
FAST MULTIPLICATION OVER ALGEBRAIC

NUMBER FIELDS

by

Cory Ahn

B.Sc. (Hons.), University of Western Ontario, 2008

thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the

Department of Mathematics

Faculty of Science

c© Cory Ahn 2011
SIMON FRASER UNIVERSITY

Fall 2011

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be
reproduced, without authorization, under the conditions for ”Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,
research, criticism, review, and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

APPROVAL

Name: Cory Ahn

Degree: Master of Science

Title of thesis: Fast Multiplication Over Algebraic Number Fields

Examining Committee: Petr Lisonek (Chair)

Michael Monagan
Senior supervisor
Professor

Nils Bruin
Supervisor
Associate Professor

Jason Bell
Examiner
Associate Professor

Date Approved: December 1, 2011

ii

Abstract

Let K = Q(α1, α2, . . . , αt) be an algebraic number field of degree D over Q, and
let f and g be polynomials in K[x] of degrees at most n. Naïvely computing the
product f · g requires O(n2D2) arithmetic operations in Q. We developed a more
efficient algorithm that computes f · g modulo a series of primes to avoid working
with rationals, and uses the fast Fourier Transform. For each prime p, it also avoids
working over multiple extensions by computing a primitive element of K modulo
p, which can be done using linear algebra or resultants and gcds. Our algorithm
requires O(D3 + D2n + Dn log n) arithmetic operations in Fp for each prime p. We
have implemented our algorithm in Maple and present some timings to demonstrate
that there is good speed-up in practice.

iii

To my mother, for providing me with

so much love, wisdom, support, and encouragement

iv

Acknowledgments

First I wish to express my sincere gratitude to my supervisor Dr. Michael Mona-
gan for introducing me to this problem and continually providing guidance, support,
patience and insight. I am also grateful for the helpful comments and feedback on
the thesis provided by Roman Pearce and Dr. Nils Bruin. I would also like to thank
the Department of Mathematics at the Simon Fraser University for giving me the op-
portunity to do my Master’s here. Lastly, I am grateful to all of those who provided
emotional and moral support they provided during the completion of this thesis. You
know who you are.

v

Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgments v

Contents vi

List of Tables ix

List of Figures x

List of Algorithms xi

1 Introduction and preliminaries 1
1.1 Preliminaries . 3
1.2 The Polynomial Representation . 12

1.2.1 The recden representation . 12

2 Working modulo p 15
2.1 Modular homomorphism . 16
2.2 Chinese Remainder Theorem & rational number reconstruction 17
2.3 New multiplication strategy . 19

vi

CONTENTS vii

3 Fast multiplication using the FFT 21
3.1 The Fast Fourier Transform (FFT) 21
3.2 Inverse FFT . 24
3.3 Choosing the right prime . 25
3.4 Fast multiplication using the FFT . 25

4 Polynomial Representation Simplification 28
4.1 Change-of-basis matrix (in characteristic 0) 29
4.2 Change-of-basis matrix modulo p . 33

5 Finding a primitive element (characteristic 0) 38
5.1 Finding a primitive element of K(α, β) 38
5.2 Finding a primitive element using linear algebra 45
5.3 Finding a primitive element using resultants 47

5.3.1 Finding α(γ) and β(γ) . 47
5.4 Algorithms . 48
5.5 Towers with more than two steps . 50

6 Finding a primitive element (characteristic p) 53
6.1 Modifications to Algorithm sqfr_norm 54

6.1.1 Handling zero divisors . 54
6.1.2 Handling non-square-free M1 or M2 55
6.1.3 Choosing a “large enough” p 56
6.1.4 Proof of correctness . 59
6.1.5 Modified algorithm of sqfr_norm and its complexity 59

6.2 Modifications to Algorithm prim_elt 61
6.2.1 Handling zero divisors . 62
6.2.2 Proof of correctness . 62
6.2.3 Modified algorithm of prim_elt and its complexity 64

6.3 Towers with more than two steps . 66
6.3.1 Finding the normal representations 67

CONTENTS viii

7 Algorithmic improvements 72
7.1 Resultant computation . 73

7.1.1 Evaluation and interpolation 73
7.1.2 Resultant computation using evaluation & interpolation 76
7.1.3 Polynomial remainder sequences 77
7.1.4 Failure cases of the algorithm 80
7.1.5 Modified resultant algorithm 81

7.2 gcd computation . 83
7.2.1 Subresultants and properties of subresultant PRS’s 85
7.2.2 Unlucky evaluation points . 88
7.2.3 Modified resultant algorithm and complexity analysis 93

7.3 Complete algorithm and complexity 96

8 Benchmarks and conclusion 99
8.1 Conclusion and future work . 106

Appendix A 108

Bibliography 111

List of Tables

4.1 n(R) denotes the number of primes between 230 and 231.5 of the form
c · 2R + 1, and k(R) satisfies the equation 91744290/(2k(R)) = n(R),
where 91744290 is the number of Fourier primes between 230 and 231.5. 36

8.1 Polynomial multiplication over a field given as 3-step extensions using
naïve multiplication and FFT, with and without converting to a simple
extension. 101

8.2 Polynomial multiplication over fields given as a 4-step extension using
naïve multiplication and FFT, with and without converting to a simple
extension. 102

8.3 Multiplication of two polynomials of degree 96 each over a field given
as a 3-step extension of degree D =

∏3
i=1 di = 256 is held constant. . 104

ix

List of Figures

1.1 Overview of various multiplication strategies 3
1.2 The recden representation of f in Example 1.27 13

8.1 The recden representation of an element in Fp[u1, u2, u3]/〈M1,M2,M3〉
where degu1

(M1) = 2, degu2
(M2) = 2, and degu3

(M3) = 64. 105
8.2 The recden representation of an element in Fp[u1, u2, u3]/〈M1,M2,M3〉

where degu1
(M1) = 64, degu2

(M2) = 2, and degu3
(M3) = 2. 105

x

List of Algorithms

3.1 : FFT(a(x), R,N, ω) . 23
3.2 : FFTMult(f(x), g(x), Kp) . 26
5.1 : sqfr_norm(mβ(x, α),mα(y)) . 49
5.2 : prim_elt(mβ(x, α),mα(y)) . 49
6.1 : sqfr_norm_p(M2(x, α),M1(y), Kp) 60
6.2 : prim_elt_p(M2(x, α),M1(y), Kp) 65
6.3 : prim_elt_multi(M1(u1), . . . ,Mt(ut), Kp) 71
7.1 : sr_prs(f1, f2, R) . 79
7.2 : res_modp(g(x, y),M1(y), Kp) . 82
7.3 : res_modp2(g(x, y),M1(y), Kp) . 94
7.4 : AlgFFTMult(f(x), g(x), Kp) . 98

xi

Chapter 1

Introduction and preliminaries

Let K = Q(α1, . . . , αt) be an algebraic number field of degree D where each αi is
algebraic over Q. Furthermore let f(x) and g(x) be polynomials in K[x] of degrees at
most n. We would like to compute the product of f and g efficiently. If m1 ∈ Q[u1]

is the minimal polynomial of α1 over Q and mi ∈ Q(α1, . . . , αi−1)[ui] is the minimal
polynomial of αi over Q(α1, . . . , αi−1) for 2 ≤ i ≤ t, a straightforward multiplication
strategy is to view f and g as (t + 1)-variate polynomials in Q[u1, . . . , ut][x] and
classically multiply them modulo the ideal 〈m1, . . . ,mt〉. Unfortunately, performing
arithmetic operations in Q and divisions by the minimal polynomials m1, . . . ,mt can
be computationally expensive. In this thesis we speed up the multiplication using
various strategies. Namely:

• We eliminate the need for computing over multiple extensions by performing the
multiplication over a simple extension Q(γ) = K, then converting the product
back toK[x] at the end. We discuss two methods for finding a primitive element
γ in Chapter 5. One is a linear algebra approach and the other is a resultant
approach.

• We eliminate the need for computing over Q by mapping the rational coefficients
of f and g to Fp1 ,Fp2 , . . . ,Fpk

where pi’s are primes that do not divide any
denominator of f, g,m1, . . . ,mt. That is, we consider f mod pi and g mod pi

as polynomials over Kpi
= Fpi

[u1, . . . , ut]/〈M1, . . . ,Mt〉 whereMi = mi mod pi

for 1 ≤ i ≤ t, then compute the product over these rings. We use the Chinese

1

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 2

Remainder Theorem and rational number reconstruction at the end to recover
the rational coefficients in the product. These ideas are classical in computer
algebra and are briefly discussed in Chapter 2.

• In Chapter 6, we modify the resultant approach for finding a primitive element
in K to apply it to Kpi

= Fpi
[u1, . . . , ut]/〈M1, . . . ,Mt〉 for suitable primes pi.

Because Kpi
may not be a field (it is usually not a field), many modifications

to the method are necessary. We show that computing a primitive element γ
modulo pi requires O(D3) arithmetic operations in Fpi

, where D = deg(K).

• Once a primitive element γ = γ mod pi is found, one can convert f, g ∈ K[x] to
polynomials in Fpi

(γ)[x] and perform the multiplication over this ring instead.
In Chapter 4, we discuss how to convert the representations of polynomials over
multiple extensions to a simple extension, and vice versa. We also show that
the cost of the conversions is O(D3) arithmetic operations in Fpi

.

• We employ a fast multiplication method for the multiplication over Fpi
, which

is based on the Fast Fourier Transform (FFT). The idea of using the FFT for
polynomial multiplication is classical in computer algebra and is discussed in
Chapter 3. If we naïvely compute the product of two polynomials in Fpi

(γ)[x] ∼=
Fpi

[z]/〈Mγ(z)〉[x] of degrees n, where mγ(z) ∈ Q[z] is the minimal polynomial
of a primitive element γ of degree D and Mγ(z) = mγ(z) mod pi, it would
require O(D2n2) arithmetic operations in Fpi

. Using the FFT reduces the cost
of multiplication to O(D2n+Dn log n) arithmetic operations in Fpi

.

• In Chapter 7 we discuss further efficiency improvements to the primitive element
finding algorithm presented in Chapter 6, specifically faster gcd and resultant
algorithms.

Our polynomial multiplication algorithm requires

O(D3 +D2n+Dn log n) arithmetic operations in Fpi
,

for each prime pi. Since classical multiplication requires O(D2n2) arithmetic opera-
tions in Q, this is an improvement when D is less than n2. We note that it is also

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 3

an improvement over performing the FFT multiplication over the multiple extensions
when D < n.

Figure 1.1 gives an overview of various multiplication strategies. In this thesis,
we use the strategy indicated by the double arrows, which we implemented in Maple.
We present some timings in Chapter 8 and it shows a significant speed-up compared
to the naïve multiplication method.

f, g ∈ K[x] fpi , gpi ∈ Kpi [x]
modular reduction using

primes pi, i = 1, . . . , k
fγi , gγi ∈ Fpi [z]/〈Mγi(z)〉[x]

collapse

extensions

f · g ∈ K[x]

fpi
· gpi

∈ Kpi
[x]

multiply mod 〈M1, . . . ,Mt〉

use Chinese Remainder Theorem on {fp1gp1 , . . . , fpk
gpk
} and

recover rational coefficients

(using FFT)

fγi
· gγi

∈ Fpi
[z]/〈Mγi

(z)〉[x]
to multiple

extensions

multiply mod 〈Mγi
〉

(using FFT)

multiply mod 〈m1, . . . ,mt〉

Figure 1.1: Overview of various multiplication strategies

1.1 Preliminaries

In this section, we give definitions, notations and basic results from algebraic
number theory and computer algebra which will be used throughout this thesis.

In what follows, we will assume that K is a field and E is an extension of K.

Definition 1.1. Let K be a proper subfield of a field E. We say that E is an
extension field, or simply an extension, of K. To indicate that E is an extension
of K we write E/K.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 4

Definition 1.2. Let α ∈ E and letK(α) be the smallest subfield of E containing both
K and α. We say that K(α) is formed from K by adjoining a single element α, and
we call it a simple extension of K. More generally for t ≥ 2, let K(α1, . . . , αt) be
the smallest field that contains K and α1, . . . , αt. K(α1, . . . , αt) is called a multiple
extension of K. For t ≥ 1, if K(α1, . . . , αt) ∼= K(α) we say that α is a primitive
element for K(α1, . . . , αt) over K.

Definition 1.2 implies that K(α1, . . . , αt) can be regarded as a field obtained by
successively adjoining a single element to K as follows:

K(α1, α2) = K(α1)(α2),

K(α1, α2, α3) = K(α1, α2)(α3),
...

K(α1, . . . , αt−1, αt) = K(α1, . . . , αt−1)(αt).

Definition 1.3. An element α in some extension of K is said to be algebraic over
K if there exists a nonzero polynomial over K with α as a root.

Example 1.4. Consider the field Q(
√

2,
√

5). Since
√

2 is a root of x2−2 ∈ Q[x] and
√

5 is a root of x2 − 5 ∈ Q[x], we conclude that
√

2 and
√

5 are algebraic over Q.

