) . Then the MDP problem is to find mul-
tivariate polynomials σ, τ ∈ Zpl [x1, . . . , xj] such that

σu+ τw = c mod
〈
Id+1
j , pl

〉
with degx1(σ) < degx1(w), where it is given that

gcd
(
u(1)(x1), w(1)(x1)

)
= 1 inZp[x1].

39

The case where j = l = 1 is the univariate diophantine problem considered in Section
1.3, Theorem 3.

The case j = 1, l > 1 is the generalized univariate diophantine problem considered in
Section 1.6, Theorem 8.

However the solution is not that obvious for the cases where j > 1. In Chapter 3 we
will have a closer look at different ways of solving an MDP. Before we close this Chapter,
let us establish the uniqueness of the solution and the fact that as long as the gcd condition
is satisfied the solution to the MDP is independent of the choice of ideal.

Proof. Consider the case where l = 1: Let Ij = 〈x2 − α2, . . . , xj − αj〉 ,Kj = 〈x2 − β2, . . . , xj − βj〉
be ideals of Zp[x1, . . . , xj] with αi, βj ∈ Zpl and suppose one has two solution pairs (σ, τ), (σ̃, τ̃)
to the MDP defined for an ideals Ij ,Kj resp. with the same initial conditions:

(i) degx1(σ) < degx1(w) and gcd
(
φ〈Ij ,p〉(u), φ〈Ij ,p〉(w)

)
= 1 ∈ Zp[x1]

(ii) degx1(σ̃) < degx1(w) and gcd
(
φ〈Kj ,p〉(u), φ〈Kj ,p〉(w)

)
= 1 ∈ Zp[x1]

Let g =gcd(u,w). We first claim that if the MDP conditions satisfied, then g ∈
Zp[x2, . . . , xj]:

Since g |u, there exists s ∈ Zp[x1, . . . , xj] such that gs = u. Let by LC, we denote the
leading coefficient in the variable x1. We have LC(gs) = LC(u) ⇒ LC(g)LC(s) = LC(u).
So, LC(g) |LC(u). So p - LCx1(φI(g)). Let’s set Y = [x2, . . . , xj] and let dg = degx1(g).
Then g(x1, Y) = LCx1(g)xdg

1 +h(x1, Y) with degx1(h) < dg or dg = 0, i.e. g ∈ Zp[x2, . . . , xj].
On the other hand, since p - LCx1(φI(g)) one has g |u ⇒ φ〈Ij ,p〉(g) |φ〈Ij ,p〉(u). The same
is true for w. Hence we have φ〈Ij ,p〉(g) | gcd(φ〈Ij ,p〉(u), φ〈Ij ,p〉(w)) = 1. Again, since p -
LCx1(φI(g)) it follows that φ〈Ij ,p〉(g) = φ〈Ij ,p〉(LCx1(g)) · xdg

1 + φ〈Ij ,p〉(h) = 1⇒ dg = 0, i.e.
g ∈ Zp[x2, . . . , xj].

At this point consider the natural onto ring homomorphism

Φ : Zp[x1, . . . , xj]→ Zp[x1, . . . , xj]/Id+1
j

given by f(x1, x2, . . . , xj) 7→ f(x1, x2 − α2, . . . , xj − αj) + Id+1
j . Then

Φ(f) ∈ Id+1
j ⇐⇒ Φ(f) = f(x1, x2 − α2, . . . , xj − αj) =∑

k2+···+kj=d+1
ck2,...,kj

(x1, . . . , xj)(x2 − α2)k2 · · · (xj − αj)kj ⇐⇒

f(x1, x2, . . . , xj) =
∑

k2+···+kj=d+1
ck2,...,kj

(x1, x2 + α2 . . . , xj + αj)xk2
2 · · ·x

kj

j

for some ck2,...,kj
(x1, x2, . . . , xj) ∈ Zp[x1, . . . , xj] if and only if f ∈ Ld+1

j where Lj :=
〈x2, . . . , xj〉. Hence we have a ring isomorphism Zp[x1, . . . , xj]/Ljd+1 ∼= Zp[x1, . . . , xj]/Id+1

j .

40

Therefore we have

Zpl [x1, . . . , xj]/Kd+1
j
∼= Zpl [x1, . . . , xj]/Ljd+1 ∼= Zpl [x1, . . . , xj]/Id+1

j

and hence we may consider σ, τ, σ̃, τ̃ ∈ Zpl [x1, . . . , xj]/Ljd+1 i.e. the solution polynomials
up to total degree d with respect to x2, . . . , xj and represented in the natural way, via the
coordinate translation isomorphism as described above.

Now as for the univariate case we have (σ − σ̃)u = −(τ − τ̃)w. Then (σ − σ̃)ug =
−(τ − τ̃)wg ⇒

w
g | (σ − σ̃). But degx1(wg) = degx1(w) − degx1(g) and we have just shown

that g ∈ Zp[x2, . . . , xj]⇒ degx1(g) = 0. So, degx1(wg) = degx1(w)− degx1(g) = degx1(w) ≤
degx1(σ − σ̃) < degx1(w). Hence σ − σ̃ = 0⇒ σ = σ̃ ⇒ τ = τ̃ .

For the case l > 1, we will use induction on l just as in the proof of the uniqueness part
of Theorem 8. We have already seen the case l = 1 . Now suppose that the claim is true
for 1 ≤ k < l. Then we can define α = (σ − σ̃)/pk and β = −(τ − τ̃)/pk. Note that

(σ − σ̃)u = −(τ − τ̃)w mod pl ⇒ αu = βw mod pl−k.

By repeating the degree argument above we get α = 0 mod p ⇒ σ = σ̃ mod pk+1.
Similarly we get β = 0 mod p⇒ τ = τ̃ mod pk+1 and we are done.

41

Chapter 3

Solving Multivariate Diophantine
Equations

3.1 Solution via polynomial remainder sequences

Our first natural attempt to solve the MDP problem is to generalize the idea of the solution
to the univariate case. The proof of the following well-known facts about resultants can be
found in [CLO07].

Proposition 20. Let F be a field, A,B ∈ F[x1, . . . , xn] have positive degree in x1 and let R
be a Sylvester resultant of A and B, denoted R = Resx1(A,B). Then
(i) Resx1(A,B) ∈ F[x2, . . . , xn] (x1 is eliminated),
(ii) There exist S, T ∈ F[x1, . . . , xn] such that SA+ TB = R,
(iii) degR ≤ degA degB (Bezout bound),
(iv) R = 0 if and only if A and B have a common factor in F[x1, . . . , xn] which has positive
degree in x1,
(v) For A and B monic in x1 and α ∈ Fn−1, Resx1(A(x1, α), B(x1, α)) = R(α).

As a first step let l = 1 and u,w ∈ Zp[x1, . . . , xj] be monic in the main variable, say x1.
According to Proposition 20-(ii), there exist S, T ∈ Zp[x1, . . . , xj] and R = Resx1(u,w) ∈
Zp[x2, . . . , xj] such that Su+ Tw = R.

Now we can proceed as in the univariate case: Given u,w, c ∈ Zp[x1, . . . , xj] as in
the MDP problem, we must have that gcd(u,w) = 1. Hence by Proposition 20-(iv) R =
Resx1(u,w) 6= 0. First we define σ̃ := Sc and then by pseudo division with respect to the
variable x1, we get mσ̃ = qw + r with degx1(r) < degx(w). Note that m = 1 since w is
monic. Now, define σ̄ := r , τ̄ := cT + qu. Then

σ̄u+ τ̄w = (σ̃ − qw)u+ (cT + qu)w = (Su+ Tw)c = Rc.

42

Now since R ∈ Zp[x2, . . . , xj], if we define σ := σ̄
R and τ := τ̄

R then we have σu + τw = c

with degree condition on x1 satisfied (since R does not depend on x1). By uniqueness we
conclude R in fact divides both σ̄ and τ̄ and we have the solution σ, τ ∈ Zp[x1, . . . , xj].

In the procedure described above one can choose to compute σ first and then compute
τ by multivariate division. One way of computing the resultant and the polynomials S, T
described in Proposition 20 is the reduced-PRS (Pseudo Remainder) algorithm or Subresul-
tant PRS algorithm. (For details, see [GCL92]). Before we discuss how efficient this method
is, consider the following concrete example in which each of the polynomial solution pair
(σ, τ) to the MDP has only 1 term.

Example 21. Let p = 13 and the parameters of the MDP be

u = x6 − 2xy4 + 5 y2

w = x6 − 2x3z2 − 5xy4 + 4xy2

c = −4x8y + 4x7yz − 5x5yz2 − 6x3y5 + 5x2y5z − 3x3y3 − 6xy3z.

The actual solution to this problem (that we will compute) is (σ, τ) = (4xyz,−4x2y).
We first call reduced-PRS algorithm to compute

S = 4x5y20 + 5x2y20z2 + · · ·+ +4xy10 + 5 y10 (79 terms)

T = −4x5y20 − 5 y24 + · · ·+−4xy10 − 5 y10 (68 terms)

and the resultant

R = 4 y26 − 3 y24 + 2 y14z10 − 4 y16z6 + y12z10 − y20 + 2 y18z2 + y14z6 + 2 y18

+ y16z2 + y12z6 + 5 y6z12 + y16 + 4 y14z2 + 3 y10z6− 4 y8z8 + 5 y14 + 5 y12z2− 5 y10z4− y12

We have σ̃ = Scmod p, which has 550 terms! As a next step we compute σ̄ = Prem(σ̃, w, x1)
mod p and

σ̄ = 3xy27z + xy25z − 5xy15z11 − 3xy17z7 + 4xy13z11 − 4xy21z − 5xy19z3+

4xy15z7 − 5xy19z + 4xy17z3 + 4xy13z7 − 6xy7z13 + 4xy17z + 3xy15z3

− xy11z7 − 3xy9z9 − 6xy15z − 6xy13z3 + 6xy11z5 − 4xy13z

Finally σ = σ̄
R = 4xyz. Then we compute τ = (c− σu)/w = −4x2y.

Although it is a short and a direct approach to solve the MDP problem, this method
is very bad, since in the subresultant PRS (and also the primitive PRS) an intermediate
expression swell occurs in all variables except x1 and in the coefficients. This is inevitable
because of pseudo-division. As Example 21 shows, even for very sparse solutions (solutions
in this example have only 1 term), the polynomials S, T,R are much bigger than the input

43

polynomials. Also c in the MDP problems is a Taylor coefficient of the error which is in
general huge. This means σ̃ = Sc is even larger (in this simple example it has 550 terms).
These facts make the intermediate computations of the algorithm very expensive. Our
experiments confirmed this. As, even for l = 1 and the monic inputs this method is not
effective even for sparse solutions, therefore we look for another method to solve the MDP
problem.

3.2 Solution via Groebner Basis

We can see the MDP problem as an ideal membership problem. If the solution exists
then c is in the ideal I generated by the polynomials u, v in the ring Zpl [x1, . . . , xj], i.e.
c ∈ I = 〈u, v〉. Once again, as a first step let l = 1 and u,w ∈ Zp[x1, . . . , xj] be monic in
the main variable, say x1.

For j ≥ 1, by generalization of univariate division to multivariate division one can find
quotients σ1, τ1 and a remainder r in Zp[x1, . . . , xj] so that c = σ1u+ τ1v + r. However by
changing the order of u and v we may get a different remainder. So, this method does not
result in a unique remainder r in general.

However this task can be accomplished by using Groebner basis. For an introduction
to Groebner basis theory see [CLO07] or [GCL92]. Let G = (gi) where gi ∈ Zp[x1, . . . , xn]
be the Groebner basis of I so that I = 〈u, v〉 = 〈gi〉. Then by the property of Groebner
basis, there exist quotients Qi’s and a unique remainder r in Zp[x1, . . . , xj] such that c =∑
iQigi + r. For a different ordering of gi’s the Qi’s may be different, however this time r

is unique. If r 6= 0 then r /∈ 〈gi〉 ⇒ r /∈ I and hence there is no solution to the MDP.
Now, if r = 0 then c ∈ 〈gi〉 = I. Let us consider I and G as column vectors. The

Groebner basis computation algorithm can be implemented in such a way that it computes
G as well as the the transformation matrix U from I to G such that G = UI, with basically
no extra effort. It is called as extended Groebner basis algorithm. (See for example [KR00].)

When the number of variables is finite, Zp[x1, . . . , xn] is a Noetherian ring, i.e. every
ideal of it finitely generated. Hence the cardinality of the Groebner basis is finite. Suppose
that the number of polynomials in the Groebner basis is m. Then U is a m× 2 matrix and

c = [Q1 . . . Qm]G = [Q1 . . . Qm] (UI) =
(
[Q1 . . . Qm]U

)
I.

Therefore [σ̃ τ̃] = [Q1 . . . Qm]U is a candidate solution: σ̃u + τ̃ v = c mod p. But
the degree condition may not be satisfied, so the solution may not be unique. Note that v
is monic in x1. To reduce the degree of σ̃, we can proceed as if in the univariate case: We
consider σ̃ and v ∈ Zp[x2, . . . , xj][x1] and do the pseudo-division w.r.t the variable x1 and
define σ as the remainder of this division as we did in Section 3.1. Then we can compute τ
accordingly.

44

The problem with this approach is the complexity of finding a Groebner basis and
the size of the transition matrix U . Even for small examples the size of U can be very
big and the computation cost of U can be very expensive. Although it is mathematically
interesting, unfortunately this approach is not practical for solving the MDP’s that appear
in the multivariate factorization.

Example 22. Suppose that we’re trying to solve the MDP problem σu+ τw = c mod 13
for (σ, τ) where:

u = x6 − x2y2 + 2 y2

w = x6 − 2x4y + 2 y2

c = −2x10 − 2x7y3 + 4x8y + 2x3y5 − 4x4y2 − 4xy5

The actual solution (that we will compute) to this problem is (σ, τ) = (−2 y3x,−2x4). Note
that each of the solution pair has only 1 term!

Let I = 〈u,w〉. First we compute the Groebner Basis of the ideal I. The Basis com-
mand in the Groebner package of Maple computes the Groebner basis and it also returns the
transition matrix from the basis of I to Groebner basis G = (gi) so that I = 〈u,w〉 = 〈gi〉.
By using the commands G,C := Basis([u,w],tdeg(x,y,z),characteristic=13,output=extended)

and U:=Matrix(C) we have:

U =

−6x4 − x2y − 3x2 − 2 y 6x4 + 3x2 − 6 y2 − 5 y

5x2 − y −5x2 + 4 y

−6 6

1 0

So, if we use the command I:=Vector([u,w]) in Maple, then we have G = UI:

G =

y4 − y3

x2y3 + 6 y3

x4y + 6x2y2

x6 − x2y2 + 2 y2

= U

 x6 − x2y2 + 2 y2

x6 − 2x4y + 2 y2

 .

The NormalForm command in Maple, computes the representation of c given the ideal I
with the Groebner basis G, i.e. it computes Qi’s and r such that c =

∑
iQigi + r. We call

r:=NormalForm(c,G,tdeg(x,y,z),’Q’,characteristic = 13) and Q:=Vector[row](Q)

and obtain

Q =
[

2x3y + 2x3 − 4xy − 4x −2x5 − x3 − 5x 4x4 −2x4
]

45

and r = 0. In the command above tdeg(x,y,z) represents the grlex order, for which
Groebner basis computation is fastest in general. Then we compute QU and simplify it
with the command simplify(expand(Q.U)) mod 13 , to get

QU = [σ̃ ˜tau] =
[

x7y + 4x7 − 2x5y2 + 5x5y − 5xy2

−x7y − 4x7 + x3y3 + 4x3y2 − 2x4 − 2 y3x+ 5xy2

]T
.

In fact σ̃u + τ̃w = c mod 13. But note that degx(σ̃) ≮ degx(v) . So, to get the unique
solution, we proceed as in the univariate case: We consider σ̃ and v ∈ Z13[y][x] and do
the pseudo-division w.r.t the variable x and define σ as the remainder. (In Maple use the
command Rem(tildeSigma,v,x) mod 13):

σ = −2 y3x⇒ τ = (c− σu)/w = −2x4

3.3 Wang’s solution

Once again, the problem is to find multivariate polynomials σ, τ ∈ Zpl [x1, . . . , xj] such that

σu+ τw = c mod
〈
Id+1
j , pl

〉
. (3.1)

Wang’s solution idea is the same idea we used to solve MHL incrementally, namely, to use
a (xj − αj)-adic Newton iteration. Let j > 1 and

4σ(k) := sk(x1, . . . , xj−1)(xj − αj)k, σ(k+1) := σ(k) +4σ(k)

4τ (k) := tk(x1, . . . , xj−1)(xj − αj)k, τ (k+1) := τ (k) +4τ (k).

Since degj(σ) and degj(τ) are bounded, for some k we must have σ = σ(k) and τ = τ (k).
Let now G = σu + τw − c and Ij−1 = 〈x2 − α2, . . . , xj−1 − αj−1〉. Then for any k > 1 we
have

G(σ(k), τ (k)) = 0 mod
〈

(xj − αj)k, Id+1
j−1 , p

l
〉
.

As before we have

u(x1, . . . , xj)sk(x1, . . . , xj−1) + w(x1, . . . , xj)tk(x1, . . . , xj−1)

= c(x1, . . . xj)− σ(k)u(x1, . . . , xj) + τ (k)w(x1, . . . , xj)
(xj − αj)k

mod
〈

(xj − αj)k, Id+1
j−1 , p

〉
. (3.2)

Note that the interpretation of I1 is the empty ideal and the discussion above assumed that
j > 1, since for j = 1 we know the solution already.

46

Algorithm 6 WDS (Wang’s Diophant Solver)
Input A prime p, polynomials u,w, c ∈ Zp[x1, x2, . . . , xj], ideal Ij = 〈x2 − α2, . . . , xj − αj〉
where the MDP conditions satisfied. Also the maximum degree d of the solution w.r.t
x2, . . . , xj .
Output (σ, τ) ∈ Zp[x1, x2, . . . , xj] such that σu+ τw = c ∈ Zp[x1, x2, . . . , xj] or FAIL . It
returns FAIL if there is no solution.

1: if j = 1 then call Algorithm UniDio to return (σ, τ) ∈ Zp[x1]2 or FAIL end if
2: (uαj , wαj , cαj)← (u(xj = αj), w(xj = αj), c(xj = αj)) ∈ Zp[x1, x2, . . . , xj−1]3
3: Ij−1 ← 〈x2 − α2, . . . , xj−1 − αj−1〉
4: (σ, τ)←WDS(uαj , wαj , cαj , Ij−1, p)
5: if (σ, τ) = FAIL then return FAIL end if
6: error ← c− σu− τw
7: monomial← 1
8: for i from 1 to d while error 6= 0 do
9: monomial← monomial × (xj − αj)

10: ci ← Taylor coefficient of (xj − αj)i of error at xj = αj
11: if ci 6= 0 then
12: (s, t)←WDS(uαj , wαj , ci, Ij−1, p)
13: if (s, t) = FAIL then return FAIL end if
14: (s, t)← (s×monomial, t×monomial)
15: (σ, τ)← (σ + s, τ + t)
16: error ← error − tu− sw
17: end if
18: end for
19: if error = 0 then return (σ, τ) else return FAIL end if

We have thus a recursive algorithm to solve Eqn (3.1). To solve Eqn (3.1) we pass to
modulo (xj − αj) and try to solve

σ(x1, . . . , αj)u(x1, . . . , αj) + τ(x1, . . . , αj)w(x1, . . . , αj) = c(x1, . . . , αj) mod
〈
Id+1
j−1 , p

l
〉

⇒ σ(1)u(x1, . . . αj) + τ (1)w(x1, . . . αj) = c(x1, . . . αj) mod
〈
Id+1
j−1 , p

l
〉
.

To do that we use Eqn (3.2) for k = 1, 2, . . . , d, i.e. solve

usk + wtk = e
(k)
k (x1, . . . , xj−1) mod

〈
(xj − αj)k, Id+1

j−1 , p
〉
.

where ek(x1, . . . , xj−1) denotes the coefficient of (xj − αj)k in the 〈xj − αj〉-adic represen-
tation of

e(k)(x1, . . . , xj) = c− σ(k)u− τ (k)w

Also by construction we will have degreex1(σ(x1, . . . xj)) < degreex1(w(x1, . . . xj)).
Algorithm 6 (WDS) gives the pseudo-code for Wang’s recursive solution to MDP, for

l = 1. It can easily be extended to the case l > 1 by use of Theorem 8.

47

3.3.1 On Wang’s MDP solver

Let the factors to be computed at the jth step of MHL be fj =
∑dj

i=0 fji(xj − αj)i and
gj =

∑dj

i=0 gji(xj − αj)i.
To compute fji and gji during the ith iteration in the for loop, MHL calls WDS and

WDS computes Taylor expansions of (fji, gji) at xj−1 = αj−1. (That is, to solve MDP,
WDS simply mimics MHL.)

To compute the Taylor coefficients of fji and gji WDS makes a recursive call (just as
MHL does). To see the approximate number of calls to Algorithm UniDio by WDS for αj ,
let C(xs) be the total number of calls to UniDio to recover xs. We have C(x1) = 1.

If αj 6= 0, to recover xj WDS makes O(dj)C(xj−1) calls to UniDio as in this case we
expect Taylor coefficients to be non-zero. Therefore if all evaluation points are non-zero
C(xj) ∈ O(

∏j
i=2 di).

If H(xn) is the number of calls made by MHL to recover factors then

H(xn) ∈ O(dn · · · d2) +O(dn−1 · · · d2) + · · ·+O(d3d2) +O(d2)

If d ≥ di we obtain

H(xn) ∈ O(dn−1 + dn−2 + · · ·+ d) ∈ O(dn)

We see that as n increases the number of calls to Algorithm UniDio increases exponen-
tially especially for the case where evaluation points are non-zero.

If the evaluation points are all-zero then sparse polynomials remain sparse in all stages
of MHL and WDS. This is the case where WDS is very efficient (See Section 6.6), as
the number of MDP to be solved significantly decreases. This is the main advantage of
incremental design of MHL and explains why Wang’s second proposal [Wan78] behaves
better than his previous proposal with Rothschild [WR75].

For a non-zero evaluation, Taylor expansion most likely turns out to be dense, that is
most likely the Taylor coefficients become non-zero polynomials (See Section 4.4) and the
number of MDP to be solved by WDS increases rapidly.

As explained in Chapter 2 it is not always possible to choose evaluation points to be
zero, because Wang’s LCC does not work for all-zero (or many-zero) evaluation points, for
many practical examples (See Example 13 and also Section 6.6)

This leads us to search better ways to solve MDP than WDS, especially for the sparse
case where evaluation points are non-zero.

48

3.4 Solution via interpolation

Once again, as a first step let l = 1 and u,w ∈ Zp[x1, . . . , xj] be monic in the main variable,
say x1 and the problem is to find multivariate polynomials σ, τ ∈ Zp[x1, . . . , xj] such that

σu+ τw = c mod
〈
Id+1
j , p

〉
. (3.3)

We consider whether we can interpolate x2, . . . , xj in σ. If β ∈ Zp with β 6= αj , then we
have

σ(xj = β)u(xj = β) + τ(xj = β)w(xj = β) = c(xj = β) mod I
dj−1+1
j−1 .

For the ideal Kj = 〈x2 − α2, . . . , xj−1 − αj−1, xj − β〉 and Gj = gcd(umodKj , wmodKj),
we obtain a unique solution σ(x1, . . . , xj−1, β) iff Gj = 1. However it is possible that Gj 6= 1.
Let R = Resx1(u,w) be the Sylvester resultant of u and v taken in x1.

Going back to our discussion, since u,w are monic in x1 Proposition 20 implies that

Gj 6= 1⇐⇒ Resx1(umodKj , wmodKj) = 0⇐⇒ RmodKj = 0.

Therefore Pr[Gj 6= 1] = Pr[RmodKj = 0]. To compute an upper bound for this probability
we need Schwartz-Zippel Lemma.

Lemma 23. [Sch80, Zip90] Let f ∈ Zp[x1, . . . , xn] be a polynomial of total degree d. Assume
that f is not identically zero. Let S ⊆ Zp be any finite set. Then, if we pick α1, . . . , αn

independently and uniformly from S

Pr[f(α1, . . . , αn) = 0] ≤ d/|S|.

Now, proposition 20 also implies that deg(R) ≤ deg(u) deg(w) . Then by the Schwartz-
Zippel Lemma

Pr[Gj 6= 1] ≤ deg(u) deg(w)
p− 1 .

If β 6= αj is chosen at random and p is large, the probability that Gj = 1 is high so
interpolation is thus an option to solve the MDP. If Gj 6= 1, we could choose another β.
The bound above for Pr[Gj 6= 1] is a worst case bound. We will show in Chapter 5 that the
average probability for Pr[Gj 6= 1] = 1/p.

A natural algorithm for the solution to the MDP via interpolation is: (All computations
are in mod p)

1. If j = 1 then use UniDio to compute σ, τ ∈ Zp[x1] and return (σ, τ).

2. Initialize σ = 0, H = 0, M = 1.

3. Repeat

49

(a) Pick a random α ∈ Zp uniformly and pass to modulo (xj − α):
uα = u(x1, . . . , xj = α), wα = w(x1, . . . , xj = α) and
cα = c(x1, . . . , xj = α) ∈ Zp[x1, x2, . . . , xj−1].
Here if j = 2 and gcd(uα, wα) 6= 1 Restart.

(b) Apply the algorithm recursively to solve the equation σαuα + ταwα = cα to find
σα, τα ∈ Zp[x1, . . . , xj−1].

(c) Incrementally interpolate σ :
Solve H = σα mod (xj − α) and H = σ mod M for H ∈ Zp[x1, . . . , xj].

(d) Update the monomial M : M = M · (xj − α).

(e) If H = σ then check whether w | c − σu. If true, define τ = (c − σu)/w and
return(σ, τ) else σ ← H.

Note that the division in step 3-(e) is in Zp[x1, . . . , xj] and checking the exactness of this
division can be done by using the division algorithm for the multivariate case [CLO07].
For an efficient implementation using heaps which works well for the sparse case see also
[MP11, Joh74]. Since the solution is to the MDP is unique there must be a stabilization
and hence the result.

Solution for the non-monic case and l > 1: To see that the interpolation ap-
proach also works for the non-monic case and l > 1, first note the MDP condition that p -
LCx1(φIj (uw)) implies that the leading coefficients of u and w will not vanish mod (p, Ij)
and hence the argument based on the resultant is still valid in this case.

As a next step, we need to modify the interpolation procedure described above to make
it work for mod pl. We can choose to apply a Newton’s iteration as before to extend the
solution mod p to mod pl. But there is an easier way: This time the α’s will be chosen
from Zpl . This may yield a problem at step 3-(c). To overcome this problem we look closely
how the incremental interpolation works in mod p:

The aim is to find H ∈ Zp[x1, . . . , xj] such that H = σα mod (p, xj−α) and H = σ mod
(p,M). Note that M ∈ Zp[xj]. The division algorithm gives M = q(xj − α) + r for some
q ∈ Zp[xj] and r ∈ Zp. Then r−1M − r−1q(xj−α) = 1 mod p. So if we define s = r−1 then
sM = 1 mod (p, xj − α). Now we define H = σ + sMf where f = (σα − σ) |xk=α. Hence
H = σ mod M and H = σα mod (xj − α).

Now in Zpl [xj] the division algorithm will work since xj − α is monic. But if r =
M(α) = 0 mod p then r will not be invertible in mod pl. Hence to make the interpolation
algorithm work for l > 0, all we need in the procedure 3-(a) above to choose α ∈ Zpl such
that M(α) 6= 0 mod p .

Finally the condition p - LCx1(φIj (uw)) also implies that p - LC(w) ∈ Zpl . Hence LC(w)
will be invertible in Zpl and the division algorithm will work for the (c− σu)/w mod pl at
step 3-(e).

50

Example 24. Let p = 5 and q = p2 = 25. Consider the MDP example in Z25 where
I3 = 〈x2 = 1, x3 = 2〉

u = −7x1
4x2

2 − 12x3
4 − 12x1 + 1 , w = 6x1

4x3 + 4x1
2x2

2x3 + 2 and

c = −12x1
7x2

2 + 4x1
6x2

3 + 9x1
4x2

5 + 3x1
5x2

2x3−3x1
5x2x3

2−6x1
4x2

2x3
2 + 2x1

3x2
4x3

− 2x1
3x2

3x3
2 − 7x1

5x3
2 − 6x1

4x2
3 − x1

4x2
2x3 + 12x1

3x2
2x3

2 + 8x1
3x3

4 − 11x1
2x2x3

4

− 6x2
3x3

4 + 4x3
6 + 4x2x3

4 + 9x3
5 + 8x1

4 − 11x1
3x2 − 6x1x2

3 − 9x1
3 + 3x1

2x2 + x1x2
2

− x1x2x3 + 4x1x3
2 − 12x2

3 + 4x1x2 − 10x1x3 + 8x3
2 + 8x2 − 7x3

Note that

u(1)(x1) = φ〈I3,5〉(u) = −2x1
4 − 2x1 − 1, w(1)(x1) = φ〈I3,5〉(w) = x1

4 − x1
2 + 2

and gcd(u(1), w(1)) = 1 mod 5. We first choose α = 0 and get

H = −9x1
3 + 3x1

2x2 − 12x2
3 + 8x2.

Now M = x3. Then we choose α = 1 and update H,

H = −9x1
3 + 3x1

2x2 − 12x2
3 + 8x2 + x3.

Now M = x3(x3 − 1). Next we choose α = 11. But M(11) = 110 = 0 mod 5. So we skip
it. Then we choose α = 9 and update H,

H = −9x1
3 + 3x1

2x2 − 12x2
3 + 8x3

2 + 8x2 − 7x3

For the next choice of α we realize the stabilization of H. Then we assume σ = H and
check c−σu

w = −12x1x2
2 + 12x1x2x3 + 3x1x3. Note that all computations are in mod 25

and we have in fact the true solution pair (σ, τ) ∈ Z52 [x1, x2, x3].

3.5 Sparse interpolation

Our experiments showed that the solution via dense interpolation is not efficient enough.
It is exponential for sparse inputs. Therefore we are led to consider a sparse interpolation
approach for sparse u and w. Assuming that the solutions to the MDP are sparse we can
use the idea behind the computation of GCD via sparse interpolation by Zippel [Zip90].

51

We explain the idea of sparse interpolation with an example let

A = (x1
3 + x1x2

3x3 + 2x1x2x3
2 + 2)(2x1x2x3 + x1

2 + 3)

B = (x1
3 + x1x2

3x3 + 2x1x2x3
2 + 2)(x1

3 + x1x2 + x1x3 + 1)

and suppose we want to compute

g = gcd(A,B) = (x1
3 + (x2

3x3 + 2x2x3
2)x1 + 2) ∈ Z11[x1, x2, x3]

given the expanded form of inputs A and B. Suppose we computed recursively at x3 = 2

g1 = gcd(A(x1, x2, 2), B(x1, x2, 2)) = x3
1 + (2x3

2 − 3x2)x1 + 2 mod 11

and we want to compute a second image at x3 = −5

g2 = gcd(A(x1, x2,−5), B(x1, x2,−5)) mod 11

From g1 we will make the sparse interpolation assumption that

g = x3
1 + (f1(x3)x3

2 + f2(x3)x2)x1 + f3(x3)

for some polynomials f1, f2 and f3 in Z11[x3]. So g2 will be in the form

gf = x3
1 + (c1x

3
2 + c2x2)x1 + c3

for some constants c1, c2, c3 ∈ Z11. Now focus on the coefficients c1 and c2. Picking the
random values, say −3 and 2 for x2 we compute in Z11[x1] using the Euclidean algorithm

gcd(A(x1,−3,−5), B(x1,−3,−5)) = x3
1 − 4x1 + 2 = gf (x1,−3) mod 11

gcd(A(x1, 2,−5), B(x1, 2,−5)) = x3
1 + 5x1 + 2 = gf (x1, 2) mod 11

Equating the coefficients in x1 of LHS and RHS of the equations above, we obtain the
following linear systems mod 11: c3 = 2 and

−5c1 − 3c2 = −4

−3c1 + 2c2 = 5

Solving these linear systems mod 11 we get c1 = c2 = −5 and c3 = 2. We conclude that

g2 = x3
1 + (−5x3

2 − 5x2)x1 + 2 mod 11

52

Assuming that the form assumption is correct, to compute g2, what this small example
suggests to us is that we should focus on the non-zero coefficients of powers of x1 separately.
If the suggested form had a term say (d1x

4
2 + d2)x2

1 we could focus on d1, d2 separately and
work with a 2×2 linear system, instead of considering c1, c2, c3, d1, d2 all together and work
with a 5× 5 linear system.