Definition 1.5. Let α be algebraic over K. A monic polynomial of least degree
that has α as a root is called a minimal polynomial of α over K and is denoted
by mα(x). We say that α and β are conjugates over K if they have the same
minimal polynomial over K. In such a case β (respectively α) is a conjugate of α
(respectively β) over K.

Lemma 1.6. Let α be algebraic over K. Then a minimal polynomial mα(x) is unique
and irreducible over K. Moreover, if f(x) ∈ K[x] and f(α) = 0 then mα(x) divides
f(x).

Proof. See, for example, Alaca and Williams [1, Theorem 5.1.1, p. 89].

Theorem 1.7. Let K be a subfield of E and α ∈ E be algebraic over K. If n =

deg(mα) then

K(α) = {c0 + c1α + · · ·+ cn−1α
n−1|c0, . . . , cn−1 ∈ K}.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 5

Proof. Let

L =

{
f(α)

g(α)
: f(x) =

k∑
i=0

aix
i, g(x) =

h∑
i=0

bix
i, k, h ∈ Z≥0, ai, bi ∈ K, g(α) 6= 0

}
.

Then L is a subfield of E that contains both α and K. Furthermore it is the smallest
subfield containing α and K, since any subfield of E containing both α and K must
contain all the elements of L. Therefore L = K(α). Now pick an element β ∈ L =

K(α). Then β =
f(α)

g(α)
where

f(x) = a0 + a1x+ · · ·+ akx
k ∈ K[x],

g(x) = b0 + b1x+ · · ·+ bhx
h ∈ K[x], and g(α) 6= 0 for some ai, bi ∈ K.

Since g(α) 6= 0, we must have mα(x) - g(x). Moreover, since mα(x) is irreducible over
K, gcd(mα(x), g(x)) = 1. By the Extended Euclidean algorithm there exist r(x) and
s(x) in K[x] such that

r(x) ·mα(x) + s(x) · g(x) = 1. (1.1)

Substituting α for x in (1.1), we get r(α) · 0 + s(α) · g(α) = 1, so

β =
f(α)

g(α)
= f(α) · s(α).

That is, every β ∈ L = K(α) can be expressed as

d0 + d1α + · · ·+ dlα
l where l ∈ Z≥0 and d0, . . . , dl ∈ K.

Let h(x) = d0 + d1x+ · · ·+ dlx
l ∈ K[x]. Since K is a field, we have

h(x) = q(x) mα(x) + r(x), where r(x) = 0 or deg(v(x)) < deg(mα(x)) = n.

Thus we have h(α) = q(α) · 0 + r(α) = r(α). That is, every element of K(α) can be
written as c0 + c1α+ · · ·+ cn−1α

n−1, where c0, . . . , cn−1 ∈ K and n = deg(mα(x)).

Theorem 1.7 implies that K(α) can be viewed as an n-dimensional vector space
over K with basis {1, α, . . . , αn−1}. Furthermore, it is easy to see that there is an
isomorphism between K(α) and a quotient ring as follows:

K(α) ∼= K[x]/〈mα(x)〉.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 6

In general, if {α1, . . . , αt} ⊆ E, each αi is algebraic over K, α1 /∈ Q and αi /∈
Q(α1, . . . , αi−1) for 2 ≤ i ≤ t, then

K(α1, . . . , αt) ∼= K[u1, . . . , ut]/〈m1, . . . ,mt〉, (1.2)

where eachmi := mi(ui) represents the minimal polynomial of αi over Q(α1, . . . , αi−1)

for 2 ≤ i ≤ t and m1 := m1(u1) is the minimal polynomial of α1 over Q.
In this thesis, we will assume that {m1,m2, . . . ,mt} is a triangular set of minimal

polynomials. By this we mean that if K(α1, . . . , αt) ∼= K[u1, . . . , ut]/〈m1, . . . ,mt〉
then:

• α1 is a root of m1(u1) ∈ K[u1],

• α2 is a root of m2(α1, u2) ∈ K(α1)[u2],
...

• αt is a root of mt(α1, . . . , αt−1, ut) ∈ K(α1, . . . , αt−1)[ut].

Example 1.8. The field K(α1, α2) ∼= K[u1, u2]/〈u2
1 − 2, u2

2 − u2u1 + 3〉 involves a
triangular set of minimal polynomials {u2

1− 2, u2
2−u2u1 + 3} = {m1(u1),m2(u1, u2)}.

Definition 1.9. Let α be algebraic over K. The degree of α over K, degK(α), is
equal to degx(mα), where mα(x) ∈ K[x] is the minimal polynomial of α over K.

When the field K is clear from context, we will simply write deg(α).

Let α be algebraic over K and let mα(x) ∈ K[x] be the minimal polynomial
of α over K so that K(α) ∼= K[x]/〈mα〉. If d = degK(α) then every polynomial
f(x) ∈ K[x] can be reduced modulo mα(x) to some r(x) with deg(r) < d. Note that
two different polynomials r(x) and s(x) with deg(r), deg(s) < d cannot be congruent
modulo f(x), as that would imply that r(x) − s(x) (a non-zero polynomial) is a
multiple of mα(x). Thus every element A ∈ K(α) has a unique representation

A(x) =
d−1∑
i=0

aix
i + 〈mα(x)〉, ai ∈ K.

Hence we arrive at the following definition.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 7

Definition 1.10. Let α be algebraic over K with d = degK(α) and let mα(x) ∈ K[x]

be the minimal polynomial of α over K. We say that the unique representation of
any element A ∈ K(α)

A(x) =
d−1∑
i=0

aix
i + 〈mα(x)〉, ai ∈ K

is the normal representation of A and sometimes write it as A(α).

Definition 1.11. LetK be a subfield of E and let α ∈ E be algebraic overK of degree
n. The degree of K(α) over K, denoted [K(α) : K], is defined as [K(α) : K] = n.

More generally, if E is an extension of K, we denote by [E : K] the dimension of E
viewed as a vector space over K and call it the degree of E over K.

Lemma 1.12. Let F be a subfield of a field K and let K be a subfield of a field E.
Then

[E : F] = [E : K] · [K : F].

Proof. See, for example, Gaal [9, Theorem, p. 34].

Example 1.13. Let us find [Q(
√

2,
√

5) : Q]. Applying Lemma 1.12, we have

[Q(
√

2,
√

5) : Q] = [Q(
√

2,
√

5) : Q(
√

5)] · [Q(
√

5) : Q].

Since [Q(
√

5) : Q] = degQ(
√

5) = degx(x2 − 5) = 2 and noting that x2 − 2 is irreducible
over Q(

√
5),

[Q(
√

2,
√

5) : Q(
√

5)] = [Q(
√

2)(
√

5) : Q(
√

5)] = degx(x2 − 2) = 2,

we conclude that [Q(
√

2,
√

5) : Q] = 2 · 2 = 4. One can also argue that, since
{1,
√

2,
√

5,
√

2
√

5} is a basis for the vector space Q(
√

2,
√

5) and it has dimension 4,
[Q(
√

2,
√

5) : Q] = 4.

Throughout this thesis, we will denote by mi the minimal polynomial of αi and D
the degree of K = Q(α1, . . . , αt) over Q. Since mi is irreducible over Q(α1, . . . , αi−1),
it follows from Lemma 1.12 that D =

∏t
i=1 deg(mi). The cost of arithmetic in K will

depend on D.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 8

Definition 1.14. Let f(x) be a polynomial over K. A field extension E over K in
which f(x) factors into linear factors is called a splitting field of f(x) over K.

Definition 1.15. Let R be a commutative ring. A polynomial f ∈ R[x1, . . . , xn] is
square-free if and only if no square polynomial of non-zero degree divides f . That
is, if f is square-free then no polynomial g ∈ R[x1, . . . , xn] with g /∈ R exists such
that g2 | f .

Theorem 1.16. Let f(x) be a non-constant polynomial in K[x] where K is a field of
characteristic 0. Then f(x) is square-free if and only if gcd(f(x), f ′(x)) = 1, where
f ′(x) is the derivative of f(x) with respect to x.

Proof. Suppose that f(x) is not square-free. Then it can be written as f(x) = g(x)2 ·
h(x) where g is a polynomial of degree greater than zero. Differentiating f with
respect to x, we have

f ′(x) = 2g(x)g′(x)h(x) + g(x)2h′(x) = g(x) (2g′(x)h(x) + g(x)h′(x)) .

Thus f(x) and f ′(x) have a non-trivial gcd since g(x) divides them both. Thus if
gcd(f, f ′) = 1 then f is square-free.

On the other hand, if f is square-free we can write it as f(x) =
n∏
i=1

fi(x) where

the fi(x)’s are non-constant pairwise relatively prime irreducible polynomials. Again,
differentiating f(x) with respect to x, we get

f ′(x) =
n∑
i=1

(
f ′i(x)

n∏
j=1,j 6=i

fj(x)

)
.

Observe that fi divides all the summands of f ′(x) except the i-th. Because K

has characteristic 0, f ′i(x) 6= 0 since fi(x) is a non-constant polynomial. Hence
gcd(f(x), f ′(x)) = 1.

We remark that Theorem 1.16 does not generalize to polynomials over commu-
tative rings. For example, consider the polynomial f(x) = x3 + t ∈ F3(t)[x]. Since
f ′(x) = 0, we have gcd(f(x), f ′(x)) = x3 + t. However, f(x) is an irreducible (hence
square-free) polynomial. In our algorithm, we discard any polynomial f for which

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 9

gcd(f, f ′) ∈ Fp[u1, · · · , ut]/〈M1, · · · ,Mt〉[x] does not equal 1 (see Algorithm 6.1 Line
12) even if f is a square-free polynomial. This scheme does not cause an increase in
the overall complexity of the algorithm.

One way to compute a primitive element of a multiple extension is by computing
resultants, which we define below.

Definition 1.17. Let R be a commutative ring and let f(x), g(x) ∈ R[x]\{0} with
f(x) =

∑m
i=0 aix

i and g(x) =
∑n

i=0 bix
i. The Sylvester matrix of f and g, denoted

Sylx(f, g), is the (m+ n) by (m+ n) matrix

Sylx(f, g) =

am am−1 · · · a1 a0

am am−1 · · · a1 a0

...
am · · · · · · a0

bn bn−1 · · · b1 b0

bn bn−1 · · · b1 b0
...
bn · · · · · · b0

,

where the first n rows consist of the coefficients of f(x), the remaining m rows consist
of the coefficients of g(x), and the entries not shown are zero.

Definition 1.18. Let R be a commutative ring and let f, g ∈ R[x]. The resultant
of f and g with respect to x, written resx(f, g), is the determinant of Sylx(f, g).

We now list some properties of resultants as theorems and lemmas.

Theorem 1.19. Let R be a commutative ring and let f, g ∈ R[x] with nonzero degrees
m and n respectively. Then

(i) res(f, g) = (−1)mn res(g, f).

(ii) If R is an integral domain and g(x) = bn
∏n

i=1(x− βi) then

res(f, g) = bmn

n∏
i=1

f(βi).

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 10

Proof. See Geddes et al. [11, Theorem 9.2, p. 408] and Zippel [22, p. 142].

Lemma 1.20. Let R be a commutative ring, f(x) ∈ R[x], and g(x, y) ∈ R[x][y]. If
degy(g) = n > 0 and degx(g) = 0 then resy(f(x), g(y)) = (f(x))n.

Proof. The Sylvester matrix formed by f and g (in y) is a diagonal matrix of the
form:

Syly(f(x), g(y)) =

f(x) 0 · · · 0

0 f(x) · · · 0
...

0 0 · · · f(x)

 = (f(x))n .

Theorem 1.21. Let J be an integral domain and let f(x), g(x) ∈ J [x] have degrees m
and n respectively with m+n ≥ 1. Then there exist s(x), t(x) ∈ J [x] with deg(s) < n

and deg(t) < m such that f(x)s(x) + g(x)t(x) = res(f, g).

Proof. See Geddes et al. [11, Theorem 7.1, p. 287].

Corollary 1.22. Let U be a UFD and let f(x), g(x) ∈ U [x], not both zero. Then f

and g have a non-trivial common factor if and only if resx(f, g) = 0.

Proof. If res(f, g) 6= 0 then, by a consequence of Theorem 1.21, any common factor
of f and g must divide res(f, g). But since res(f, g) belongs to U , a common factor of
f and g must have degree 0. So there cannot be any non-trivial factors. Conversely,
if res(f, g) = 0 then, again, Theorem 1.21 tells us that f(x)s(x) = −g(x)t(x) with
deg(s) < deg(g) and deg(t) < deg(f). Suppose for contradiction that f(x) and g(x)

do not have a non-trivial common factor. Then g(x) must divide s(x). However
deg(s) < deg(g), so this is impossible.

Remark 1.23. Let K be a field of characteristic 0. Corollary 1.22 and Theorem 1.16
imply that f ∈ K[x] is square-free if and only if resx(f(x), f ′(x)) 6= 0.

One can use resultants to compute norms, which we define below.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 11

Definition 1.24. Let h(x, α) belong to K(α)[x] where K is a field of characteristic
0, and let mα(x) ∈ K[x] be the minimal polynomial of α over K. The norm of h,
denoted by norm[K(α)[x]/K[x]](h(x, α)), is

norm[K(α)[x]/K[x]](h(x, α)) :=
n∏
i=1

h(x, αi)

where α1 = α, α2, . . . , αn are conjugates of α over K in an algebraic closure of K.

When the minimal polynomial of α is clear from context, we simply write norm(·).
The following theorem describes a relationship between resultants and norms.

Theorem 1.25. Let K be a field of characteristic 0. Further let h(x, α) be a monic
polynomial over K(α) and let mα(y) ∈ K[y] be the minimal polynomial of α over K.
Then

norm(h(x, α)) = resy(h(x, y),mα(y)) ∈ K[x].

Proof. Let the roots of mα(y) be α1 = α, . . . , αn. By Theorem 1.19,
resy(h(x, y),mα(y)) =

∏n
i=1 h(x, αi), which, by definition, is equal to norm(h(x, α)).

Clearly, norm(h(x, α)) belongs to K[x], since taking the resultant of h(x, y) ∈ K[x, y]

and mα(y) ∈ K[y] with respect to y eliminates the variable y.

Example 1.26. Let K(α) = Q(
√

2). Then mα(y) = y2 − 2 and the conjugates of
α =
√

2 are
√

2,−
√

2. If h(x, α) = x4 − αx2 + 5, then

norm(h(x, α)) = h(x,
√

2) · h(x,−
√

2)

= x8 + 10x4 − α2x4 + 25

= x8 + 8x4 + 25

= norm(h(x,−α)) ∈ Q[x].

Furthermore,

resy(h(x, y),mα(y)) = det

−x2 x4 + 5 0

0 −x2 x4 + 5

1 0 −2

 = x8 + 8x4 + 25 = norm(h(x, α)),

as expected.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 12

1.2 The Polynomial Representation

In what follows, let K = Q(α1, . . . , αt) ∼= Q[u1, . . . , ut]/〈m1, . . . ,mt〉 where
m1(u1) ∈ Q[u1] is the minimal polynomial for α1 over Q, mi(ui) ∈ Q(α1, . . . , αi−1)[ui]

is the minimal polynomial for αi over Q(α1, . . . , αi−1), and f, g ∈ K[x]. In this
chapter, we introduce the data structure we will use to represent f and g.

1.2.1 The recden representation

We will represent each αi by the variable ui. Hence f and g will be stored as
t-variate polynomials in Q[u1, . . . , ut]/〈m1, . . . ,mt〉[x]. Since f and g can be dense
polynomials, we will use a recursive dense (recden package in Maple) data structure to
represent them. The recden data structure takes as input a polynomial together with
information about the polynomial ring and outputs a recursive list that represents
the polynomial.

Example 1.27. Let f(x) = 8 3
√

5x2 − 4(3
√

5)2
√

3 + 13 ∈ F7(
3
√

5,
√

3)[x]. Observe that
f can be equivalently expressed as f(x, y, z) = 8x2y−4y2z+13 ∈ F7[y, z]/〈y3−5, z2−
3〉[x]. We can represent f using the recden data structure in Maple as follows:

> f:= 8*x^2*y - 4*z*y^2 +13:

> F:=rpoly(f,[x,y,z],[z=RootOf(a^2-3), y=RootOf(a^3-5)],7);

F := (x2y + 6 + 3zy2) mod 〈 y3 + 2, z2 + 4, 7〉
> lprint(F);

POLYNOMIAL([7, [x, y, z], [[[2], 0, 0, [1]], [4, 0, 1]]],

[[[6], 0, [0, 3]], 0, [0, [1]]])

The first list [7, [x, y, z], [[[2], 0, 0, [1]], [4, 0, 1]]] provides in-
formation about the polynomial ring, namely the characteristic, the list of variables,
and a list of the minimal polynomials in recden representation. The second list
[[[6], 0, [0, 3]], 0, [0, [1]]] is the recden representation of f , as depicted
in Figure 1.2.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 13

f(x, y, z) = 8x2y − 4y2z + 13 ∈ F7[y, z]/〈y3 − 5, z2 − 3〉[x]

≡ (6y0 + 0y1 + (0z0 + 3z1)y2) x0 + 0 x1 + (0y0 + 1y1) x2 mod 7

[[[6], 0, [0, 3]] , 0 , [0, [1]]]

x0 x1 x2

[6]

y0

0

y1

[0, 3]

y2

0

z0

3

z1

6

z0

0

y0

[1]

y1

1

z0

Figure 1.2: The recden representation of f in Example 1.27

Observe the recursive nature of this data structure and the importance in the
ordering of the variables. It is a “dense" representation because some zero coefficients
of xiyjzk (for i = 0, 1, 2, j = 0, 1, 2, and k = 0, 1) are stored. For example, the
coefficient of x1 is 0 so it does not recurse on this coefficient. We also remark that this
polynomial representation is not unique to Maple. A recursive dense data structure
in Magma can be constructed using the command quo:

Q := RationalField();

K<z> := PolynomialRing(Q); # build the polynomial ring Q[z]

m := z^2-2;

L<a> := quo<K|m>; # build the field Q[z]/<m>

K2<y> := PolynomialRing(L); # build the polynomial ring Q[z,y]/<m>

m2 := y^2+a*y+1;

L2 := quo<K2|m2>; # build the field Q[z,y]/<m,m2>

f := a+b;

g := 2*a+b+1;

f*g;

(2*a + 1)*b + a + 3

P<x> := PolynomialRing(L2); # build the poly. ring Q[z,y]/<m,m2>[x]

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 14

f := x+a+b+1;

g := a*x+b+2;

f*g;

a*x^2 + ((a + 1)*b + (a + 4))*x + 3*b + 2*a + 1

Chapter 2

Working modulo p

Let m1(u1) ∈ Q[u1] be the minimal polynomial for α1 over Q let mi(ui) ∈
Q(α1, . . . , αi−1)[ui] be the minimal polynomials for αi over Q(α1, . . . , αi−1), 2 ≤ i ≤ t.
Multiplying polynomials in K[x] =Q[u1, . . . , ut]/〈m1, . . . ,mt〉[x] is relatively expen-
sive partly due to expression swell in the size of the rationals. To control the swell,
we shall make use of modular homomorphisms.

A basic tool in elementary number theory and computer algebra is the ring ho-
momorphism Φp : Z 7→ Fp, where p is a prime. This morphism naturally extends to a
homomorphism Z[u1, . . . , ut] 7→ Fp[u1, . . . , ut] via coefficient-wise application, which
we also denote by Φp. It follows that for any ideal 〈m1, . . . ,mt〉 ⊂ Z[u1, . . . , ut] where
the mi’s form a triangular set so that mi ∈ Z[u1, · · · , ui−1][ui], and lcoeffui

(mi) = 1,
we get a ring Z[u1, . . . , ut]/〈m1, . . . ,mt〉 and a corresponding homomorphism

Z[u1, . . . , ut]/〈m1, . . . ,mt〉 7→ Fp[u1, . . . , ut]/〈Φp(m1), . . . ,Φp(mt)〉
∼= Z[u1, . . . , ut]/〈p,m1, . . . ,mt〉,

which is denoted yet again by Φp. The context will clarify which Φp we mean. Many
computational tasks in Z[u1, . . . , ut]/〈m1, . . . ,mt〉 can be solved by performing the
tasks on the images under various Φp. The original answer can later be constructed
by applying the Chinese Remainder Theorem. In Section 2.1, we will investigate to
what extent the homomorphism Φp can be extended to Q. In Section 2.2 we discuss
the Chinese Remainder Theorem and rational number reconstruction, which is used
for reconstructing the rational answers. In Section 2.3 we show by example how we

15

CHAPTER 2. WORKING MODULO P 16

will use this method for the purpose of polynomial multiplication.

2.1 Modular homomorphism

Not all elements in Q can be mapped to Fp for prime p. In particular, any
element in Q whose denominator is divisible by p cannot be mapped. For example,
if m1(x) = x2 − 3

55
then p = 5 and p = 11 cannot be used since Φ11(m1) and Φ5(m1)

are not defined. On the other hand, if the denominator r ∈ Z is not divisible by p
then Φp(r) is invertible in Fp, so we can extend Φp to Z[1/r] by prescribing

Φp(1/r) := (Φp(r))
−1.

The subset of Q consisting of 0 and elements whose denominators are not divisible
by p is a subring of Q, and it is called the localization of Z at the prime ideal 〈p〉. It
is denoted by

Z〈p〉 := Z[1/r : r prime, r 6= p] = Q\{n/d : p | d, p - n, d 6= 0}.

The ring Z〈p〉 has a unique maximal ideal pZ〈p〉 and by construction Z〈p〉/pZ〈p〉 ∼=
Z/pZ = Fp so the homomorphism Φp : Z 7→ Fp naturally extends to Φp : Z〈p〉 7→ Fp.
It is straightforward to check that any element a ∈ Q\Z〈p〉 is the inverse of an element
b ∈ Z〈p〉 with Φp(b) = 0. This shows that Φp cannot be extended to any subring of Q
bigger than Z〈p〉.

In our setting, we are given f, g,m1, . . . ,mt ∈ Q[u1, . . . , ut] and we are interested
in computing a representative of the residue class of f ·g in Q[u1, . . . , ut]/〈m1, . . . ,mt〉.
Since there are only finitely many coefficients in f, g,m1, . . . ,mt, there are only finitely
many primes that occur in any of their denominators. Hence we have f, g,m1, . . . ,mt ∈
Z〈p〉[u1, . . . , ut] for all but finitely many p. If p is a prime such that f, g,m1, . . . ,mt /∈
Z〈p〉[u1, . . . , ut], then we say that it is a bad prime. For any non-bad prime p, we
can study the class of Φp(f · g) in Fp[u1, . . . , ut]/〈Φp(m1), . . . ,Φp(mt)〉 and use fast
multiplication techniques for polynomials over finite fields (Chapters 3 and 6). We
repeat this procedure for several primes p, then use the Chinese remainder Theorem
and rational number reconstruction to lift the answer back to our original quotient
ring Q[u1, . . . , ut]/〈m1, . . . ,mt〉.

CHAPTER 2. WORKING MODULO P 17

As it turns out, we need to impose additional conditions on our primes p in order
for efficient multiplication techniques to apply. We explain these conditions below.

In our original description, we consider a triangular system m1, . . . ,mt and write
αi for the residue class of ui in Q[u1, . . . , ui]/〈m1, . . . ,mi〉. Furthermore, we insist
that each such quotient ring is a field, so each polynomial mi(α1, . . . , αi−1, ui) ∈
Q(α1, . . . , αi−1)[ui] must be irreducible and hence certainly square-free. For ease of
notation, suppose that p is a non-bad prime and consider the induced reduction
homomorphism (which we call modular homomorphism)

Φp : Z〈p〉[u1, . . . , ut]/〈m1, . . .mt〉 7→ Fp[u1, . . . , ut]/〈Φp(m1), . . . ,Φp(mt)〉

and write αi := Φp(αi). Insisting that the monic mi(α1, . . . , αi−1, ui) is irreducible
over
Fp[α1, . . . , αi−1]turns out to be too restrictive and computationally expensive to check,
but we do impose that it is square-free. The reason for this restriction is explained
in Chapter 6. Primes that do not satisfy the square-free condition for some mi are
called fail primes. A non-bad, non-fail prime is called a good prime.

Ifm1, . . . ,mt are monic and have integral coefficients then algebraic number theory
associates to a ring Z[α1, . . . , αt] ∼= Z[u1, . . . , ut]/〈m1, . . . ,mt〉 an integer called a
discriminant whose definition can be found in, for example, Lang [12, pp. 64-66]. A
prime p is a fail prime if and only if it divides the discriminant of the ring. One
can extend this notion to more general mi. The important observation for us is that
primes are fail primes only if they divide an integer that depends only on m1, . . . ,mt

and hence there are only finitely many fail primes.

2.2 Chinese Remainder Theorem & rational number

reconstruction

Let f, g ∈ K[x] = Q(α1, . . . , αt)[x]. Furthermore let p1, . . . , pk be good primes and
suppose that we computed hi = Φpi

(f) · Φpi
(g) ∈ Fp[α1, . . . , αt][x] for 1 ≤ i ≤ k. To

recover the product f · g as a polynomial in K[x], one can apply Chinese Remainder
Theorem and rational reconstruction to the hi’s.

The integer Chinese remainder problem can be stated as follows:

CHAPTER 2. WORKING MODULO P 18

Given moduli m0, . . . ,mk ∈ Z and the corresponding residues ui ∈ Fmi

for 1 ≤ i ≤ k, find an integer u ∈ Z satisfying u ≡ ui mod mi.

An algorithm for solving the Chinese remainder problem is the “inverse” of the
modular homomorphism, since it reconstructs the integer u from the residues ui ≡ u

mod mi.
The following theorem provides the sufficient condition for which the Chinese

remainder problem can be solved with a unique solution.

Theorem 2.1. Let m0,m1, . . . ,mk ∈ Z be pairwise relatively prime. Further, let
ui ∈ Fmi

for 1 ≤ i ≤ k be the k+1 residues. Then there exists a unique integer u ∈ Z
satisfying

u ≡ ui mod mi for 0 ≤ i ≤ k and
0 ≤ u < m0 ·m1 . . .mk.