Let the assumed form of the monic-GCD be

gf =
m∑
i=1

ci(x2, ..., xn)xni
1 where ci(x2, ..., xn) =

ti∑
j=1

cijx
γ2j

2 . . . x
γnj
n with cij 6= 0.

where c1(x2, . . . , xn) = 1. Suppose t is the maximum number of terms in the coefficients of
g, i.e. t = maxmi=1 #ti. In sparse interpolation we should get each ci(x2, ..., xn) by solving
at most (m − 1) t × t linear systems (for the leading term we don’t need that), by giving
random values to the (n− 1)-tuple (x2, . . . , xn). That is much more efficient than solving a
t(m − 1) × t(m − 1) linear system. As explained in [Zip90], by choosing evaluation points
carefully each linear system can be solved in O(t2) arithmetic operations in Zp.

Note that this algorithm is probabilistic, since each sparse interpolation based on the
assumption that coefficients which are zero in one dense interpolation will probably be zero
in all cases. For example in the example above g1 does not have the term x1x

2
2 and we

guessed that the it won’t have this term for the next step. If the actual GCD had the term
x1x

2
2(x3− 2) and then this term would be evaluated to 0 for x3 = 2 and the assumption for

g2 would be incorrect.
The nice thing is that the probability that the assumption is incorrect can be made

arbitrarily small by using a large enough range for evaluation points, i.e. using big primes,
based on Lemma 23, Schwartz-Zippel Lemma.

3.6 Solution via sparse interpolation

Once again, as a first step let l = 1 and u,w ∈ Zp[x1, . . . , xj] be monic in the main variable,
say x1 and the problem is to find multivariate polynomials σ, τ ∈ Zp[x1, . . . , xj] such that

σu+ τw = c mod
〈
Id+1
j , p

〉
. (3.4)

Following the sparse interpolation idea of Zippel in [Zip90], given a sub-solution σj(x1, . . . , xj =
αj) for αj ∈ Zp we use this information to create a sub-solution form σf and compute
σj(x1, . . . , xj = βj) for other random βj ’s in Zp with high probability if p is big. Suppose
the form of σj is

σf =
m∑
i=1

ci(x2, ..., xj)xni
1 where ci =

ti∑
k=1

cikx
γ2k
2 · · ·xγjk

j with cik ∈ Zp\{0}.

53

Let t = maxmi=1 ti be the maximum number of terms in the coefficients of σ. In sparse
interpolation we obtain each cik by solving m linear systems of size at most t × t. As
explained in [Zip90], each linear system can be solved in O(t2) arithmetic operations in Zp.
We then interpolate xj in σj from σj(x1, . . . , xj−1, βk) for k = 0, . . . ,degxj

(σj). Finally we
compute τj = (cj − σjuj)/wj .

This method will also work for the case l > 1 by a careful choice of evaluation points
as explained in Section 3.5 with one more additional condition: The sparse interpolation
routine method explained in [Zip90] uses Vandermonde matrices. To make the explanation
easier consider the Vandermonde matrix

V =

a b c

a2 b2 c2

a3 b3 c3

 .

We have det(V) = −abc (b− c) (a− c) (a− b). If a, b, c are all distinct in Zp then det(V) is
non-zero and hence invertible in Zp. So to make it invertible in Zpl we should choose p - abc
and the a, b, c shouldn’t be p apart. This condition can easily be checked in the sparse
interpolation routine. We take one more step before we give an outline of an algorithm to
solve an MDP problem via sparse interpolation.

3.6.1 First Improvement

The approach introduced in the preceding section solves the interpolation problem based
on projection down to Zp[x1]. To reduce the cost we tried projecting down to Zp[x1, x2]
because this will likely reduce the number t of evaluation points needed. Let the total degree
of σ in x1, x2 be bounded by d and let

σf =
∑
i+k≤d

cik(x3, ..., xj)xi1xk2 where cik =
sik∑
l=0

ciklx
γ3l
3 · · ·x

γjl

j with cikl ∈ Zp\{0}.

Let s = max sik be the maximum number of terms in the coefficients of σf . Here we solve
O(d2) linear systems of size at most s × s. For s < t, the complexity of solving the linear
systems decreases by a factor of (t/s)2. We also save a factor t/s in the evaluation cost,
which is often the most costly operation in sparse interpolation.

To solve the MDP in Zp[x1, x2] we have implemented an efficient dense bivariate diophan-
tine solver (BDP) in C. The algorithm incrementally interpolates x2 in both σ and τ from
univariate images in Zp[x1]. When σ and τ stabilize we test whether σ(x1, x2)u(x1, x2) +
τ(x1, x2)w(x1, x2) = c(x1, x2) using sufficiently many evaluations to prove the correctness
of the solution. The cost is O(d3) arithmetic operations in Zp where d bounds the total
degree of c, u, w, σ and τ in x1 and x2. We do not compute τ using division because that

54

could cost Θ(d4) arithmetic operations. This bivariate MDP solving algorithm is presented
as algorithm BSDiophant below.

3.6.2 The evaluation cost

The drawback of the interpolation method is the evaluation cost it brings. This is especially
the case when the number of terms and the number of the indeterminates of the polynomial
that we want to evaluate is high. In our experiments we found that the sparse interpolation
approach we propose reduces the time spent solving MDP’s but evaluation becomes the
most time dominating part of the factoring algorithm.

Suppose f =
∑s
i=1 ciXiYi where Xi is a monomial in x1, x2, Yi is a monomial in

x3, . . . , xn, 0 6= ci ∈ Zp and we want to compute

fj := f(x1, x2, x3 = αj3, . . . , xn = αjn), for j = 1, . . . , t.

To compute fj efficiently, one way is to pre-compute the powers of αi’s in (n − 2) ta-
bles and then do the evaluation using tables. We implemented this first. Let di =
deg(f, xi) and d = max3≤i≤n di. For a fixed j, computing the n − 2 tables of powers of
αji ’s (i.e. 1, αji , α

2j
i , . . . , α

dij
i) costs ≤ (n − 2)d multiplications. To evaluate one term ciYi

at (αj3, . . . , αjn) costs n − 2 multiplications using the tables. Then the cost of evaluating f
at (αj3, . . . , αjn) is s(n− 2) multiplications. Hence the total cost of t evaluations is bounded
above by CT = s(n− 2)t+ (n− 2)dt = t(n− 2)(s+ d) multiplications using tables.

However when we use sparse interpolation points of the form (αj3, . . . , αjn) for j = 1, . . . , t
[Zip90] we can reduce the evaluation cost by a factor of (n − 2) by a simple organization.
As an example suppose

f = x22
1 + 72x3

1x
4
2x4x5 + 37x1x

5
2x

2
3x4 − 92x1x

5
2x

2
5 + 6x1x

3
2x3x

2
4

and we want to compute fj := f(x1, x2, α
j
3, α

j
4, α

j
5) for 1 ≤ j ≤ t. Before combining and

sorting, we write the terms of each fj as

fj = x22
1 + 72αj4α

j
5x

3
1x

4
2 + 37(αj3)2αj4x1x

5
2 − 92(αj5)2x1x

5
2 + 6αj3(αj4)2x1x

3
2

= x22
1 + 72(α4α5)jx3

1x
4
2 + 37(α2

3α4)jx1x
5
2 − 92(α2

5)jx1x
5
2 + 6(α3α

2
4)jx1x

3
2.

Now let
c(0) := [1, 72, 37,−92, 6] and θ := [1, α4α5, α

2
3α4, α

2
5, α3α

2
4].

Then in a for loop j = 1, . . . , t we can update the coefficient array c(0) by the monomial array
θ by defining c(j)

i = c
(j−1)
i θi for 1 ≤ i ≤ s so that each iteration computes the coefficient

array
c(j) = [1, 72(α4α5)j , 37(α2

3α4)j ,−92(α2
5)j , 6(α3α

2
4)j]

55

Algorithm 7 SparseInt
Input : A big prime p and u,w, c ∈ Zp[x1, x2, . . . , xj] and Supp(σ) the support of σ ∈
Zp[x1, x2, . . . , xj] and u,w are monic in x1.
Output : The solution (σ, τ) for the MDP σu+ τw = c ∈ Zp[x1, x2, . . . , xj] or FAIL

1: Let σf =
∑

0≤i+k≤d cik(x3, ..., xj)xi1xk2 where cik =
∑sik
l=1 ciklMikl with cikl unknown

coefficients to be solved for and Mikl ∈ Supp(σ).
2: Let s = max sik = max #cik .
3: Pick (α3, . . . αj) ∈ (Zp\{0})j−2 at random.
4: Compute monomial evaluation sets

{Sik = {mikl = Mikl(α3, . . . , αj) : 1 ≤ l ≤ sik} for 0 ≤ i+ k ≤ d} .

If |Sik| 6= sik for some ik try a different choice for (α3, . . . , αj). If this fails repeatedly,
return FAIL. (p is not big enough)

5: for i from 1 to s do (Compute the bivariate images of σ)
6: Let Yi = (x3 = αi3, . . . , xj = αij).
7: Evaluate u(x1, x2, Yi), w(x1, x2, Yi), c(x1, x2, Yi) by the method explained in section

5.
8: Solve σi(x1, x2)u(x1, x2, Yi) + τi(x1, x2)w(x1, x2, Yi) = c(x1, x2, Yi) in Zp[x1, x2] for
σi(x1, x2) using BDP (see Section 3.6).

9: if BDP returns FAIL then
10: return FAIL (Yi is unlucky or there is no solution to the BDP).
11: end if
12: end for
13: for 0 ≤ i+ k ≤ d do
14: Construct and solve the sik × sik linear system{

sik∑
l=1

ciklm
n
ikl = coefficient of xi1xk2 in σn(x1, x2) for 1 ≤ n ≤ sik

}

for the coefficients cikl of cik(x3, . . . , xj). Because it is a Vandermonde system in mikl
which are distinct by Step 4 it has a unique solution.

15: end for
16: Substitute the values cikl in σf to get σ
17: if w | (c− σu) then
18: Set τ = (c− σu)/w and return (σ, τ)
19: else
20: return FAIL (σf is wrong)
21: end if

56

Algorithm 8 BSDiophant
Input A big prime p and u,w, c ∈ Zp[x1, x2, . . . , xj] where the MDP conditions satisfied.
Output (σ, τ) ∈ Zp[x1, x2, . . . , xj] such that σu + τw = c ∈ Zp[x1, x2, . . . , xj] or FAIL .
It returns FAIL if condition 2 of the MDP is not satisfied for the choice of any β in the
algorithm. This is detected in subroutine BDP.

1: if n = 2 then call BDP to return (σ, τ) ∈ Zp[x1, x2]2 or FAIL end if .
2: Pick β1 ∈ Zp at random
3: (uβ1 , wβ1 , cβ1)← (u(xj = β1), w(xj = β1), c(xj = β1)) ∈ Zp[x1, x2, . . . , xj−1]3.
4: (σ1, τ1)← BSDiophant(uβ1 , wβ1 , cβ1 , p).
5: if σ1 = FAIL then return FAIL end if
6: k ← 1, σ ← σ1, q ← (xj − β1) and σf ← skeleton of σ1.
7: repeat
8: h← σ
9: Set k ← k + 1 and pick βk ∈ Zp at random distinct from β1, . . . , βk−1

10: (uβk
, wβk

, cβk
)← (u(x1, . . . , xj = βk), w(x1, . . . , xj = βk), c(x1, . . . , xj = βk).

11: (σk, τk)←SparseInt(uβk
, wβk

, cβk
, σf , p) (Algorithm 7)

12: if σk = FAIL then return FAIL end if
13: Solve σ = h mod q and σ = σk mod (xj − βk) for σ ∈ Zp[x1, x2, . . . , xj].
14: q ← q · (xj − βk)
15: until σ = h and w|(c− σu)
16: Set τ ← (c− σu)/w and return (σ, τ).

using s = #f multiplications in the coefficient field to obtain

fj = x22
1 + 72(α4α5)jx3

1x
4
2 + 37(α2

3α4)jx1x
5
2 − 92(α2

5)jx1x
5
2 + 6(α3α

2
4)jx1x

3
2.

Then sorting the monomials and combining terms we get

fj = x22
1 + 72(α4α5)jx3

1x
4
2 + (37(α2

3α4)j − 92(α2
5)j)x1x

5
2 + 6(α3α

2
4)jx1x

3
2.

Note that sorting is time consuming so it should be done once at the beginning. Then
compute the arrays c(j) and then combine according to the sorting rule. In the example
above by looking at the terms of f we know that after the evaluation the first and the
second, also the third and the fourth terms of f will collide. Hence after computing each
c(j) we know that the sum of the first and the second, also the third and the fourth terms
of each array will correspond to the coefficients of fj , so we won’t spend time to sort the
terms of each unsorted fj .

With the organization described above one evaluates Yi at (α3, . . . , αn) in (n− 3) mul-
tiplications using tables. The cost of n − 2 tables of powers is ≤ (n − 2)d. Then at the
first step the cost of (creating monomial array) is ≤ s(n − 3) + (n − 2)d. After that the
cost of each t evaluations is st multiplications. Hence the total cost is upper bounded by
CN = st+s(n−3)+(n−2)d. Then CT −CN = (t−1)((n−2)d+(n−3)s) > (t−1)(n−2)d.
Hence the relative gain is approximately a factor of (n− 2).

57

For a recent research along this direction, see [MW17]. See also [BLS03]. The complex-
ity, CN ∈ O(st) can be reduced to O(s log2 t) by using FFT based methods.

58

Chapter 4

Sparse Hensel Lifting (SHL)

4.1 The main assumption of SHL

We start Chapter 4 by recalling the notation. Also, by now so as not to complicate the
explanation we will assume that the input polynomial to the MHL algorithm is monic and
l = 1.

Suppose that we seek to factor a multivariate polynomial a ∈ R = Z[x1, . . . , xn] and
a = fg with f, g in R. As explained in Chapter 2, the multivariate Hensel lifting algorithm
(MHL) developed by Yun [Yun74] and improved by Wang [Wan78] uses a prime number
p and an ideal I = 〈x2 − α2, . . . , xn − αn〉 of Zp[x1, . . . , xn] where α2, α3, . . . , αn ∈ Zp is
a random evaluation point chosen by the algorithm. As discussed in Section 2.1 we want
αi = 0 if possible.

For a given polynomial h ∈ R, let us use the notation

hj := h(x1, . . . , xj , xj+1 = αj+1, . . . , xn = αn) mod p

so that a1 = a(x1, α2, . . . , αn) mod p. The input to MHL is a, I, f1, g1 and p such that
a1 = f1g1 and gcd(f1, g1) = 1 in Zp[x1]. The input factorization a1 = f1g1 is obtained by
factoring a(x1, α2, . . . , αn) over the integers.

Let dj denote the total degree of aj with respect to the variables x2, . . . , xj and Ij =
〈x2 − α2, . . . , xj − αj〉 with j ≤ n. Wang’s MHL lifts the factorization a1 = f1g1 variable
by variable to aj = fjgj ∈ Zp[x1, . . . , xj]/I

dj+1
j . It turns out that fn ≡ f mod p and

gn ≡ gmod p. For sufficiently large p we recover the factorization of a over Z.
Factoring multivariate polynomials via Sparse Hensel Lifting (SHL) uses the same idea

of the sparse interpolation from Section 3.5 . At the (j − 1)th step of MHL we have

fj−1 = xdf1 + cj1M1 + · · ·+ cjtjMtj

gj−1 = xdg1 + sj1N1 + · · ·+ sjrl
Nrl

59

where tj is the number of non-zero terms that appear in fj−1, Mk’s and Nl’s are distinct
monomials in x1, . . . , xj−1 and cjk, sjl ∈ Zp. Then SHL makes a probabilistic assumption
that

fj = xdf1 + Λj1(xj)M1 + · · ·+ Λjtj (xj)Mtj

gj = xdg1 + Γj1(xj)N1 + · · ·+ Γjrl
(xj)Nrl

for 1 ≤ k ≤ tj and 1 ≤ l ≤ rj , where

Λjk = c
(0)
jk + c

(1)
jk (xj − αj) + c

(2)
jk (xj − αj)2 + · · ·+ c

(djk
)

jk (xj − αj)djk

Γjl = s
(0)
jl + s

(1)
jl (xj − αj) + s

(2)
jl (xj − αj)2 + · · ·+ s

(djl
)

jl (xj − αj)djl

with c(0)
jk := cjk and where df = degx1(f), djk = degxn

(Λjk), with c
(i)
jk ∈ Zp for 0 ≤ i ≤ djk ,

and s(0)
jl := sjl and where dg = degx1(g), djl = degxn

(Γjl), with s
(i)
jl ∈ Zp for 0 ≤ i ≤ djl .

So for each step j, the assumption of SHL is pictorially

aj = fjgj = (xdf1 + Λj1M1 + · · ·+ ΛjtjMtj)(xdg1 + Γj1N1 + · · ·+ ΓjrjNrj)

⇑

aj−1 = fj−1gj−1 = (xdf1 + cj1M1 + · · ·+ cjtjMtj)(xdg1 + sj1N1 + · · ·+ sjrjNrj) (4.1)

where sjk, rj and Nk are defined as above.
Of course, this assumption is probabilistic. fj (or gj) may contain a term ΛM where M

is a monomial in x1, . . . , xj−1, Λ ∈ Zp[xj] and Λ(αj) = 0. If αj 6= 0 is chosen random then
Pr[Λ(αj) = 0] ≤ degxj

(Λ)/p ≤ dj/p. So at the jth step, this probability is ≤ dj(rj + tj)/p.
Note that if Λ ∈ Zp[xj] is a monomial then αj 6= 0 ⇒ Λ(αj) 6= 0. Therefore, if the

number of terms of f, g is Tf , Tg resp. then at the jth step the probability that SHL
assumption is wrong is ≤ d(rj + tj)/2p ≤ d(Tf + Tg)/2p. Hence, in total, the probability
that SHL assumption is wrong is ≤ d(n− 1)(Tf + Tg)/2p.

Therefore, if the factors to be computed are sparse and the evaluation points (α2, . . . , αn)
are random and p is big then the SHL assumption is reasonable and true with high prob-
ability. In fact, for many practical sparse problems the probability bound given above is
very generous. (See Chapter 5).

We close this section with a historical remark. In [Zip93] Zippel claims that, although
the sparse interpolation algorithm is more widely known than the SHL discussed in this
section, the SHL dates to the spring of 1977. Trager suggested to Zippel that the same
techniques could be used for modular interpolation in May 1978.

60

4.2 Sparse Hensel Lifting by Zippel (ZSHL)

Zippel’s sparse Hensel lifting (ZSHL) is a combination of the SHL idea discussed in the
previous section and the multivariate version of Newton’s iteration [Zip81, Zip93]. It does
not follow the MHL procedure described by Zassenhaus. We will briefly sketch the idea and
give a concrete example to show how it works. For more detail see [Zip81].

The reader may want to read the explanation below along with the Example 26.
Recall the Eqn (4.1). At the jth step of MHL we have the knowledge of aj and by

looking at the factorization of aj−1, we have the assumption

aj = (xdf1 + Λj1M1 + · · ·+ ΛjtjMtj)(xdg1 + Γj1N1 + · · ·+ ΓjrjNrj). (4.2)

Expanding the RHS of Eqn (4.2) and equating the coefficients of the monomials in x2, . . . , xj−1

on the LHS and RHS of Eqn (4.2), the aim of ZSHL is to compute Λjk,Γjl by using the
multivariate version of Newton’s iteration and sparse interpolation techniques discussed in
Section 3.5.

Now, in a more general setting, let R = Zp[x2, . . . , xn] and we are given a system of
polynomial equations over R

f1(θ1, . . . , θm) = p1(x2, . . . , xm)
...

fn(θ1, . . . , θm) = pn(x2, . . . , xm) (4.3)

where m ≤ n and pi are polynomials in R. In addition suppose we are given an oracle
that provides a solution to this system modulo I = 〈xi − αi, i = 2, . . . , n〉 for any choice of
αi ∈ Zp. Let us also be given bounds on the degree of each variable xj of θi’s.

Our aim is to solve Eqn (4.3) for θi’s, i.e. if we define gi = fi(θ1, . . . , θm)−pi(x2, . . . , xm)
then gi ∈ R[θ1, . . . , θm] and we are looking for a common root of {gi} in Rm.

The following proposition is by Zippel [Zip93].

Proposition 25. Let ~g = (gi(θ1, . . . , θn), i = 1, . . . , n) be a set of polynomials defined in an
integral domain R with a prime ideal ℘. Let J denote their Jacobian with respect to θi. Let
~s = (s1, . . . , sn) be a solution of ~g modulo ℘ such that the determinant of J (s1, . . . , sn) has
an inverse in R/℘. Then there exist unique elements ŝ = (ŝ1, . . . , ŝn) of R℘ with ŝi = si

mod ℘ for which ~g(ŝ1, . . . , ŝn) = 0.

61

Proof. Consider gj for some j ∈ {1, . . . , n}. Its Taylor series expansion at ~s ∈ Rm is

gj = gj(~s) +
n∑
i=1

∂gj
∂θi

(~s)(θi − si)

+ 1
2

n∑
i=1

n∑
k=1

∂2gj
∂θi∂θk

(~s)(θi − si)(θk − sk) + · · · (4.4)

The first summation in Eqn(4.4) is the inner product of the vectors

∂gj

∂~θ
(~s) = (∂gj

∂θ1
(~s), . . . , ∂gj

∂θn
(~s)) and (~θ − ~s) =

θ1 − s1

...
θn − sn

 .

Using this notation the first two terms of Eqn (4.4) is

gj(~θ) = gj(~s) + ∂gj

∂~θ
(~s) · (~θ − ~s) + · · ·

Now more generally −→g = (gi(θ1, . . . , θn), i = 1, . . . , n) is a map from Rn → Rn. Since R is
an integral domain and ℘ is prime, the natural map R → R℘ is injective, ~g induces a map
Rn℘ → Rn℘ which can locally be expressed as

~g(~θ) = ~g(~s) + J (~s) · (~θ − ~s) + · · ·

where J (~s) is the Jacobian matrix

J (~s) = ∂~g

∂~θ
=

∂g1
∂θ1

∂g1
∂θ2

· · · ∂g1
∂θn

∂g2
∂θ1

∂g2
∂θ2

· · · ∂g2
∂θn...

∂gn

∂θn

∂gn

∂θ2
· · · ∂gn

∂θn

 .

Now let ~α ∈ Rn℘ be in the kernel of ~g. If we define ~α(0) = ~s and ~α(k) as the image of ~α in
(R/℘(k+1))n then ~g(~α) = ~g(~α(k)) mod ℘k. Now, by expanding ~g at ~α− ~α(k−1) we get

0 = ~g(~α(k−1)) + J (~α(k−1)) · (~α− ~α(k−1)) +O((~α− ~α(k−1))2). (4.5)

The term O((~α−~α(k−1))2) is in ℘2. If the rank of the Jacobian J (~s) is n, then it is invertible
and we get

~α− ~α(k−1) = −J (~s)−1 · (~α− ~α(k−1)) mod ℘k. (4.6)

If we define ŝ as the projective limit of the coherent sequence ~α(k)’s constructed by an
iterative use of Eqn(4.6), we have the desired solution. To see the uniqueness, assume that

62

(ŷ1, . . . , ŷn) also satisfies the proposition and k is the smallest value for which

x̂i 6= ŷi mod ℘k+1 (4.7)

for some i. Note that k > 0 and

(ŝ1, . . . , ŝn) = (ŷ1, . . . , ŷn) = ~α(k−1) mod ℘k.

But then

(ŝ1, . . . , ŝn)− ~α(k−1) = −J (~α(0))−1 · (~α− ~α(k−1)) mod ℘k+1

(ŷ1, . . . , ŷn)− ~α(k−1) = −J (~α(0))−1 · (~α− ~α(k−1)) mod ℘k+1

which contradicts to 4.7.

Based on Proposition 25, ZSHL applies a recursive procedure: At the kth stage we have
a system of the form

f1(θ1, . . . , θm) = p1(x2, . . . , xk)
...

fn(θ1, . . . , θm) = pn(x2, . . . , xk). (4.8)

Next we choose αk ∈ Zp and solve Eqn(4.8) modulo (xk − αk) to get

θi = ci1M1 + · · ·+ citiMti i = 1, . . . , n.

Let T =
∑n
i=1 ti. Then we introduce T new variables Λij , 1 ≤ j ≤ ti, one for each possible

coefficient θi. By using the sparse interpolation idea, each of the equations in Eqn (4.8) is
now re-written using Λij :

fj(ci1M1 + · · · + citiMti , . . . , ci1M1 + · · · + citiMti) = p1(x1, . . . , xk−1;xk) (4.9)

By equating the coefficients of the monomials in x1, . . . , xk−1 on the LHS and RHS of
Eqn(4.9) we get a new system of equations

g1(Λ11, . . . , Λmtm) = q1(xk)
...

gN (Λ11, . . . , Λmtm) = qN (xk) (4.10)

63

From Eqn (4.8) we know that

Λij = cij mod (xk − αk) (4.11)

If the Jacobian of Eqn (4.10) is not zero, we use this as a starting point for multivariate
Newton’s iteration to lift Eqn (4.11) to a solution modulo (xk − αk)l for any l:

Λij = cij + c
(1)
ij (xk − αk) + c

(2)
ij (xk − αk)2 + · · ·

After sufficiently many iterations we expand and rewrite Λij as

Λij = dij + d
(1)
ij xk + d

(2)
ij x

2
k + · · ·

and finally the solution to Eqn (4.8) is computed as

θi = (di1 + d
(1)
i1 xk + d

(2)
i1 x

2
k + · · ·)M1 + · · ·+ (diti + d

(1)
iti
xk + d

(2)
iti
x2
k + · · ·)Mti

For some problems there will be more equations than unknowns and thus the Jacobian is
not a square. In this case a subset of these equations is used. Since this is a probabilistic
approach at every stage k, the solutions obtained should be verified.

Now we give a concrete example how to use this procedure to factor a multivariate
polynomial.

Example 26. Suppose that our aim is to factor

F = x1
3 + x1x2

3x3
3 − x1

2x2
2x3 − x1

2x2x3
2 + 6x1x2x3

3 − x2
2x3

2 − 6x1
2x3 + x1x2. (4.12)

We choose p = 31 , evaluation points α2 = 2, α3 = 1 and then compute

F (x1, x2 = 2, x3 = 1) = (x1 − 2)
(
x1

2 − 10x1 + 2
)
. (4.13)

Following the sparse interpolation idea we assume that

F = (x1 − θ1)
(
x1

2 − θ2x1 + θ3
)

(4.14)

where θi = θi(x2, x3) for 1 ≤ i ≤ 3. Equating coefficients in x1 of Eqn (4.12) with Eqn
(4.14) we obtain the set of equations

E = [θ1θ3 = x2
2x3

2, θ1θ2 + θ3 = x2
3x3

3 + 6x2x3
3 + x2, θ1 + θ2 = x2

2x3 + x2x3
2 + 6x3].

64

To solve this system of equations for θi ∈ Zp[x2, x3], we first reduce to modulo x3 − 1 by
defining wi = θi(x2, x3 = 1) for 1 ≤ i ≤ 3 and obtain

G = E(x3 = 1) = [x2
2−w1w3 = 0, x2

3−w1w2−w3 + 7x2 = 0, x2
2−w1−w2 +x2 + 6 = 0].

Before we start the iteration, first we compute the Jacobian ∂Gi/∂wj for 1 ≤ i, j ≤ 3

J =

−w3 0 −w1

w2 w1 1

−1 −1 0

 .

Note that by construction none of the terms of Gi will be in the form wjx
k
2. So when taking

the derivatives ∂Gi/∂wj , the terms containing the variable x2 will disappear and the entries
of J will be formed by polynomials in wi’s. We have det(J) = −w1

2 + w1w2 − w3. We
need to start the iteration with the choice of wi such that det(J) 6= 0 mod p. We start by
choosing w = [3, 15, 3] and then compute det(J(w)) = 2 mod p and

Jw = J(w) =

−3 0 −3

15 3 1

−1 −1 0

 mod p ⇒ J−1
w =

16 17 20

15 14 10

25 14 11

 mod p.

So we start by initializing the array s = [3, 15, 3] and start the multiterm version of Newton’s
iteration (all computations are in mod p).

1. For j from 1 to 2 do

2. ti ← Gi(wi = si) for 1 ≤ i ≤ 3.

3. qi ← ti/(x2 − 3)j for 1 ≤ i ≤ 3.

4. Q← [q1 q2 q3]T

5. c← J−1
w ·Q

6. C ← c(x2 = 3).

7. si ← si + Ci(x2 − 3)j

8. End for loop.

After the iteration we have s = [x2, x
2
2 + 6, x2]. Hence we conclude that

w = [x2, x
2
2 + 6, x2].

65

This time again following the sparse interpolation idea we assume that

θ1 = h1(x3)x2, θ2 = h2(x3)x2
2 + h3(x3), θ3 = h4(x3)x2.

Now substituting these into E we obtain

L = [−x2
2x3

2 = −h1x2
2h4, x2

3x3
3 + 6x2x3

3 + x2 = h1h2x2
3 + h1h3x2 + h4x2,

− x2
2x3 − x2x3

2 − 6x3 = −h2x2
2 − h1x2 − h3].

From L we deduce

K = [−x3
2 = −h1h4, 6x3

3+1 = h1h3+h4, x3
3 = h1h2,−6x3 = −h3,−x3

2 = −h1,−x3 = −h2].

Following the same procedure this time by 4 × 4 Jacobian matrix which has a non zero
determinant at the chosen initializations for hi, 1 ≤ i ≤ 4 , as above we get

h1 = x2
3, h2 = x3, h3 = 6x3, h4 = 1.

Finally substituting these equations into Eqn (4.14) we get

F =
(
x1 − x2x3

2
) (
x1

2 − x3
(
x2

2 + 6
)
x1 + x2

)
.

This is in-fact the true factorization.

4.2.1 Some remarks on ZSHL

In [Zip81], it is claimed that this organization of Hensel lifting, for all practical purposes
does not exhibit the exponential behaviour of Wang’s incremental design of MHL. However
it is a question how efficient this algorithm will be for practical purposes. ZSHL is trying
to recover one variable at a time, and at each stage, tries to solve all diophantine equations
at once with the help of the Jacobian matrix (See [Zip93]). Even for this small example
Wang’s incremental design behaves better then ZSHL without the SHL assumption. When
we consider the examples where the number of terms of each factor is 100 terms, at the last
step the Jacobian matrix becomes (200×200). In general if the factors f, g to be computed
have s, t terms respectively, then at the last step the expected size of the Jacobian matrix is
(s+ t)×(s+ t). Hence, extracting the equations, forming the Jacobian matrix and inverting
it takes too much time. This hidden cost is not negligible according to our experiments.
There is no complexity analysis given in [Zip81] for this method.

Although the idea of ZSHL is important as a first step to factor sparse polynomials,
according to our experiments, in practice, this method is not effective. Next, we review a
simpler and a better approach to SHL proposed by Kaltofen in [Kal85].

66

4.3 Sparse Hensel Lifting by Kaltofen (KSHL)

In a classical implementation of MHL, at the jth step just before the loop one applies the
leading coefficient correction (LCC). Kaltofen’s proposal for SHL in [Kal85] follows the
incremental design of MHL by Wang and offers a different LCC from Wang’s LCC. It is
done in the for loop. As we noted earlier we will be using Wang’s LCC (before the for loop).
So, to have a fair comparison with the solution that we will propose in the next section,
from now on we will explain and develop an optimized version of Kaltofen’s SHL for the
monic case.