Proof. See Geddes et al. [11, Theorem 5.7, p. 175].

The Chinese remainder theorem generalizes to any finitely generated torsion-free Z-
module. We will apply it to the coefficients of polynomials in Fpi

[α1, . . . , αt][x] for
primes p1, . . . , pk. Since the moduli p1, . . . , pk are relatively prime, Theorem 2.1 im-
plies that given hi(x) = Φpi

(f) · Φpi
(g) ∈ Fpi

[α1, . . . , αt][x] for 1 ≤ i ≤ k, we can find
a unique h(x) satisfying h(x) ≡ hi(x) mod pi for 1 ≤ i ≤ k, where the coefficients of
h(x) lie between 0 and m− 1 inclusive, where m = p1p2 · · · pk.

Once we obtain h(x), we must find the rational coefficients of f · g, which cur-
rently belong to Fm. We accomplish this using rational number reconstruction on the
coefficients of h(x).

The rational number reconstruction problem can be stated as follows:

Let n
d
∈ Q with gcd(n, d) = 1 and m ∈ Z be the modulus with

gcd(m, d) = 1. If u ≡ n
d

mod m, recover n
d
from u and m.

We use the Euclidean algorithm to recover n and d given u and m. Recall that on
input of m and u, the extended Euclidean algorithm computes a sequence of integers
ri, si, and ti satisfying

r0 = m, s0 = 1, t0 = 0,

r1 = u, s1 = 0, t1 = 1, and
si ·m+ ti · u = ri for i > 1.

CHAPTER 2. WORKING MODULO P 19

Thus the rationals ri
ti

with gcd(ti,m) = 1 satisfy ri
ti
≡ u mod m. The following

theorem states that if the modulus m is “large enough”, then one of the ri
ti
’s is equal

to n
d
.

Theorem 2.2. (Wang et al. [20]) If m > 2|n · d| then there exists i ∈ N such that
ri
ti

=
n

d
.

The question then is, how do we select n
d
from the ri

ti
’s? The approach taken by

Wang et al. [20] requires input bounds D > |d| and N > |n|. However, we will use
the algorithm of Monagan [15] which does not require bounds and succeeds with high
probability when m is a few (≈ 30) bits longer than 2|n ·d|. Since both algorithms use
the Extended Euclidean algorithm, the cost of rational number reconstruction of n

d

from u ∈ Fm is O((logm)2). Both algorithms are implemented in Maple’s iratrecon
command and irrrpoly command (for the recden data structure).

2.3 New multiplication strategy

We now illustrate our multiplication strategy using an example.

Example 2.3. Let K = Q[u1, u2]/〈u2
1 − 2, u2

2 − 5〉 ∼= Q(
√

2,
√

5)[x]. Furthermore let

f(x) =
2
7
x2 − 2u1x+

19
11
u2 ∈ K[x], and g(x) =

6
121

x2 +
1
3
u2u1x−

51
2

+ u2 ∈ K[x].

We first note that the answer we seek is

h(x) = f(x) · g(x) =
12
847

x4 +
(

2
21
u2 +

12
121

)
u1 x

3 +
(

47648
27951

u2 −
51
7

)
x2

+
(

2u2 −
1588
33

)
u1 x−

969
22

u2 +
95
11
.

To find the product of f and g, we apply a modular homomorphism on f and g. Let
|n| and |d| denote the maximum coefficients (in magnitude) in the numerator and the
denominator of the product, respectively. We remark that one can compute a bound
on |n| and |d| by examining the coefficients appearing in f(x) and g(x). Recall that
we must choose the modulus m =

∏k
i=1 pi to be a few bits larger than 2|n ·d| in order

for the rational reconstruction to succeed (Monagan [15]). In this example, 2|n · d| =

CHAPTER 2. WORKING MODULO P 20

2|47648 · 27951| = 2663618496. Let p1 = 101, p2 = 103, p3 = 107, p4 = 113, p5 = 131,
and p6 = 137. Then m =

∏6
i=1 pi = 2257421632331 > 2|n · d|. We compute the

product of f and g modulo these primes in Maple as follows.

> f:=2/7*x^2 + 2*u_1*x + 19/11*u_2:

> g:= 6/121*x^2 + 1/3 *u_2*u_1*x - 51/2 + u_2:

> p:=[101,103,107,113,131,137]:

> FGp:=Array(1..nops(p)):

> vars:=[x,u_1,u_2]:

> r:= [u_1=RootOf(x^2-2), u_2=RootOf(x^2-5)]:

> for i from 1 to nops(p) do

> Fp:= rpoly(f,vars,r,p[i]):# modular homomorphism (f mod p[i])

> Gp:= rpoly(g,vars,r,p[i]):# modular homomorphism (g mod p[i])

> FGp[i]:= mulrpoly(Fp,Gp); # Fp x Gp (over K mod p[i])

> FGp[i]:= retextsrpoly(FGp[i]); # Make FGp[i] an element of

Zp[x,u_1,u_2] (i.e. drop extensions)

> od:

Now we use Chinese remaindering to find the product mod m, where m is the product
of primes in the list p.

> fg:= ichremrpoly(convert(FGp,list));
fg := 538369739942x4 + (859970145650u2 + 1511166547263)u1x

3

+ (225249505657u2 + 1934932827705)x2 + (2u2 + 1162914174183)u1x

+ 718270519334u2 + 1231320890371 mod 2257421632331

Finally we apply rational number reconstruction on fg.

> FGrat:= irrrpoly(fg);

FGrat :=
12
847

x4 +
(

2
21
u2 +

12
121

)
u1x

3 +
(

47648
27951

u2 −
51
7

)
x2 +

(
2u2 −

1588
33

)
u1x

−969
22

u2 +
95
11

Chapter 3

Fast multiplication using the FFT

We will use the Fast Fourier Transform (FFT) to efficiently multiply polynomi-
als in Kp[x] =Fp[α1, . . . , αt][x]. In Sections 3.1 and 3.2 we describe the FFT and
the inverse FFT. In Section 3.4 we explain how they can be used to speed up the
multiplication process.

3.1 The Fast Fourier Transform (FFT)

Let a(x) =
n−1∑
i=0

aix
i ∈ R[x] where R is a ring and let N be the smallest power of

2 greater than or equal to n. The idea of the FFT is to evaluate a(x) at N points
using O(N logN) arithmetic operations in R. As a comparison, the cost of these N
evaluations using the classical Horner’s method requires O(N2) multiplications and
O(N2) additions in R. To explain the FFT algorithm, we first need some definitions
and lemmas.

Definition 3.1. Let F be a field, N ∈ N, and ω ∈ F . We say that ω is an N-th
root of unity if ωN = 1. Moreover, we say that ω is a primitive N-th root of
unity if ωN = 1 and ωk 6= 1 for 0 < k < N . The set of N points {1, ω, ω2, . . . , ωN−1}
are called Fourier points.

We remark that if ω ∈ F is a primitive N -th root of unity, then ω−1 = ωN−1 ∈ F ,
since ω−1 = ωN−1.

21

CHAPTER 3. FAST MULTIPLICATION USING THE FFT 22

Lemma 3.2. Let ω be a primitive N-th root of unity in F where N is even. Then the
N Fourier points {1, ω, ω2, . . . , ωN−1} satisfy the symmetry condition ωN/2+i = −ωi.
Furthermore, ω2 is a primitive (N/2)th root of unity.

Proof. See Geddes et al. [11, Lemmas 4.2 & 4.3, pp. 125-126].

Lemma 3.2 implies that if N = 2k for some positive integer k, then the Fourier
points recursively satisfy the symmetry condition; that is, the symmetry condition
holds for the set of N points {1, ω, ω2, . . . , ωN−1}, the set of N/2 points
{1, ω2, . . . , ωN−2}, and so on.

Definition 3.3. We say that a commutative ring R over a field F supports the
FFT for N = 2k if F has a primitive N -th root of unity.

Definition 3.4. Let a(x) ∈ R[x] where R is a ring (over a field F) that supports
the FFT for N where N = 2k ≥ deg(a) for some integer k. Furthermore let ω be a
primitive N -th root of unity in F . If ai denotes the coefficient of xi in a(x), then the
mapping TNω : RN 7→ RN given by

TNω (a0, a1, . . . , aN−1) = (a(1), a(ω), . . . , a(ωN−1))

is called the discrete Fourier transform (DFT).

The Fast Fourier Transform is an efficient algorithm that computes the DFT by
utilizing the fact that the primitive N -th root of unity satisfies the recursive symmetry
condition as follows. Let R be a ring over a field F and let a(x) ∈ R[x] have degree
less than N where N = 2k. Moreover, let ω ∈ F be a primitive N -th root of unity∈ F .
Observe that we can express a(x) as

a(x) = b(x2) + x c(x2), (3.1)

where b(y) =
∑N/2−1

i=0 a2i y
i and c(y) =

∑N/2−1
i=0 a2i+1 y

i. Since ωN/2+i = −ωi, we have

ω2
N/2+i = ω2

i for 0 ≤ i ≤ N/2− 1.

Hence by evaluating b(y) and c(y) at N/2 points ω2
0, ω

2
1, . . . , ω

2
N/2−1, we can evaluate

a(x) at the N points ω0, ω1, . . . , ωN , saving approximately half the work.

CHAPTER 3. FAST MULTIPLICATION USING THE FFT 23

Algorithm 3.1 returns the DFT of a(x) ∈ R[x] using the FFT, where R is a commu-
tative ring over a field F that supports the FFT for N = 2k > degx(a).

Algorithm 3.1 : FFT(a(x), R,N, ω)
Input: a(x) =

∑n
i=0 aix

i ∈ R[x] where R is a commutative ring over a field F ,
N : integer satisfying n < N = 2k, ω: a primitive N -th root of unity in F .

Output: the Fourier transform of a(x): [a(ω0), a(ω1), . . . , a(ωN−1)] ∈ RN .

1: if N = 1 then return [a0]; end if
2: A← array of length N ; W ← array of length N/2;

3: b(x)←
N/2−1∑
i=0

a2i · xi; c(x)←
N/2−1∑
i=0

a2i+1 · xi;

4: W [0]← 1;

5: for i = 1 to N/2− 1 do W [i]← W [i− 1] · ω; end for { note: W [i] = ωi }
6: B ← FFT(b(x), N/2,W [2]);

7: C ← FFT(c(x), N/2,W [2]);

8: for i = 0 to N/2− 1 do
9: T ← W [i] · C[i];

10: A[i] ← B[i] + T ; {note: B[i], C[i] ∈ R}
11: A[N/2 + i]← B[i]− T ;

12: end for
13: return A;

Lemma 3.5. Algorithm FFT returns the Fourier transform of a(x).

Proof. Lines 6 and 7 of Algorithm FFT outputs

B = [b(1), b(ω2), b(ω4), . . . , b(ωN−2)] and C = [c(1), c(ω2), c(ω4), . . . , c(ωN−2)].

Further, by Eq. (3.1) and Lemma 3.2,

A[i] = B[i] +W [i] · C[i] = b(ω2i) + ωi · c(ω2i) = a(ωi) for 0 ≤ i < N/2 and

CHAPTER 3. FAST MULTIPLICATION USING THE FFT 24

A[N/2 + i] = B[i]−W [i] · C[i]

= b(ω2i) + (−ωi) · c(ω2i)

= b(ωN+2i) + ωN/2+i · c(ωN+2i)

= b(ω2(N/2+i)) + ωN/2+i · c(ω2(N/2+i))

= a(ωN/2+i) for 0 ≤ i < N/2.

In other words, A[i] = a(ωi) for i = 0, . . . , N − 1, as required.

In our application, the ring R is equal to Fp[u1, . . . , ut]/〈M1, . . . ,Mt〉, and D =∏t
i=1 deg(Mi). Thus we analyze the complexity of Algorithm FFT for

R = Fp[u1, . . . , ut]/〈M1, . . . ,Mt〉.

• Line 5: Computing all the required powers of ωi uses
N

2
− 1 multiplications in

Fp.

• Lines 8 - 12: C[i] ∈ R, so it has at most D =
∏t

i=1 deg(Mi) terms. Hence
multiplying W [i] ∈ Fp by C[i] requires at most D multiplications in Fp. Thus
this for-loop requires at most

N/2−1∑
i=0

D =
ND

2
multiplications in Fp.

Hence if T (N) denotes the number of multiplications (in Fp) in executing Algorithm
FFT using the primitive N -th root of unity ω, then T (N) satisfies the recursionT (1) = 0,

T (N) =
(
N
2
− 1
)

+ 2T (N
2

) + ND
2
, N ≥ 1.

(3.2)

Solving (3.2), we obtain

T (N) =
N

2
(1 +D)(log2N) + 1 ∈ O(ND logN).

3.2 Inverse FFT

Definition 3.6. The inverse discrete Fourier transform (IDFT) for the Fourier
points {1, ω, ω2, . . . , ωN−1} is the mapping

SNω (q0, q1, . . . , qN−1) 7→ (q̃0, q̃1, . . . , q̃N−1) where q̃i = N−1

N−1∑
k=0

qk · (ω−j)k.

CHAPTER 3. FAST MULTIPLICATION USING THE FFT 25

One can show that DFT and IDFT are inverses of each other, and that IDFT is
also a Fourier transform (Geddes et al. [11, Theorem 4.2, pp. 130-132]). In fact, if
TNω (a0, a1, . . . , aN−1) = (â0, â1, . . . , âN−1) is a DFT then

SNω (â0, â1, . . . , âN−1) = N−1TNω (â0, â1, . . . , âN−1) = (a0, a1, . . . , aN−1).

3.3 Choosing the right prime

In our application, we are interested in finding a primitive N -th root of unity in
Fp, where p is a prime. As such, we can only use p in which there exists a primitive
N -th root of unity in Fp. We call such primes Fourier primes. The following lemma
tells us how to find a Fourier prime.

Lemma 3.7. Let p be a prime. Fp has a primitive N-th root of unity if and only if
N divides p− 1.

Proof. See Geddes et al. [11, Theorem 4.3, p. 133].

In our Maple implementation, we choose p to be between 230 and 231.5 so that
p is large but all multiplications can be performed using signed integers on a 64-bit
machine without causing overflow. To find a Fourier prime of this magnitude, we will
first find the largest integer M < 231.5 for which N divides M − 1. If M is a prime,
we have found a Fourier prime by Lemma 3.7. Otherwise, we subtract N from M as
many times as necessary, until M is prime.

3.4 Fast multiplication using the FFT

The following lemma explains how to utilize the FFT to speed up the multiplica-
tion of polynomials.

Lemma 3.8. Let f and g be polynomials in R[x] where deg(f)+deg(g) < N = 2k and
R is a ring over a field F that supports the FFT for N . Let us write f and g as f =∑N−1

i=0 fix
i and g =

∑N−1
i=0 gix

i and define f = (f0, . . . , fN−1) and g = (g0, . . . , gN−1).
If ω is the primitive N-th root of unity in F , then

TNω (f · g) = TNω (f) · TNω (g) ∈ RN ,

CHAPTER 3. FAST MULTIPLICATION USING THE FFT 26

where · denotes component-wise multiplication.

Proof. See von zur Gathen and Gerhard [18, Lemma 8.11, p. 228-229].

In light of Lemma 3.8 we can use the FFT for multiplying f and g over Kp =

Fp[u1, . . . , ut]/〈M1, . . . ,Mt〉 as follows. First compute the Fourier transforms TNω (f)
and TNω (g) using the FFT, then apply component-wise multiplication of the Fourier
transforms (that is, perform N multiplications in Kp), and finally apply the inverse
Fourier transform. Algorithm FFTMult uses the FFT to multiply polynomials in
Kp[x] = Fp[u1, . . . , ut]/〈M1, . . . ,Mt〉[x].

We now present the fast FFT polynomial multiplication algorithm.

Algorithm 3.2 : FFTMult(f(x), g(x), Kp)
Input: f(x), g(x) ∈ Kp[x] = Fp[u1, . . . , ut]/〈M1, . . . ,Mt〉[x], p a good Fourier prime.
Output: h(x) = f(x) · g(x) ∈ Kp[x] via the FFT.
1: N ← the smallest power of 2 greater than (degx(f) + degx(g));
2: ω ← primitive N -th root of unity in Fp;
3: F ← FFT(f(x), Kp, N, ω); {F ∈ KN

p }
4: G← FFT(g(x), Kp, N, ω); {G ∈ KN

p }
5: for i = 0 to N − 1 do
6: H[i] = F [i] ·G[i]; {component-wise multiplication where F [i], G[i] ∈ Kp}
7: end for

8: h← N−1 · FFT(
N−1∑
i=0

H[i] · xi, Kp, N, ω
−1); {inverse FFT}

9: h(x)←
N−1∑
i=0

h[i] · xi;

10: return h(x);

We analyze the cost of Algorithm FFTMult where we assumeD =
∏t

i=1 deg(Mi).

• Algorithm FFT is called three times in Algorithm FFTMult and one exe-
cution of Algorithm FFT requires N

2
(1 + D)(logN) + 1 multiplications in Fp

(Section 3.1). Thus the number of multiplications in Fp required in performing

CHAPTER 3. FAST MULTIPLICATION USING THE FFT 27

three FFTs is

3

(
N

2
(1 +D)(log2N) + 1

)
∼ 3

2
ND log2N ∈ O(ND logN).

• Lines 5 to 7: Since F [i], G[i] ∈ Kp, this for-loop requires N multiplications
in Kp. An arithmetic operation in Kp can be done using O(D2) arithmetic
operations in Fp (von zur Gathen and Gerhard [18, Corollary 4.6, p. 72]), so
this for-loop requires O(ND2) multiplications in Fp.

• Line 8: since N−1 ∈ Fp, we perform at most ND multiplications in Fp.

In total, Algorithm FFTMult uses

O(ND logN) +O(ND2) +O(ND)

⊆ O(ND logN +ND2) multiplications in Fp.

If n = max{deg(f), deg(g)}, then N < 4n ∈ O(n). So Algorithm FFTMult requires

O(nD log n+ nD2) multiplications in Fp.

In comparison, classical multiplication of f and g requires O(n2D2) multiplications
in Fp.

Chapter 4

Polynomial Representation
Simplification

Multiplying polynomials over Kp = Fp[α1, . . . , αt] is inefficient even with the use
of the FFT because the recden data structure becomes more “complicated" with in-
creasing number of variables in the polynomial ring. Consider the following example.

Example 4.1. Let f = x+a+b+c+d ∈ F101[a, b, c, d]/〈a2−2, b2−3, c2−5, d2−7〉[x].

Let us build the recden data structure for f in Maple.

> f:=rpoly(a+b+c+d+x, [x,a,b,c,d], [a^2-2,b^2-3,c^2-5,d^2-7],101);

f := (a+ b+ c+ d+ x) mod 〈 a2 + 99, b2 + 98, c2 + 96, d2 + 94, 101 〉
> lprint(f);

POLYNOMIAL([101, [x, a, b, c, d], [[[[[99]]], 0, [[[1]]]],

[[[98]], 0, [[1]]], [[96], 0, [1]], [94, 0, 1]]],[[[[[0, 1], [1]],

[[1]]], [[[1]]]], [[[[1]]]]])

Note the high levels of lists in the recden representation of f . In general, a
polynomial with t variables has at most t levels of lists. Thus the overhead cost of
computing over a multiple extension is high. In particular, if the degree of the first
minimal polynomialM1 is relatively low (in particular if deg(M1) = 2) then the cost of
performing arithmetic in Fp is overwhelmed by the cost of data structure operations
(see Table 8.3).

28

CHAPTER 4. POLYNOMIAL REPRESENTATION SIMPLIFICATION 29

We can avoid this problem by computing γ := γ mod p satisfying Q(α1, . . . , αt)∼=
Q(γ) (see Chapters 5 and 6). Once γ is found, we can represent f and g as bivari-
ate polynomials in Fp[γ] ∼= Fp[z]/〈Φp(mγ(z))〉[x], multiply them over this ring, then
convert the product back to a polynomial in Kp. This method reduces the overhead
and allows for fast arithmetic in Fp[γ], but introduces extra costs associated with the
conversions between the rings, which we show in Chapter 5 to be O(D3) arithmetic
operations in Fp, where D = [Q(α1, . . . , αt) : Q].

In Section 4.1, we present a linear algebra method for converting a polynomial
represented over a multiple extension field of characteristic 0 to the equivalent poly-
nomial over a simple extension field, and vice versa. This method relies on the use of
change-of-basis (COB) matrices. In Section 4.2 we modify this method to apply to
convert polynomials from Fp[α1, . . . , αt][x] to Fp[γ][x], and vice versa.

4.1 Change-of-basis matrix (in characteristic 0)

In what follows, let K = Q(α1, . . . , αt) and let γ be a primitive element for K. Let
us first find the bases for K and Q(γ). For i = 1, . . . , t, let di = [Q(α1, . . . , αi−1, αi) :

Q(α1, . . . , αi−1)] and D = [Q(γ) : Q]. By application of Lemma 1.12,

D = [Q(γ) : Q] = [Q(α1, . . . , αt−1, αt) : Q] =
t∏
i=1

di.

Moreover, Theorem 1.7 implies that a basis for Q(γ) is

Bγ = {γ0, γ1, . . . , γD−1},

and a basis for Q(α1, . . . , αt) is

Bα = {αj11 α
j2
2 . . . α

jt
t , 0 ≤ ji ≤ di − 1, 1 ≤ i ≤ t}.

Using the bases Bγ and Bα, we can build a change-of-basis matrix C that converts
any element in Q(γ) to an element in Q(α1, . . . , αt) (and naturally C−1 would convert
an element in Q(α1, . . . , αt) to an element in Q(γ)).

Unfortunately, the recden data structure is not suitable for constructing the
change-of-basis matrix, as the following example illustrates.

CHAPTER 4. POLYNOMIAL REPRESENTATION SIMPLIFICATION 30

Example 4.2. Let the field be Q(α1, α2) with α1 =
√

2 and α2 = 3
√

3. Then one can
show that Q(α1, α2) ∼= Q(γ) where γ = α1 +α2 =

√
2 + 3
√

3. In recden with α1 > α2,

γ0 = (α1 + α2)
0 = [[1]],

γ1 = (α1 + α2)
1 = [[0,1],[1]],

γ2 = (α1 + α2)
2 = 2 + α2

2 + 2α1α2 = [[2, 0, 1], [0, 2]], and
γ3 = (α1 + α2)

3 = 3 + 6α2 + (3α2
2 + 2)α1 = [[3, 6], [2, 0, 3]].

Because not all zero coefficients are stored in the recden data structure, the lists
of γi are of different lengths. For building the change-of-basis matrix, it would be
convenient to use a data structure in which each element in the polynomial ring will
be of equal length. To that end, we introduce the following data structure, which is
simply a dense one-dimensional array of size D.

Definition 4.3. Let R be a ring and let f ∈ R[u1, . . . , ut]/〈g1(u1), . . . , gt(ut)〉. The
completely dense representation (CDR) of f is the list of coefficients of all
monomial basis elements in R[u1, . . . , ut]/〈g1, . . . , gt〉 in lexicographical ordering with
ut > . . . > u1.

Example 4.4. Let R = Q[u, v]/〈u3 − 2, v2 + 7〉. Then every element in R can be
written as

c0 + c1u+ c2u
2 + c3v + c4uv + c5u

2v.

Moreover, the CDR with v > u has the form: [c0, c1, c2, c3, c4, c5].

Unlike the recden data structure, the completely dense data structure is an array
of depth 1 and every polynomial in a ring in this representation will be of equal length.

In what follows, we let φ denote the isomorphism from K = Q(α1, . . . , αt) to
Q(γ), and naturally φ−1 denotes the isomorphism from Q(γ) to Q(α1, . . . , αt).

Let us use the CDR to construct a change-of-basis matrix from
Bγ = {γ0, γ1, . . . , γD−1} to Bα = {αj11 α

j2
2 · · ·α

jt
t , ji = 0, 1, . . . , di − 1, i = 1, . . . , t},

which is the change-of-basis matrix for φ−1. We show in Chapter 5 that we can find
a primitive element γ of K of the form γ = c1α1 + c2α2 + · · · + ct−1αt−1 + αt where
ci ∈ Z. Consider the following D ×D matrix

C =
[
U0 | U1 | . . . | UD−1

]

CHAPTER 4. POLYNOMIAL REPRESENTATION SIMPLIFICATION 31

where each Ui is the CDR (as a column vector) of

γi = (c1α1 + . . .+ ct−1αt−1 + αt)
i ∈ Q(α1, . . . , αt) ∼= Q[u1, . . . , ut]/〈m1, . . . ,mt〉.

We claim that C is a change-of-basis matrix (COB) for φ−1 (i.e. from Bγ to Bα). To
verify this, we first prove the following lemma.

Lemma 4.5. The columns of C are linearly independent over K.

Proof. Suppose towards a contradiction that the columns of C are linearly dependent.
Then

Ui =
D−1∑

j=0,j 6=i

kj ·Uj where each kj ∈ Q. (4.1)

But since Ui is the CDR of γi for 1 ≤ i ≤ D − 1, (4.1) is equivalent to stating that

γi =
D−1∑

j=0,j 6=i

kj · γj,

which is impossible since {γ0, γ1, . . . , γD−1} is a basis of K(γ). Thus the columns of
C must be linearly independent over Q.

Now define Gi to be the CDR (as a column vector) of γi for 1 ≤ i ≤ D−1 written
as a linear combination of the elements in Bγ = {1, γ, γ2, . . . , γD−1}. That is,

Gi =
[
0 · · · 0 1 · · · 0

]T
, (4.2)

where the only 1 is in the (i+ 1)-th row of Gi. Note that

C ·Gi = (i+ 1)-th column of C = Ui.

Since Ui by definition is the CDR of γi expressed as a linear combination of the
elements in Bα, C must be the COB matrix for φ. Moreover by Lemma 4.5 C is
invertible, so C−1 must be the COB matrix for φ−1.