The reader may want to read the following discussion along with Example 27.
Following the same notation introduced in Section 4.1, let at (j − 1)th step we have

fj−1 = cj1M1 + · · ·+ cjtjMtj

where tj is the number of non-zero terms that appear in fj−1, Mk’s are the distinct mono-
mials in x1, . . . , xj−1 and cjk ∈ Zp for 1 ≤ k ≤ tj . Then at the jth step SHL assumes

fj = Λj1M1 + · · ·+ ΛjtjMtj

where for 1 ≤ k ≤ tj

Λjk = c
(0)
jk + c

(1)
jk (xj − αj) + c

(2)
jk (xj − αj)2 + · · ·+ c

(djk
)

jk (xj − αj)djk .

with c(0)
jk := cjk and where djk = degxn

(Λjk) with c
(i)
jk ∈ Zp for 0 ≤ i ≤ djk . The assumption

is the same for the factor gj−1.

To recover fj from fj−1 and gj from gj−1, during the jth step of MHL (see Algorithm
5) one starts with σj0 = fj−1, τj0 = gj−1, then in a for loop starting from i = 1 and
incrementing it while the error term and its ith Taylor coefficient is non-zero, by solving
MDP’s

σj0τji + τj0σji = e
(i)
j in Zp[x1, . . . , xj−1] (4.15)

for 1 ≤ i ≤ max(degxj
(fj), degxj

(gj)).

After the loop terminates we have fj =
∑degxj

(fj)
k=0 σjk(xj − αj)k. On the other hand if

the assumption of SHL is true then we have also

fj = xdf1 + (
dj∑
i=0

c
(i)
j1 (xj − αj)i)M1 + · · ·+ (

dj∑
i=0

c
(i)
jtj

(xj − αj)i)Mtj

= xdf1 +
dj∑
i=0

(c(i)
j1M1 + · · ·+ c

(i)
jtj
Mtj)(xj − αj)i.

67

Similarly for gj . Hence we see that if the assumption of SHL is true then the support of
each σjk will be a subset of the support of fj−1. Therefore we can use fj−1 as the skeleton
of the solution of each σjk. The same is true for τjk.

Now let gj−1 = xdg1 + sj1N1 + · · ·+ sjrjNrj . To solve the MDP’s in Eqn(4.15) at the jth

step, before the loop, we introduce unknowns uk for 1 ≤ k ≤ tj + rj and assume that

σji = u1M1 + · · ·+ utjMtj

τji = utj+1N1 + · · ·+ utj+rjNrj .

After this assumption, by expanding Eqn (4.15) and equating the coefficients of the same
monomials appearing on the LHS and the RHS of Eqn (4.15) one obtains a system of linear
equations. By construction these equations will be homogeneous linear equations in the
uk’s. Hence one has to solve a system of linear equations to get the factors.

At the jth step of MHL , throughout the loop σj0, τj0 remains the same. So, if the SHL
assumption is true the assumed solution structures of σji and τji will remain the same on
the LHS but only the RHS of Eqn (4.15) will change. Hence just before the loop it is enough
to find rj + tj linearly independent equations among O(rjtj) linear equations while keeping
track of which monomials they correspond. We call this monomial set Mon, construct the
corresponding matrix L, and compute L−1.

Then in the for loop, for each i, one simply has to compute the Taylor coefficient of e(i)
j

of the error, extract the coefficients of it corresponding to each monomial in Mon, form the
related vector v, and then simply compute w = L−1v to recover uk’s.

It may be possible that there is not enough linearly independent equations. In this case
we terminate the algorithm. Algorithm 9 below describes the jth step of KSHL.

Before we discuss further how effective this approach is, it is helpful to see a working
example.

Example 27. Suppose we seek to factor a = fg where

f = x1
5 + 3x1

2x2x3
2 − 7x1

4 − 4x1x3 + 1

g = x1
5 + x1

2x2x3 − 7x3
4 − 6

Let α3 = 2, p = 231− 1. Suppose MHL is at the last step, i.e. j = 3 and we want to recover
the variable x3. Before lifting we have a and

f (0) := f(x3 = 2) = x1
5 − 7x1

4 + 12x1
2x2 − 8x1 + 1

g(0) := g(x3 = 2) = x1
5 + 2x1

2x2 − 118.

68

Algorithm 9 jth step of optimized KSHL
Input : aj ∈ Zp[x1, . . . , xj], fj−1, gj−1 ∈ Zp[x1, . . . , xj−1] and αj ∈ Zp where aj , fj−1, gj−1
are monic in x1. Also, aj(x1, . . . , xj−1, xj = αj) = fj−1gj−1.

Let fj−1 = xdf1 + cj1M1 + · · · + cjtjMtj and gj−1 = xdg1 + sj1N1 + · · · + sjrjNrj where
M1, . . . ,Mtj , and N1, . . . , Nrj are monomials in x1, . . . , xj−1 and df = degx1 f and dg =
degx1 g. Output : fj , gj ∈ Zp[x1, . . . , xj] such that aj = fjgj
or FAIL (No such factorization exists.)

1: (σj0, τj0)← (fj−1, gj−1).
2: (σj , τj)← (σj0, τj0).
3: monomial ← 1.
4: Introduce unknowns u1, . . . , urj+tj and D ← σj0(u1N1 + · · ·+ urjNrj) + τj0(urj+1M1 +
· · ·+ utjMtj)

5: Expand D and collect the coefficients of the monomials in x1, . . . , xj−1. Each coefficient
is a homogeneous linear equation in uk’s.

6: Let S be the array of all these homogeneous equations and Mon be the array of mono-
mials such that Si is the coefficient of Moni in the expansion of D.

7: Find i1, . . . , irj+tj such that E = {Si1 , . . . , Sirj +tj
} is a linearly independent set. Do this

choosing equations of the form of c uk for some constant c first.
8: if no such E exists then return FAIL (SHL assumption is wrong) end if
9: Construct the (rj + tj) × (rj + tj) matrix L corresponding to the set E such that the

unknown ui corresponds to ith column of L
10: Compute L−1.
11: error ← aj − fj−1 gj−1
12: for i from 1 to deg(aj , xj) while error 6= 0 do
13: monomial ← monomial × (xj − αj)
14: c← coefficient of (xj − αj)i in the Taylor expansion of the error about xj = αj
15: if c 6= 0 then
16: for k from 1 to rj + tj do
17: vk ← the coefficient of Monik of the polynomial c
18: end for
19: w ← L−1v
20: σji ←

∑tj
k=1wkMk and τji ←

∑rj

k=1wk+tjNk.
21: (σj , τj)← (σj + σji ×monomial, τj + τji ×monomial).
22: error ← aj − σjτj .
23: end if
24: end for
25: if error 6= 0 then return FAIL else return (σj , τj) end if

69

If the assumption of SHL is true then we have

f =
degx3f∑
i=0

fi(x3 − 2)i and g =
degx3 g∑
i=0

gi(x3 − 2)i

where each fi and gi is in the form

fi = u
(i)
1 x1

4 + u
(i)
2 x1

2x2 + u
(i)
3 x1 + u

(i)
4

gi = u
(i)
5 x1

2x2 + u
(i)
6

for some unknowns C = {u(i)
1 , u

(i)
2 , u

(i)
3 , u

(i)
4 , u

(i)
5 , u

(i)
6 }.

At the beginning the unknowns are C = {u1, u2, u3, u4, u5, u6} in Zp. We construct

D =
(
x1

5 − 7x1
4 + 12x1

2x2 − 8x1 + 1
) (
u5x1

2x2 + u6
)

+
(
x1

5 + 2x1
2x2 − 118

) (
u1x1

4 + u2x1
2x2 + u3x1 + u4

)
.

Expanding D we see the system of homogeneous linear equations as coefficients

D = u1x1
9+(u2 + u5)x1

7x2+(2u1 − 7u5)x1
6x2+u3x1

6+(u4 + u6)x1
5+(2u2 + 12u5)x1

4x2
2

+ (−118u1 − 7u6)x1
4 + (2u3 − 8u5)x1

3x2 + (−118u2 + 2u4 + u5 + 12u6)x1
2x2

+ (−118u3 − 8u6)x1 − 118u4 + u6

We need 6 linearly independent equations from these. First we check whether there are any
equations in one unknown. In this example we see that u1, u3 corresponding to monomials
x1

9, x1
6 are there already. Then we go over the equations one by one to get a rank 6 system.

In this example we find that equations corresponding to the set

Mon = {x1
9, x1

6, x1
7x2, x1

6x2, x1
5, x1

4}

are linearly independent. Then we prepare the matrix A

A :=

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 1 0

2 0 0 0 −7 0

0 0 0 1 0 1

−118 0 0 0 0 −7

70

In the following e(k)
3 denotes the coefficient of (x3−2)k in the Taylor expansion of the error

about x3 = 2. Let also f0 := f (0), g0 := g(0), f (k) :=
∑k
i=0 fi(x3−2)i, g(k) :=

∑k
i=0 gi(x3−2)i.

In the algorithm 4.1, the vector v is constructed by extracting the coefficients of e(k)
3

corresponding to monomials inMon = {x1
9, x1

6, x1
7x2, x1

6x2, x1
5, x1

4} and w = A−1v mod
p.

Now for the loop, i = 1 :

error = a− f (0)g(0)

e
(1)
3 = 13x1

7x2 − 7x1
6x2 − 4x1

6 + 36x1
4x2

2 − 224x1
5

+1568x1
4 − 16x1

3x2 − 4103x1
2x2 + 2264x1 − 224

v =
[

0 −4 13 −7 −224 1568
]

w =
[

0 12 −4 0 1 −224
]

f (1) = f (0) +
(
12x1

2x2 − 4x1
)

(x3 − 2)

= x1
5 − 7x1

4 + 12x1
2x2x3 − 12x1

2x2 − 4x1x3 + 1

g(1) = g(0) +
(
x1

2x2 − 224
)

(x3 − 2)

= x1
5 + x1

2x2x3 − 224x3 + 330

i = 2:

error = a− f (1)g(1)

e
(2)
3 = 3x1

7x2 + 6x1
4x2

2 − 168x1
5 + 1176x1

4 − 2370x1
2x2 + 1344x1 − 168

v =
[

0 0 3 0 −168 1176
]

w =
[

0 3 0 0 0 −168
]

f (2) = f (1) + 3x1
2x2(x3 − 2)2

= x1
5 + 3x1

2x2x3
2 − 7x1

4 − 4x1x3 + 1

g(2) = g(1) − 168(x3 − 2)2

= x1
5 + x1

2x2x3 − 168x3
2 + 448x3 − 342

71

i = 3 :

error = a− f (2)g(2)

e
(3)
3 = −56x1

5 + 392x1
4 − 672x1

2x2 + 448x1 − 56

v =
[

0 0 0 0 −56 392
]

w =
[

0 0 0 0 0 −56
]

f (3) = f (2) + 0

= x1
5 + 3x1

2x2x3
2 − 7x1

4 − 4x1x3 + 1

g(3) = g(2) − 56 (x3 − 2)3

= x1
5 + x1

2x2x3 − 56x3
3 + 168x3

2 − 224x3 + 106

At the end of the 3rd iteration we have recovered f and g can be obtained by early
detection via trial division. But let’s go further.

for i = 4 :

e
(4)
3 = −7x1

5 + 49x1
4 − 84x1

2x2 + 56x1 − 7

v =
[

0 0 0 0 −7 49
]

w =
[

0 0 0 0 0 −7
]

f (4) = f (3) + 0

= x1
5 + 3x1

2x2x3
2 − 7x1

4 − 4x1x3 + 1

g(4) = g(3) − 7 (x3 − 2)4

= x1
5 + x1

2x2x3 − 7x3
4 − 6

for i = 5, error = a− f (4)g(4) = 0 and we have the factors!

4.3.1 Some remarks on KSHL

We have implemented our optimized version KSHL in Maple and made experiments. The
most time consuming step is the step 7 of Algorithm 9 where one has to find rj + tj linearly
independent equations out of O(rjtj) linear equations and invert the corresponding matrix.
This is not an easy task, since as we noted one should keep track of the monomial to which
the linear equation corresponds. Therefore the most obvious way to get the system is to
start with a set of one equation and set the rank= 1, then each time add a new equation to
the set if it increases the previous rank by 1, until we reach a full rank rj + tj . To do this
we have used Maple’s RowReduce function which performs in-place Gaussian elimination
on the input mod p Matrix L. This function is implemented in C and optimized. The
time complexity is the time complexity of Gaussian elimination O((rj + tj)3) plus the time
complexity of failed cases, which is according to our experiments not negligible.

72

One can argue that taking random linear combinations of equations would rapidly gener-
ate linearly independent equations but this would depend on the total number of equations
which is quadratic in rj + tj . Another hidden cost is that it requires O((rj + tj)2) space.

In our experiments we have observed that this algorithm works well for very sparse
polynomials but relatively poorly otherwise. According to our experiments, although our
optimized version of KSHL is significantly faster than described in [Kal85], it is still slower
than Wang’s algorithm for most of the cases (see Chapter 6.6).

Suppose that the degree of the factors are d1j and d2j . In practice one obtains the
factor which has the smallest degree first, say in this case d1j ≤ d2j , and gets the other
factor by trial division. On the other hand, for the non-zero ideal point αj , since even a
sparse polynomial turns out to be dense in 〈xj − αj〉-adic expansion, one expects to solve
d1j MDP’s. If we proceed in the way described in [Kal85], we need to set up a system of
equations d1j times and hence need to find a linearly independent system d1j many times.
However in our organization we need to set up system of equations only once as can be seen
from Algorithm 9. Hence the cost of Gauss elimination decreases from O(d1j(rj + tj)3) to
O((rj + tj)3).

It should be mentioned that for very sparse problems the system of homogeneous equa-
tions contains many equations of the form cuk for some constant c. In our implementation
we took advantage of this observation to reach the full rank as fast as possible. We use
these equations first, substitute them and then try to find a set of linearly independent
equations for the remaining. We have implemented this version too. The drawback is that
in this case at each step in the for loop one should construct another matrix and a vector
since the new equations are no longer homogeneous. We have observed that it does not
bring any advantage and it is even worse for practical problems. For example when we are
trying to factor the determinants of Toeplitz matrices or Cyclic matrices we have observed
that there is no simple homogeneous equation of the form cuk.

4.4 Sparse Hensel Lifting by Monagan & Tuncer (MTSHL)

In this section we state one of the main ideas of MTSHL and give the pseudo-code for
it. Before we go into the details we explain the idea of MTSHL by an example. Let
fj ∈ Zp[x1, . . . , xj] be a factor to be computed at the jth step of MHL and αj ∈ Zp be the
randomly chosen point by the algorithm (in the beginning). Say j = 3, p = 11, α3 = 2 and

f3 = x5
1 + 4x1

2x3
3 − 2x1x2

3x3 + 4x2x3
4 − x1x2x3

2 − x1x2

73

Now consider the Taylor expansion of f3 =
∑4
i=0 f3,i(x3 − 2)i in Z11[x1, x2, x3].

f3 = (x5
1 − 4x1x2

3 − x1
2 − 5x1x2 − 2x2) +

(
−2x1x2

3 + 4x1
2 − 4x1x2 − 4x2

)
(x3 − 2) +(

2x1
2 − x1x2 − 3x2

)
(x3 − 2)2 +

(
4x1

2 − x2
)

(x3 − 2)3 + 4x2 (x3 − 2)4

We see that

Supp(f3,4) = {x2}

⊆ Supp(f3,3) = {x1
2, x2}

⊆ Supp(f3,2) = {x1
2, x1x2, x2}

⊆ Supp(f3,1) = {x1x2
3, x1

2, x1x2, x2}

⊆ Supp(f3,0) = {x5
1, x1x2

3, x1
2, x1x2, x2}

If f3 is a factor that we want to compute via MHL at the 3rd step, the SHL idea explained
in the previous section makes an assumption that Supp(f3,0) = Supp(f3(x3 = 2)) with high
probability. This is the

Supp(fj,0) = Supp(fj(xj = αj)) (SHL assumption)

The example above shows that more is true. As the next Theorem shows, if p is big enough
and αj chosen at random from [0, p−1], in fact at the jth step of MHL, with high probability

MTSHL assumption :

Supp(fj,0) = Supp(fj(xj = αj)) and Supp(fj,i+1) ⊆ Supp(fj,i) for 0 ≤ i ≤ degxj
fj .

What does this buy us? Note that at the jth step of MHL, in the for loop one first solves
an MDP to get fj,1 then fj,2 and so on. So if we use the sparse interpolation approach
to solve an MDP as MTSHL does, while we are solving the MDP to compute fj,i+1 we
can use fj,i as a skeleton of the solution. That is, it eliminates the computational cost
of recursive steps of Zippel’s sparse interpolation. Also, since the size of the supports get
smaller as i increases, this significantly decreases the evaluation cost of MTSHL. Because,
during MTSHL, one solves MDP’s of the form σu+ τw = c and when the solutions σ, τ to
be computed (which also means the actual factors to be computed) are huge, the expected
size of c is huge. (See Chapter 6). It also eliminates the sparse interpolation and reduces
solving an MDP to solving a single (Vandermonde) linear system. What does this cost us?
It increases the failure probability of the algorithm and this must be investigated.

Theorem 28. Let f ∈ Zp[x1, . . . , xn] and by Supp(f) we denote the set of monomials
present in f. Let α chosen at random in Zp and f =

∑dn
i=0 bi(x1, . . . , xn−1)(xn − α)i be the

74

(xn − α)-adic expansion of f, where dn = degxn
f. Then for a given j with 0 ≤ j < dn,

Pr[Supp(bj+1) * Supp(bj)] ≤ |Supp(bj+1)| dn − j
p− dn + j + 1 .

Proof. For simplicity assume that p > j, otherwise we will need to introduce Hasse deriva-
tives but the idea will be the same. We have

bj(x1, . . . , xn−1) = 1
j!

∂

∂xjn
f(x1, . . . , xn−1, xn = α).

If we write f ∈ Zp[xn][x1, . . . , xn−1] as

f = c1(xn)M1 + c2(xn)M2 + · · ·+ ck(xn)Mk

where Mk’s are the distinct monomials in x1, . . . , xn−1 and we denote ∂

∂xj
n
ci(xn) = c

(j)
i (xn)

then

bj = ∂

∂xjn
f(xn = α) = c

(j)
1 (α)M1 + c

(j)
2 (α)M2 + · · ·+ c

(j)
k (α)Mk.

bj+1 = ∂

∂xj+1
n

f(xn = α) = c
(j+1)
1 (α)M1 + c

(j+1)
2 (α)M2 + · · ·+ c

(j+1)
k (α)Mk.

For a given j > 0, if c(j+1)
i (α) 6= 0, but c(j)

i (α) = 0 then Mi /∈ Supp(bj). We need to
compute Pr[c(j)

i (α) = 0 | c(j+1)
i (α) 6= 0]. If A is the event that c(j)

i (α) = 0 and B is the event
that c(j+1)

i (α) = 0 then

Pr[A |Bc] = Pr[A]− Pr[B] Pr[A |B]
Pr[Bc] ≤ Pr[A]

Pr[Bc] .

By the Schwartz-Zippel Lemma

Pr[A]
Pr[Bc] ≤

degxn
(c(j)
i (y))/p

1− (degxn
(c(j+1)
i (y))/p)

≤ (dn − j)/p
1− (dn − j − 1)/p = dn − j

p− dn + j + 1

Theorem 28 shows that for the sparse case, if p is big enough and α is chosen at random
then the probability of Supp(bj+1) ⊆ Supp(bj) is high.

4.4.1 Bad evaluation points for MTSHL

Following the notation of the Theorem 28 above, let f ∈ Zp[x1, . . . , xn], α is chosen at
random in Zp and f =

∑dn
i=0 bi(x1, . . . , xn−1)(xn − α)i be the (xn − α)-adic expansion of f,

where dn = degxn
f. For a given α ∈ Zp, let us call α a badpoint, if Supp(bj+1) * Supp(bj)

75

for some 0 ≤ j < dn. As in the proof of Theorem 28, consider

bj = ∂

∂xjn
f(xn = α) = c

(j)
1 (α)M1 + c

(j)
2 (α)M2 + · · ·+ c

(j)
k (α)Mk.

So, for a given f , if c(j)
i has a root but does not have a double root at xn = α, then

α is badpoint for bj+1, i.e. Supp(bj+1) * Supp(bj): Consider the following example where
Supp(bj+1) * Supp(bj) for j = 0, 2. Let

f := (x6
1 + x5

1 + x4
1)(x2 − 1)3 + (x5

1 + x4
1 + x3

1)(x2 − 1) + (x7
1 + 1) ∈ Z509[x1, x2].

But if we choose another point say α2 = 301 and compute the (x2− 301)-adic expansion of
f =

∑3
i=0 bi(x1)(x2 − 301)i we have

b0 = x7
1 + 95x6

1 + 395x5
1 + 395x4

1 + 300x3
1 + 1

b1 = 230x6
1 + 231x5

1 + 231x4
1 + x3

1

b2 = 391x6
1 + 391x5

1 + 391x4
1

b3 = x6
1 + x5

1 + x4
1

and we see that Supp(bj+1) ⊆ Supp(bj) for 0 ≤ j ≤ 2 . In fact for this example α =
1, 209,−207 are the only badpoints as can be seen by considering f ∈ Z509[x2][x1]:

f = x7
1 + (x2−1)3x6

1 + (x2−209)(x2−1)(x2 + 207) +x5
1(x2−209)(x2−1)x4

1 + (x2−1)x3
1 + 1

Note that these points are badpoints only for b2. Before we give an upper bound for the
number of badpoint points we consider the following example. Let p = 1021,

f = (x2 − 841)(x2 − 414)(x2 − 15)(x2 − 277)x9
1

+ (x2 − 339)(x2 − 761)(x2 − 752)(x2 − 345)x7
1

and f (i) = ∂
∂xi

2
f(x1, x2). Then

f (1) = 4(x2 − 384)(x2 − 230)(x2 − 291)x9
1 + 4(x2 − 441)(x2 + 127)(x2 + 453)x7

1

f (2) = 12(x2 − 89)(x2 − 174)x9
1 + 12(x2 − 473)(x2 − 115)x7

1

f (3) = (24x2 − 93)x9
1 + (24x2 + 91)x7

1 and

f (4) = 24x9
1 + 24x7

1.

So, the maximum number of badpoints occurs if each c(j)
i splits for different points, hence

|Supp(f)|dn(dn+1)
p is an upper bound for the probability of hitting a badpoint.

76

Algorithm 10 jth step of MTSHL
Input : aj ∈ Zp[x1, . . . , xj], fj−1, gj−1 ∈ Zp[x1, . . . , xj−1] and αj ∈ Zp where aj , fj−1, gj−1
are monic in x1. Also, aj(x1, . . . , xj−1, xj = αj) = fj−1gj−1.
Output : fj , gj ∈ Zp[x1, . . . , xj] such that aj = fjgj or FAIL (No such factorization exists.)

1: if rj > tj then interchange fj−1 with gj−1 end if
2: (σj0, τj0)← (fj−1, gj−1).
3: (σj , τj)← (σj0, τj0).
4: monomial ← 1.
5: error ← aj − fj−1 gj−1
6: for i from 1 to deg(aj , xj) while error 6= 0 do
7: monomial ← monomial × (xj − αj)
8: c← coefficient of (xj − αj)i in the Taylor expansion of the error about xj = αj
9: if c 6= 0 then

10: σg ← skeleton of τj,i−1
11: (σji, τji)←SparseInt(σj0, τj0, c, σg, p) (Algorithm 7)
12: if (σji, τji)=FAIL then
13: (σji, τji) ← BSDiophant(σj0, τj0, c, p) (Algorithm 8)
14: if (σji, τji)=FAIL then restart the factorization with a different ideal
15: end if
16: end if
17: (σj , τj)← (σj + σji ×monomial, τj + τji ×monomial).
18: error ← aj − σjτj .
19: end if
20: end for
21: if error 6= 0 then return FAIL (No such factorization exists)
22: else return (σj , τj)
23: end if

For a sparse polynomial with 1000 terms, dn = 20, for p = 231 − 1, this probability is
0.000097. This observation also suggests that while solving the diophantine equation 4.15
at the ith iteration of the jth step of MHL, we use σi,j−1 (or τi,j−1) as a form of the solution
of σji (or τij).

Back to our discussion on SHL, based on the observation above the jth step (j > 1) of
MTSHL is summarized in Algorithm 10.

Example 29. Suppose we seek to factor a = fg where

f = x1
8 + 2x1x2

2x4
3x5 + 4x1x2

2x3
3 + 3x1x2

2x4x5
2 + x2

2x3x4 − 5

g = x1
8 + 3x1

2x2x3x4
2x5 + 5x1

2x2x3
2x4 − 3x4

2x5
2 + 4x5

Let α3 = 1, p = 231 − 1. Before lifting we have a and

f (0) := f(x5 = 1) = x1
8 + 4x1x2

2x3
3 + 2x1x2

2x4
3 + 3x1x2

2x4 + x2
2x3x4 − 5

g(0) := g(x5 = 1) = x1
8 + 5x1

2x2x3
2x4 + 3x1

2x2x3x4
2 − 3x4

2 + 4

77

If the assumption of SHL is true with x5 = α = 1 then at the first step we assume that
f =

∑degx5f

i=0 fi(x5 − 1)i and g =
∑degx5 g

i=0 gi(x5 − 1)i where f1 and g1 are in the form

f1 =
(
c1x3

3 + c2x4
3 + c3x4

)
x1x2

2 + c4x2
2x3x4 + c5

g1 =
(
c6x3

2x4 + c7x3x4
2
)
x1

2x2 + c8x4
2 + c9

for some unknowns C = {c1, . . . , c9}.
In the following e

(k)
5 denotes the coefficient of (x5 − 1)k in the Taylor expansion of

the error about x5 = 1. Let also f0 := f (0), g0 := g(0), f (k) :=
∑k
i=0 fi(x5 − 1)i, g(k) :=∑k

i=0 gi(x5 − 1)i.
We start by computing the first error = a− f (0)g(0). We obtain

e
(1)
5 = 3x1

10x2x3x4
2 + 2x1

9x2
2x4

3 + 6x1
9x2

2x4 + 12x1
3x2

3x3
4x4

2 + 10x1
3x2

3x3
2x4

4

+ 12x1
3x2

3x3x4
5 − 6x1

8x4
2 + 30x1

3x2
3x3

2x4
2 + 27x1

3x2
3x3x4

3 + 3x1
2x2

3x3
2x4

3

+ 4x1
8 − 24x1x2

2x3
3x4

2 − 18x1x2
2x4

5 − 15x1
2x2x3x4

2 + 16x1x2
2x3

3

− 20x1x2
2x4

3 − 6x2
2x3x4

3 + 36x1x2
2x4 + 4x2

2x3x4 + 30x4
2 − 20

The MDP to be solved is:

D : f0
((
c6x3

2x4 + c7x3x4
2
)
x1

2x2 + c8x4
2 + c9

)
+ g0

((
c1x3

3 + c2x4
3 + c3x4

)
x1x2

2 + c4x2
2x3x4 + c5

)
= e

(1)
5 .

Our aim is first to get
((
c6x3

2x4 + c7x3x4
2)x1

2x2 + c8x4
2 + c9

)
, since it will create a smaller

matrix. We need 2 evaluations only: We choose 2 evaluation points: [x3 = 2, x4 = 3] and
[x3 = 22, x4 = 32] and compute

D([x3 = 2, x4 = 3]) :
(
x1

8 + 95x1x2
2 + 6x2

2 − 5
) (

(12 c6 + 18 c7)x1
2x2 + 9 c8 + c9

)
+
(
x1

8 + 114x1
2x2 − 23

) (
(8 c1 + 27 c2 + 3 c3)x1x2

2 + 6 c4x2
2 + c5

)
= 54x1

10x2+72x1
9x2

2−50x1
8+13338x1

3x2
3+324x1

2x2
3−270x1

2x2−6406x1x2
2−300x2

2+250

D([x3 = 4, x4 = 9]) :
(
x1

8 + 1741x1x2
2 + 36x2

2 − 5
) (

(144 c6 + 324 c7)x1
2x2 + 81 c8 + c9

)
+
(
x1

8 + 1692x1
2x2 − 239

) (
(64 c1 + 729 c2 + 9 c3)x1x2

2 + 36 c4x2
2 + c5

)
= 972x1

10x2 + 1512x1
9x2

2 − 482x1
8 + 4250556x1

3x2
3

+ 34992x1
2x2

3 − 4860x1
2x2 − 1200530x1x2

2 − 17352x2
2 + 2410

78

Now calling BDP we see that the solutions to these bivariate diophantine equations are
respectively

[σ1, τ1] = [54x1
2x2 − 50, 72x1x2

2]

[σ2, τ2] = [972x1
2x2 − 482, 1512x1x2

2].

Hence we have

(12 c6 + 18 c7)x1
2x2 + 9 c8 + c9 = 54x1

2x2 − 50

(144 c6 + 324 c7)x1
2x2 + 81 c8 + c9 = 972x1

2x2 − 482

Then we form the (Vandermonde) linear systems

[
12 18
144 324

] [
c6

c7

]
=
[

54
972

]
and

[
9 1
81 1

] [
c8

c9

]
=
[
−50
−482

]

and we obtain c6 = 0, c7 = 3, c8 = −6, c9 = 4. So g1 =
(
3x1

2x2x3x4
2 − 6x4

2 + 4
)
. Then by

division we get f1 = e
(1)
5 − f0g1

g0
=
(
2x1x2x4

3 + 8x2x3
4). Hence

f (1) = f0+
(
2x1x2

2x4
3 + 6x1x2

2x4
)

(x5 − 1)

g(1) = g0+
(
3x1

2x2x3x4
2 − 6x4

2 + 4
)

(x5 − 1) .

Note that we use the division step above also as a check for the correctness of the SHL
assumption. Since the solution to the MDP is unique, we would have g0 - e

(1)
5 − f0g1, if the

assumption was wrong.
Now following Theorem 28 by looking at the monomials of f1 and g1, we assume that

the form of the f2 and g2 are

f2 = c1x1x2
2x4

3 + c2x1x2
2x4 + c3

g2 = c4x1
2x2x3x4

2 + c5x4
2 + c6

for some unknowns C = {c1, . . . , c6}. The next error is error = a− f (1)g(1). Then

e
(2)
5 = 3x1

9x2
2x4 − 3x1

8x4
2 + 15x1

3x2
3x3

2x4
2 + 9x1

3x2
3x3x4

3

− 12x1x2
2x3

3x4
2 − 6x1x2

2x4
5 − 18x1x2

2x4
3 − 3x2

2x3x4
3 + 12x1x2

2x4 + 15x4
2

The MDP to be solved is:

D : f0
(
c4x1

2x2x3x4
2 + c5x4

2 + c6
)

+ g0
(
c1x1x2

2x4
3 + c2x1x2

2x4 + c3
)

= e
(2)
5 .

79

We need 2 evaluations again: Choose [x3 = 5, x4 = 6] and [x3 = 52, x4 = 62] and compute

D(([x3 = 5, x4 = 6]) : =
(
x1

8 + 950x1x2
2 + 30x2

2 − 5
) (

180 c4x1
2x2 + 36 c5 + c6

)
+
(
x1

8 + 1290x1
2x2 − 104

) (
216 c1x1x2

2 + 6 c2x1x2
2 + c3

)
= 18x1

9x2
2 − 108x1

8 + 23220x1
3x2

3 − 104472x1x2
2 − 3240x2

2 + 540

D(([x3 = 25, x4 = 36]) : =
(
x1

8 + 155920x1x2
2 + 900x2

2 − 5
) (

32400 c4x1
2x2 + 1296 c5 + c6

)
+
(
x1

8 + 209700x1
2x2 − 3884

) (
46656 c1x1x2

2 + 36 c2x1x2
2 + c3

)
= 108x1

9x2
2 − 3888x1

8 + 22647600x1
3x2

3 − 606636432x1x2
2 − 3499200x2

2 + 19440

Now calling BDP we see that the solutions to these bivariate diophantine equations are
respectively

[σ1, τ1] = [−108, 18x1x2
2]

[σ2, τ2] = [−3888, 108x1x2
2]

Hence we have

180 c4x1
2x2 + 36 c5 + c6 = −108

32400 c4x1
2x2 + 1296 c5 + c6 = −3888

Then we solve the Vandermonde linear systems

[180] [c4] = [0] and
[

36 1
1296 1

] [
c5

c6

]
=
[
−108
−3888

]

and obtain c4 = 0, c5 = −3, c6 = 0. So g2 = −3x4
2. Then by division we get f2 =

e
(2)
5 − f0g2

g0
= 3x1x2

2x4 (x5 − 1)2. Hence

f (2) = f (1)+ 3x1x2
2x4 (x5 − 1)2

= x1
8 + 2x1x2

2x4
3x5 + 4x1x2

2x3
3 + 3x1x2

2x4x5
2 + x2

2x3x4 − 5

g(2) = g(1)+
(
−3x4

2
)

(x5 − 1)2

= x1
8 + 3x1

2x2x3x4
2x5 + 5x1

2x2x3
2x4 − 3x4

2x5
2 + 4x5.