Example 4.6. Let K = Q(α1, α2, α3) ∼= Q[u, v, w]/〈u2 − 21, v2 − 13, w2 − 5〉. One
can show that γ = α1 + α2 + α3 is a primitive element for K (Chapter 5).

CHAPTER 4. POLYNOMIAL REPRESENTATION SIMPLIFICATION 32

One can show that K ∼= Q(γ) and D = [Q(γ) : Q] = 8. Since

γ0 = 1,

γ1 = α1 + α2 + α3,

γ2 = (α1 + α2 + α3)2 ≡ (2α2 + 2α3)α1 + 2α3α2 + 39,

γ3 = (6α3α2 + 75)α1 + 91α2 + 107α3,

γ4 = (196α2 + 260α3)α1 + 324α3α2 + 3293,

γ5 = (780α3α2 + 7141)α1 + 9029α2 + 12965α3,

γ6 = (20070α2 + 30246α3)α1 + 38374α3α2 + 332163,

γ7 = (88690α3α2 + 744303)α1 + 945503α2 + 1466191α3,

the basis of Q(α1, α2, α3) in lexicographical order with α3 < α2 < α1 is
{1, α3, α2, α2α3, α1, α1α3, α1α2, α1α2α3}. Hence the CDR’s of γi (denoted by Ui) for
0 ≤ i ≤ 7 are:

U0 = [1, 0, 0, 0, 0, 0, 0, 0, 0]T , U1 = [0, 1, 1, 0, 1, 0, 0, 0]T ,

U2 = [39, 0, 0, 2, 0, 2, 2, 0]T , U3 = [0, 107, 91, 0, 75, 0, 0, 6]T ,

U4 = [3293, 0, 0, 324, 0, 260, 196, 0]T , U5 = [0, 12965, 9029, 0, 7141, 0, 0, 780]T ,

U6 = [332163, 0, 0, 38374, 0, 30246, 20070, 0]T ,

U7 = [0, 1466191, 945503, 0, 744303, 0, 0, 88690]T ,

so

C =
[

U0 | U1 | U2 | U3

]
=

1 0 39 0 3293 0 332163 0

0 1 0 107 0 12965 0 1466191

0 1 0 91 0 9029 0 945503

0 0 2 0 324 0 38374 0

0 1 0 75 0 7141 0 744303

0 0 2 0 260 0 30246 0

0 0 2 0 196 0 20070 0

0 0 0 6 0 780 0 88690

(4.3)

is the change-of-basis matrix for φ. It follows that the change-of-basis matrix for φ−1

CHAPTER 4. POLYNOMIAL REPRESENTATION SIMPLIFICATION 33

is

C−1 =

1 0 0 24909
2048 0 −16445

1024 −31955
2048 0

0 1038997
514048

1009739
257024 0 −2544427

514048 0 0 −33891
1004

0 0 0 −5547
2048 0 3979

1024 −1387
2048 0

0 − 82115
514048 −181805

257024 0 445725
514048 0 0 5833

2008

0 0 0 159
2048 0 − 143

1024
127
2048 0

0 1655
514048

5833
257024 0 − 13321

514048 0 0 − 39
502

0 0 0 − 1
2048 0 1

1024 − 1
2048 0

0 − 9
514048 − 39

257024 0 87
514048 0 0 1

2008

(4.4)

Note the expression swell that occurs when computing with rationals. We control
this swell by working modulo a series of primes p1, . . . , pk.

4.2 Change-of-basis matrix modulo p

We now discuss the modifications necessary for applying the change-of-basis ma-
trix method for converting from the finite ring Fp[α1, . . . , αt] to Fp[γ], and vice versa.
Let C be the change-of-basis matrix from Q(α, β) to Q(γ) and let p be a good prime
(recall that if p is a good prime then all the minimal polynomials of the extension
exist mod p), so that C exists. Observe that C is non-invertible in Fp if and only
if det(C) ≡ 0 mod p. Let us call good primes p that satisfy det(C) ≡ 0 mod p

unlucky.

Example 4.7. The determinant of C over Q in Example 4.6 is −12. Since the prime
divisors of −12 are 2 and 3, the only unlucky primes in this case are 2 and 3.

As mentioned in Chapter 3, we choose p to be a random Fourier prime between
230 and 231.5. We would like to bound the probability of choosing an unlucky prime
in this range. To that end, we first state some lemmas.

CHAPTER 4. POLYNOMIAL REPRESENTATION SIMPLIFICATION 34

Lemma 4.8. (Hadamard’s inequality) Let A ∈ GLn(R) and let aij denote the entry
of A in i-th row and j-th column. Then

| det(A)| ≤
n∏
i=1

√√√√ n∑
j=1

a2
ij.

Proof. See Garling [10, Theorem 14.1.1, pp. 233-234].

Definition 4.9. Let R be a ring and f(x) ∈ R[x] where f(x) =
∑n

i=0 fix
i. The max

norm of f , denoted by ‖f‖ is

‖f‖ = max{|f0|, |f1|, . . . , |fn|}.

Lemma 4.10. Let f(x),m(x) ∈ Z[x], wherem(x) is monic and degx(m) = d. Further
let deg(f) ≥ d and δ = deg(f)− d+ 1. If r(x) = f(x) mod 〈m(x)〉, then

‖r‖ ≤ (1 + ‖m‖)δ · ‖f‖.

Proof. See Chen and Monagan [6].

Applying Hadamard’s inequality and Lemma 4.10, we provide a bound on the
number of digits (in base B) of the determinant of change-of-basis matrix when the
quotient ring is Z[x, y]/〈m1,m2〉 where m1(x) ∈ Z[x] and m2(y) ∈ Z[x]/〈m1〉[y].

Lemma 4.11. Let m1(x) ∈ Z[x] be monic and m2(y) ∈ Z[x]/〈m1〉[y] with degx(m1) =

d1 and degy(m2) = d2. Furthermore, let ‖m1‖, ‖m2‖ < M , D = d1d2 and

ri ≡ (cx+ y)i mod 〈m1,m2〉 for c ∈ Z and 2 ≤ i ≤ D − 1.

If C is a D ×D matrix whose i-th column consists of the coefficients of
(cx+ y)i−1 mod 〈m1,m2〉 and c̃ = max{|c|, 1}, then the number of digits (in base B)
of det(C) is

logB(| det(C)|) ≤ D logB(D) + logB(D · c̃) +
(

(D−1)(D−2)
2

)
(logB(c̃+ 1) + d1 logB(M))

∈ O
(
D2(logB(c̃) + d1 logB(M))

)
.

(4.5)

Proof. See Appendix A.

CHAPTER 4. POLYNOMIAL REPRESENTATION SIMPLIFICATION 35

One can also prove a more general form of Lemma 4.11 for extensions of more
than two steps.

Lemma 4.12. Let m1(x1) ∈ Z[x1] be a monic polynomial of degree d1, and

mk(xk) ∈ Z[x1, . . . , xk−1]/〈m1(x1), . . . ,mk−1(xk−1)〉[xk]

be a monic polynomial of degree dk for k = 2, . . . , t and {‖m1‖, ‖m2‖, . . . , ‖mt‖} <
M . Further, let D =

∏t
i=1 di and let C be a D×D matrix whose i-th column consists

of the coefficients from

(c1x1 + c2x2 + · · ·+ ct−1x
t−1 + xt)

i−1 ∈ Z[x1, . . . , xt]/〈m1, . . . ,mt〉, ci ∈ Z.

If
c̃ = max{|c1|, |c2|, . . . , |ct−1|, 1},
s̃ = max{|c1|, 1}+ max{|c2|, 1}+ · · ·+ max{|ct−1|, 1}, and
d̃ = d1 + d2 + · · ·+ dt−1 + (t− 2),

then the number of digits (in base B) of det(C) is

logB(det(C)) ≤ D logB(Dc̃) +
(

(D−1)(D−2)
2

)(
logB(s̃+ 1) + d̃ logB(M)

)
∈ O

(
D2
[
logB(s̃) + d̃ logB(M)

])
.

Proof. See Appendix A.

Example 4.13. Let

m1(x1) = x2
1 − 2 ∈ Q[x1],

m2(x2) = x2
2 + 3 ∈ Q[x1]/〈m1〉[x2],

m3(x3) = x2
3 − x1 − 4 ∈ Q[x1, x2]/〈m1,m2〉[x3], and

m4(x4) = x2
4 + x1x2 − 2 ∈ Q[x1, x2, x3]/〈m1,m2,m3〉[x4].

Since all coefficients of mi’s are integers, we can apply Lemma 4.12. One can show

c1 · x1 + c2 · x2 + c3 · x3 + c4 · x+ 4 = 26 · x1 + 330 · x2 + 905 · x3 + x4

is a primitive element (modulo p) for Q[x1, x2, x3, x4]/〈m1,m2,m3,m4〉. Thus we have

D =
∏4

i=1 degxi
(mi) = 24 = 16,

c̃ = max{|c1|, |c2|, |c3|, |c4|, 1} = max{26, 330, 905, 1, 1} = 905,

s̃ = max{|c1|, 1}+ max{|c2|, 1}+ max{|c3|, 1} = 26 + 330 + 905 = 1261,

d̃ =
∑3

i=1 degxi
(mi) + (t− 2) = 2 + 2 + 2 + (4− 2) = 8,

M = max{‖m1‖, ‖m2‖, ‖m3‖, ‖m4‖}+ 1 = 5.

CHAPTER 4. POLYNOMIAL REPRESENTATION SIMPLIFICATION 36

Hence the length of digits of det(C) in base B = 231 must be at most

D logB(Dc̃) +
(

(D−1)(D−2)
2

)(
logB(s̃+ 1) + d̃ logB(M)

)
< 105.

In fact, if we compute det(C) we find that det(C) is between 38 digits and 39 digits
long in base 231.

To execute the FFT, we pick p to be a Fourier prime. We would like to determine
the probability that a randomly chosen Fourier prime between 230 and 231.5 is unlucky.

Let p be a Fourier prime of the form k · 2r + 1, where p− 1 is divisible by 2R for
some given R ∈ Z+. Further suppose that 230 < p < 231.5 and C is a D ×D change-
of-basis matrix with integer entries. Table 4.1 lists the number of primes between 230

and 231.5 for which p− 1 is divisible by 2R, 1 ≤ R ≤ 28.

R 1 2 3 4 5 6 7

n(R) 91744290 45872521 22936042 11468644 5734170 2867571 1433414

k(R) 0 0.999988 2.000002 2.999924 3.999962 4.999717 6.000091

R 8 9 10 11 12 13 14

n(R) 716387 358119 178951 89409 44749 22377 11181

k(R) 7.00074 8.00104 9.00191 10.00298 11.00155 12.00139 13.00235

R 15 16 17 18 19 20 21

n(R) 5581 2773 1377 698 363 178 88

k(R) 14.0048 15.0139 16.0238 17.0040 17.9473 18.9754 19.9917

R 22 23 24 25 26 27 28

n(R) 45 21 14 9 5 2 0

k(R) 20.9593 22.0588 22.6438 23.2812 24.1292 25.4511 -

Table 4.1: n(R) denotes the number of primes between 230 and 231.5 of the form
c · 2R + 1, and k(R) satisfies the equation 91744290/(2k(R)) = n(R), where 91744290

is the number of Fourier primes between 230 and 231.5.

One can see by inspection that k(R) < R− 0.98 for 1 ≤ R ≤ 27. Hence

91744290

2R−0.98
<

91744290

2k(R)
= # of Fourier primes in (230, 231.5) of form k · 2r + 1, r ≥ R.

CHAPTER 4. POLYNOMIAL REPRESENTATION SIMPLIFICATION 37

Let c̃, s̃, d̃, and M be as defined in Lemma 4.12. Then by that lemma, there are at
most D log231(Dc̃) +

(
(D−1)(D−2)

2

)(
log231(s̃+ 1) + d̃ log231(M)

)
unlucky primes between

230 and 231.5. It may be the case that all of these are Fourier primes. Hence we arrive
at the following remark.

Remark 4.14. The probability that a randomly chosen prime between 230 and 231.5

of the form k · 2r − 1 for r ≥ R is unlucky is at most

D log231(Dc̃) +
(

(D−1)(D−2)
2

) [
log231(s̃+ 1) + d̃ log231(M)

]
91744290/(2R−0.98)

,

where c̃, s̃, d̃, and M are as defined in Lemma 4.11.

The probability given in Remark 4.14 is a very conservative since it is derived
from the assumption that | det(C)| can be factorized into a product of primes which
are each between 230 and 231.5. This probability equals 1 if | det(C)| factors into all
the Fourier primes between 230 and 231.5 of the form k · 2r + 1 for all r ≥ R, which is
highly unlikely. However, in the unlikely event that not enough lucky Fourier primes
can be found, it may be necessary to use 63-bit primes on a 64-bit computer.

Example 4.15. Suppose we wish to multiply f(x) and g(x) in
Z[x1, . . . , x4]/〈m1, . . . ,m4〉[x] where the mi’s are as in Example 4.13 and degx(f) +

degx(g) = 500. Since 28 < 500 < 29, R = 9. Furthermore, recall from Example
4.13 that at most 105 Fourier primes may be unlucky in this case. Therefore, if we
randomly pick a random Fourier prime p between 230 and 231.5 such that p − 1 is
divisible by 2R, the probability that p is unlucky is at most

105

91744290/29−0.98
< 0.00029708.