The next error is error = a− f (2)g(2) = 0 and we have the factors!

80

We have used 4 evaluations and solved three (2 × 2)− system and one (1 × 1) system.
For the same problem KSHL would need to find 9 linearly independent homogeneous linear
equations out of 28 equations first. A natural question is, is it possible for KHL to focus
on to some subset of the variables first? The answer is no. The system of equations that
are constructed by KSHL are coupled.

4.4.2 Some remarks on MTSHL

We give a detailed complexity analysis of MTSHL in Chapter 6. Before doing so, several
remarks on Algorithm 10 are in order:

Step 8 in the for loop computes the ith Taylor coefficient of the error at xj = αj . Maple
used to compute this using the formula c = g(xj = αj)/i! where g is the i’th derivative of
error wrt xj . Instead, Maple now uses the more direct formula

c =
d∑
k=i

coeff(error, xk)αs−k
(
s

k

)

where d = degxj
error which is three times faster [MP14].

At step 10 MTSHL makes the assumption Supp(τji) ⊆ Supp(τj,i−1) based on The-
orem 28. Note that, if the minimum of the number of terms of each factor of aj is
t = min(#fj ,#gj), then at step 11 the probability of failure of the assumption is ≤
t

dj−i
p−dj−(i−1) ≤

tdj

p−2dj
and cost of solving each MDP is the evaluation cost + cost of a system

of linear equation solving which is bounded above by O(t2).
Another costly operation is the cost of the multivariate division, σji = (c− σj0τji)/τj0,

which is hidden in sparse interpolation. If the algorithm fails to compute (σji, τji) at step
11 then it passes to a safer way at step 13.

Another expensive operation in the Algorithm 10 is the error computation, error ←
aj−σjτj , in the for loop. To decrease this cost, one of the ideas in [MY74] can be generalized
to MHL. Let σj =

∑degxj
σj

s=0 σj,s(xj − αj)s and σ(i)
j =

∑i
s=0 σj,s(xj − αj)s (similarly for τ).

One has

e
(i+1)
j = aj − σ(i)

j τ
(i)
j = aj − (σ(i−1)

j + σj,i(xj − αj)i)(τ (i−1)
j + τj,i(xj − αj)i)

= aj − σ(i−1)
j τ

(i−1)
j − (σ(i−1)

j τj,i + τ
(i−1)
j σj,i)(xj − αj)i

= e
(i)
j − U

(i)(xj − αj)i

where U (i) := (σ(i−1)
j τj,i + τ

(i−1)
j σj,i). Hence in the for loop we have the relation e(i+1)

j =
e

(i)
j − (xj −αj)iU (i) for a correction term U (i) ∈ O((xj −αj)i−1). Also for i > 0 it is known
that (xj − αj)i divides e(i)

j . So if we define c(i)
j := e

(i)
j /(xj − αj)i then c

(i)
j can be computed

efficiently using
c

(i+1)
j = (c(i)

j − U
(i))/(xj − αj).

81

Hence we may compute c(i)
j for i = 1, 2, . . . until it becomes zero instead of computing

e
(i)
j . According to our experiments, this observation decreases the cost when the number of
factors is 2. For more than 2 factors, the generalization of it does not bring a significant
advantage. So, in our implementations we only use this update formula when the number
of factors is 2.

Also note that, MTSHL makes use of only one of the SHL assumptions because it aims
to get one of the factors. Also it eliminates the recursive step in MHL to compute the
skeleton of the solution.

4.5 Reconsidering the case modulo pl with l > 1.

In the previous sections we have seen that the lifting process has two main stages. The
first step is to find a prime p and a natural number l > 0 such that the ring Zpl can be
identified with the ring Z. That is, we find a bound B such that the integer coefficients of
the polynomial a to be factored and its factors to be computed are bounded by B. One
way to choose such an upper bound B is given by Lemma 14. Then we choose l such that
pl > 2B. Next the solution in Zp[x1] is lifted to the solution in Zpl [x1]. The second step is to
lift the solution from Zpl [x1] to Zpl [x1, . . . , xn]. Note that in the second stage all arithmetic
is in Zpl with pl > 2B.

This strategy is described in detail in [GCL92] and it is currently implemented by most
of the computer algebra platforms including Maple, Singular [Lee13] and Magma [Steel].
In this section we will question whether the strategy described above is the best way to
manage the task for the case l > 1.

How should we choose p and how big should it be? As indicated previously by Musser,
if we choose p > 2B then p is large enough to eliminate entirely the phase of construction
which lifts from p to pl but this might mean that p would be a multiple precision integer
which will increase significantly the cost of all coefficient arithmetic. The best approach
seems to be to choose p as big as possible while constrained to be a single precision integer
[Mus71].

Suppose for example that the coefficients of the factors are bounded by p10. Before
the factorization we don’t have this information. Since most likely the coefficient bound
B > p20, this means that all arithmetic throughout MHL is in Zp20 , which will be very
expensive.

Our design of an efficient sparse multivariate diophantine solver as we described in
Section 3.6 allows us to propose a more efficient approach that eliminates most of the multi
precision arithmetic. (See Figure 4.1)

• First compute the lifting upper bound l = dlogpBe by using Lemma 14.

82

Figure 4.1: Wang’s Algorithm vs MTSHL

MTSHL Wang
a = fg ∈ Z[x1, . . . , xn] a ∈ Z[x1, . . . , xn] a = fg ∈ Z[x1, . . . , xn]

↑ ↓ ↑

p-adic Lift xn = αn
...

↑ ↓ ↑
an = fngn ∈ Zp[x1, . . . , xn] ãn−1 ∈ Z[x1, . . . , xn−1] aj = fjgj ∈ Zpl [x1, . . . , xj]

↑ ↓ ↑

(SolveMDP ′s sparse int)
... (xj-αj)-adic lift

... xj = αj ↑
aj = fjgj ∈ Zp[x1, . . . , xj] ↓ (SolveMDP ′s recursive)

↑ ãj−1 ∈ Z[x1, . . . , xj−1] ↑
(xj-αj)-adic lift ↓ a3 = f3g3 ∈ Zpl [x1, x2, x3]

↑
... ↑

... x2 = α2 (x3-α3)-adic lift
↑ ↓ ↑

a2 = f2g2 ∈ Zp[x1, x2] ã1 ∈ Z[x1] a2 = f2g2 ∈ Zpl [x1, x2]
↑ ↓ ↑

(x2-α2)-adic lift Factor inZ (x2-α2)-adic lift
↑ ↓ ↑

a1 = f1g1 ∈ Zp[x1] φp←−
ã = f̃ g̃ ∈ Z[x1] φpl

−→
a1 = f1g1 ∈ Zpl [x1]

• Then choose a random (m + 1)-bit machine prime p, i.e. p ∈ [2m < p < 2m+1] and
compute the factorization of a by lifting the factorization in Zp[x1] to in Zp[x1, . . . , xn]
with MTSHL so that most of the work uses a machine prime p.

• Then as a second stage lift the factorization from Zp[x1, . . . , xn] to Zpl [x1, . . . , xn] via
p-adic lifting using the sparse MDP solver.

The following observations and the data in Table 4.1, which compares the efficiency of
the both strategies, makes it clear, why this strategy is better than and should be preferred
to the previous one.

Suppose that a = uw where a, u, w ∈ Z[x1, . . . , xn] and u,w are unknown to us. As a
first step we choose an evaluation ideal I = 〈x2 − α2, . . . , xn − αn〉 with randomly chosen
αi from [0, p− 1] such that the conditions of the Theorem 16 are satisfied with l = 1. Then
there is a factorization a = u(n)w(n) ∈ Zp[x1, . . . , xn]. This factorization is computed using
MTSHL.

83

Now suppose that u (similarly w) has the form

u = c0M0 + c1M1 + · · ·+ ckMk

= (
l−1∑
i=0

s0ip
i)M0 + (

l−1∑
i=0

s1ip
i)M1 + · · ·+ (

l−1∑
i=0

skip
i)Mk

where Mi ∈ Zpl [x1, . . . , xn] are distinct monomials, 0 6= cj ∈ Z with cj =
∑l−1
i=0 sjip

j where
−pl/2 < sji < pl/2. Then we have

u = (
k∑
j=0

sj0Mj) + (
k∑
j=0

sj1Mj)p+ · · ·+ (
k∑
j=0

sj1Mj)pl−1

= u0 + u1p+ u2p
2 + · · ·+ ul−1p

l−1

where ui =
∑k
j=0 sjiMj . It follows that

u−
∑k−1
i=0 uip

i

pk
= (

l−1∑
i=k

s0ip
i−k)M0 + (

l−1∑
i=k

s1ip
i−k)M1 + · · ·+ (

l−1∑
i=k

skip
i−k)Mk.

Also, we have u0 = u mod p 6= 0 since in the first stage u is lifted from u0. Now we make
a key observation:

If p is an m-bit prime, p ∈ [2m, 2m+1] and if p is chosen at random, the probability that
p | ci is Pr[p | ci] = #distinct (m+1)bit prime divisors of ci

#m bit primes . Let π(s) be the number of primes ≤ s.
Since there are at most blog2m(ci)c many (m+ 1)-bit primes dividing ci we have

Pr[p | ci] ≤
blog2m(ci)c

π(2m+1)− π(2m) ≤
l

π(2m+1)− π(2m)

This probability is very small because according to the prime number theorem π(s) ∼
s/ log(s) and hence π(2m+1)− π(2m) ∼ 2m

m log(2) .
In fact, for m = 30, it has been shown in [Law17] that the exact number of 31-bit primes

is 50697537 > 5 · 107. Therefore in our implementation the support of u0 will contain all
monomials Mi and Supp{uj} ⊆ Supp{u0} with probability > 1− k l

5·107 .
We make one more key observation and claim that Supp{uj} ⊆ Supp{uj−1} for 1 ≤ j ≤ l

with high probability: We have

uj = s0jM0 + s1jM1 + · · ·+ skjMk.

uj+1 = s0,j+1M0 + s1,j+1M1 + · · ·+ sk,j+1Mk.

For a given j > 0, if si,j+1 6= 0, but sij = 0 then Mi ∈ Supp(uj+1) but Mi /∈ Supp(uj).
We consider Pr[sij = 0 | si,j+1 6= 0]. If A is the event that sij = 0 and B is the event that

84

si,j+1 = 0 then

Pr[A |Bc] = Pr[A]− Pr[B] Pr[A |B]
Pr[Bc] ≤ Pr[A]

Pr[Bc] .

It follows that

Pr[A]
Pr[Bc] ≤

l/(π(2m+1)− π(2m))
1− l/(π(2m+1)− π(2m)) = l

(π(2m+1)− π(2m))− l

Hence the probability that

Pr[Supp{uj} ⊆ Supp{uj−1} | 1 ≤ j ≤ l] > 1− k l

((π(2m+1)− π(2m))− l

As an example for m = 30, l = 5, k = 500, this probability is > 0.99993.
Hardy and Ramanujan [HR17] proved that for almost all integers, the number of distinct

primes dividing a number s is ω(s) ≈ log log(s). This theorem was generalized by Erdos-Kac
which shows that ω(s) is essentially normally distributed [EK40]. By this approximation
note that

Pr[A]
Pr[Bc] >

log log(sij)/(π(2m+1)− π(2m))
1− log log(si,j+1)/(π(2m+1)− π(2m)) = log(l log p)

(π(2m+1)− π(2m))− log(l log p) .

Hence the probability that Supp{uj} ⊆ Supp{uj−1} is & 1− k m log(lm)
2m−m log(lm) . As an example

for m = 30, l = 5, k = 500, this probability is > 0.99995.
What does this mean in the context of multivariate factorization over mod Zpl for

l > 1? It means that the solutions to the multivariate diophantine problems occurring in
the lifting process will, with high probability, be a subset of the monomials of the solutions
of the previous step and these solutions can be computed simply by solving transposed
Vandermonde systems by using a machine prime p and hence by an efficient arithmetic
using a sparse MDP solver as described in Algorithm 7.

We sum up the observations made in this section in the Theorem 30 below.

Theorem 30. Let p be a randomly chosen m-bit prime, i.e. p ∈ [2m < p < 2m+1]. With
the notation introduced in this section

Pr(Supp{uj} ⊆ Supp{uj−1} for all 1 ≤ j ≤ l) > 1− kl

((π(2m+1)− π(2m))− l .

This probability can be approximated by

Pr[Supp{uj} ⊆ Supp{uj−1} for all 1 ≤ j ≤ l] & 1− km log(lm)
2m −m log(lm) .

85

Algorithm 11 LiftTheFactors
Input : a ∈ Z[x1, . . . , xn], f0, g0 ∈ Zp[x1, . . . , xn] where a, f0, g0 are monic in x1
and a = f0g0 in Zp[x1, . . . , xn]. Also an integer bound l > 0 (For example, [Lemma 14,
[Gel60]]).
Output : f, g ∈ Z[x1, . . . , xj] such that a = fg ∈ Z[x1, . . . , xn] or FAIL

1: if #f0 ≤ #g0 then (u0, w0)← (f0, g0) else (w0, u0)← (f0, g0) end if
2: (f, g)← (mods(u0, p) mods(w0, p)). (# use symmetric range)
3: modulus ← 1.
4: error ← a− fg, σf ← skeleton of f
5: for i from 1 to l while error 6= 0 do
6: modulus ← modulus × p, c← (error/modulus) mod p
7: Solve the MDP σ u0 + τ w0 = c for σ and τ in Zp[x1, . . . , xn]
8: using σf and sparse interpolation (Algorithm 7)
9: (σ, τ)← (mods(σ, p), mods(τ, p)). (# use symmetric range)

10: if (σ, τ)=FAIL then return FAIL end if
11: σf ← σ, (f, g)← (f + σ ×modulus, g + τ ×modulus).
12: error ← a− fg.
13: end for
14: if error 6= 0 then return FAIL else return (f, g) end if

Algorithm 12 LiftTheFactors (optimized)
Input : a ∈ Z[x1, . . . , xn], f0, g0 ∈ Zp[x1, . . . , xn] where a, f0, g0 are monic in x1
and a = f0g0 in Zp[x1, . . . , xn]. Also an integer bound l > 0 (For example, [Lemma 14,
[Gel60]]).
Output : f, g ∈ Z[x1, . . . , xj] such that a = fg ∈ Z[x1, . . . , xn] or FAIL

1: if #f0 ≤ #g0 then (u0, w0)← (f0, g0) else (w0, u0)← (f0, g0) end if
2: (f, g)← (mods(u0, p), mods(w0, p)). (# use symmetric range)
3: modulus ← 1.
4: error ← (a− fg)/p, σf ← skeleton of f
5: for i from 1 to l while error 6= 0 do
6: modulus ← modulus × p, c← error mod p
7: Solve the MDP σ u0 + τ w0 = c for σ and τ in Zp[x1, . . . , xn]
8: using σf and sparse interpolation (Algorithm 7)
9: (σ, τ)← (mods(σ, p), mods(τ, p)). (# use symmetric range)

10: if (σ, τ)=FAIL then return FAIL end if
11: σf ← σ, error ← (error − (fτ + gσ) + στ ×modulus)/p
12: (f, g)← (f + σ ×modulus, g + τ ×modulus).
13: end for
14: if error 6= 0 then return FAIL else return (f, g) end if

86

n/d/Tfi
tfi

l lB D−MTSHL MTSHL tlift

5/10/300 0.07 2 5 5.866 (5.101) 0.438 (0.132) 0.241
5/10/500 0.11 2 5 9.265 (7.937) 1.194 (0.186) 0.48
5/10/1000 0.23 2 5 14.448 (12.826) 2.202 (0.264) 1.332
5/10/300 0.07 4 9 6.923 (6.104) 1.067 (0.156) 0.553
5/10/500 0.11 4 9 10.971 (9.737) 1.854 (0.219) 1.231
5/10/1000 0.23 4 9 16.943 (15.183) 3.552 (0.35) 2.632
5/10/300 0.07 8 17 8.638 (7.596) 2.553 (0.201) 2.076
5/10/500 0.11 8 17 13.118 (11.686) 3.101 (0.28) 2.396
5/10/1000 0.23 8 17 19.031 (17.225) 4.905 (0.459) 4.032

Table 4.1: The timing table for D−MTSHL vs MTSHL

4.5.1 Data for sparse lifting

In Chapter 6 we give data for the performance of MTSHL. In this section, we give some
data in Table 4.1 to compare the -direct approach-, i.e. implementing MTSHL so that it
computes a bound lB and factors staying in modulo ZplB arithmetic, with the -lift at the
last step approach- , i.e. staying in Zp arithmetic approach-, as explained in this Section.

We generated 2 random polynomials in n variables of total degree d with Tf terms of
density ratio tf containing some terms that have coefficients in mod pl. Then we multiplied
them in Z, factored the expanded polynomial and factored it with the direct approach. We
called the algorithm which uses the direct approach as D−MTSHL. Since D−MTSHL
does not know what the actual value of l is, it needs to compute the coefficient bound
lB (using Lemma 14) and stays in the ZplB arithmetic. It factored the polynomial in
tX(tY) seconds where tY denotes the time spent on solving MDP’s. Then we factored the
polynomial with MTSHL which uses the -lift at the last step approach- explained in this
Section. It factored it in tX(tY) seconds, spent tlift s for l liftings.

87

Chapter 5

The Distribution of Unlucky Points

5.1 Unlucky points in computer algebra

To investigate the efficiency and determine the complexity of the MTSHL algorithm we
need to consider the probabilistic assumptions made by the design of MTSHL. Given two
multivariate polynomials in Zp[x1, . . . , xn] and a random evaluation point γ = (γ2, . . . , γn) ∈
Zn−1
p , the solution to the MDP proposed by MTSHL as described in Section 4.4 uses the

condition that gcd(f(x1, γ), g(x1, γ)) = 1, which is true with high probability if p is big
enough. A point γ which does not satisfy this condition is called an unlucky point.

Unlucky points appear elsewhere in computer algebra. Let A,B be polynomials in
Z[x0, x1, . . . , xn] and G = gcd(A,B). The cofactors Â of A and B̂ of B are defined as
Â = A/G and B̂ = B/G respectively. Thus A = GÂ and B = GB̂. Modular GCD
algorithms compute G modulo a sequence of primes p1, p2, p3, . . . and recover the integer
coefficients of G using Chinese remaindering. The fastest algorithms for computing G

modulo a prime p interpolate G from univariate images. Maple, Magma and Singular all
currently use Zippel’s algorithm for computing G [Zip90]. Let us write

A =
k∑
i=0

aix
i
0, B =

l∑
i=0

bix
i
0, and G =

m∑
i=0

cix
i
0

where the coefficients ai, bi, ci ∈ Zp[x1, . . . , xn]. Roughly, Zippel’s algorithm picks points
αi ∈ Znp , computes monic univariate images of G

gi = gcd(A(x0, αi), B(x0, αi)),

scales them, then interpolates the coefficients ci(x1, . . . , xn) of G from the coefficients of
these (scaled) images.

88

Consider the unlikely situation that gcd(Â(x0, αj), B̂(x0, αj)) 6= 1 for some j. For
example, if

Â = x2
0 + x2 and B̂ = x2

0 + x2 + (x1 − 1)

then gcd(Â, B̂) = 1 but gcd(Â(x0, 1, β), B̂(x0, 1, β)) 6= 1 for any β ∈ Zp. This is a problem
for the algorithm and hence the evaluation point (1, β) is said to be unlucky because we
cannot use the images gcd(A(x0, 1, β), B(x0, 1, β)) to interpolate G.

The same issue of unlucky evaluation points arises in MTSHL, where, given polynomials
a, b, c ∈ Zp[x1, . . . , xn] we want to solve the diophantine equation σa + τb = c for σ and τ
in Zp[x1, . . . , xn] by interpolating σ and τ modulo a prime p from univariate images (see
Section 3.6).

What is the maximum number of unlucky evaluation points that can occur? What is
the expected number of unlucky evaluation points? We answer the first question for A and
B monic in x0. Proposition 20 implies γ ∈ Zn−1

p is unlucky if and only if R(γ) = 0 where
R = resx0(Â, B̂) ∈ Zp[x1, x2]. If αj is chosen at random from Z2

p then by the Schwarz-Zippel
lemma implies

Pr[R(αj) = 0] ≤ degR
p

.

Applying Proposition 20 once again gives degR ≤ deg Â deg B̂ ≤ degA degB. If the
algorithm need t images to interpolate G modulo p, then we can avoid unlucky evaluation
points with high probability if we pick p� t degA degB.

This is an upper bound, it is the worst case bound for the GCD algorithm. Furthermore,
one can easily construct very sparse polynomials A,B where degA and degB are big enough
to make this bound useless. Researchers in computer algebra have observed that unlucky
evaluation points are rare in practice and that we “never see them” when testing algorithms
on random input. Theorems 33 and 34 give the first results on the distribution of unlucky
evaluation points. In particular, for co-prime Â and B̂ of positive degree, Theorem 34
implies Pr[αj is unlucky] < 1/p.

5.2 An overview of the Chapter

The main goal this chapter is to investigate the distribution of unlucky points. To manage
the task we use a generalization of the Inclusion Exclusion principle (Proposition 32) which
allows us to determine E[X] and Var[X] without having explicit formulas for Pr[X = k].
Then in the second part, by the techniques developed in the first part we generalize a
Theorem of Schmidt [Sch76] which considers the distribution of the number of roots of a
polynomial in a univariate polynomial ring Fq[x] in Fq, where Fq the finite field with q

elements, to the ring of integers modulo n Zn where n need not to be a prime.

89

5.2.1 An overview of the first part

What we will prove in the first part is not only true for the case where the coefficients of
the polynomials are in Zp but also true if they are in Fq. So we switch the notation from
Zp to Fq for this section. Let X be a random variable which counts the unlucky points
for a given multivariate polynomial pair (f, g) with coefficients in Fq. In the first part we
calculate the expected value E[X] of X. But one should also consider how smooth is the
distribution. To see this we need to calculate the variance Var[X] of X which is difficult to
compute. The main result we will prove in the first part is the theorem below.

Theorem. Let Fq be a finite field with q elements, and let f, g ∈ Fq[x1, x2, . . . , xn] be of
the form f = clx

l
1 +

∑l−1
i=0 cl−i(x2, . . . , xn)xi and g = dmx

m
1 +

∑m−1
i=0 dm−i(x2, . . . , xn)xi

where cl 6= 0, dm 6= 0, deg cl−i ≤ l − i, and deg dm−i ≤ m − i. Thus f and g have total
degree l and m respectively. Let X be a random variable which counts the number of points
γ = (γ2, . . . , γn) ∈ Fn−1

q such that gcd(f(x1, γ2, . . . , γn), g(x1, γ2, . . . , γn)) 6= 1. If n > 1,
l > 0 and m > 0 then

E[X] = qn−2 and Var[X] = qn−2(1− 1/q).

We initially found this result by direct evaluation. For quadratic polynomials f, g of
the form f = x2 + (a1y + a2)x + a3y

2 + a4y + a5 and g = x2 + (b1y + b2)x + b3y
2 + b4y +

b5 over finite fields of size q = 2, 3, 4, 5, 8, 9, 11 we generated all q10 pairs and computed
X = |{α ∈ Fq : gcd(f(x, α), g(x, α)) 6= 1}| .We repeated this for cubic polynomials and some
higher degree bivariate polynomials for q = 2, 3 to verify that E[X] = 1 and Var[X] = 1−1/q
holds more generally. For yet higher degree polynomials we used random samples. That
E[X] = 1 independent of the degrees of f and g was a surprise to us. We had expected a
logarithmic dependence on the degrees of f and g.

5.2.2 An overview of the second part

Let f be a polynomial in Zn[x] of a given degree d > 0 and let X be a random variable
which counts the number of distinct roots of f in Zn.

In the case when n = p is a prime, Zp is a finite field. In the finite field case, Fq, where
q is a power of a prime, the distribution of X has been studied extensively, see for example
[Pan13]. Schmidt proves in Ch. 4 of [Sch76] the following result.

Theorem. [Sch76]. Let q be a power of a prime and Fq be a finite field with q elements.
Let X be a random variable which counts the number of distinct roots of a polynomial of
degree d in Fq[x]. Then for d > 1, E[X] = 1 and Var[X] = 1− 1/q.

This result has been generalized by A. Knopfmacher and J. Knopfmacher in [KK93] who
count distinct irreducible factors of a given degree of f .

90

When n is composite, the ring Zn has zero divisors which complicates the investigation
of the distribution of X. It is interesting to see that just as in the finite field case, here also
E[X] = 1 although zero divisors exist. Naturally we don’t expect a smooth distribution in
this case and want to investigate further Var[X].

Let φ(n) = |{ 1≤ i≤ n : gcd(i, n) = 1}| denote Euler’s totient function. In the second
part we will generalize Schmidt’s results and prove the following theorem below.

Theorem. Let X be a random variable which counts the number of distinct roots of a monic
polynomial in Zn[x] of degree m > 0. Then E[X] = 1. For m = 1 Var[X] = 0. For m > 1

Var[X] =
∑

d|n,d 6=n

d

n
φ(n
d

) =
∑
d|n

d− 1
n

φ(n
d

)

In particular, if n = pk where p is a prime number and k ≥ 1, Var[X] = k(1− 1/p).

We found this result by direct computation and using the Online Encyclopedia of Integer
Sequences (OEIS) see [OEIS]. For polynomials of degree 2, 3, 4, 5 in Zn[x], we computed
E[X] and Var[X] for n = 2, 3, 4, . . . , 20 using Maple and found that E[X] = 1 in all cases.
Values for the variance are given in the table below.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Var[X] 1

2
2
3 1 4

5
3
2

6
7

3
2

4
3

17
10

10
11

7
3

12
13

25
14 2 2

a(n) 1 2 4 4 9 6 12 12 17 10 28 12 25 30 32

When we first computed Var[X] we did not recognize the numbers. Writing Var[X] =
a(n)/n we computed the sequence for a(n) (see the table) and looked it up in the OEIS.
We found it is sequence A006579 and that a(n) =

∑n−1
k=1 gcd(n, k). The OEIS also has the

formula a(n) =
∑
d|n(d− 1)φ(nd).

5.3 Generalization of the inclusion-exclusion principle

In this section we will first introduce a notation and remind the reader of some basic
counting principles (See for example, [GR03]). Next we will present our first result, the
generalization of the inclusion-exclusion principle.

Given a set U and the finite collection of sets Γ = {Ai, i = 0, . . . , n − 1} where each
Ai ⊆ U , let us define C0 = U , Cn+1 := ∅ and, for 1 ≤ k ≤ n,

Ck :=
⋃

0≤i1<···<ik≤n−1
(Ai1 ∩Ai2 · · · ∩Aik).

Then for 1 ≤ k ≤ n, Ck is the union of all possible intersections of the k−subsets of the
collection Γ . In particular C1 = A0 ∪A1 ∪ · · · ∪An−1 and Cn = A0 ∩A1 ∩ · · · ∩An−1. Let

91

A0

A1 A2

C2

A0

A1 A2

C3

A0

A1 A2

B2

Figure 5.1: Show sets C2, C3, B2 for three sets A0, A1, A2

Bk := Ck − Ck+1 for 0 ≤ k ≤ n. Observe that Ck ⊇ Ck+1, so |Bk| = |Ck| − |Ck+1|. Let us
also define

bk := |Bk| and tk :=
∑

0≤i1<···<ik≤n−1
|Ai1 ∩Ai2 · · · ∩Aik |.

Note that t1 =
∑n−1
i=0 |Ai| and t2 =

∑
0≤i<j<n |Ai ∩Aj |. Also, bn = tn and bn−1 = tn−1−(n

1
)
bn. Now A0∩A1∩· · ·∩An−1 is a subset of

(n
n−2

)
=
(n

2
)
sets of the form Ai1∩Ai2∩· · ·∩Ain−2

and each (n− 1)-section Ai1 ∩Ai2 ∩ · · · ∩Ain−1 is a subset of
(n−1
n−2

)
=
(n−1

1
)
sets of the form

Ai1 ∩Ai2 ∩· · ·∩Ain−2 with i1 < i2 < · · · < in−2. Therefore bn−2 = tn−2−
(n−1

1
)
bn−1−

(n
2
)
bn.

Similarly, since each (n − k + i)-section is a subset of
(n−k+i

i

)
intersections of (n − k)

sets for i = 1, . . . , k, we have the recursive formula

bn−k = tn−k −
k∑
i=1

(
n− k + i

i

)
bn−k+i for k = 0, . . . , n. (5.1)

The following lemma is standard. See for example Theorem 8.2 in [GR03]. For com-
pleteness we give a proof.

Lemma 31. Following the notation introduced above

bn−k =
k∑
i=0

(−1)i
(
n− k + i

i

)
tn−k+i for k = 0, . . . , n. (5.2)

Proof. We will prove the claim by strong induction on k. For k = 0 we have bn = tn. Now
assume that the claim is true for any integer i ≤ k in place of k.

By the recursive formula (5.1), we have

bn−(k+1) = tn−(k+1) −
(n−k

1
)
bn−k −

(n−k+1
2
)
bn−k+1 − · · · −

(n
k+1
)
bn.

92

On the other hand by using induction and multiplying each equation bn−j with−
(n−j
k−j+1

)
,

we get the equations

−
(n
k+1
)
bn = −

(n
k+1
)
tn

−
(n−1
k

)
bn−1 = −

(n−1
k

)
tn−1 +

(n−1
k

)(n
1
)
tn

−
(n−2
k−1
)
bn−2 = −

(n−2
k−1
)
tn−2 +

(n−2
k−1
)(n−1

1
)
tn−1 −

(n−2
k−1
)(n

2
)
tn

...
−
(n−k

1
)
bn−k = −

(n−k
1
)
tn−k +

(n−k
1
)(n−k+1

1
)
tn−k+1 − · · · (−1)k+1(n−k

1
)(n
k

)
tn.

After summing all these equalities, we consider the sum by focusing on the summands
that are multiples of tn on the right hand side:

c(tn) =
k∑
i=0

(−1)k−i+1
(
n− k + i

i+ 1

)(
n

k − i

)
.

For d ≤ k one has (
n− d

k − d+ 1

)(
n

d

)
=
(

n

k + 1

)(
k + 1
d

)
.

Then

c(tn) =
(

n

k + 1

)
k∑
i=0

(−1)k−i+1
(
k + 1
k − i

)
= −

(
n

k + 1

)
(−1)k = (−1)k+1

(
n

k + 1

)
.

where the last equality follows from the binomial identity(
k + 1

0

)
−
(
k + 1

1

)
+
(
k + 1

2

)
+ · · ·+ (−1)k

(
k + 1
k

)
= −(−1)k+1 = (−1)k.

Similarly for s = 1, . . . , k we have

c(tn−s) =
k−s∑
i=0

(−1)k−s−i+1
(
n− s− k + i

i+ 1

)(
n

k − s− i

)

=
(

n− s
k − s+ 1

)
k−s∑
i=0

(−1)k−s−i+1
(

n

k − s− i

)
= (−1)k−s+1

(
n− s

k − s+ 1

)
.

Finally, substituting s = k − i in the formula above gives

bn−(k+1) =
k∑
i=0

(−1)i+1
(
n− k + i

i+ 1

)
tn−k+i.

93

We are now ready to state the generalized inclusion-exclusion principle.

Proposition 32. Following the same notation above, for 1 ≤ k ≤ n,

n∑
i=0

ikbi =
k∑
i=1

ik

 k∑
j=i

(−1)j−i
(

j

j − i

)
tj

 .
In particular:

(a)
∑n
i=0 ibi = t1 =

∑n−1
i=0 |Ai| (Inclusion Exclusion Principle) and;

(b)
∑n
i=0 i

2bi = t1 + 2t2 =
∑n−1
i=0 |Ai|+ 2

∑
i<j |Ai ∩Aj |.

Proof. According to Lemma 31 we have

bn = tn

bn−1 = tn−1 −
(n

1
)
tn

bn−2 = tn−2 −
(n−1

1
)
tn−1 +

(n
2
)
tn

...
b2 = t2 −

(3
1
)
t3 +

(4
2
)
t4 + · · ·+ (−1)n−3(n−1

n−3
)
tn−1 + (−1)n−2(n

n−2
)
tn

b1 = t1 −
(2
1
)
t2 +

(3
2
)
t3 +

(4
3
)
t4 + · · ·+ (−1)n−2(n−1

n−2
)
tn−1 + (−1)n−1(n

n−1
)
tn

After summing
∑n
i=1 i

kbi, for 1 ≤ s ≤ n, we consider the sum by focusing on the sum-
mands that are multiples of ts on the right hand side:

c(ts) =
s∑
i=1

ik
(

s

s− i

)
(−1)s−i.

We claim that c(ts) = 0 for k<s≤n. We prove this by strong induction on k. For k=1 we
have

c(ts) =
s∑
i=1

i

(
s

s− i

)
(−1)s−i =

s∑
i=1

i

(
s

i

)
(−1)s−i =

s∑
i=1

s

(
s− 1
i− 1

)
(−1)s−i.

Since s ≥ 2, we may substitute m = s− 1 ≥ 1 and j = i− 1 to get

c(ts) = s
m∑
j=0

(
m

j

)
(−1)m−j = s(1− 1)m = 0.

Now assume
∑s
i=1 i

l
(s
s−i
)
(−1)s−i = 0 for any 1 ≤ l ≤ k and l + 1 ≤ s ≤ n. Then

c(ts) =
∑s
i=1 i

k+1(s
s−i
)
(−1)s−i =

∑s
i=1 i

k+1(s
i

)
(−1)s−i =

∑s
i=1 si

k
(s−1
i−1
)
(−1)s−i.

Substitute m = s− 1 ≥ l ≥ 1 and j = i− 1 to obtain

94

c(ts) = s
m∑
j=0

(j + 1)k
(
m

j

)
(−1)m−j = s

m∑
j=0

k∑
l=0

(
k

l

)
jl
(
m

j

)
(−1)m−j

= s
k∑
l=0

(
k

l

)
m∑
j=0

jl
(
m

j

)
(−1)m−j .

Since l ≤ k, the induction hypothesis implies each summand

m∑
j=0

jl
(
m

j

)
(−1)m−j =

m∑
j=1

jl
(

m

m− j

)
(−1)m−j = 0.

Hence c(ts) = 0. On the other hand for 1 ≤ s ≤ k the sum of the summands containing is

on the right hand side is
∑k
j=i(−1)j−i

(j
j−i
)
tj . Hence we have the result. In particular, for

k = 2 the non-zero terms on the right-hand-side are t1 −
(2
1
)
t2 + 22t2 = t1 + 2t2.

5.4 Results on the distribution of unlucky points

In this section we first consider the bivariate case and next we will prove the general multi-
variate version. The generalized inclusion exclusion principle will play a central role in the
proofs .

Theorem 33. Let Fq be a finite field with q elements, f, g be polynomials in Fq[x, y] of the
form f = cnx

n +
∑n−1
i=0

∑n−i
j=0 cijx

iyj and g = dmx
m +

∑m−1
i=0

∑m−i
j=0 dijx

iyj with cn 6= 0 and
dm 6= 0, thus of total degree n and m respectively. Let X be a random variable that counts
the number of γ ∈ Fq such that gcd(f(x, γ), g(x, γ)) 6= 1. If n > 0 and m > 0 then

E[X] = 1 and Var[X] = 1− 1/q.

Proof. Let us first explain the strategy of the proof. We note that without loss of generality
we may assume f and g are monic in x because

gcd(f(x, γ), g(x, γ)) = 1 ⇐⇒ gcd(c−1
n f(x, γ), d−1

m g(x, γ)) = 1

.
If we want to compute E[X] and Var[X] by using explicit formula of Pr[X = i] then the

computations will be somewhat difficult. Instead we want to use the generalized inclusion-
exclusion principle described in Proposition 33.

In the first part of the proof, to compute E[X], for γ ∈ Fq, let us define Aγ as the
set of polynomial pairs (f, g) ∈ Fq[x, y]2 where f, g are monic in x with total degrees,
deg(f) = n > 0 and deg(g) = m > 0 such that gcd(f(x, γ), g(x, γ)) 6= 1. Our first goal will

95

be to compute |A0| and then show that |A0|=|Aγ | for γ 6= 0. Once we have this fact, we
can invoke Proposition 32 and compute E[X] easily.

In the second part of the proof, to compute Var[X], for (γ, θ) ∈ F2
q with γ < θ, let us

define Aγ,θ as the set of bivariate polynomial pairs (f, g) where f, g are monic in x with
total degrees, deg(f) = n > 0 and deg(g) = m > 0 such that gcd(f(x, γ), g(x, γ)) 6= 1 and
gcd(f(x, θ), g(x, θ)) 6= 1. Our first goal will be to compute |A0,1| and then show that |A0,1|
= |Aγ,θ| for any pair (γ, θ) with γ 6= θ. Once we have this fact we can invoke Proposition
32 again and compute Var[X] easily.

Let (f, g) ∈ A0. Since f and g are monic in x, f(x, 0), g(x, 0) are monic polynomials
of degree n and m respectively in Fq[x]. We have finitely many choices, say s, for non-
relatively prime monic polynomial pairs (hi(x), li(x)) with deg(hi) = n and deg(li) = m

with i = 1, . . . , s in Fq[x]2. Let (f(x, 0), g(x, 0)) = (hi(x), li(x)) for some fixed i where
1 ≤ i ≤ s. In fact s = (qnqm)/q = qn+m−1, since there are qnqm possible choices for monic
polynomial pairs (h, l) in Fq[x] with deg(h) = n, deg(l) = m and the probability that a given
monic pair is non-relatively prime over Fq[x] is 1/q (see [Pan13, Ber68] and also [BC07] for
an accessible proof).

Let f(x, y) = xn + cn−1(y)xn−1 + · · ·+ c1(y)x+ c0(y) where cd(y) ∈ Fq[y] of total degree
deg(cn−d(y)) ≤ d and let cn−d(y) = a

(n−d)
d yd + · · ·+ a

(n−d)
0 where a(n−d)

i ∈ Fq.
Let hi(x) = xn + α

(i)
n−1x

n−1 + · · · + α
(i)
0 with α

(i)
v ∈ Fq for 0 ≤ v ≤ n − 1. Then for

1 ≤ d ≤ n, we have cn−d(0) = a
(n−d)
0 = α

(i)
n−d. It follows that there are qd choices for

such cn−d(y) and hence there are q1q2 · · · qn = qn(n+1)/2 choices for such f(x, y). Similarly
there are qm(m+1)/2 choices for g(x, y). Let us denote these numbers as D = qn(n+1)/2 and
R = qm(m+1)/2. Since we have s choices for i, |A0| = sDR.

On the other hand for a given γ ∈ Fq if (f(x, y), g(x, y)) ∈ A0 then (f(x, y− γ), g(x, y−
γ)) ∈ Aγ , since f(x, y−γ) is again a bivariate polynomial which is a monic polynomial in x
of total degree n and g(x, y−γ) is again a bivariate polynomial which is a monic polynomial
in x of total degree m. This correspondence (coordinate transformation) is bijective. Hence
for any γ ∈ Fq, one has |Aγ | = sDR.

For a general polynomial f(x, y) ∈ Fq[x, y] which is monic in x and of total degree n > 0,
one has q2q3 · · · qn+1 = qnD choices. Similarly for a general polynomial g(x, y) ∈ Fq[x, y]
which is monic in x and of total degree m > 0, one has q2q3 · · · qm+1 = qmR choices and
therefore there are qn+mDR pairs (f, g) which are monic in x with total degrees deg(f) = n

and deg(g) = m.
Let xi := Pr[X = i]. This is the probability that gcd(f(x, γ), g(x, γ)) 6= 1 for exactly i

different γ’s in Fq, i.e. the probability that (f, g) ∈ Bi in the notation introduced in section
5.3 considering the finite collection of sets Γ = {Aγ , γ ∈ Fq}. Hence xi = bi

qn+mDR
. Then by

96

Proposition 32

E[X] =
q∑
i=0

ixi =
q∑
i=0

i
bi

qn+mDR
=
∑q−1
i=0 |Ai|

qn+mDR
=
∑q−1
i=0 sDR

qn+mDR
= qsDR

qn+mDR
= qqn+m−1

qn+m = 1.

To determine the variance of X, our proof assumes a set ordering of the elements of Fq. For
this purpose let us fix a generator α of F∗q and use the ordering 0 < 1 < α < α2 < · · · < αq−2.

Recall that (γ, θ) ∈ F2
q with γ < θ, we defined Aγ,θ as the set of bivariate polynomial

pairs (f, g) where f, g are monic in x with total degrees, deg(f) = n > 0 and deg(g) = m > 0
such that gcd(f(x, γ), g(x, γ)) 6= 1 and gcd(f(x, θ), g(x, θ)) 6= 1.

Let (f, g) ∈ A0,1. Since f and g are monic in x, f(x, 0), f(x, 1) are monic polynomials
of degree n and g(x, 0), g(x, 1) are monic polynomials of degree m in Fq[x]. We have finitely
many choices for non-relatively prime monic polynomial pairs (hi(x), li(x)) with deg(hi) = n

and deg(li) = m with i = 1, . . . , s in Fq[x]2.
We have (f(x, 0), g(x, 0)) = (hi(x), li(x)) and (f(x, 1), g(x, 1)) = (hj(x), lj(x)) for some

fixed pair (i, j) where 1 ≤ i, j ≤ s.
Now suppose f(x, y) = xn + cn−1(y)xn−1 + · · · + c1(y)x + c0(y) where cd(y) ∈ Fq[y] of

total degree deg(cn−d(y)) ≤ d and let cn−d(y) = a
(n−d)
d yd + · · ·+ a

(n−d)
0 where a(n−d)

i ∈ Fq.
Let hi(x) = xn + α

(i)
n−1x

n−1 + · · · + α
(i)
0 and hj(x) = xn + β

(j)
n−1x

n−1 + · · · + β
(j)
0 with

α
(i)
v , β

(j)
w ∈ Fq for 0 ≤ v, w ≤ n − 1. Then for 1 ≤ d ≤ n, we have cn−d(0) = a

(n−d)
0 =

α
(i)
n−d and cn−d(1) = a

(n−d)
d + · · ·+ a

(n−d)
1 + a

(n−d)
0 = β

(j)
n−d.

It follows that there are qd−1 choices for such cn−d(y) and hence there are q0q1 · · · qn−1 =
qn(n−1)/2 choices for such f(x, y).

Similarly there are qm(m−1)/2 choices for g(x, y). Let us call these numbers as D1 =
qn(n−1)/2 and R1 = qm(m−1)/2. Since we have s2 choices for (i, j) (i and j are need not be
different, |A0,1| = s2D1R1.

On the other hand if (f(x, y), g(x, y)) ∈ A0,1 then for (γ, θ) ∈ F2
q where γ < θ,

(f(x, y−γθ−γ), g(x, y−γθ−γ)) ∈ Aγ,θ since f(x, y−γθ−γ) is again a monic polynomial in x of total
degree n and g(x, y−γθ−γ) is again a monic polynomial in x of total degree m. This correspon-
dence (coordinate transformation) is bijective and preserves relative primeness. Hence for
a given γ, θ ∈ Fq with γ < θ, one has |Aγ,θ| = s2D1R1.

For a general bivariate polynomial f(x, y) ∈ Fq[x, y] which is monic in x and of total
degree n, one has q2q3 · · · qn+1 = q2nD1 choices. Similarly for a general bivariate polynomial
g(x, y) ∈ Fq[x, y] which is monic in x and of total degree m, one has q2q3 · · · qm+1 = q2mR1

choices. Therefore the number of bivariate polynomial pairs in (f, g) which are monic in x
with total degrees, deg(f) = n and deg(g) = m is q2n+2mD1R1. Then with this notation
we have xi = bi

q2n+2mD1R1
.

Since we have
(q
2
)
choices for (γ, θ) with γ < θ, |Aγ,θ| = s2D1R1 for all (γ, θ) with γ < θ

and E[X] = 1, by Proposition 32

97

Var[X] = E[X2]− E[X]2 = E[X2]− 12 = − 1 +
q∑
i=0

i2xi

= −1 +
q∑
i=0

i2
bi

q2n+2mD1R1
= − 1 +

∑q
i=0 i

2bi
q2n+2mD1R1

= −1 +
∑q−1
i=0 |Ai|+ 2

∑
i<j |Ai ∩Aj |

q2n+2mD1R1
(by Proposition33)

= −1 +
∑q−1
i=0 |Ai|

q2n+2mD1R1
+

2
∑
i<j s

2D1R1

q2n+2mD1R1

= −1 +
∑q
i=0 ibi

q2n+2mD1R1
+

2
(q
2
)
s2D1R1

q2nq2mD1R1

= −1 +
q∑
i=0

i
bi

q2n+2mD1R1
+

2
(q
2
)
s2D1R1

q2nq2mD1R1

= −1 +
q∑
i=0

ixi +
2
(q
2
)
s2D1R1

q2nq2mD1R1

= −1 + E[X] +
2
(q
2
)
s2D1R1

q2nq2mD1R1

= −1 + 1 +
2
∑
i<j s

2D1R1

q2n+2mD1R1
=

2
(q
2
)
s2D1R1

q2nq2mD1R1

= q(q − 1)q2n+2m−2

q2n+2m = q(q − 1)
q2 = 1− 1

q
. 2

Theorem 34. Let Fq be a finite field with q elements, f, g ∈ Fq[x1, x2, . . . , xn] be of the
form f = clx

l
1 +

∑l−1
i=0 cl−i(x2, . . . , xn)xi and g = dmx

m
1 +

∑m−1
i=0 dm−i(x2, . . . , xn)xi where

cl 6= 0, dm 6= 0, deg cl−i ≤ l−i, and deg dm−i ≤ m−i, thus f and g have total degree l and m
respectively. Let X be a random variable which counts the number of γ = (γ2, . . . , γn) ∈ Fn−1

q

such that gcd(f(x1, γ2, . . . , γn), g(x1, γ2, . . . , γn)) 6= 1. If n > 1, l > 0 and m > 0 then

E[X] = qn−2 and Var[X] = qn−2(1− 1/q).

It follows that if γ is chosen at random from Fn−1
q then

Pr[gcd(f(x1, γ2, . . . , γn), g(x2, γ2, . . . , γn) 6= 1] = qn−2

qn−1 = 1
q
.

Proof. The proof runs along the same lines of the proof of Theorem 33. Let U be the
set of all possible monic pairs (f, g) ∈ Fq[x1, . . . , xn]2 where f, g are as described in the
theorem. For α = (α2, . . . , αn) ∈ Fn−1

q , let Aα be the set of all such polynomial pairs with
gcd(f(x1, α), g(x1, α)) 6= 1.

98

For the first part we will consider the monic pairs (f, g) with

gcd(f(x1, 0, 0 . . . , 0), g(x1, 0, 0 . . . , 0)) 6= 1

and compute that the probability of this event is 1/q again. Then for a given non-zero
α = (α2, . . . , αn) ∈ Fn−1

q , considering the coordinate change

f̄(x1, α2, . . . , αn) = f(x1, x2 − α2, . . . , xn − αn)

and using Proposition 32, since there are qn−1 possible such α’s, we will see that E[X] =
qn−1q−1 = qn−2.

For the second part we will consider the monic pairs (f, g) with

gcd(f(x1, 0, 0 . . . , 0), g(x1, 0, 0 . . . , 0)) 6= 1

gcd(f(x1, 1, 0 . . . , 0), g(x1, 1, 0 . . . , 0)) 6= 1

and see that probability of this event is 1/q2 again. For a given pair (α, β) ∈ Fn−1
q × Fn−1

q

with α 6= β, this time the coordinate change of the second part of the proof that computes
the variance may not be that obvious. We give the explicit construction below. Then by
enumerating the elements of Fn−1

q from 0 to qn−1 − 1 and using Proposition 32, since there
are

(qn−1

2
)
possible pairs (α, β) with α < β, we will see that

Var[X] = E[X2]− E[X]2 = −E[X]2 +
qn−1−1∑
i=0

i2Pr(X = i)

= −E[X]2 +
qn−1−1∑
i=0

i2
bi
|U |

= −E[X]2 +
∑qn−1−1
i=0 i2bi
|U |

= −E[X]2 +
∑qn−1−1
i=0 |Ai|+ 2

∑
i<j |Ai ∩Aj |

|U |

= −E[X]2 +
qn−1−1∑
i=0

1
q

+ 2
∑
i<j

1
q2

= −E[X]2 + qn−1 1
q

+ 2
(
qn−1

2

)
1
q2

= −q2n−4 + qn−2 + qn−1(qn−1 − 1)q−2

= qn−2 − qn−3 = qn−2(1− 1
q

).

99

For a given pair (α, β) ∈ Fn−1
p × Fn−1

p with α 6= β, let α = (α2, . . . , αn) and β =
(β2, . . . , βn). Our aim is to find a coordinate change such that

f̄(x1, α2, . . . , αn) = f(x1, 0, 0 . . . , 0)

f̄(x1, β2, . . . , βn) = f(x1, 1, 0 . . . , 0)

where

f̄(x1, x2, . . . , xn) = f(x1, a20 + a22x2 + · · ·+ a2nxn, . . . , an0 + an2xn + · · ·+ annxn).

Note that this transformation does not change the leading term in x1, so it preserves
monicness, degree in x1, and preserves coprimality. To make this transformation bijective
we need a (n− 1)× (n− 1) matrix

A =

a22 . . . a2n
...

...
...

an2 . . . ann

which is invertible and to satisfy the relations

a22α2 + · · ·+ a2nαn = −a20

a22β2 + · · ·+ a2nβn = 1− a20

and for 3 ≤ j ≤ n

aj2α2 + · · ·+ ajnαn = −aj0
aj2β2 + · · ·+ ajnβn = −aj0.

Let us consider α and β as column vectors and suppose that α and β are linearly independent

over Fp. Then there exists a pair (i, j) such that
∣∣∣∣∣ αi αj

βi βj

∣∣∣∣∣ 6= 0. Applying the necessary

permutation if needed, we may assume that
∣∣∣∣∣ α2 α3

β2 β3

∣∣∣∣∣ 6= 0. Then consider the invertible

(n− 1)× (n− 1) matrix B

B :=

α2 α3 αn

β2 β3 βn

0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1

100

Let aj denote aj = (a22 · · · a2n)T for 2 ≤ j ≤ n. Let a2 := B−1 (−1 0 · · · 0)T , so that
a2 · αT = −1, a2 · βT = 0. Let a3 := B−1

(
1 eT1

)T
so that a3 · αT = 1, a3 · βT = 1 and

let aj := B−1(0 eTj−2)T so that aj · αT = 0, aj · βT = 0 for 3 < j < n where ei’s denote
canonical basis vectors for Zn−2

p . Let also a20 = 1, a30 = −1 and aj0 = 0. Now, if we define
A = (a2 · · · an)T then by construction of ai’s we have

A · α =

a2 · αT

a3 · αT
...

an · αT

 =

−1
1
0
...
0

and A · β =

a2 · βT

a3 · βT
...

an · βT

 =

0
1
0
...
0

.

Hence we get a2 · αT + a20 = −1 + 1 = 0 and a2 · βT + a20 = 0 + 1 = 1 as needed. Also
a3 ·αT +a30 = 1−1 = 0 and a3 ·βT +a30 = 1−1 = 0 as needed. Also aj ·αT +aj0 = 0+0 = 0
and aj · βT + aj0 = 0 + 0 = 0 as needed. It remains to show that the set {a2, a3, . . . , an} is
linearly independent.

Now, since B is invertible, the set {a2, a3, . . . , an} is linearly independent iff the set
{Ba2, Ba3, . . . , Ban} is linearly independent. Let for some γi ∈ Fp, 2 ≤ i ≤ n we have

γ2

−1
0
0
...
0

+ γ3

1
1
0
...
0

+ γ4

0
0
1
...
0

+ · · ·+ γn

0
0
0
...
1

= 0.

Then it can be easily seen that γi = 0 and hence {a2, a3, . . . , an} is linearly independent. It
follows that A is invertible and the translation we have constructed

a22 . . . a2n
...

...
...

an2 . . . ann

x2
...
xn

+

1
−1
0
...
0

satisfies the conditions we needed.
Example: Let α = (2, 0, 0, 0) and β = (2, 3, 0, 1) in Z4

5. Then

B =

2 0 0 0
2 3 0 1
0 0 1 0
0 0 0 1

⇒ B−1 =

3 0 0 0
3 2 0 3
0 0 1 0
0 0 0 1

 mod 5.

101

a2 = B−1

−1
0
0
0

 =

2
2
0
0

 , a3 = B−1

1
1
0
0

 =

3
0
0
0

 , a4 = B−1

0
0
1
0

 =

0
0
1
0

 , a5 =

B−1

0
0
0
1

 =

0
3
0
1

 . Then the transformation is

2 2 0 0
3 0 0 0
0 0 1 0
0 3 0 1

x2

x3

x4

x5

+

1
−1
0
0

and f̄(x1, x2, x3, x4, x5) = f(x1, 1 + 2x2 + 2x3,−1 + 3x2, x4, 3x3 + x5) and

f̄(x1, 2, 0, 0, 0) = f(x1, 0, 0, 0, 0)

f̄(x1, 2, 3, 0, 1) = f(x1, 1, 0, 0, 0).

Now suppose that α and β are linearly dependent over Fp. Again applying the necessary
permutation if needed, we may assume that 0 6= α2 andα2 6= β2. Let a20 = −α2/(β2 − α2)
,a22 = 1/(β2−α2) and a2j = 0 for 3 ≤ j ≤ n. Then we have a2 ·αT +a20 = α2

β2−α2
− α2
β2−α2

= 0
and a2 · βT + a20 = β2

β2−α2
− α2

β2−α2
= 1 as needed.

Now consider the 1 × (n − 1) matrix B = (α2 · · ·αn) . Since α 6= 0 dim(Ker(B)) = n − 2.
Let v2, . . . , vn be a basis for Ker(B). Let for some γi ∈ Fp, 2 ≤ i ≤ n we have

γ2a2 + γ3v3 + γ4v4 + · · ·+ γnvn = 0.

Then applying B from left hand side we have γ2Ba2 = γ2α2/(β2 − α2) = 0 ⇒ γ2 = 0. It
follows that γi = 0 and {a2, v2, . . . , vn} is linearly independent. Then A := (a2 v2 · · · vn)T

is invertible. It can be readily verified that the translation we have constructed

A

x2
...
xn

+

−α2
β2−α2

0
...
0

satisfies the remaining conditions needed.
Example: Let α = (1, 1, 0, 0) and β = (2, 2, 0, 0) in Z4

5. Then a20 = −α2/(β2−α2) = 4 and

102

a22 = 1/(β2 − α2) = 1 mod 5. Also, B = (1 1 0 0) and

v3 =

3
2
0
0

 , v4 =

0
0
1
0

 , v5 =

0
0
0
1

and then the transformation is

1 0 0 0
3 2 0 0
0 0 1 0
0 0 0 1

x2

x3

x4

x5

+

4
0
0
0

where f̄(x1, x2, x3, x4, x5) = f(x1, 4 + x2, 3x2 + 2x3, x4, x5) and

f̄(x1, 1, 1, 0, 0) = f(x1, 0, 0, 0, 0)

f̄(x1, 2, 2, 0, 0) = f(x1, 1, 0, 0, 0).

5.4.1 A comparison with the binomial distribution.

Let Y be a random variable with a binomial distribution parameterized by n and p where
n indicates the number of trials and p indicates the probability p. So 0 ≤ Y ≤ n, Pr[Y =
k] =

(n
k

)
pk(1 − p)n−k, E[Y] = np and Var[Y] = np(1 − p). We noticed that the mean

and variance of X in Theorem 34 is the same as the mean and variance of the binomial
distribution B(n, p) with n = q trials and probability p = 1/q. In Table 1 below we compare
the two distributions for

f = x2 + (a1y + a2)x+ (a3y
2 + a4y + a5) and

g = x2 + (b1y + b2)x+ (b3y2 + b4y + b5)

in Fq[x, y] with q = 7. Note that there are 710 pairs for f, g. In Table 5.1 Fk is the number
of pairs for which gcd(f(x, α), g(x, α)) 6= 1 for exactly k values for α ∈ F7. We computed
Fk by computing this gcd for all distinct pairs using Maple. The values for Bk come from
B(7, 1/7). They are computed by Bk = 710 Pr[Y = k].

k 0 1 2 3 4 5 6 7
Fk 96606636 110666892 56053746 17287200 1728720 0 0 132055

Fk/710 .34200036 .39177554 .19843773 0.061199 0.00612 0. 0. 0.00047
Bk 96018048 112021056 56010528 15558480 2593080 259308 14406 343

Bk/710 .33991668 .39656946 .19828473 0.0550791 0.0092 0.00092 0.0001 1.2e-6

Table 5.1: Data for quadratic (f, g) in F7[x, y]

103

The two zeros F5 and F6 can be explained as follows. Let R(y) be the Sylvester resultant of f
and g. Then applying Lemma 1 we haveR(α) = 0 ⇐⇒ gcd(f(x, α), g(x, α)) 6= 1 for α ∈ Fq.
For our quadratic polynomials f and g, Lemma 1(ii) implies degR ≤ deg f deg g = 4.

Hence R(y) can have at most 4 distinct roots unless f and g are not co-prime in F7[x, y]
in which case R(y) = 0 and it has 7 roots. Therefore F5 = 0, F6 = 0 and F7 = 132055 is
the number pairs f, g which are not co-prime in F7[x, y].

5.5 Results on the distribution of the roots of a monic poly-
nomial in Zn[x]

Theorem 35. Let X be a random variable which counts the number of distinct roots of a
monic polynomial in Zn[x] of degree m > 0. Then E[X] = 1. For m = 1 Var[X] = 0 and
for m > 1

Var[X] =
∑

d|n,d 6=n

d

n
φ(n
d

) =
∑
d|n

d− 1
n

φ(n
d

).

In particular, if n = pk where p is a prime number and k ≥ 1, Var[X] = k(1− 1/p).

Proof. Let Ai be the set of all monic univariate polynomials of degree m > 0 which have
a root at αi ∈ Zn. Then since x− αi is monic, for any f ∈ Ai we have f = (x− αi)q for a
unique q ∈ Zn[x] and nm−1 choices for such an f . Hence |Ai| = nm−1.

Let xi := Pr[X = i], this is the probability that f has exactly i distinct roots, i.e.
f ∈ Bi in the notation introduced in Section 5.3 considering the finite collection of sets
Γ = {Ai, i = 0, . . . , n− 1}. Since we have nm−1 choices for a monic polynomial of degree m
in Zn[x] we have xi = bi

nm−1 . Then by Proposition 32,

E[X] =
n∑
i=0

ixi =
n∑
i=0

i
bi
nm

=
∑n
i=0 ibi
nm

=
∑n−1
i=0 |Ai|
nm

=
∑n−1
i=0 n

m−1

nm
= nnm−1

nm
= 1.

To prove the second part, if m = 1 then f = x− α for some α ∈ Zn and hence X = 1 and
Var[X] = 0. For m > 1 and α ∈ Z∗n, our first aim is to find |A0 ∩ Aα|. Let f ∈ A0 ∩ Aα.
It may not be the case that f = x(x − α)q for a unique q ∈ Zn[x], since Zn[x] is not a
unique factorization domain in general. However, f = xq1 = (x − α)q2 for unique q1, q2 ∈
Zn[x]. It follows that αq2(0) = 0 mod n. If gcd(α, n) = d, then gcd(αd ,

n
d) = 1 and hence

q2(0) = 0 mod n
d . The general form is q2 = xm−1 + am−2x

m−2 + · · ·+ a0 where ai ∈ Zn for
i = 0, . . . ,m − 2. Since q2(0) = a0 mod n

d , there are d choices for a0 and hence there are
dnm−2 choices for q2. Therefore |A0 ∩Aα| = dnm−2.

For a given pair (γ, β) with β > γ, to compute |Aγ ∩Aβ|, define α := β−γ and consider
A0 ∩ Aα. If f ∈ Aγ ∩ Aβ, then we have f(x) = (x − γ)q3(x) = (x − β)q4(x) for unique
q3, q4 ∈ Zn[x]. By the coordinate translation x 7→ x+ γ, we have f(x+ γ) ∈ A0 ∩Aα since

104

f(x+γ) = xq3(x+γ) = (x−α)q4(x+γ) where f(x+γ), q3(x+γ), q4(x+γ) are monic and
with the same degree before the translation. This correspondence is bijective and it follows
that |Aγ ∩Aβ| = |A0 ∩Aα| = dnm−2.

Let d = gcd(α, n). There are k = φ(nd) elements β1, . . . , βk in Zn
d
such that gcd(βj , nd) =

1. If we define αj := dβj ∈ Zn, then gcd(αj , n) = d. For, if s = gcd(αj , n) and d|s, then
s|αj ⇒ s|dβj ⇒ s

d |βj and
s
d |
n
d ⇒

s
d |gcd(βj , nd)⇒ s

d |1⇒ s = d. Now, for each j consider the
n−αj pairs of the form (i, i+αj) where i = 0, . . . , n−αj−1. We have |Ai∩Ai+αj | = |A0∩Aαj |
and

∑
β>γ,d=gcd(β−γ,n)

|Aγ ∩Aβ| =
k∑
j=1

(n− αj)|A0 ∩Aαj | =
k∑
j=1

(n− αj)dnm−2 = dnm−2
k∑
j=1

n− αj

where d = gcd(αj , n) and k = φ(nd). Since gcd(n, αj) = d ⇐⇒ gcd(n, n− αj) = d we have∑k
j=1 n− αj =

∑k
j=1 αj . Then

2
k∑
j=1

αj =
k∑
j=1

αj +
k∑
j=1

n− αj =
k∑
j=1

n = kn = φ(n
d

)n =⇒
k∑
j=1

αj = n

2φ(n
d

).

It follows that

∑
β>γ,d=gcd(β−γ,n)

|Aγ ∩Aβ| = dnm−2
k∑
j=1

n− αj = dnm−2
k∑
j=1

αj = n

2φ(n
d

)dnm−2.

Then by Proposition 32, it follows that

Var[X] = E[X2]− E[X]2 = −12 + E[X2]

= −1 +
n∑
i=0

i2xi = −1 +
n∑
i=0

i2
bi
nm

= −1 +
∑n
i=0 i

2bi
nm

= −1 +
∑n−1
i=0 |Ai|+ 2

∑
i<j |Ai ∩Aj |

nm

= −1 + nnm−1

nm
+

2
∑
d|nd 6=n

n
2φ(nd)dnm−2

nm

= 2
∑

d|nd 6=n

n

2φ(n
d

)dn−2 =
∑

d|nd 6=n

d

n
φ(n
d

).

Also, since by Gauss’ Lemma
∑
d|n φ(nd) = n we have

∑
d|n

d− 1
n

φ(n
d

) =
∑
d|n

d

n
φ(n
d

)− 1
n

∑
d|n

φ(n
d

)

= φ(1) +
∑

d|n,d 6=n

d

n
φ(n
d

)− 1
n
n =

∑
d|n,d 6=n

d

n
φ(n
d

).