Chapter 5

Finding a primitive element
(characteristic 0)

Let K = Q(α1, . . . , αt) ∼= Q[u1, . . . , ut]/〈m1, . . . ,mt〉. If the number of extensions
t is large, it is expensive to perform multiplication over K due to the overhead of the
recden representation and a large number of polynomial divisions required. One can
avoid this problem by computing a primitive element γ for K/Q. After γ is found,
one can express a polynomial in K[x] as a polynomial in Q(γ)[x] = Q[z]/〈mγ(z)〉[x], a
bivariate polynomial in x and z. The recden representation of this new polynomial
is a nested list of depth 2, which requires less overhead and possibly offers faster
arithmetic operations than the nested list of depth (t + 1) required to represent the
polynomial in K[x] =Q[u1, . . . , ut]/〈m1, . . . ,mt〉[x].

In this chapter, we present two approaches for finding a primitive element of a field
of characteristic 0: a linear algebra approach and a resultant approach. We discuss
these methods for fields given as a two-step extension, then generalize to fields given
as a tower of more than two extensions.

5.1 Finding a primitive element of K(α, β)

In what follows, let K be a field of characteristic 0. In order to explain how to
compute a primitive element of K(α, β), we must state some lemmas.

38

CHAPTER 5. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC 0) 39

Lemma 5.1. (Trager [17]) Let α be algebraic over Q with minimal polynomialmα(y) ∈
K[y] and let f(x) ∈ K[x] be square-free. Then there exists c ∈ K such that
norm[K(α)[x]/K[x]](f(x− cα)) is square-free.

Proof. Let the roots of f(x) over some splitting field be β1, . . . , βn and let the roots
of mα(y) over a splitting field be α = α1, . . . , αd. Since f is square-free, the βi’s are
distinct and the αi’s are distinct as well since α is separable over K. Suppose that

N(x) := norm(f(x− cα)) =
d∏
j=1

f(x− cαj).

If c = 0 then N(x) is clearly not square-free, since we can assume that d > 1. If
c 6= 0, the roots of f(x − cαj) for a fixed j are {βi + cαj, i = 1, . . . , n}. N(x) has a
multiple root if and only if

βr + cαu = βs + cαt, where r, s ∈ {1, . . . , n}, t, u ∈ {1, . . . , d}, and t 6= u.

Thus N(x) has a multiple root if and only if c belongs to

S = {0} ∪
{
βr − βs
αt − αu

: r, s ∈ {1, . . . , n}, t, u ∈ {1, . . . , d}, t 6= u

}
=

{
βr − βs
αt − αu

: r, s ∈ {1, . . . , n}, t, u ∈ {1, . . . , d}, t 6= u

}
.

(5.1)

Since |S| is finite and K has characteristic 0, K\S is non-empty. So there exists
c ∈ K\S for which N(x) is square-free.

Example 5.2. Let mα(y) = y2 − 2 ∈ Q[y] and f(x) = x2 + 3 ∈ Q[x]. The roots of
f(x) over a splitting field are: {β1, β2} = {

√
3i,−

√
3i}, and the roots of mα(y) are

{α1, α2} = {
√

2,−
√

2}. The set S as defined by (5.1) is:

S =

{
0,

√
3i− (−

√
3i)√

2− (−
√

2)
,
−
√

3i− (
√

3i)√
2− (−

√
2)

}
= {0, 1

2

√
6i,−1

2

√
6i}.

By the proof of Lemma 5.1, g(x) = norm(f(x−cα)) is square-free if and only if c /∈ S.
Since S ∩Q = {0}, norm(f(x− cα)) is square-free for every c ∈ Q\{0}.

CHAPTER 5. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC 0) 40

Alternatively, one can compute the elements in S as follows. By Theorem 1.25,

g(x) = norm(f(x− cα)) = resy(f(x− cy), y2 − 2)

= x4 − 4c2x2 + 6x2 + 9 + 12c2 + 4c4.

Since g(x) is square-free if and only if resx(g(x), g′(x)) 6= 0 by Remark 1.23, and the
roots of

resx(g(x), g′(x)) = 147456(3 + 2c2)2c4

belong to Ŝ = {0, 1
2

√
6i,−1

2

√
6i}, any element c ∈ Ŝ yields a non-square-free

norm(f(x− cα)). As expected, S = Ŝ.

The following lemma provides an upper bound on the number of c ∈ K that yields
a non-square-free norm(f(x− cα)).

Lemma 5.3. Let mα(y) and f(x) be defined as in Lemma 5.1. Furthermore let
d = degy(mα) and n = degx(f). Then

|S| ≤ n(n− 1) · d(d− 1)

2
+ 1,

where S is defined in (5.1).

Proof. There are at most 2

(
n

2

)
(non-zero) distinct possibilities for the numerator

βr − βs, and at most
(
d

2

)
distinct possibilities (up to sign) for the denominator,

αt−αu. Also, 0 ∈ S since the two elements in the numerator can be the same. Hence

|S| ≤

(
2

(
n

2

))
·

(
d

2

)
+ 1 =

n(n− 1) · d(d− 1)

2
+ 1.

We now state a generalization of Lemma 5.1, which is the basis of Trager’s algo-
rithm for factoring polynomials in Q(α)[x].

Theorem 5.4. (Trager [17]) Let mα(y) ∈ K[y] be the minimal polynomial for α and
f(x, α) ∈ K(α)[x] be square-free. Then there exists c ∈ K for which norm(f(x− cα))

is square-free.

CHAPTER 5. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC 0) 41

Proof. Let α = α1, . . . , αd be the roots of mα(y) over a splitting field and β1, . . . , βn

be the (distinct) roots of f(x, α) over a splitting field. Let us write norm(f(x, α)) as

norm(f(x, α)) =
∏
i

gi(x)ji ∈ K[x],

where each gi(x) is square-free. Since f(x, α) is square-free and divides norm(f(x, α)),
it must divide the square-free polynomial

g(x) :=
∏
i

gi(x) ∈ K[x].

By applying the proof of Lemma 5.1, there exists c ∈ K for which norm(g(x − cα))

is square-free. Since the roots of norm(f(x− cα)) =
∏d

i=1 f(x− cαi) belong to

R := {βj + cαi | i ∈ {1, . . . , d}, j ∈ {1, . . . , n}},

and f divides g, β1, . . . , βn must be roots of g. That is, every element in R must
be a root of norm(g(x − cα)) =

∏d
i=1 g(x − cαi). Hence norm(f(x − cα)) divides

norm(g(x− cα)), so if norm(g(x− cα)) is square-free then norm(f(x− cα)) must be
square-free as well.

Lemma 5.5. Let mα(y) ∈ K[y] be the minimal polynomial for α and let α1, α2, . . . , αd

be the roots of mα(y) ∈ K[y] over a splitting field. Furthermore let β1(α), β2(α), . . . ,

βn(α) be the roots of f(x, α) ∈ K(α)[x] over a splitting field. The number of elements
c ∈ K for which norm(f(x− cα)) is not square-free is at most

n2d(d− 1)

2
.

Proof. Let

N(x) = norm(f(x− cα)) =
d∏
i=1

f(x− cαi, αi),

and let {βi(αj), 1 ≤ i ≤ n} be the roots of f(x, αj) for 1 ≤ j ≤ d. Since the roots of
f(x− cαj, αj) are {βi(αj) + cαj, 1 ≤ i ≤ n}, N(x) has a square-free norm if and only
if βr(αu) + cαu = βs(αt) + cαt for some r, s ∈ {1, . . . , n} and t, u ∈ {1, . . . , d} where
t 6= u. That is, N(x) has a multiple root if and only if c belongs to

S =

{
βr(αu)− βs(αt)

αt − αu
: r, s ∈ {1, . . . , n}, t, u ∈ {1, . . . , d}, t 6= u

}
.

CHAPTER 5. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC 0) 42

There are

(
d

2

)
distinct choices for the denominator. For fixed αt and αu, there are

n choices for βr(αu), as we must choose from {β1(αu), β1(αu), . . . , βn(αu)}. Moreover,
there are n choices for βs(αt), since we must choose from {β1(αt), β2(αt), . . . , βn(αt)}.
Thus there are at most n2 distinct possibilities for the numerator βr(αu)− βs(αt). In
summary,

|S| ≤ n2 ·

(
d

2

)
=
n2d(d− 1)

2
.

Example 5.6. Let α be algebraic over Q with minimal polynomial mα(y) = y2 −
2 ∈ Q[y] and let f(x, α) = x2 − α + 1 ∈ Q(α)[x]. Then n = degy(mα) = 2 and
d = degx(f) = 2. By Lemma 5.5, the number of c ∈ K for which norm(f(x− cα)) is
not square-free is at most

n2d(d− 1)

2
=

22 · 2 · 1
2

= 4.

We verify this by explicitly computing the elements in Q for which norm(f(x− cα))

is not square-free. The roots of mα(y) are {α = α1, α2} = {
√

2,−
√

2}, the roots of
f(x, α) = f(x, α1) are

{β1(α1), β2(α1)} =
{√
−1 +

√
2,−

√
−1 +

√
2
}
,

and the roots of f(x, α2) are

{β1(α2), β2(α2)} =
{
i

√
1 +
√

2,−i
√

1 +
√

2
}
.

By the proof of Lemma 5.5, f(x− cα) has a multiple root if and only if c belongs to

S =
{
β1(α1)− β2(α2)

α2 − α1
,
β2(α1)− β1(α2)

α2 − α1
,
β1(α1)− β1(α2)

α2 − α1
,
β2(α1)− β2(α2)

α2 − α1

}

=

{
±
√
−1 +

√
2 + i

√
1 +
√

2
−2
√

2
, ±

√
−1 +

√
2− i

√
1 +
√

2
−2
√

2

}
.

Observe that |S| = 4 as expected, and S ∩Q = ∅, so every c ∈ Q yields a square-free
norm(f(x− cα)).

CHAPTER 5. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC 0) 43

Alternatively, by Theorem 1.25,

g(x) = norm(f(x−cα)) = resy(f(x−cy), y2−2) = x4+2x2−4x2c2−1+4 c2+4 c4−8xc

is square-free if and only if resx(g(x), g′(x)) 6= 0. Since

r(c) = resx(g(x), g′(x)) = −1024(1 + 4c2 + 8c4)2,

r(c) has at most four distinct roots in K. With some algebra, one can show that the
elements in S are exactly the roots of r(c).

In practice, we will choose c from Z≥0 for simplicity. Rather than explicitly de-
termining S and choosing c from Z≥0\S which can be computationally expensive,
Trager’s algorithm ([17]) counts up by one starting from c = 0 until he find a square-
free norm(f(x− cα)).

Let us return to the problem of finding γ, algebraic over K, such that K(γ) ∼=
K(α, β). To that end, the following lemma and theorem will prove useful.

Lemma 5.7. (Trager [17]) Let mα(y) ∈ K[y] be the minimal polynomial for α and
let β be a root of square-free g(x, α) ∈ K(α)[x]. If norm(g(x, α)) is square-free then

gcd(mα(y), g(β, y)) = y − α ∈ K(β)[y].

Proof. We wish to show that α is the only common root of g(β, y) and mα(y). Let
α1 = α, α2, . . . , αd be the roots of mα(y) over a splitting field and suppose that
g(β, αj) = 0 for some αj 6= α1. But this implies that β is a multiple root of∏d

i=1 g(x, αi) = norm(g(x, α)), which contradicts the assumption that norm(g(x, α))

is square-free. Thus the only common root of g(β, y) and mα(y) must be α. This
proves that gcd(g(β, y),mα(y)) = y − α.

Theorem 5.8. (Trager [17]) Let mα(y) ∈ K[y] and mβ(x, α) ∈ K(α)[x] be the min-
imal polynomials for α over K and β over K(α), respectively. If norm(mβ(x, α)) is
square-free then

K(α, β) = K(β).

CHAPTER 5. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC 0) 44

Proof. Note that K(β) ⊆ K(α, β). Therefore it is sufficient to show that α ∈ K(β).
By Lemma 5.7,

gcd(mα(y),mβ(β, y)) = y − α. (5.2)

Since mα(x) and mβ(β, y) are polynomials over K(β), their gcd must also be over
K(β); that is, α ∈ K(β). That is, the solution to (5.2) is the normal representation
of α in K(β).

In what follows, we let mα(y) ∈ K[y] be the minimal polynomial for α and
mβ(x, α) ∈ K(α)[x] be the minimal polynomial for β. Further, we let g(x, α) =

mβ(x − cα, α) where c ∈ K is chosen so that norm(g(x, α)) is square-free. Then we
can show the following.

Theorem 5.9. If f(x, α) is an irreducible polynomial over K(α) then

norm(f(x, α)) = h(x)k

where h(x) is an irreducible polynomial over K and k ∈ Z+.

Proof. See Trager [17].