105

To prove the last claim, let n = pk where p is a prime number and k ≥ 1. Then

∑
d|n,d 6=n

d

n
φ(n
d

) =
k−1∑
s=0

ps

pk
φ(p

k

ps
) =

k−1∑
s=0

ps−kpk−s−1(p− 1) = k(1− 1/p).

5.6 Summary

As we indicated in the beginning of the Chapter, to investigate the efficiency and deter-
mine the complexity of the MTSHL algorithm, we needed to consider the probabilistic
assumptions made by the design of MTSHL.

To manage this task, we generalized the inclusion-exclusion principle in Section 5.3 as
Proposition 32.

Theorem 34 in Section 5.4 shows that in the MTSHL algorithm the average probability
of hitting an unlucky point is 1/p. It assures us that if p is big enough, then the probability
that MTSHL fails because of an unlucky event is very small. It also shows when p is big
enough, the distribution of unlucky points is smooth.

Theorem 35 in Section 5.5 generalizes the Theorem of Schmidt which considers the
distribution of number of roots of a polynomial in a univariate polynomial ring Fq[x] over a
finite field Fq with q elements, to the ring of integers modulo n, Zn. The expected number
of roots of a univariate polynomial is 1 as in the finite field case. The distribution is not
smooth which reminds us that we can’t rely on the expected value of a distribution without
investigating the variance.

106

Chapter 6

Complexity of MTSHL

6.1 The steps of the analysis

In this Chapter we begin with studying what happens to the sparsity of multivariate polyno-
mials when the variables are successively evaluated at numbers. We determine the expected
number of remaining terms and the variance.

Next in Subsection 6.2.1 we question the assumptions made by Zippel in his complexity
analysis of sparse interpolation [Zip79]. By the help of the results of Section 6.2, we revise
this assumption and correct his analysis.

The solutions to the MDP are the coefficients of a Taylor series of a polynomial expanded
about a random point; the expected number of terms of these coefficients is determined in
Section 6.3.

The complicated nature of MTSHL makes the analysis tedious. Section 6.4 is written
to help the reader follow Section 6.5 where we use these results to analyze the complexity
of MTSHL.

Finally in Section 6.6 we confirm our theoretical estimations with experimental data. We
give some timing data to compare MTSHL with Maple’s factorization algorithm. To show
that our comparison is fair, we also include timings for Magma and Singular’s factorization
algorithms.

6.2 The expected number of terms after evaluation

The complexity of MTSHL depends on the number of terms in the factors, and the number
of terms of each factor is expected to decrease from the step j + 1 to j after evaluation. To
make our complexity analysis as precise as possible, we must give an upper bound for the
expected sizes of the factors in each step j. In this section we compute these bounds and
confirm our theoretical estimations by experimental data.

107

Let p be a big prime and f ∈ Zp[x1, . . . , xn] be a randomly chosen multivariate poly-
nomial of degree ≤ d that has T non-zero terms. Let s be the number of all possible
monomials of degree ≤ d, i.e. s =

(n+d
n

)
. An upper bound for T is then given by T ≤ s. By

randomly chosen we mean that the probability of occurrence of each monomial is the same
and equal to 1/s. We think of choosing a random polynomial of degree ≤ d that has T
terms as choosing T distinct monomials out of s choices and choosing coefficients uniformly
at random from [0, p− 1].

Let also g = f(xn = αn) for a randomly chosen non-zero element αn ∈ Zp. Before
evaluation let f =

∑t
i=1 mici(xn) where mi are monomials in the variables x1, . . . , xn−1.

Then T =
∑t
i=1 #ci(xn) and g =

∑t
i=1 mici(αn). One has

Pr[ci(αn) = 0] ≤ deg ci(xn)
p

≤ d

p

for each i. If p is much bigger than d and αn is random, we don’t expect any ci(αn) = 0 for
1 ≤ i ≤ t. In the following first we assume that ci(αn) 6= 0 for 1 ≤ i ≤ t and compute the
expected value of number of terms Tg of g, in terms of T, d and n. Then the upper bounds
on the expected value of Tg will be valid even for the case in which some of the ci(αn) = 0.

Let Yk be a random variable that counts the number of terms of the kth homogeneous
component fk of f which is of homogeneous of degree k in the variables x1, . . . , xn−1. We
have f =

∑d
k=0 fk and degxn

fk ≤ d− k for 0 ≤ k ≤ d.

Example 36. Let n = 3, d = 6 and

f = 1 + x5
3︸ ︷︷ ︸

f0

+ 2x1x
4
3︸ ︷︷ ︸

f1

+x1x
2
2(3x3 + 4x2

3) + 5x2
1x2x

3
3︸ ︷︷ ︸

f3

+x2
1x

2
2(6x3 + 7x2

3)︸ ︷︷ ︸
f4

+ 8x3
1x

3
2︸ ︷︷ ︸

f6

with f2 = f5 = 0. Y0 = 2, Y1 = 1, Y3 = 3, Y4 = 2, Y6 = 1, Y2 = Y5 = 0.

Let sk be the number of all possible monomials in the variables x1, . . . , xn−1with homo-
geneous degree k, i.e. sk =

(n−2+k
n−2

)
and dk = d − k + 1 for 0 ≤ k ≤ d. Since the number

of all possible monomials in the variables x1, . . . , xn−1 and homogeneous of degree k in the
variables x1, . . . , xn−1 up to degree d is skdk, we have

∑d
k=0 skdk = s and

Pr[Yk = j] = 1(s
T

)(skdk
j

)(
s− skdk
T − j

)
.

This is a hyper-geometric distribution, its expected value and variance are well-known

E[Yk] = T
skdk
s

and Var[Yk] = (s− skdk)(s− T)Tskdk
s2(s− 1) .

108

Let Xk be a random variable that counts the number of terms of the kth homogeneous
component gk of g which is homogeneous of degree k in the variables x1, . . . , xn−1. Let us
define the random variable X =

∑d
k=0Xk. Then X counts the number of terms Tg of g.

Example 37. Let n = 3, d = 6 and α3 = 1. Below g = f(x3 = 1).

f = 1 + x5
3︸ ︷︷ ︸

Y0=2

+ 2x1x
4
3︸ ︷︷ ︸

Y1=1

+x1x
2
2(3x3 + 4x2

3) + 5x2
1x2x

3
3︸ ︷︷ ︸

Y3=3

+x2
1x

2
2(6x3 + 7x2

3)︸ ︷︷ ︸
Y4=2

+ 8x3
1x

3
2︸ ︷︷ ︸

Y6=1
↓ ↓ ↓ ↓ ↓

g = 2︸︷︷︸
X0=1

+ 2x1︸︷︷︸
X1=1

+ 7x1x
2
2 + 5x2

1x2︸ ︷︷ ︸
X3=2

+ 13x2
1x

2
2︸ ︷︷ ︸

X4=1

+ 8x3
1x

3
2︸ ︷︷ ︸

X6=1

So Y =
∑6
k=0 Yk = 9 and X =

∑6
k=0Xk = 6.

The expected number of terms of g is E[X] =
∑d
k=0E[Xk]. We have

E[Xk] =
sk∑
i=0

iPr[Xk = i] =
sk∑
i=0

i
skdk∑
j=0

Pr[Xk = i |Yk = j] Pr[Yk = j]

=
skdk∑
j=0

Pr[Yk = j]
sk∑
i=0

iPr[Xk = i |Yk = j].

Our first goal is to find the conditional expectation

E[Xk |Yk = j] =
sk∑
i=0

iPr[Xk = i |Yk = j].

To this end, let Mk be the set of all monomials in x1, . . . , xn−1 with homogeneous degree
k. We have |Mk| = sk. Let

Mk = {m1, . . . ,msk
}.

For 1 ≤ i ≤ sk and j > 0, let Ai be the set of all non-zero polynomials in Zp[x1, . . . , xn] with
j number of terms that are homogeneous of total degree k in the variables x1, . . . , xn−1,

have degree < dk in the variable xn and does not include a term of the form cmix
r
n for any

0 ≤ r < dk for some non-zero c ∈ Zp. So using the table below, Ai is the set of all non-zero
polynomials whose support does not contain any monomial from the ith row. Note that if
fk ∈ Ai then #f(xn = αn) ≤ sk − 1.

1 xn . . . xdk−1
n

m1 m1 m1xn . . . m1x
dk−1
n

m2 m2 m2xn . . . m2x
dk−1
n

...
...

...
...

...
msk msk mskxn . . . mskx

dk−1
n

109

If fk is the kth homogeneous component of f in the first n− 1 variables, then if no zero
evaluation occurs in the coefficients of fk in the variables xn (as it was assumed), we have

fk ∈
sk⋃
i=1

Ai ⇐⇒ #fk(x1, . . . , xn−1, α) ≤ sk − 1.

Example 38. Let n = 3, k = 3, d3 = 3, j = 4. We have

Mk = {m1 = x3
1,m2 = x2

1x2,m3 = x1x
2
2,m4 = x3

2}.

with sk = 4. Consider the polynomials

F = x1x
2
2 + x3

2x
2
3 + x3

1(x3 + x2
3) ∈ A2 , G = x1x

2
2x

2
3 + x3

1(1 + x3 + x2
3) ∈ A2 ∩A4.

So, #F (xn = αn) ≤ 4− 1 = 3 and #G(xn = αn) ≤ 4− 2 = 2.

Let us define

Cl :=
⋃

i1<···<il
(Ai1 ∩Ai2 · · · ∩Ail) and Bl := Cl − Cl+1

for 1 ≤ l ≤ sk − 1. Let us also define Bsk
= Csk

=
⋂sk
i=1Ai

bl := |Bl| and ml :=
∑

i1<···<il |Ai1 ∩Ai2 · · · ∩Ail | for 1 ≤ l ≤ sk.

so that m1 =
∑sk
i=1 |Ai|, and m2 =

∑
1≤i<j≤sk

|Ai ∩Aj |
With this notation we have

fk ∈ Bl ⇐⇒ #fk(x1, . . . , xn−1, α) = sk − l.

Let vj :=
(skdk

j

)
and q := (p− 1). Assuming that no zero evaluation occurs, we have

Pr[Xk = sk − l |Yk = j] = |Bl|
qjvj

(6.1)

It can be seen by counting that

Pr[Xk = l |Yk = j] = v−1
j

l∑
i=0

(−1)i
(sk−(l−i)

i

)(sk
l−i
)(dk(l−i)

j

)
.

As this formula is not easy to manipulate, we invoke the methods developed in Chapter 5.
We have |Ai| = qj

((sk−1)dk
j

)
and |Ai ∩ Al| = qj

((sk−2)dk
j

)
for 1 ≤ i, l ≤ sk where i 6= l.

By Proposition 32,
∑sk
i=1 i|Bi| = m1 and

∑sk
i=1 i

2|Bi| = m1 + 2m2. To find the expected
value and the variance of X, let us first define wj :=

((sk−1)dk
j

)
and the random variable

110

Zk := sk −Xk. Then Zk = i ⇐⇒ Xk = sk − i. Recall that vj :=
(skdk

j

)
. Then we have

sk∑
i=1

iPr[Zk = i |Yk = j] (6.1)=
sk∑
i=1

i
|Bl|
qjvj

=
∑sk
i=1 i|Bl|
qjvj

=
∑sk
i=1 |Ai|
qjvj

= sk
wj
vj
.

Since E[Xk |Yk = j] = E[sk − Zk |Yk = j] = sk − E[Zk |Yk = j], we have

E[Xk |Yk = j] =
sk∑
i=0

iPr[Xk = i |Yk = j] = sk(1−
wj
vj

).

To save some space let ykj := Pr[Yk = j]. Then

E[X] =
d∑

k=0
E[Xk] =

d∑
k=0

skdk∑
j=0

ykj

sk∑
i=0

iPr[Xk = i |Yk = j]

=
d∑

k=0

skdk∑
j=0

ykjsk(1−
wj
vj

) =
d∑

k=0

skdk∑
j=0

ykjsk −
d∑

k=0

skdk∑
j=0

ykjsk
wj
vj

=
d∑

k=0
sk

skdk∑
j=0

ykj −
d∑

k=0

skdk∑
j=0

1(s
T

)(skdk
j

)(
s− skdk
T − j

)
sk

((sk−1)dk
j

)(skdk
j

)
=

d∑
k=0

sk −
1(s
T

) d∑
k=0

sk

skdk∑
j=0

(
s− skdk
T − j

)(
(sk − 1)dk

j

)

=
d∑

k=0
sk −

d∑
k=0

sk

(s−dk
T

)(s
T

) =
d∑

k=0
sk

(
1−

(s−dk
T

)(s
T

))
.

Note that what we have done so far can easily be generalized when the number of evaluation
points are more than one : Let for 0 < m < n

g = f(x1, . . . xn−m, xn−m+1 = αn−m+1, . . . , xn = αn)

for m randomly chosen non-zero elements αn−m+1, . . . , αn ∈ Zp and s =
(n+d
n

)
, sk =(n−m−1+k

n−m−1
)
, dk =

(d−k+m
m

)
. If no zero evaluation occurs at the coefficients of f and we

define the random variable Y =
∑d
k=0 Yk which counts the number of terms of f , then what

we get is the conditional expectation

E[X |Y = T] =
d∑

k=0
sk

(
1−

(s−dk
T

)(s
T

))
. (6.2)

From now on, to save some space, when it is clear from the context, we will use the
notation E[X] instead of E[X |Y = T]. Although it is not difficult to compute, the formula
(6.2) is not useful. In order to have a smooth formulation in our complexity analysis, we

111

want a good approximation. First, we observe(
s− dk
T

)
/

(
s

T

)
= (1− T

s
)(1− T

s− 1) · · · (1− T

s− dk + 1).

For 0 ≤ i < dk we have (1− T
s)− (1− T

s−i) = iT
s(s−i) <

dkT
s(s−dk) . Let γi := iT/s

s−i . Then

dk−1∏
i=0

(1− T

s− i
) =

dk−1∏
i=0

(1− T

s
− γi) = (1− T

s
)dk + Er

where

Er =
dk∑
l=1

(−1)l
 ∑

0≤i1<···<il≤dk−1

l∏
j=1

γij

 (1− T

s
)dk−l.

Since
l∏

i=1
γi <

(
dkT/s

s− d

)l
=
(
dk
s

)l (T/s

1− dk/s

)l
→ 0 as dk

s
→ 0

we see that Er → 0 and hence the ratio
(s−dk

T

)
/
(s
T

)
→ (1− T

s
)dk as dk

s → 0.

Remark 39. From now on, unless indicated, whenever we use the symbol ≈ or > we mean
that in the calculation the approximation

(s−dk
T

)
/
(s
T

)
≈ (1− tf)dk (6.3)

is used (with error Er) where tf = T/s is the density ratio of f . When m is not close to n,
since s ∈ O(nd) and in the sparse case tf is relatively small, the error Er is very close to
zero not only asymptotically but also for practical values for n and d (see Example 40).

Now we stick with the case m = 1. For a single evaluation, we expect

E[X] ≈
d∑

k=0
sk
(
1− (1− tf)dk

)
. (6.4)

So, in the dense case where tf is very close to 1, we expect approximately
∑d
k=0 sk many

terms, i.e. most of the possible monomials in the variables x1, . . . , xn−1 up to degree d. In the
very sparse case where tf is very close to zero, using the approximation (1−tf)dk ≈ 1−dktf ,
we expect approximately tf

∑d
k=0 skdk = tfs = T terms as we intuitively expect.

Eqn (6.4) above is the expected number of terms E[Tg] of g. Let γ be the number of
all possible monomials in the variables x1, . . . , xn−1 up to degree d − 1, i.e. γ =

(n+d−1
n−1

)
.

Dividing the both sides of the equation (6.4) by γ we get the expected density ratio

E[Tg]/γ = E[Tg/γ]⇒ E[tg] = 1− γ−1
d∑

k=0
sk

(s−dk
stf

)(s
stf

) . (6.5)

112

So, we have an induced function et : tf 7→ E[tg]. Using Eqn (6.5) we get

E[tg] ≈ 1− γ−1
d∑

k=0
sk(1− tf)dk . (6.6)

Example 40. Table 6.1 below are the results of experiments with 4 random polynomials
with n = 7 variables and degree d = 15. Tgi and tgi are the actual number of terms and the
density ratio of each gi = fi(xn = αi). E[tgi] and eTgi are the expected number of terms of
gi based on Eqns (6.2) and (6.4) resp. E[tgi] and etgi are the expected density ratio of gi
based on Eqns (6.5) and (6.6) resp.

Tfi
tfi

Tgi E[Tgi] eTgi tgi E[tgi] etgi

f1 17161 .100625 14356 14370.47 14370.36 .264558 .264825 .264823
f2 19887 .116609 16196 16221.84 16221.73 .298466 .298943 .298941
f3 29845 .174998 22303 22211.09 22210.96 .411009 .409315 .409313
f4 39823 .233505 27244 27199.53 27199.41 .502063 .501244 .501242

Table 6.1: Expected number of terms after evaluation

Note that the polynomial function et(y) = 1−γ−1∑d
k=0 sk(1−y)dk is strictly increasing

on the interval [0, 1], since e′t(y) > 0 on the interval [0,1]. Also et(0) = 0 and et(1) = 1. For
a given 0 ≤ y0 ≤ 1, consider the function h(y) := et(y)− y0. We have h(0) ≤ 0 and h′ > 0
on [0,1]. Hence h(y) has only 1 real root in [0, 1]. This helps us to guess Tf when we’re
given only Tg. Here is one example in the reverse direction:

Example 41. We call Maple’s randpoly command to give a random sparse polynomial of
degree 15 in 7 variables. It gives us a polynomial f with Tf = 25050. Suppose we don’t
know Tf . Then we choose a random point α and evaluate g = f(xn = α). We compute
Tg = 19395. Then we compute tg = 19395/

(7−1+15
15

)
≈ 0.3574192835 and γ =

(7+15−1
15

)
.

Using (6.6) we seek for the solutions of the polynomial equation

0.3574192835 = 1− γ−1
15∑
k=0

(
5 + k

k

)
(1− y)16−k.

This polynomial equation has only one real root y = 0.1461603065 in [0,1]. So we guess
E[tf] ≈ 0.1461603065. The actual density ratio is tf = 25050/

(7+15
15
)

= 0.1461089220. Our
guess implies E[Tf] ≈ tf

(7+15
7
)

= 24926, whereas Tf = 25050. We repeated this example
with 4 random polynomials fi where gi = fi(xn = αi). The results of the experiments are
in Table 6.2.

Finally, following the notation in the beginning of the section, if some of the ci(αn) = 0
for 1 ≤ i ≤ t, then we consider f̃ =

∑tik
k=0 cik(xn)mik where Supp(f̃) ⊆ Supp(f) and

113

Tgi tgi E[tfi
] tfi

E[Tfi
] Tfi

f1 14967 .2758182220 .1056824733 .1052983394 18023 17958
f2 14597 .2689997051 .1025359262 .1020792288 17486 17409
f3 14439 .2660880142 .1012024458 .1008713294 17259 17203
f4 14375 .2649085950 .1006640188 .1005605592 17167 17150

Table 6.2: Expected density ratio after evaluation

cik(αn) = 0. Then,

E[Tf] = E[Tf−f̃] >
d∑

k=0
sk
(
1− (1− tf)dk

)
.

What we have found is an upper bound for E[X]. On the other hand since we choose
αn 6= 0 a non-zero monomial does not evaluate to zero. That is, if #ci(xn) = 1 then
mici(αn) 6= 0. We should apply the zero evaluation probability for the terms mici(xn) for
which #ci(xn) ≥ 2. Then for given f ∈ Zp[x1, . . . , xn] of degree ≤ d with T terms, the
probability that zero evaluation occurs for a randomly chosen non-zero αn ∈ Zp is ≤ dT

2p .

Note that, this is also true when the number of evaluations are more than one by using
Swartz-Zippel Lemma.

To see how spread out the distribution from the mean is, we must compute the variance.
First we consider the sum A =

∑sk
i=0 i

2 Pr[Zk = i |Yk = j]

A =
sk∑
i=0

(sk − i)2 Pr[Zk = sk − i |Yk = j]

= s2
k − 2sk

sk∑
i=0

iPr[Xk = i |Yk = j] +
sk∑
i=0

i2 Pr[Xk = i |Yk = j]

= s2
k − 2sk(sk − sk

wj
vj

) +
sk∑
i=0

i2 Pr[Xk = i |Yk = j]

= −s2
k(1− 2wj

vj
) +

sk∑
i=0

i2 Pr[Xk = i |Yk = j].

Then
sk∑
i=0

i2 Pr[Xk = i |Yk = j] =
sk∑
i=0

i2 Pr[Zk = i |Yk = j] + s2
k(1− 2wj

vj
).

114

Let rj :=
((sk−2)dk

j

)
. Recall that |Ai| = qjwj and |Ai ∩Al| = qjvj for i 6= l. So

sk∑
i=1

i2Pr[Zk = i |Yk = j] =
sk∑
i=1

i2
|Bl|
qjvj

=
∑sk
i=1 i

2|Bl|
qjvj

=
∑sk
i=1 |Ai|
qjvj

+ 2
∑

1≤i,l≤sk
|Ai ∩Al|

qjvj

= sk
wj
vj

+ 2
(
sk
2

)
rj
vj
.

Then
sk∑
i=0

i2 Pr[Xk = i |Yk = j] = sk
wj
vj

+ 2
(
sk
2

)
rj
vj

+ s2
k(1− 2wj

vj
).

Hence

Var[Xk] = E[X2
k]− E[Xk]2 = sk

wj
vj

+ 2
(
sk
2

)
rj
vj

+ s2
k(1− 2wj

vj
)− s2

k(1−
wj
vj

)2

= sk
wj
vj

+ sk(sk − 1)rj
vj
−
(
sk
wj
vj

)2

.

It follows that

d∑
k=0

Var[Xk] ≈
d∑

k=0
sk(1− tf)dk +

d∑
k=0

sk(sk − 1)(1− tf)2dk −
d∑

k=0
s2
k(1− tf)2dk

=
d∑

k=0
sk
(
(1− tf)dk − (1− tf)2dk

)
.

Note that
∑d
k=0 Var[Xk] is not equal to Var[X] =

∑d
k=0 Var[Xk] +

∑d
k 6=l Covar[Xk, Xl], but

it gives a good approximation. For example, for the sparse case where tf is close to zero,
using the approximation (1− tf)dk ≈ 1− dktf , we expect

d∑
k=0

sk
(
(1− tf)dk − (1− tf)2dk

)
≈

d∑
k=0

sk ((1− dktf)− (1− 2dktf))

= tf

d∑
k=0

skdk = tfs = Tf .

The sum of the squares of the deviations of each Xk from E[Xk] is Tf . We guess that
the variance should be small. As an experiment, for n = 7, d = 13 we have generated 1000
random polynomials where Tf = 1716 for each of them. Each of them has density ratio
tf = 0.01. The expected number of terms after evaluation at a random non-zero point is

115

1684.14 and
∑d
k=0 Var[Xk] = 1606.30. We calculated then the sample variance and found

that it is 27.7.

Lemma 42. Let p be a big prime and f ∈ Zp[x1, . . . , xn] be a random multivariate polyno-
mial of degree of at most d that has Tf non-zero terms. Also let 0 < m < n and

g = f(x1, . . . xn−m, xn−m+1 = αn−m+1, . . . , xn = αn)

for m randomly chosen non-zero elements αn−m+1, . . . , αn ∈ Zp. Let Tg be the expected
number of terms of g and Tgk

be the number of monomials in g that are homogeneous of
degree k in the variables x1, . . . xn−m. Also let s =

(n+d
n

)
, sk =

(n−m−1+k
n−m−1

)
, γ =

(n−m+d
n−m

)
and dk =

(d−k+m
m

)
. Then

E[Tg] ≤
d∑

k=0
sk

1−
(s−dk
Tf

)(s
Tf

)
 . (6.7)

Let the density of f , tf = Tf/s. Eqn. (6.7) implies that if dk
s → 0, then with probability

≥ 1− dTf

2(p−1) one has

E[Tg] ≈
d∑

k=0
sk
(
1− (1− tf)dk

)
. (6.8)

Eqn. (6.8) implies that with probability ≥ 1− dTf

2(p−1)

E[tg] ≈ 1− γ−1
d∑

k=0
sk(1− tf)dk (6.9)

and Var[Tgk
] ≈ sk

(
(1− tf)dk − (1− tf)2dk

)
. (6.10)

6.2.1 On Zippel’s assumption

The sparse interpolation idea and the first gcd algorithm to use sparse interpolation was
introduced and analyzed by Zippel in his research paper [Zip79]. The goal polynomial
(the gcd) is P (x1, . . . , xn) and the starting point is ~a = (a1, . . . , an). According to our
notation, Tfn−i

denotes the number of terms of the polynomial P (x1, . . . , xi, ai+1, . . . , an)
. In subsection 3.2 of [Zip79] after computing a sum which depends on the Tfn−i

’s, Zippel
claims “We need to make some assumptions about the structure of Tfn−i

to get anything
meaningful out of this. We will assume that the ratio of the terms Tfn−i

/Tfn−i+1 is a constant
k.“ 1

Our observations in this section show that this assumption is false. To see a more
accurate bound on the expected ratio of the subsequent number of terms, let us denote by

1In [Zip79] Zippel uses the notation ti for Tfn−i . Since we use the symbol t for the density, we use our
notation as to not confuse the reader.

116

d
(i)
k =

(d−k+i
d−k

)
, s(i) =

(n−i+d
n−i

)
, s(i)

k =
(n−i+k−1
n−i−1

)
, r(i)

k =
(s−d(i)

k
T

)
/
(s
T

)
and β(i)

k = 1− r(i)
k . Let

fi = f(x1, . . . xn−i, xn−i+1 = αn−i+1, . . . , xn = αn)

be the polynomial in n − i variables after i random evaluations. According to Lemma 42
E[Tfi

] =
∑d
k=0 s

(i)
k β

(i)
k . Our aim is to find an upper and lower bound for

E[Tfi
]

E[Tfi+1] =
∑d
k=0 s

(i)
k β

(i)
k∑d

k=0 s
(i+1)
k β

(i+1)
k

.

Observe that

d
(i+1)
k > d

(i)
k ⇒ s− d(i+1)

k < s− d(i)
k ⇒ r

(i+1)
k < r

(i)
k ⇒ β

(i+1)
k > β

(i)
k .

Then
E[Tfi

]
E[Tfi+1] =

∑d
k=0 s

(i)
k β

(i)
k∑d

k=0 s
(i+1)
k β

(i+1)
k

<

∑d
k=0 s

(i)
k β

(i)
k∑d

k=0 s
(i+1)
k β

(i)
k

≤ max
k

{
s

(i)
k

s
(i+1)
k

}
.

We have
s

(i)
k

s
(i+1)
k

= n− i+ k − 1
n− i− 1 = 1 + k

n− i− 1 ≤ 1 + d

n− i− 1 .

Our next aim is to show that E[tfi+1] ≥ E[tfi
]: We have

E[tfi
] = 1−

d∑
k=0

s
(i)
k

s(i) r
(i)
k = 1−

d∑
k=0

(n−i+k−1
n−i−1

)(n−i+d
n−i

) (s−d(i)
k

T

)(s
T

) = 1−
d∑

k=0

(n−i+k−1
n−i−1

)(s
T

) (s−d(i)
k

T

)(n−i+d
n−i

)
Let v(i)

k =
(n−i+k−1
n−i−1

)
/
(s
T

)
and w(i)

k =
(s−d(i)

k
T

)
/
(n−i+d
n−i

)
then v(i+1)

k /v
(i)
k < 1 and w(i+1)

k /w
(i)
k <

1. So
∑d
k=0 v

(i)
k w

(i)
k decreases and hence E[tfi

] increases as i increases, i.e. we expect an
increase in the density ratio after each evaluation. On the other hand

E[Tfi
] = E[tfi

]
(n−i+d
n−i

)
= E[tfi

]n−i+dn−i
(n−(i+1)+d
n−(i+1)

)
≥ E[tfi

]n−i+dn−i E[Tfi+1].

It follows that
E[Tfi

]
E[Tfi+1] ≥ E[tfi

]
(
1 + d

n−i

)
.

Hence we have
E[tfi

]
(
1 + d

n−i

)
≤ E[Tfi

]
E[Tfi+1] ≤ 1 + d

n−i−1 .

Now, since each of E[tfi
], 1 + d

n−i , 1 + d
n−i−1 increases as i increases we expect an increase

in the ratio E[Tfi
]/E[Tfi+1].

117

This means we expect that the ratio Tfn−i
/Tfn−i+1 increases as i decreases, i.e. after

each evaluation we expect an increase in the ratio of subsequent number of terms. See
Example 43 for a sparse case and Example 44 for a (relatively) dense case.

Example 43. (Sparse case with tf = 0.00004). Table 6.3 below shows the result of a
random experiment where p = 231 − 1, n = 12, d = 20, Tf = 104, tf = 4 · 10−5 and
fi := fi−1(xn−i+1 = αn−i+1) with f0 = f, for randomly chosen non-zero αi’s in Zp. Observe
that when we evaluate the first 4 variables the number of terms didn’t drop significantly.

i Tfi
E[Tfi

] tfi
tfi

(1 + d
n−i) Tfi

/Tfi+1 1 + d
n−i−1

0 10000 10000 0.00004 0.00012 1.0000 2.8182
1 10000 9999.32 0.00012 0.00033 1.0006 3.0000
2 9994 9995.19 0.00033 0.00100 1.0025 3.2222
3 9969 9971.08 0.00100 0.00321 1.0135 3.5000
4 9836 9837.31 0.00316 0.01108 1.0686 3.8571
5 9205 9200.70 0.01037 0.03998 1.2767 4.3333
6 7210 7219.37 0.03132 0.13570 1.7470 5.0000
7 4127 4144.61 0.09710 0.48548 2.4435 6.0000
8 1689 1690.52 0.23090 1.38540 3.3512 7.6667
9 504 497.93 0.37895 2.90530 4.8932 11.000
10 103 104.50 0.54210 5.96310 7.3571 21.000

Table 6.3: The ratio of subsequent number of terms for a sparse case.

Example 44. (Dense case with tf = 0.1). Table 6.4 below shows the result of a random
experiment where p = 231−1, n = 7, d = 13, Tf = 7752, tf = 0.1 where fi := fi−1(xn−i+1 =
αn−i+1) with f0 = f, for randomly chosen non-zero αi’s in Zp. Observe that the number of
terms dropped by 10% after the first evaluation.

i Tfi
E[Tfi

] tfi
tfi

(1 + d
n−i) Tfi

/Tfi+1 1 + d
n−i−1

0 7752 7752 0.10 0.28 1.17 3.16
1 6670 6643.44 0.24 0.77 1.76 3.60
2 3774 3800.14 0.44 1.58 2.70 4.25
3 1398 1409.83 0.58 2.49 3.65 5.33
4 383 394.03 0.68 3.64 4.78 7.50
5 80 81.14 0.76 5.71 6.66 14

Table 6.4: The ratio of subsequent number of terms for a dense case.

118

The dominating term of the complexity analysis of Zippel is
∑ν
i=1 c1dT

3
fn−i+1

where c1 is
a constant. He assumes Tfn−i

/Tfn−i+1 = k ⇒ Tfn−i
= Tfnk

i. It follows that

ν∑
i=1

c1dT
3
fn−i+1 = c1d

ν∑
i=1

T 3
fn−i+1 = c1dT

3
fn

ν∑
i=1

k3i = c1dk
3 (k3ν − 1)T 3

fn

k3 − 1 .

Since Tf = Tf0 = Tfnk
n, if k is large in comparison with 1 then this sum approaches c1dT

3
f

and if k is very close to 1 then this sum approaches to c1ndT
3
f . Then he concludes that if

Tf � d or n, the dominant behaviour is O
(
T 3
f

)
.

The case where k is very close to 1 (where Zippel has a very sparse case in mind) is the
worst case analysis. One can construct such an example. More precisely, Zippel’s analysis
shows that the complexity for the worst case is O

(
ndT 3

f

)
and for the average case (where

he assumes that “k is large in comparison with 1”) the complexity is O
(
dT 3

f

)
. Below we

show that this is not true and prove that even for the average case the expected complexity
is O

(
ndT 3

f

)
for the sparse gcd computation.

Example 43 (the sparse case) shows that after 5 evaluations the number of terms is
still 90% of Tf . See column Tf . This means the cost of each interpolation of the last few
variables in Zippel’s algorithm is the same and equal to O

(
dT 3

f

)
. However in Example 44

(the relatively dense case) the number of terms starts to drop right away. Proposition 45
below qualifies this behaviour and makes the observation of Example 43 more precise.

Proposition 45. Following the notation above, let I =
{
i ∈ N | tf ≤ 1/

(i+d
d

)
and i ≤ n

}
.

Then with probability ≥ 1− dTf

2(p−1) one has

(i) E[Tfi
]

Tf
≥ 1− t2f for i ∈ I.

(ii) If n ≤ d then |I| ≥ max{1, dn− logr Tfe} where r = 1 + d
n .

Proof. To save some space we will use the notation T = Tf . With probability ≥ 1− dT
2(p−1)

one has

E[Tfi
] =

d∑
k=0

s
(i)
k (1−

(s−d(i)
k
s

)(s
T

))

where d(i)
k =

(d−k+i
i

)
. Note that

tf ≤
1(i+d
d

) ≤ 1
d

(i)
k

⇒ tfd
(i)
k ≤ 1 (6.11)

It follows that
d

(i)
k

s
= d

(i)
k tf
T
≤ 1
T
. (6.12)

We have (s−d(i)
k
s

)(s
T

) ≤ (1− tf)d
(i)
k . (6.13)

119

Note that we can use the approximation (6.3) because d(i)
k /s is small. But we don’t need

to use it. Now

E[Tfi
] =

d∑
k=0

s
(i)
k (1−

(s−d(i)
k
s

)(s
T

))
by (6.13)︷︸︸︷
≥

d∑
k=0

s
(i)
k (1− (1− tf)d

(i)
k)

=
d∑

k=0
s

(i)
k

1−
d

(i)
k∑
j=0

(−1)j
(
d

(i)
k

j

)
tjf

=

d∑
k=0

s
(i)
k

1− 1 + d
(i)
k tf −

d
(i)
k∑
j=2

(−1)j
(
d

(i)
k

j

)
tjf

=

d∑
k=0

s
(i)
k d

(i)
k tf −

d∑
k=0

d
(i)
k∑
j=2

(−1)js(i)
k

(
d

(i)
k

j

)
tjf

= tfs− t2f
d∑

k=0

d
(i)
k∑
j=2

(−1)js(i)
k

(
d

(i)
k

j

)
tj−2
f

= T − t2f
d∑

k=0

d
(i)
k∑
j=2

(−1)js(i)
k

(
d

(i)
k

j

)
tj−2
f

The expected decrease in the number of terms is determined by the quantity

A = t2f

d∑
k=0

d
(i)
k∑
j=2

(−1)js(i)
k

(
d

(i)
k

j

)
tj−2
f

We have

s
(i)
k

(
d

(i)
k

j

)
tj−2
f < s

(i)
k

(
d

(i)
k

)j
j! tj−2

f

by (6.11)︷︸︸︷
≤

s
(i)
k

(
d

(i)
k

)2

j! .

Then the absolute value |A| of A is

|A| ≤ t2f
d∑

k=0

d
(i)
k∑
j=2

s
(i)
k

(
d

(i)
k

)2

j! = t2f

d∑
k=0

s
(i)
k

(
d

(i)
k

)2
d

(i)
k∑
j=2

1
j!︸ ︷︷ ︸

≤1

≤ t2f
d∑

k=0
s

(i)
k

(
d

(i)
k

)2

So we see that

|A|
T
≤
t2f
∑d
k=0 s

(i)
k

(
d

(i)
k

)2

tfs
= tf

d∑
k=0

s
(i)
k d

(i)
k

d
(i)
k

s

by (6.12)︷︸︸︷
≤ tf

1
T
s = t2f (6.14)

120

Then
E[Tfi

]
T

≥ T −A
T

≥ T − |A|
T

= 1− |A|
T

by(6.14)︷︸︸︷
≥ 1− t2f .

This proves the first part. For the second part, note that

tf ≤
1(i+d
d

) ⇔ T ≤
(n+d
d

)(i+d
d

) ⇔ 1
T
≥
(i+d
d

)(n+d
d

)
and that n−i

n+d = n
n+d −

i
n+d = 1

1+d/n −
i

n+d . So if n ≤ d then n−i
n+d is small and the following

bound is useful (i+d
d

)(n+d
d

) =
(n+d−(n−i)

d

)(n+d
d

) ≤
(

1− d

n+ d

)n−i
.

Now if
T ≤

(
1− d

n+ d

)i−n
⇔ 1

T
≥
(

1− d

n+ d

)n−i
⇒ i ∈ I

and if we define w = n
n+d then wnT ≤ wi ⇒ i ≥ n + logw T . Finally if r = 1

w = 1 + d
n we

have i ≥ n− logr T . Hence if n ≤ d then |I| ≥ dn− logr T e.

For Example 43, max{1, dn − logr Tfe} = max{1, d12 − log2.6 104e} = max{1, 3} = 3
whereas |I| = 5 and for Example 44, |I| = 1 whereas max{1, dn− logr Tfe} = max{1, d7−
log2.86 7752e} = max{1,−1} = 1.

Corollary 46. Following the notation above, the average complexity of the sparse gcd al-
gorithm of Zippel is Ω(|I|dT 3). If n ≤ d then the average complexity is in Ω(max{1, dn −
logr T e}dT 3) where r = 1 + d

n .

Remark 47. According to Proposition 45 (i), when tf is small, on average we expect that
Tfi
≈ Tf for i ∈ I, i.e. for at least for |I| many steps we don’t expect a significant decrease

in the number of terms. Note that as tf and hence Tf gets smaller, i.e. the inputs gets
sparser, |I| gets closer to n. Also, in practice n ≤ d and as Tf gets smaller logr Tf gets
smaller and according to Proposition 45 (ii) |I| ≥ dn− logr Tfe gets closer to n. This means
for the sparse case the expected average complexity is in O(ndT 3

f). Thus, the common
perception that in the sparse interpolation most of the work is done at the last step is not
true: For most sparse examples, the work done at the last few steps is the same.

6.3 The expected number of terms of Taylor coefficients

Consider the Taylor series expansion of fj , gj , ej ∈ Zp[x1, . . . , xn] about xn = αn for 0 6=
αn ∈ Zp. Let fj =

∑dn
i=0 fji(xn − αn)i, gj =

∑dn
i=0 gji(xn − αn)i and ej =

∑dn
i=0 eji(xn − αn)i

where fji, gji, eji ∈ Zp[x1, . . . , xn−1]. In the ith iteration of the for loop of the jth step of

121

MHL (Algorithm 5) one solves the MDP fjigj0 + gjifj0 = eji to compute fji and gji for
1 ≤ i ≤ dn. The cost of MDP depends on the sizes of the polynomials fji, gji and eji.

To make our complexity analysis as precise as possible, in this section we will compute
theoretical estimations for the expected sizes of the Taylor coefficients fj and the upper
bounds for E[Tfj

] of a randomly chosen f ∈ Zp[x1, . . . , xn] where f =
∑dn
i=0 fj(xn − αn)j

for a randomly chosen non-zero element αn ∈ Zp and p is a big prime. We will confirm our
theoretical estimations by experimental data.

We will use the notation #f and Tf interchangeably. For a random non-zero αn ∈ Zp,
consider f =

∑dn
j=0 fj(xn − αn)j where each fj ∈ Zp[x1, . . . , xn−1]. We expect Tfj+1 ≤ Tfj

,
that is, the size of the Taylor coefficients fj decrease as j increases.

As a first step to find a upper bound on E[Tfj
], we have the following Lemma.

Lemma 48. Let 0 < d < p and n > 0. Then following the notation above, the probability
of occurrence of each monomial in the support of f ′ = ∂

∂xn
f is the same.

Let m′ = cxβ1
1 · · ·xβn

n ∈ Supp(f ′) where β1 + · · ·+βn ≤ d−1. Then any monomial of the
form m = (βn+ 1)−1cxβ1

1 · · ·xβn+1
n + n where n is a monomial of degree ≤ d which does not

contain the variable xn lies over m′. We have β1 + · · ·+(βn+1) ≤ d. On the other hand for
m = cxβ1

1 · · ·xβn
n ∈ Supp(f) one has ∂

∂xn
m = cβnx

β1
1 · · ·xβn−1

n = 0 ⇐⇒ p | cβn ⇐⇒ p |βn.
So if d < p we have ∂

∂xn
m = 0 ⇐⇒ m does not contain the variable xn, i.e. βn = 0.

Therefore the number of monomials lying over each distinct monomial in the support of f ′

is the same and equal to (p − 1)γ + 1 where γ =
(n+d−1

n

)
. Since f is random, this implies

that the probability of each monomial in the support of f ′ is the same.
After differentiation monomials which do not contain the variable xn in f will disappear.

Since the expected number of them is = tf
(n−1+d
n−1

)
, we expect

E[#f ′] = Tf − tf

(
n− 1 + d

n− 1

)
.

We must also compute the density ratio tf ′ of f ′.

Lemma 49. Following the notation above

E[tf ′] =
(
Tf − tf

(n−1+d
n−1

))
/
(n+d−1

n

)
= tf

((n+d
n

)
−
(n−1+d
n−1

))
/
(n+d−1

n

)
= tf

(
n+d
n

(n+d−1
n−1

)
−
(n−1+d
n−1

))
/
(n+d−1

n

)
= tf

(n+d−1
n−1

)
/nd
(n+d−1
d−1

)
= tf

(n+d−1
n−1

)
/
(n+d−1
n−1

)
= tf .

For simplicity let us assume that p > j, otherwise we need to introduce Hasse derivatives
but the idea will be the same. We have fj = 1

j!
∂

∂xj
n
f(xn = α). Also f (j) := ∂

∂xj
n
f is of degree

122

≤ dj := d− j .Using Lemma 48 and 49 repeatedly

E[fj] ≤ E[#f (j)] = E[tf (j)]
(n+d−j

n

)
= tf

(n+d−j
n

)
.

It follows that
E[tfj

] = E[fj]/
(n+d−j

n

)
≤ tf .

We sum up the observations of this section in such a way that it will be helpful for the next
sections.

Lemma 50. Let p be a big prime and fj ∈ Zp[x1, . . . , xj] be a multivariate polynomial of
total degree ≤ dj that has Tfj

non-zero terms. For a randomly chosen non-zero element αj ∈
Zp consider fj =

∑dj

i=0 fji(xj − αj)i where fji ∈ Zp[x1, . . . , xj−1]. Let s =
(j+dj

j

)
and tfj

=
Tfj

/s. Then
E[Tfji

] > tfj

(j+dj−i
j

)
andE[tfji

] > tfj

j+dj−i
j (6.15)

Example 51. Table 6.5 below shows the result of a random experiment where p = 231− 1,
j = 7, dj = 13, Tfj

= 7752. In the Table 6.5 Tfji
, tfji

and t
f

(i)
j

are the actual values. Also
the expected number of terms E[Tfji

] of fji, the bound bTfji
on the expected number of

terms of fji, and the bound btfji
on the density ratio of fji, are based on (6.4) and (6.15)

resp.

i Tfji
E[Tfji

] bTfji
t
f

(i)
j

tfji
btfji

0 6651 6643.345 7752 0.09 0.085 0.285
1 4343 4366.828 5038.8 0.1 0.086 0.271
2 2773 2789.364 3182.4 0.09 0.088 0.257
3 1722 1724.183 1944.8 0.10 0.088 0.242
4 977 1025.981 1144.0 0.10 0.092 0.228
5 564 583.867 643.5 0.10 0.093 0.214
6 306 315.075 343.2 0.10 0.094 0.200
7 150 159.417 171.6 0.10 0.103 0.185
8 68 74.463 79.2 0.10 0.104 0.171
9 26 31.403 33.0 0.10 0.127 0.157
10 12 11.559 12.0 0.05 0.125 0.142
11 3 3.511 3.6 0.12 0.111 0.128
12 1 0.790 0.8 1 0.112 0.114

Table 6.5: The bounds on the expected number of terms and the density ratio.

123

6.4 The complexity of the MDP

Let p be a big prime and u,w, h ∈ Zp[x1, . . . , xn] where u,w are monic in x1. Suppose we
are trying to solve the MDP (which satisfies the MDP conditions)

D : fu+ gw = h (6.16)

to find the unique solution pair (f, g) via sparse interpolation as described in Section 3.6.
Let d be a total degree bound for f, g, u, w, h. Our aim in this section is to estimate the
expected complexity of solving D. Since the calculations of the complexity evaluation in
the next section is somewhat tedious, this section is intended to help the reader to follow
it easily.

Suppose the (probable) solution-form σf of f is true and

σf =
∑
i+j≤d

cij(x3, ..., xn)xi1x
j
2 where cij =

mij∑
l=1

cijlx
γ3l
3 · · ·x

γjl
n with cijl ∈ Zp\{0}.

Let m = max mij . Then in sparse interpolation the first step is to choose a random
(β3, . . . , βn) ∈ (Zp\{0})n−2 and solve bivariate MDP’s

Dr : f̃ · u(x1, x2, β
r
3, . . . , β

r
n) + g̃ · w(x1, x2, β

r
3, . . . , β

r
n) = h(x1, x2, β

r
3, . . . , β

r
n)

for r = 1, . . . ,m where (f̃ , g̃) ∈ Zp[x1, x2]2 is to be solved.
As before let s =

(n+d
n

)
, r = n

n+d and sk =
(n−2+k
n−2

)
, dk = d − k + 1 for 0 ≤ k ≤ d.

Suppose that the solution form σf of f is true. Then the expected number of monomials
of the form xα3

3 · · ·xαn
n xi1x

j
2 in the Supp(f) is tf

(n−2+d−k
n−2

)
= tfsd−k when i + j = k. So

we expect #cij = tfsd−k. When i = j = 0, i.e. the number of monomials that are in
the variables x3, . . . , xn in the Supp(f) expected to be greatest, the expected number of
evaluations is m = tfsd. At this point we remark that

tfsd = Tf
n(n− 1)

(n+ d)(n+ d− 1) ≤ Tf
(

n

n+ d

)2
.

So, if Tf
(

n
n+d

)2
< 1, our theoretical expectation of m = tfsd will be less than 1 which in

practice means that there won’t be any evaluation. If d is big and Tf is small this inequality
may occur, however the algorithm makes at least one evaluation and hence calls BDP at
least once. So we should have m = dtfsde.

Let T = (Tf + Tu + Tw + Th). (We are evaluating σf too, to get the linear system of
equations in cijl). Then according to Subsection 3.6.2 the total cost CE of the consecutive

124

evaluations is bounded above by

CE ≤ #of terms× (#of evaluations + n− 3) + (n− 2)d

≈ (Tf + Tu + Tw + Th) (Tf
sd
s

+ 1 + n− 3) + (n− 2)d

≤ T (dTfr2e+ n) + nd

If d is huge and Tf is small so that Tfr2 < n then nT or nd can dominate the sum above.
So we obtain

CE ∈ O(T dTfr2e+ nT + nd) (6.17)

After evaluation the sparse interpolation routine calls BDP to solve the bivariate dio-
phantine equations Dr. For a given Dr, BDP solves it in O(d3

2) arithmetic operations in
Zp via dense interpolation where d2 is a bound for the total degrees of f, g, u, w, h in x1, x2

above. In our case d2 ≤ d. Hence the expected cost CB of solving Dr’s is

CB ∈ #of evaluations×O(d3) = O(dTfr2ed3) (6.18)

BDP gives the unique solution for Dr iff the MDP conditions for Dr are satisfied. To have
a unique solution for Dr, for 1 ≤ t ≤ m, the first condition is

gcd
(
u(x1, x2, β

t
3, . . . , β

t
n), w(x1, x2, β

t
3, . . . , β

t
n)
)
|h(x1, x2, β

t
3, . . . , β

t
n)

which is the case if D has a solution. The second condition is, when BDP chooses a random
γ ∈ Zp while it is interpolating, it must be the case that

gcd
(
u(x1, γ, β

t
3, . . . , β

t
n), w(x1, γ, β

t
3, . . . , β

t
n)
)

= 1 inZp[x1].

The probability that the second condition fails is ≤ m deg(u) deg(w)/p ≤ md2/p [MT16-2].
This is a worst case upper bound. On average the expected number of failures is only m
out of p trials [MT16-1]. In this case then the expected probability of failure is ≤ dTfr2e/p.

As seen in Section 6.2, we expect that the density ratio increases after each evaluation of
f . Hence after evaluations we expect dense polynomials over Zp[x1, x2] and this is why BDP
uses the dense interpolation to solve bivariate MDP’s. While solving the bivariate MDP’s,
BDP chooses a random γ ∈ Zp and solves the univariate MDP over Zp. This is done by
using the Euclidean algorithm (see [GCL92]). To do that it computes the univariate gcd
and if it is not equal to 1 it detects it. So if such an unlucky evaluation occurs then BDP
detects it and the algorithm terminates or it can be modified in such a way that it chooses
another random γ.

If i + j = k then to recover cijl’s one needs to solve a linear system which corre-
sponds to a Vandermonde matrix of expected size tfsd−k. The cost of this operation is

125

O
(
t2fs

2
d−k

)
[Zip90]. We have (k + 1) monomials of the form xi1x

j
2 with i + j = k. So, the

expected total cost CV for the solution is in

CV ∈ O
(

d∑
k=0

(k + 1)t2fs2
d−k

)
= O

(
T 2
f

d∑
k=0

(k + 1)
(
sd−k
s

)2
)

First note that

s =
(
n+ d

n

)
= (n+ d)(n+ d− 1)

n(n− 1)

(
n+ d− 2
n− 2

)
> r−2

(
n+ d− 2
n− 2

)
= r−2sd−2

Then, as we did in the first section we obtain

sd−k
s

< r2 sd−k
sd−2

< r2
(
1− n−2

n+d−2

)k
= r2(1− θ)k

where θ := n−2
n+d−2 . Then we get

T 2
f

d∑
k=0

(k + 1)
(
sd−k
s

)2
< T 2

f r
4

d∑
k=0

(k + 1)(1− θ)2k

By using the summation formula, a straightforward (but a bit tedious) calculation shows
that if n > 2 (which is in fact the case)

r4
d∑

k=0
(k + 1)(1− θ)2k ≤ r4 (n+ d− 2)4

(n− 2)2(n+ 2d− 2)2 < r2
(

n

n− 2

)2
≤ 9r2

Hence we see that the expected cost of solving linear systems is in (r = n
n+d)

CV ∈ O(T 2
f r

2) (6.19)

After computing f , the next step is the multivariate division (h− fu)/w to get g. The
expected cost CM of the sparse multiplication and the sparse multivariate division CD are

CM ∈ O (TfTu) andCD ∈ O (TwTg) (6.20)

arithmetic operations in Zp ignoring the sorting cost.
Combining the equations (6.17), (6.18), (6.19) and (6.20) above wee see that the expected

cost of solving the MDP is in

O(T dTfr2e+ nT + nd︸ ︷︷ ︸
CE

+ dTfr2ed3︸ ︷︷ ︸
CB

+T 2
f r

2︸ ︷︷ ︸
CV

+

︸ ︷︷ ︸
to recover f

TfTu︸ ︷︷ ︸
CM

+TwTg︸ ︷︷ ︸
CD︸ ︷︷ ︸

to recover g

)

126

with the failure probability ≤ dTfr2ed3/p where r = n
n+d and T = (Tf + Tu + Tw + Th) .

Finally suppose that the guessed solution-form σf of f is wrong. Then the solution to
f that the sparse interpolation routine computes will be wrong. Since the solution to the
MDP is unique as long as the MDP conditions are satisfied then we will have w - h− fu.
So, in the sparse interpolation a possible failure, i.e. a possible false assumption is detected.
In this case the cost of sparse division may increase. (We don’t consider this.)

Theorem 52. Let p be a big prime and u,w, h ∈ Zp[x1, . . . , xn] where u,w are monic in
x1. If the solution-form σf is true, then the cost of solving the MDP fu + gw = h (which
satisfies the MDP conditions) to find the unique solution pair (f, g) via sparse interpolation
as described in section 2 is in

O
(
T dTfr2e+ nT + nd+ dTfr2ed3 + T 2

f r
2 + TfTu + TwTg

)
where d is a total degree bound for f, g, u, w, h, r = n

n+d and T = Tf + Tu + Tw + Th with
the probability > 1− dTfr2ed3/p.

6.5 The Complexity of MTSHL

For j ≥ 3, during the jth step of the MTSHL, one aims to reach the factorization aj = fjgj ∈
Zp[x1, . . . , xj] from the knowledge of aj , fj−1, gj−1 ∈ Zp[x1, . . . , xj−1] satisfying aj−1 =
fj−1gj−1. Let fj =

∑dj

i=0 fji(xj − αj)i, gj =
∑dj

i=0 gji(xj − αj)i for a randomly chosen
non-zero element αj in Zp and where fj0 = fj−1, gj0 = gj−1 and degxj

(aj) = dj .
For 1 ≤ i ≤ dj one recovers each fji, gji by solving the MDP problems

fjigj0 + gjifj0 = eji in Zp[x1, . . . , xj−1]

via sparse interpolation in a for loop where eji is the ith Taylor coefficient of error. Our aim
in this section is first to estimate the complexity of this lifting process at the jth step of the
MTSHL algorithm, that is, finding fj and gj and then to estimate the expected complexity of
the multivariate factorization via MTSHL. To this end let th, Th denote the expected density
ratio and the expected number of non-zero elements of a polynomial h ∈ Zp[x1, . . . , xj]. By
(#k) we will refer to the kth line in the Algorithm 10.

Before continuing, to be able to follow the rest of discussion below easily, we suggest the
reader to read the following explanations along with concrete Example 29 in Chapter 4.

6.5.1 Before we go into the details

Before we go into the details of tedious calculations, we want to make a guess what we will
obtain, based on our observations from Section 6:

127

Suppose that the smallest factor is f and Tf � max{n, d}. Based on Theorem 52 we
may guess that the evaluation cost will be the most expensive. Now, at the jth step of SHL,
suppose that Tfj−1 ≤ Tgj−1 . Then based on Lemma 42, MTSHL makes a probabilistic guess
(#1) that Tfj

will be smaller than Tgj and (in the for loop), for 1 ≤ i ≤ dj , in the sparse
interpolation routine, it first computes fji and then recovers gji via the multivariate division.
Since we expect Tfji

≤ Tfj
the expected number of evaluations for each i in the loop will be

≤ Tfj

(
j

j+dj

)2
(see Section 6.4). So at the jth step the expected evaluation cost will be in

djO(TajTfj

(
j

j+dj

)2
) = djO(TajTfj

(
j
dj

)2
) = O(j

2

dj
TajTfj

). Then, running j from 1 to n,we
expect that the average complexity will be close to or less than nO(n2

d TaTf) = O(n3

d TaTf).
Finally since Tf ≤ Tg and Ta ∈ O(TfTg) our guess is that the average complexity will be
close to or less than O(n3

d T
3
g).

In the following we make this guess more precise and prove that if Tf ≤ Tg and Tg > nd2

the expected cost of MTSHL is in fact quadratic in n and ∈ O(n2

d T
3
g).

6.5.2 In detail

Suppose that Tfj−1 ≤ Tgj−1 . Then based on Lemma 42, MTSHL makes a probabilistic guess
(#1) that Tfj

will be smaller than Tgj and for 1 ≤ i ≤ dj , in the sparse interpolation routine,
it first computes fji and then recovers gji via the multivariate division (eji − gj0fji)/fj0.

The cost of (#5) is the cost of subtraction as we are given aj−1 = fj−1gj−1. In the
sparse case this cost is for sorting the monomials which we will ignore for the rest of the
discussion.

In the ith iteration, updating the monomial (#7) has cost linear in i which is negligible.
Then the algorithm computes the ith Taylor coefficient of the error at xj = αj (#8).

Maple used to compute this using the formula c = h(xj = αj)/i! where h is the
i’th derivative of error wrt xj . Instead, Maple now uses the more direct formula c =∑d
k=i coeff(error, xk)αs−k

(s
k

)
where d = degxj

error which is three times faster [MP14]. So
the cost of this step is a sum of polynomials which can be done in almost linear time in
#error < #aj

Then to solve the MDP, it comes to use the sparse interpolation (#11).
Suppose that fji =

∑
cjiklx

k
1x

l
2 ∈ Zp[x3, . . . , xj−1][x1, x2]. Let dji := dj − i and evji :=

tfji

(j−1−2+dji

j−1−2
)
. We have deg(fji) ≤ dji and as explained in Section 6.4 we expect that

#cji00 = evji. Then by Lemma 50 we expect

evji := tfji

(
j − 3 + dji
j − 3

)
≤ tfj

j + dji
j

(
j − 3 + dji
j − 3

)
.

Based on Theorem 28, MTSHL makes a probabilistic guess (#10) and assumes that in
sparse interpolation the solution form σfji

= fj,i−1. So the expected number of evaluations
at the ith step is devj,i−1e. According to Section 6.4 the expected cost CEvji of evaluation

128

at the ith step is bounded above by

CEvji <
(
Tgj0 + Tfj0 + Tfj,i−1 + Teji

)
(devj,i−1e+ j − 4) + (j − 3) dj,i

After evaluation the sparse interpolation routine calls BDP. For a given bivariate diophan-
tine equation the cost is O

(
d3
ji

)
. Hence the expected cost CBji of solving the bivariate

diophantine equations via BDP in the ith iteration is

CBji ∈ O
(
devj,i−1ed3

ji

)
Note again that the sparse interpolation routine first computes fji and then recovers gji via
the multivariate division. The linear systems to be solved to recover fji correspond to a
Vandermonde matrices and they are constructed by the unknown coefficients of the solution
form σfji

of fji. Hence if we define rji = j−1
j−1+dji

, then the expected cost CVji of solving the
linear system in the ith iteration is (see Section 6.4 Eqn (6.19))

CVji ∈ O
(
T 2
fj,i−1r

2
j,i−1

)
.

By Lemma 50 E[#gj0] ≤ tgj

(j+dj

j

)
and E[#fji] ≤ tfj

(j+dji

j

)
. So, after computing fji, the

expected cost CMji of sparse multiplication gj0fji and the expected cost CDji of sparse
division (eji − gj0fji)/fj0 is in

CMji and CDji ∈ O
(
tfj
tgj

(
j + dj
j

)(
j + dji
j

))
.

So far we have covered the (dominating) costs in sparse interpolation at the ith iteration.
Next we consider (#17):
The cost of updating, CUji , i.e computing fji(xj − αj)i and gji(xj − αj)i are both in

CUji ∈ O
(
i(tfj

+ tgj)
(
j + dji
j

))
.

Finally (#18) the cost of updating error is in

CErji ∈ O
(
Tfj

Tgj

)
.

Let CEvj be the expected total evaluation cost (in sparse interpolation) at the jth step.
Then CEvj =

∑dj

i=1CEvji . To compute it we’ll split the sum

dj∑
i=1

(
Tgj0 + Tfj0 + Tfj,i−1 + Teji

)
(devj,i−1e+ j − 4) + (j − 3) dj,i−1

129

and consider the parts separately: We first consider the sum

dj∑
i=1
devj,i−1e =

dj−1∑
i=0
devjie ≤

dj∑
i=0
dtfj

j + dji
j

(
j − 3 + dji
j − 3

)
e

≤
dj∑
i=0

(
tfj

j + dji
j

(
j − 3 + dji
j − 3

)
+ 1

)

=
dj∑
i=0

tfj

j + dji
j

(
j − 3 + dji
j − 3

)
+

dj∑
i=0

1

≤ tfj

j + dj
j

dj∑
i=0

(
j − 3 + dji
j − 3

)
+ dj = tfj

j + dj
j

(
j − 2 + dj
j − 2

)
+ dj

= tfj

j + dj
j

j − 1
j − 1 + dj

(
j − 1 + dj
j − 1

)
+ dj ≤ tfj

(
j − 1 + dj
j − 1

)
+ dj

= tfj

j

j + dj

(
j + dj
j

)
+ dj = j

j + dj
Tfj

+ dj

As a next step, since we expect Tfj
≤ Tgj , Tfj0 ≤ Tfj

and Tgj0 ≤ Tgj

dj∑
i=1

(
Tgj0 + Tfj0

)
devj,i−1e ≤ (Tfj

+ Tgj)
(

j

j + dj
Tfj

+ dj

)
∈ O

(
j

j + dj
Tfj

Tgj + djTgj

)
(6.21)

On the other hand note that we expect Teji ≤ Taj . Then

dj∑
i=1

Tejidevj,i−1e ≤ Taj

dj∑
i=1
devj,i−1e ≤

j

j + dj
Tfj

Taj + djTaj

So, since we expect Tfj,i−1 ≤ Tfj0 we see that

dj∑
i=1

(
Tgj0 + Tfj0 + Tfj,i−1 + Teji

)
(devj,i−1e) ∈ O(j

j + dj
(Tfj

Tgj + Tfj
Taj) + dj(Tgj + Taj))

(6.22)
Also

dj−1∑
i=0

(j − 3)dj,i ∈ O(jd2
j) (6.23)

130

Now we need to consider the sum

dj∑
i=0

Tejij ≤
dj∑
i=0

tajj

(
j + dji
j

)
=

dj∑
i=0

tajj
j + dji
j

(
j − 1 + dji
j − 1

)

≤ taj (j + dj)
dj∑
i=0

(
j − 1 + dji
j − 1

)
= taj (j + dj)

(
j + dj
j

)
= (j + dj)Taj

Using the same idea we see that
∑dj

i=0 Tfj,i−1j ≤ (j + dj)Tfj
. So

dj∑
i=0

(Teji + Tfj,i−1)j ≤ (j + dj)(Tfj
+ Taj)

Also
dj−1∑
i=1

(
Tgj0 + Tfj0

)
j ≤ (Tfj

+ Tgj)
dj−1∑
i=1

j ≤ (Tfj
+ Tgj)jdj

So we get

dj−1∑
i=1

(
Tgj0 + Tfj0 + Tfj,i−1 + Teji

)
j ∈ O

(
jdj(Tfj

+ Tgj) + (j + dj)(Tfj
+ Taj)

)
(6.24)

Let us consider the terms appearing in (6.22-6.23-6.24)

j

j + dj
(Tfj

Tgj + Tfj
Taj) + dj(Tgj + Taj)︸ ︷︷ ︸

(22)

+ jd2
j︸︷︷︸

(23)

+ jdj(Tfj
+ Tgj) + (j + dj)(Tfj

+ Taj)︸ ︷︷ ︸
(24)

We have djTgj ≤ jdjTgj and since Tfj
≤ Tgj we get jdj(Tfj

+ Tgj) ∈ O(jdjTgj). So by
(6.22-6.23-6.24) the expected cost CEvj =

∑dj

i=1CEvji of evaluation at the jth step is in

CEvj ∈ O
(

j

j + dj
TajTfj

+ j

j + dj
Tfj

Tgj + jdjTgj + (j + dj)(Tfj
+ Taj) + jd2

j

)
(6.25)

Let CBjbe the expected cost of BDP at the jth step. Then CBj =
∑dj

i=1CBji =
∑dj

i=1O
(
devj,i−1ed3

ji

)
.

First we consider

dj−1∑
i=1
devj,i−1ed3

ji ≤ d3
j (dj + j

j + dj
Tfj

) ≤ d4
j + jd2

jTfj

Hence
CBj ∈ O

(
d4
j + jd2

jTfj

)
(6.26)

131

Let CVj be the expected cost of solving linear systems (in sparse interpolation) at the jth

step. Then CVj =
∑dj

i=1CVji =
∑dj

i=1O
(
T 2
fj,i−1

r2
j,i−1

)
. We consider

dj−1∑
i=0

T 2
fji
r2
ji =

dj−1∑
i=0

(
tfj

(
j + dji
j

)
j − 1

j − 1 + dji

)2

=
dj−1∑
i=0

(
tfj

j − 1
j − 1 + dji

j + dji
j

(
j − 1 + dji
j − 1

))2

≤ t2fj

dj∑
i=0

(
j − 1 + dji
j − 1

)2

≤ t2fj

 dj∑
i=0

(
j − 1 + dji
j − 1

)2

= t2fj

(
j + dj
j

)2

= T 2
fj

Hence, the expected cost CVj is in
CVj ∈ O

(
T 2
fj

)
(6.27)

Let the expected cost of multiplication and division at the jth step be CDj and CMj resp.
Then CMj =

∑dj

i=1CMji =
∑dj

i=1O
(
tfj
tgj

(j+dj

j

)(j+dji

j

))
. Similarly for CDj . Note that

dj−1∑
i=1

tfj
tgj

(
j + dj
j

)(
j + dji
j

)
= tfj

tgj

(
j + dj
j

) dj−1∑
i=1

(
j − 1 + dji
j − 1

)

≤ tgj tfj

(
j + dj
j

)2

= Tfj
Tgj

So, the expected cost CMjof sparse multiplication and CDj of sparse division (in sparse
interpolation) at the jth step is in

CMj ∈ O
(
Tfj

Tgj

)
andCDj ∈ O

(
Tfj

Tgj

)
(6.28)

Let CUj be the cost of updating the factors at the the jth step. Then CUj =
∑dj

i=1CUji =∑dj

i=1O
(
i(tfj

+ tgj)
(j+dji

j

))
. We have

dj∑
i=1

itgj

(
j + dji
j

)
= tgj

dj∑
i=1

i

(
j + dji
j

)
= tgj

dj(j + dj + 1)
(j + 1)(j + 2)

(
j + dj
j

)

≤
(
dj(j + 1) + d2

j

j2

)
tgj

(
j + dj
j

)
=
(
dj(j + 1) + d2

j

j2

)
Tgj

Since Tfj
≤ Tgj , we get

CUj ∈ O
(
dj
j
Tgj +

d2
j

j2 Tgj

)
(6.29)

132

Let CErj be the cost of updating error at the jth step. Then CErj =
∑dj

i=1CErji =∑dj

i=1O
(
Tfj

Tgj

)
is in

CErj ∈ O
(
djTfj

Tgj

)
(6.30)

According to the equations from (6.25) to (6.30) we shall consider the dominating terms

j

j + dj
TajTfj

+ j

j + dj
Tfj

Tgj + jdjTgj + (j + dj)(Tfj
+ Taj) + jd2

j︸ ︷︷ ︸
CEvj

d4
j + jd2

jTfj︸ ︷︷ ︸
CBj

+ T 2
fj︸︷︷︸

CVj

+ Tfj
Tgj︸ ︷︷ ︸

CMj
andCDj

+ (dj
j

+
d2
j

j2)Tgj︸ ︷︷ ︸
CUj

+ djTfj
Tgj︸ ︷︷ ︸

CErj

The terms T 2
fj
,

j

j + dj
Tfj

Tgj ,
dj
j
Tgj , Tfj

Tgj will be dominated by the term djTfj
Tgj . The

term jd2
j will be dominated by jd2

jTfj
. Hence the expected complexity at the jth step is in

O(j

j + dj
TajTfj

+ jdjTgj + (j + dj)(Taj + Tfj
)︸ ︷︷ ︸

CEvj

+ d4
j + jd2

jTfj︸ ︷︷ ︸
CBj

+
d2
j

j2 Tgj︸ ︷︷ ︸
CUj

+ djTfj
Tgj︸ ︷︷ ︸

CErj

)

Recall that fj := f(x1, . . . , xj , xj+1 = αj+1, . . . , xn = αn) mod p. Similarly for a and g.
Let J =

{
j ∈ N | max{ta, tf , tg} ≤ 1/

(n−j+d
d

)}
. Then as it was explained in Section 6.4 we

expect Tfj
, Tgj ,Taj very close to Tf , Tg, Ta resp. for j ∈ J . Then

n∑
j=3

TajTfj
∈ Ω(|J |TaTf).

According to Remark 47, in the sparse examples |J | ∈ O(n). Then
∑n
j=3

j

j + dj
TajTfj

<

∑n
j=3

j

dj
TajTfj

<
n

d

∑n
j=3 TajTfj

∈ O(n
2

d
TaTf)

On the other hand we have
∑n
j=3 jdjTgj ≤ dTg

∑n
j=3 j ∈ O(n2dTg),

∑n
j=3(j + dj)(Taj +

Tfj
) ≤ (Ta + Tf)

∑n
j=3(j + dj) ≤ (Ta + Tf)(n2 + nd)

So assuming that the inputs are sparse by running the index j from 3 to n, the expected
complexity of MTSHL is in

O(n
2

d
TaTf + n2dTg + (n2 + nd)(Ta + Tf)︸ ︷︷ ︸

Evaluation

+nd4 + n2d2Tf︸ ︷︷ ︸
BDP

+ d2Tg︸ ︷︷ ︸
Update

+ndTfTg︸ ︷︷ ︸
Er

)

133

Since Tf ≤ Tg the expected complexity is in

O
(
n2

d
TaTg + n2dTg + (n2 + nd)(Ta + Tg) + nd4 + n2d2Tg + ndT 2

g

)

= O
(
n2

d
TaTg + n2Ta + ndTa + n2d2Tg + ndT 2

g + nd4
)

(6.31)

Finally since Ta ∈ O(TfTg) we have Ta ∈ O(T 2
g) and hence the expected complexity is in

O
(
n2

d
T 3
g + n2T 2

g + n2d2Tg + ndT 2
g + nd4

)
(6.32)

Note that if Tg is big enough, for example Tg > nd2 (which is the case for the most our
experiments in the final section) then

ndT 2
g > n2d3Tg > n2d2Tg and n2d2Tg > n3d4 > nd4, and

ndT 2
g < nd2T 2

g < T 3
g and nT 3

g > n2d2T 2
g > n2T 2

g

Hence the expected complexity is in

O
(
n2

d
T 3
g

)
.

The cubic term is coming from evaluation and suggests the evaluation is the most time
dominating step. This is what we have expected and will confirm by experimental data.
Now according to Theorem 28

Pr[Supp(fj,i+1) * Supp(fji)] ≤ Tfj,i+1

dji
p− dji + 1 ≤ Tfj

d− i
p− 2d+ 1 .

Then the probability that there is a false assumption on one of the assumptions of (#10)
at the jth step is ≤

∑dj−1
i=0 Tfj,i+1

dji

p−dji+1 ≤
d2

2(p−2d+1)Tfj
. Hence throughout the whole

MHL process the probability of failure of MHL because of a false assumption at (#10) is
≤ (n−2)d2

2(p−2d+1)Tfj
. Also note that at the jth step the algorithm used ≤ djTfj

many evaluations
and made an assumption on the gcd of univariate polynomials in BDP based on Schwartz-
Zippel’s lemma. Then the probability of a failure because of a false assumption on the gcd
of polynomials in BDP is then ≤ d

p−1
∑n
j=3 djTfj

≤ (n−2)(Tfd
2)

p−1 . Then the probability of
failure of SHL is

≤ (n− 2)d2Tf

(1
p− 1 + 1

2(p− 2d+ 1)

)
This is a very generous bound. In our experiments to construct the data in the final section,
we have used p = 231 − 1 and MTSHL has never failed.

134

As a final note, we consider the probabilistic assumption in Step 4 of the sparse inter-
polation routine SparseInt.

In the notation of Algorithm 7, SparseInt, consider the polynomials

∆ik =
∏

1≤a<b≤sik

(Mika −Mikb) ∈ Zp[x3, . . . , xj].

In Step 4, |Sik| = sik means the monomial evaluations are distinct and if this won’t be
the case then at least one of the Vandermonde matrices constructed in Step 14 won’t be
invertible. In that case then ∆ik(α3, . . . , αj) = 0. We want to bound the probability that
this may happen for any ∆ik. Let ∆ =

∏
∆ik. Then ∆(α3, . . . , αj) = 0 means one or more

monomial sets are not distinct. Since α3, . . . , αj were chosen at random from [1, p − 1] we
have by Schwartz-Zippel

Pr[∆(α3, . . . , αj) = 0] ≤ deg(∆)
p− 1 .

We have degMikl ≤ d and deg ∆ ≤
∑

0≤i+k≤d d
(sik

2
)
. Note that

∑
sik = Tfj

and deg ∆ is
maximized when one of the coefficients has all Tfj

terms, that is some sik = Tfj
≤ Tf . Thus

deg ∆ ≤ d
(Tf

2
)
and we obtain

Pr[∆(α3, . . . , αj) = 0] ≤
dT 2

f

2(p− 1) .

So when p is big enough so that p � 1 + dT 2
f /2 we expect that a different choice of

(α3, . . . , αj) will satisfy the condition. This is again a very generous bound. In our experi-
ments we have used p = 231 − 1 and SparseInt routine has never failed at Step 4.

Theorem 53. Let a = fg ∈ Zp[x1, . . . , xn] with f, g monic in x1 and Tf ≤ Tg. Let
d = deg(a), r = n

n+d and p be a big prime with p� d. Then with the probability of failure
≤ (n− 2)d2Tf

(
1
p−1 + 1

2(p−2d+1)

)
, the expected complexity of the MHL to recover the factors

f, g via SHL algorithm is in

O
(
n2

d
T 3
g + n2T 2

g + n2d2Tg + ndT 2
g + nd4

)

In particular if Tg > nd2 then the expected complexity is in

O
(
n2

d
T 3
g

)
.

135

6.6 Some Timing Data

To compare the result of our ideas to Wang’s, first we factored the determinants of Toeplitz
and Cyclic matrices of different sizes as concrete examples.

Then we created sparse random polynomials A,B using

xd1 + randpoly([x2, .., xn], degree =d, terms =t)

in Maple and computed C = AB ∈ R. We chose monic factors in x1 so as not to complicate
the algorithm with leading coefficient correction and to have a fair comparison with Maple’s
factorization algorithm.

We used p = 231 − 1 and two ideal types to factor C:

ideal type 1: I = 〈x2 − 0, x3 − 0, · · · , xn − 0〉 and
ideal type 2: I = 〈x2 − α1, x3 − α2, · · · , xn − αn〉 in which the αi’s in practice are

chosen from a small interval including zero, for Wang’s algorithm.

As noted it is not always possible to use ideal type 1. For example, ideal type 1 cannot be
used to factor Cyclic or Toeplitz determinants. On the other hand, to make a fair comparison
on the efficiency of the algorithms, when timing Wang’s algorithm, we let Wang’s algorithm
choose its own ideal. It can include some zeros although it is not possible to choose all zero
for these examples. That is, both MTSHL and Wang’s algorithm are doing their best under
fair conditions.

6.6.1 Factoring Toeplitz and Cyclic matrices: The state of art

Let Cn denote the n × n cyclic matrix and let Tn denote the n × n symmetric Toeplitz
matrix below.

Cn =

x1 x2 . . . xn−1 xn

xn x1 . . . xn−2 xn−1
...

...
...

...
...

x3 x4 . . . x1 x2

x2 x3 . . . xn x1

and Tn =

x1 x2 · · · xn−1 xn

x2 x1 · · · xn−2 xn−1
.

xn−1 xn−2 · · · x1 x2

xn xn−1 · · · x2 x1

The determinants of Cn and Tn are homogeneous polynomials in n variables x1, x2, . . . , xn.

As we implemented MTSHL in Maple (except two key parts: BDP (see Section 5.4)
and the evaluation routine (see Section 3.6.2) are coded in C), we first compared Maple
factorization timings with Singular and Magma to be sure that the main gain by MTSHL
is independent of implementation.

The data in Tables 6.6 and 6.7 for factoring the determinants of Cn and Tn compares
Maple 2017 with Magma 2.22–5 and Singular 3–1–6. Timings are in CPU seconds. Since

136

n #dn sizes of factors Maple # MDP MDP% Magma Singular
7 427 30, 56 0.035 161 30% 0.01 0.02
8 1628 167, 167 0.065 383 43% 0.04 0.05
9 6090 153, 294 0.166 1034 73% 0.10 0.28
10 23797 931, 931 0.610 2338 76% 0.89 1.77
11 90296 849, 1730 2.570 6508 74% 1.96 8.01
12 350726 5579, 5579 19.45 15902 80% 72.17 84.04
13 1338076 4983, 10611 84.08 45094 84% 181.0 607.99
14 5165957 34937, 34937 637.8 103591 77% 6039.0 20333.45
15 19732508 30458, 66684 4153.2 286979 84% 12899.2 –

Table 6.6: Factorization timings in CPU seconds for factoring dn the determinant of the n
by n Toeplitz matrix Tn evaluated at xn = 1

n #dn sizes of factors Maple # MDP MDP% Magma Singular
7 246 7,924 0.045 330 90% 0.01 0.02
8 810 8,8,20,86 0.059 218 46% 0.07 0.06
9 2704 9,45,1005 0.225 1810 74% 0.74 0.24
10 7492 10,10,715,715 0.853 1284 62% 8.44 2.02
11 32066 11,184756 7.160 75582 91% 104.3 11.39
12 86500 12,12,42,78,78,621 19.76 1884 76% 7575.1 30.27
13 400024 13, 2704156 263.4 1790701 92% 30871.90 NA
14 1366500 14,14,27132,27132 1664.4 50381 77% > 106 288463.17
15 4614524 15,120,3060,303645 18432. 477882 82% – NA

Table 6.7: Factorization data and timings in CPU seconds for factoring dn the determinant
of the n by n Cyclic matrix Cn evaluated at xn = 1

det(Tn) and det(Cn) are homogeneous, and since the difficulty of the factorization of det(Tn)
depends on which variable is used to de-homogenize the determinant, we fixed xn = 1 for all
three systems. That is, for dn = det(Tn) we time the factorization of dn(x1, x2, . . . , xn−1, 1).
The column (MDP) shows the number of calls (including recursive calls) to Maple’s MDP
algorithm and the percentage of time in Hensel lifting spent solving MDPs.

Data for the number of terms of detTn and detCn and the number of terms of their
factors is given in Tables 6.6 and 6.7. In Table 6.7 notice that the second factor for n =
7, 11, 13 has more terms than det(Cn).

The data confirms the data from [MP14] that Maple’s multivariate factorization code
is relatively fast. This is partly because the underlying polynomial arithmetic is fast (see
Monagan and Pearce [MP14]). We note here that Maple, Magma [Steel] and Singular [Lee]
are all doing Hensel lifting one variable at a time (see Algorithm 6.4 of [GCL92]) and lifting
solutions to MDP equations one variable at a time (see Algorithm 6.2 of [GCL92]). All

137

coefficient arithmetic is done modulo a prime p or or prime power pl which bounds the size
of the coefficients of any factors of the input. Singular [Lee] differs from Maple and Magma
in that it first factors a bivariate image f(x1, x2, α3, . . . , αn) over Z then starts the Hensel
lifting from bivariate images of the factors.

6.6.2 Factoring Toeplitz and Cyclic matrices with MTSHL

For MTSHL, it is important that αi’s are chosen from a large interval. For these we chose
αi’s randomly from Zq − {0} with q = 65521.

Maple, Magma, Singular all check for the homogeneity before factorization and if it
is the case they first de-homogenize the polynomial to be factored. After factoring the
de-homogenized polynomial, they homogenize the factors to obtain the actual factors. We
followed the same procedure for MTSHL. As above we fixed xn = 1 to de-homogenize.

In the tables we used the following notation

tW is the time for Wang’s algorithm which Maple currently uses (see[GCL92]),
tBS is the time where factoring algorithm is based on Algorithm 6 ,

tKSHL is the time where factoring algorithm is based on Algorithm 7 ,
tMTSHL is the time where factoring algorithm is based on Algorithm 8 ,
tX(tY) means factoring time tX with tY seconds spent on solving MDP,
tmul means time spent on multiplication in MTSHL,
teval means time spent on evaluation in MTSHL,
Tfi

denotes the number of terms of a factor
tfi

denotes the density ratio of a factor
The density ratio of factors of Tn can be seen in Table 6.8.
For Cn the density ratio is 1 for all factors except for n = 12, in which out of 6

factors one of them has tf = 0.53 and the other has tf = 0.45.
Table 6.8 presents timings for Hensel liftings to factor detTn with MTSHL.
Table 6.9 presents timings for Hensel liftings to factor detCn with MTSHL.
The values in the columns tW and tMTSHL shows that in general the most time dom-

inating step of MHL is solving MDP and confirms that even for complicated examples
MTSHL is quicker than Wang’s algorithm. It spends less time to solve MDP. Also, the
values in the columns tmul and teval confirms the theoretical complexity analysis that eval-
uation and multiplication are the most time dominating operations in MTSHL.

138

n tf1 tf2 tW tMTSHL tmul teval

7 0.27 0.36 0.035 (0.015) 0.046 (0.037) 0.001 0.003
8 0.50 0.50 0.065 (0.028) 0.073 (0.059) 0.007 0.005
9 0.31 0.23 0.166 (0.121) 0.122 (0.075) 0.018 0.001
10 0.47 0.47 0.610 (0.467) 0.418 (0.251) 0.099 0.024
11 0.22 0.28 2.570 (1.902) 1.138 (0.458) 0.339 0.053
12 0.45 0.45 19.45 (15.56) 13.165 (5.445) 3.779 0.897
13 0.27 0.21 84.08 (70.623) 21.769 (11.064) 6.904 4.361
14 0.45 0.45 637.8 (491.106) 249.961 (160.04) 71.351 102.918
15 0.21 0.26 4153.2 (1771.54) 1651.68 (689.634) 674.356 405.016

Table 6.8: Timings for factoring determinants of n× n symmetric Toeplitz matrices.

n tW tMTSHL tmul teval

7 0.041 (0.012) 0.026 (0.015) 0.002 0.001
8 0.057 (0.025) 0.063 (0.046) 0.010 0.003
9 0.209 (0.152) 0.12 (0.042) 0.024 0.002
10 0.845 (0.642) 0.5 (0.22) 0.20 0.01
11 6.6 (4.884) 0.945 (0.094) 0.386 0.003
12 19.76 (15.808) 5.121 (1.385) 3.108 0.048
13 252.2 (211.848) 27.689 (1.474) 9.362 0.093
14 1861.8 (1563.912) 523.073 (85.326) 346.067 38.399
15 18432.0 (14929.2) 7496.94 (426.014) 3602.739 19.231

Table 6.9: Timings for factoring determinants of n× n cyclic matrices.

6.6.3 Factoring Random sparse data with MTSHL and KSHL

Table 6.10 presents timings for the random data for which ideal type 2 is used. It shows
that when the evaluation points are chosen to be non-zero MTSHL is significantly faster
than Wang’s algorithm.

As can be seen from Tables 6.12, 6.10 that KSHL is only good for very sparse examples.
Even for these cases MTSHL performs better.

We also included the timings for ideal type 1 case, as according to our experiments it
is the only case where Wang’s algorithm is quicker. This is because a sparse polynomial
remains sparse for the ideal type 1 and hence the number of MDP to be solved significantly
decreases and the evaluation cost of sparse interpolation becomes dominant which is not
the case for Wang’s algorithm for the ideal type 1.

Table 6.11 presents timings for the random data for which ideal type 1 is used. For
the ideal type 1 case MTSHL or KSHL were not used, since the zero evaluation probability
is large for the sparse case. According to our experiments Wang’s algorithm is faster for

139

n/d/T tW tKSHL tMTSHL
4/35/100 13.07 (11.95) 1.75 (1.18) 1.51 (0.24)
5/35/100 88.10 (86.28) 3.75 (2.57) 1.16 (0.36)
7/35/100 800.0 (797.0) 5.04 (4.08) 1.58 (0.59)
9/35/100 4451.6 (4449.4) 8.13 (6.22) 2.94 (0.56)
4/35/500 33.96 (26.48) 642.2 (635.1) 11.29 (0.82)
5/35/500 472.1 (402.5) 1916.2 (1899.6) 26.0 (4.86)
7/35/500 3870.5 (3842.2) 2329.4 (2305.5) 43.1 (6.84)
9/35/500 > 60000 3866.3 (3805.9) 79.6 (9.71)
11/35/500 NA NA 243.2 (17.0)

Table 6.10: The timing table for random data with ideal type 2

n/d/Tfi
tfi

tW tBS
5/20/5000 0.1 7.08 (2.605) 11.804 (7.376)
5/15/3000 0.2 4.25 (1.554) 4.963 (2.29)
5/15/5000 0.3 6.882 (2.988) 6.471 (2.99)
4/20/5000 0.4 2.709 (1.211) 2.704 (1.267)
5/20/30000 0.56 86.224 (18.394) 90.111 (21.134)

Table 6.11: The timing table for random data with ideal type 1

tf < 0.2. For tf ≥ 0.2 the performance of Wang’s algorithm and Algorithm 6 (which uses
sparse interpolation without SHL assumption) are almost the same.

Toeplitz tKSHL Cyclic tKSHL
5 0.02 (0.018) 5 0.07 (0.06)
6 0.308 (0.306) 7 1157 (1157)
7 1157.5 (1157.5) 11 ∞
8 119.88 (119.88) 13 ∞
9 486.45 (485.41)
10 25021 (25020)

Table 6.12: The timing table for KSHL

140

Chapter 7

Conclusion

7.1 Summary

Within this dissertation we presented an efficient practical algorithm MTSHL for factoring
multivariate polynomials over integers.

We have shown that solving the multivariate polynomial diophantine equations in mul-
tivarite Hensel lifting algorithm can be improved by using sparse interpolation techniques.
This leads to an overall improvement in multivariate polynomial factorization.

We provided benchmarks comparing MTSHL with previous sparse Hensel lifting ap-
proaches developed by Kaltofen and Zippel. We also compared MTSHL with Wang’s algo-
rithm which is used in Maple, Magma and Singular.

We also studied what happens to the sparsity of multivariate polynomials when the vari-
ables are successively evaluated at numbers. We determined the expected number of terms
remaining and the variance. We used these results to revisit and correct the complexity
analysis of Zippel’s original sparse interpolation.

Finally we computed the probability of success of MTSHL, presented an average case
complexity analysis of it, and confirmed our theoretical analysis with experimental data.

7.2 Future Work

One future extension point is, to decrease the cost of MHL using our sparse interpolation
techniques when there are more than 2 factors to be computed.

When the polynomial to be factored has more than 2 factors, say 4 factors, then the
MDP to be has the form

σ1b1 + σ1b2 + σ3b3 + σ4b4 = ck

in Zp[x1, . . . , xj] where bi =
∏
j 6=i uj . The current approach is to solve this equation by

reducing it into 3 MDP’s of the form σu+ τw = c in Zp[x1, . . . , xj] as explained in Chapter
1. However one can invoke the inproved sparse interpolation idea used in MTSHL to recover

141

σi’s simultaneoulsy without reducing it into 3 MDP’s. With this way one does not need to
compute bi =

∏
j 6=i uj in Zp[x1, . . . , xj] but instead consider the bivariate images

bi(x1, x2, β
j) =

∏
j 6=i

uj(x1, x2, β
j) ∈ Zp[x1, x2]

where β is chosen at random from Zn−2
p . Since this approach is probabilistic at the end one

can check the correctness of the solutions by sufficiently many evaluations. We expect that
this approach will decrease the computational cost of solving multi-polynomial diophantine
equations.

Another extension point is to decrease the cost of error computation during MHL which
is one of the most time dominating part of MHL.

At the jth step of MHL, in a for loop one needs the compute the Taylor coefficient ck
of the error ek in the kth iteration. ck appears on the RHS of the MDP equation to be
solved . The computation of the error ek is one of the most time dominating step in the kth

iteration. MTSHL solves the MDP by projecting down the MDP into the bivariate domain
Zp[x1, x2] and it needs the bivariate images of ck. Instead of computing the error ek in
Zp[x1, . . . , xj], one can compute the bivarite images of ek in Zp[x1, x2] and so compute the
bivariate images of ck in Zp[x1, x2]. We expect that this approach will decrease the error
cost.

142

Bibliography

[Ber48] E. R. Berlekamp. Factoring polynomials over large finite fields. Math. Comp., v.
24, pp. 713-735. MR 43 #1948. (1970). 2.1

[Ber67] E. R. Berlekamp. Factoring polynomials over finite fields. Bell System Tech. J., v.
46, pp. 1853-1859. MR 36 #2314. (1967). 1.1, 2.1

[Ber68] E. Berlekamp. Algebraic Coding Theory, McGraw-Hill, (1968). 5.4

[BC07] A. Benjamin and C. Bennett. The Probability of Relatively Prime Polynomials.
Mathematics Magazine 80 (3), 197–202, (2007). 5.4

[BLS03] A. Bostan, G. Lecerf, E. Schost. Tellegen’s principle into practice. Proceedings of
the 2003 International Symposium on Symbolic and Algebraic Computation, ISSAC
’03, pages 37-44. ACM, (2003). 3.6.2

[CLO07] David Cox, John Little, Donal O’Shea. Ideals, Varieties and Algorithms. Springer-
Verlag, 3rd ed., (2007). 3.1, 3.2, 3.4

[EK40] Paul Erdos, Mark Kac. The Gaussian Law of Errors in the Theory of Additive
Number Theoretic Functions. American Journal of Mathematics. 62 (1/4): 738-742.
(1940). 4.5

[Gel60] A.O. Gelfond, Transcendental and Algebraic Numbers, GITTL, Moscow, 1952; En-
glish translation by Leo F. Boron, Dover, New York, 1960. 2.1, 11, 12

[GCL92] K.O. Geddes, S.R. Czapor, G. Labahn, Algorithms for Computer Algebra, Kluwer
Acad. Publ. (1992). 1.1, 1.2.1, 1.3, 5, 1.4, 8, 2.1, 2.1, 3.1, 3.2, 4.5, 6.4, 6.6.1, 6.6.2

[GR03] Ralph P. Grimaldi, Discrete and Combinatorial Mathematics, Pearson Addison
Wesley, 5th ed., (2003). 5.3, 5.3

[HR17] G.H. Hardy, S. Ramanujan. The normal number of prime factors of a number n.
Quarterly Journal of Mathematics. 48: 76-92. (1917). 4.5

[Joh74] S.C. Johnson. Sparse polynomial arithmetic, ACM SIGSAM Bulletin, 8 (3), pp.
63-71 (1974). 3.4

143

[Kal85] Kaltofen, E., Sparse Hensel lifting. Proc. EUROCAL ’85, Springer Verlag LNCS,
vol 204, pp. 4-17, (1985). 1.1, 1.2.1, 4.2.1, 4.3, 4.3.1

[Kal82] Kaltofen, E., On the complexity of factoring polynomials with integer coefficients,
PhD Thesis. Rensselaer Polytechnic Institute. (1982).

[KK93] A. Knopfmacher and J. Knopfmacher. Counting irreducible factors of polynomials
over finite fields. Discrete Mathematics 112 (1993) 103–118. 5.2.2

[Kro95] L. Kronecker. Grundzuge einer artihmetischen Theorie der algebraischen Grossen.
J. reine angew. Math. 115, pp. 53-78, (1895). 1.1

[KR00] Martin Kreuzer and Lorenzo Robbiano. Computational Commutative Algebra 1,
Springer-Verlag Berlin Heidelberg, (2000). 3.2

[Knu81] D.E. Knuth. The Art of Computer Programing. Addison Wesley (1981). 1.1

[Lee] Martin M. Lee. Private Communication. 6.6.1

[Lee13] Martin M. Lee. Factorization of multivariate polynomials. Ph.D. Thesis. (2013). 4.5

[Law17] Marshall Law. Computing Characteristic Polynomials of Matrices of Structured
Polynomials, Master Thesis, SFU. (2017). 4.5

[Lang62] S. Lang. Diophantine Geometry, Wiley, New York, (1962). 2.1

[Mig74] M. Mignotte. An equality about factors of polynomials. Math. Comp, v.28, pp.
1153-1157, (1974) 1.3, 1

[MY73] J. Moses & D. Y. Y. Yun. The EZ-GCD algorithm. Proceedings of ACM Annual
Conference, August (1973).

[MP14] Michael Monagan and Roman Pearce. POLY. A New Polynomial Data Structure
for Maple 17. Computer Mathematics, Springer Verlag, 325--348, (2014). 4.4.2, 6.5.2,
6.6.1

[MP11] Michael Monagan and Roman Pearce. Sparse polynomial division using a heap . J.
Symbolic Comput., 46(7), pp. 807-822 (2011). 3.4

[Mus71] D. R. Musser. Algorithms for Polynomial Factorization. PhD Thesis. University of
Wisconsin (1971). 1.1, 2.1, 4.5

[Mus75] D. R. Musser. Multivariate Polynomial Factorization. J. Assoc. Comput. Mach.,
v.22, pp. 291-308, (1975). 1.1, 2.1, 2.1

144

[MT16-1] Michael Monagan and Baris Tuncer. Some results on counting roots of polynomi-
als and the Sylvester resultant. Proceedings of FPSAC 2016, DMTCS. pp. 887--898,
(2016). 1.2.2, 6.4

[MT16-2] Michael Monagan and Baris Tuncer. Using Sparse Interpolation in Hensel Lifting.
Proceedings of CASC 2016, Springer-Verlag LNCS, (2016). 1.1, 1.2.1, 6.4

[MW17] Michael Monagan, Allen Wong. Fast Parallel Multi-point Evaluation of Sparse
Polynomials ACM Communications in Computer Algebra,Volume 51 Issue 1, Pages
12-14, March (2017) 3.6.2

[MY74] Miola A., Yun D. Y. Y. Computational Aspects of Hensel-type Univariate Polyno-
mial Greatest Common Divisor Algorithms. Proceedings of EUROSAM ’74, ACM,
pp. 46-54, (1974). 4.4.2

[OEIS] Sequence http://oeis.org/A006579 in The On-Line Encyclopedia of Integer Se-
quences, published electronically at http://oeis.org, 2010. 5.2.2

[Pan13] Daniel Panario and Gary Mullen. Greatest common divisors of polynomials. Hand-
book of Finite Fields. CRC Press, (2013). 5.2.2, 5.4

[Sch76] W. Schmidt. Equations over Finite Fields: An Elementary Approach. Springer-
Verlag LNCS 536 (1976) Ch 4 pp. 157–159. 5.2, 5.2.2

[Sch80] Schwartz, Jack . Fast probabilistic algorithms for verification of polynomial identi-
ties. Journal of the ACM 27:701--717, (1980). 23

[Steel] Steel, Allan. Private Communication. 4.5, 6.6.1

[Wan78] Wang, P.S. An improved Multivariate Polynomial Factoring Algorithm, Mathe-
matics of Computation, 32, (1978). 1.1, 2.1, 2.2, 2.2, 3.3.1, 4.1

[WR75] Wang, P.S., Rothschild, L.P. Factoring multivariate polynomials over the integers.
Mathematics of Computation, vol 29, NUMBER 131, pp. 935--950, (1975). 1.1, 2.2,
3.3.1

[Wit04] A.Wittkopf. Algorithms and implementations for differential elimination. PhD The-
sis. Simon Fraser University (2004). 1.1

[Yun74] Yun, D.Y.Y. The Hensel Lemma in algebraic manipulation. Ph.D. Thesis. (1974)
1.4, 4.1

[Zas69] H. Zassenhaus. On Hensel factorization. I. J. Number Theory, v. 1, pp. 291-311.
MR 39 #4120, (1969) 1.1

145

[Zip90] Zippel, R.E. Interpolating polynomials from their values. J. Symbolic Comput., 9(3),
375-403, (1990). 1.1, 1.2.1, 23, 3.5, 3.6, 3.6.2, 5.1, 6.4

[Zip79] Zippel, R.E. Probabilistic algorithms for sparse polynomials. Proc. EUROSAM ’79,
Springer Lec. Notes Comp. Sci., vol. 72, pp. 216--226, (1979). 1.2.2, 6.1, 6.2.1, 1

[Zip81] Zippel, R.E. Newton’s iteration and the sparse Hensel algorithm. Proc. ACM Symp.
Symbolic Algebraic Comp., 68--72, (1981). 1.1, 1.2.1, 4.2, 4.2.1

[Zip93] Zippel, R.E. Effective Polynomial Computation, Kluwer Acad. Publ. (1993). 4.1,
4.2, 4.2, 4.2.1

146