Observe that since mβ(x, α) is irreducible over K(α), the polynomial g(x, α) must
also be irreducible over K(α) by Theorem 5.9. Furthermore, γ := β + cα is a root of
g, so we can apply Theorem 5.8 with mα(y) and g(x, α) to conclude that K(α, γ) =

K(γ). But since K(α, γ) = K(α, β + cα) = K(α, β), we have

K(α, β) = K(γ).

That is, γ is a primitive element of K(α, β).

Remark 5.10. γ is a root of the irreducible monic polynomial
N(x) = norm (mβ(x− cα, α)) ∈ K[x], so N(x) must be the minimal polynomial for
γ over K.

We now discuss two methods of finding a primitive element γ of K(α, β), namely
a linear algebra approach, and a resultant approach.

CHAPTER 5. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC 0) 45

5.2 Finding a primitive element using linear algebra

As previously mentioned, to find a primitive element γ = β + cα of K(α, β),
we count up by one starting from c = 0 until we find a c which yields a square-free
norm(mβ(x−cα)). To test if a chosen β+cα yields a primitive element ofK(α, β), one
can find the change-of-basis matrix from K(α, β) to K(γ) (or from K(γ) to K(α, β))
and test that it is invertible (Chapter 4). We illustrate this with an example.

Example 5.11. Let us find a primitive element γ of Q(α, β) ∼= Q[y, x]/〈mα(y),mβ(x)〉
where mα(y) = y2 − 5 ∈ Q[y] and mβ(x) = x2 − 2 ∈ Q[x]. Let c = 0. Then
γ = β + 0 · α = β. A basis for Q(γ) is Bγ = {1, γ, γ2, γ3} and a basis for Q(α, β) is
Bα = {1, α, β, αβ}. Note that

γ0 = 1, γ1 = β, γ2 = β2 = 2, and γ3 = β3 = β · β2 = 2β.

Hence the change-of-basis matrix from Bγ to Bα is

C =

1 γ γ2 γ3

1 1 0 2 0

α 0 0 0 0

β 0 1 0 2

αβ 0 0 0 0

.
Clearly C is not invertible, so β + 0 · α is not a primitive element for Q(α, β).

Thus we let c = 1. Then the change-of-basis matrix from Bγ to Bα is

C =

1 γ γ2 γ3

1 1 0 7 0

α 0 1 0 11

β 0 0 0 17

αβ 0 1 2 0

. (5.3)

One can verify that C is invertible. Thus γ = β + 1 · α is a primitive element of
Q(α, β).

To express a polynomial in Q(γ)[x] as a recden polynomial, one must compute
mγ(z) ∈ Q[z], the minimal polynomial for γ. We explain an efficient method for this.

CHAPTER 5. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC 0) 46

Lemma 5.12. Let K(γ) be an extension field and D = [K(γ) : K]. If
γD = a0 + a1γ + · · ·+ aD−1γ

D−1 ∈ K(γ), then mγ(z), the minimal polynomial for γ,
is

mγ(z) = −a0 − a1z + · · · − aD−1z
D−1 + zD.

Proof. Let

mγ(z) = m0 +m1z +m2z
2 + · · ·+mD−1z

D−1 + zD ∈ K[z].

By definition, mγ(γ) = m0 +m1γ +m2γ
2 + · · ·+ γD = 0. Rearranging, we get

−γD = m0 +m1γ +m2γ
2 + · · ·+mD−1γ

D−1.

On the other hand, by Theorem 1.7 we have

−γD = a0 + a1γ + · · ·+ aD−1γ
D−1 ∈ K(γ), a0, . . . , ad−1 ∈ K.

So

−(a0 + a1γ + · · ·+ aD−1γ
D−1) = m0 +m1γ +m2γ

2 + · · ·+mD−1γ
D−1.

Since {1, γ1, . . . , γD−1} is a basis for K(γ), we must have mi = −ai for 0 ≤ i ≤ D−1.
That is, mγ(z) = −a0 − a1z − · · · − aD−1z

D−1 + zD, as required.

Lemma 5.12 implies that one can compute mγ(z) by finding γD expressed as a
linear combination of the γi’s, 0 ≤ i ≤ D − 1. Observe that when we computed the
change-of-basis matrix C, we have already computed γD−1 in terms of the elements in
Bα. Thus at this stage, mγ(z) can be found via a single multiplication γD−1 · γ = γD

and a single matrix-vector multiplication of C−1 by the CDR of γD to obtain mγ(z).

Example 5.13. Continuing from Example 5.11, let us find mγ(z) ∈ Q[z]. Since
D = [Q(γ) : Q] = [Q(α, β) : Q] = 4 and γ3 = 11α + 17β, we have

γ4 = γ · γ3 = (α + β)(11α + 17β) = 89 + 28αβ.

To represent γ4 = 89 + 28αβ as an element in Q(γ), we multiply C−1 (the change-of-
basis matrix from Bα to Bγ) by the CDR of γ4, which is [89, 0, 0, 28]T , and C is given

CHAPTER 5. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC 0) 47

by (5.3):

C−1 ·

89

0

0

28

 =

1 7

2
−77

34
−7

2

0 1 −11
17

0

0 −1
2

11
34

1
2

0 0 1
17

0

 ·

89

0

0

28

 =

−9

0

14

0

 .
Hence mγ(z) = −9 + 14z2 + z4.

5.3 Finding a primitive element using resultants

A second method for determining a primitive element and its minimal polynomial
of K(α, β) is by using resultants and gcds. This method is based on the fact that
norms can be computed using resultants (Theorem 1.25). We illustrate this method
with an example.

Example 5.14. Let us find a primitive element γ = β+cα of Q(α, β) where mα(x) =

x2 − 5 ∈ Q[x] and mβ(x) = x2 − 2 ∈ Q[x]. These polynomials are the same as in
Example 5.11. When c = 0, we have

norm(mβ(x− cα, α)) = norm(mβ(x− 0 · α, α)) = resy(mβ(x, y),mα(y)) = (x2 − 2)2.

This polynomial is not square-free, so we recompute the norm of mβ(x − cα, α) for
c = 1:

N(x) = norm(mβ(x− α, α)) = resy((x− y)2 − 2, y2 − 5) = x4 − 14x2 + 9.

N(x) is square-free, so γ = β + 1 · α is a primitive element of Q(α, β) whose minimal
polynomial over Q is N(x). This result is consistent with that obtained using the
linear algebra method in Example 5.11.

5.3.1 Finding α(γ) and β(γ)

Suppose that we have found a primitive element γ = β + cα satisfying K(α, β) =

K(γ). To convert f ∈ K(α, β)[x] to a polynomial in K(γ)[x], we need to substitute

CHAPTER 5. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC 0) 48

the αs and βs in f with their normal representations α(γ), β(γ) ∈ K(γ), respectively.
In the linear algebra approach, we can do this by inverting the change-of-basis matrix
C and performing a series of matrix-vector multiplications.

In this section,we explain a different method for computing α(γ) and β(γ), which
requires computing a gcd, and avoids computing the change-of-basis matrix. By the
proof of Theorem 5.8, the solution to the linear equation

gcd(mβ(γ − cy, y),mα(y)) = 0

is equal to α(γ). Furthermore, since γ = β + cα = β + cα(γ), β(γ) can be found by
a simple formula:

β(γ) = γ − cα(γ).

We illustrate this with an example.

Example 5.15. Continuing with Example 5.14, let us find α(γ), β(γ) ∈ Q(γ). We
have

gcd(mβ(γ − y, y),mα(y)) = gcd((γ − y)4 − y2(γ − y)2 − 2, y4 − 2)

= y +
16949
4628

γ +
5883
4628

γ5 +
925
9256

γ9 − 87
37024

γ13.

(5.4)

Hence
α(γ) = −16949

4628
γ − 5883

4628
γ5 − 925

9256
γ9 +

87
37024

γ13 and

β(γ) = γ − 1 · α(γ) =
−87

37024
γ13 +

925
9256

γ9 +
5883
4628

γ5 +
21577
4628

γ.

Notice the expression swell that occurs from computing with rationals. We will
eliminate this swell by working modulo a prime (Chapter 6).

5.4 Algorithms

We present the algorithms for finding a primitive element of K(α, β) using resul-
tants and gcds. Algorithm sqfr_norm finds c ∈ Z for which norm(mα(x− cα, α)) is
square-free, and Algorithm prim_elt returns the minimal polynomial for the prim-
itive element γ of K(α, β) and the normal representations α(γ), β(γ) ∈ K(γ).

CHAPTER 5. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC 0) 49

Algorithm 5.1 : sqfr_norm(mβ(x, α),mα(y))
Input: mβ(x, α) ∈ K(α)[x], and mα(y) ∈ K[y], the minimal polynomials for β over

K(α) and α over K respectively, where K is a field of characteristic 0.
Output: c ∈ Z, g(x, α) = mβ(x − cα) ∈ K(α)[x], and square-free N(x) =

norm(g(x, α)) ∈ K[x].
1: c← 0; g(x, α)← mβ(x, α);
2: while true do
3: g(x, α)← g(x− c · α, α);
4: N(x)← resy(g(x, y),mα(y)); {N(x) ∈ K[x]}
5: if deg(gcd(N(x), N ′(x))) = 0 then
6: return c, g(x, α), N(x); {N(x) is the minimal polynomial for β+cα by Rem.

5.10}
7: else
8: c← c+ 1;
9: end if
10: end while

Algorithm 5.2 : prim_elt(mβ(x, α),mα(y))
Input: mβ(x, α) ∈ K(α)[x], and mα(y) ∈ K[y], minimal polynomials for β over

K(α) and α over K respectively, where K is a field of characteristic 0.
Output: c ∈ Z, N(x) ∈ K[x], minimal polynomial for γ where K(α, β) =

K(γ), and A(γ) ∈ K(γ), B(γ) ∈ K(γ), the normal representations of α and β,
respectively.

1: c, g(x, α), N(x)← sqfr_norm(mβ(x, α),mα(y));
2: h(γ, y)← the monic gcd(g(γ, y),mα(y)) ∈ K(γ)[y] where N(γ) = 0;

{h(y) = y + a(γ) by Lemma 5.7}
3: A(γ)← −a(γ); B(γ)← γ − c · A(γ);
4: return c, N(x), A(γ), B(γ);

CHAPTER 5. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC 0) 50

5.5 Towers with more than two steps

We now generalize the resultant approach to apply to fields given as a tower of
more than two extensions (t > 2). To find a primitive element γ of such fields, one
can find a primitive element of two extensions at a time repeatedly as follows:

K(α1, α2, . . . , αt) = K(α1, . . . , αt−3, αt−2)(αt−1, αt)
∼= K(α1, . . . , αt−3, αt−2)(γt−1)

= K(α1, . . . αt−3)(αt−2, γt−1)
∼= K(α1, . . . , αt−3)(γt−2)

...
∼= K(α1, γ2)
∼= K(γ).

(5.5)

Remark 5.16. One can alternatively collapse the extensions “bottom-up” as follows:

K(α1, α2, . . . , αt) ∼= K(γ1, α3, . . . , αt) ∼= K(γ2, α4, . . . , αt) · · · ∼= K(γt−2, αt) ∼= K(γ).

The complexity of this method is comparable to the “top-down” method we proposed
above.

To find the normal representations of all the αi’s in K(γ), one needs to perform
extra computations than in the two extension case. We illustrate this for the case
t = 3.

Example 5.17. Let us find a primitive element of Q(α1, α2, α3) ∼= Q[z, y, x]/〈m1,m2,m3〉
where

m1(z) = z2 − 2 ∈ Q[z],

m2(y) = y2 − α1y + 11 ∈ Q(α1)[y], and
m3(x) = x2 + 2α1α2 − 3 ∈ Q(α1, α2)[x].

Let us find γ1, algebraic over K1 := Q(α1) such that K1(α2, α3) = K1(γ1). If c = 0,
then m3(x− cα2, α2) is:

N1(x, α1) := norm(m3(x, α2)) = resy(m3(x, y),m2(y))

= resy(x2 + 2α1y − 3, y2 − yα1 + 11)

= x4 − 2x2 + 85 ∈ K1[x].

(5.6)

CHAPTER 5. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC 0) 51

Since N1(x, α1) is square-free, we conclude that γ1 = α2 + 0 ·α3 satisfies K1(α2, α3) =

K1(γ1) and N1(x, α1) ∈ K1[x] = Q(α1)[x] is the minimal polynomial for γ1. Since

gcd(m3(γ1, y),m2(y)) = y − 3

4
α1 +

1

4
α1γ

2
1 ,

we conclude that the normal representations of α2 and α3 in K1(γ1) are

α2(γ1) =
3
4
α1 −

1
4
α1γ

2
1 ∈ K1(γ1), and α3(γ1) = γ1 − 0 · α2 = γ1 ∈ K1(γ1).

Now we find γ, algebraic over Q, such that Q(γ) = Q(α1, γ1). Note that

norm(N1(x, α1)) = resy(N1(x),m1(y)) = resy(x4 − 2x2 + 85, y2 − 2) = (x4 − 2x2 + 85)2

is not square-free. Thus we try c = 1. The norm of N(x− α1, α1) is

N(x) := norm(N1(x− α1, α1)) = resy((x− y)4 − 2(x− y)2 + 85, y2 − 2)

= x8 − 12x6 + 206x4 + 1668x2 + 7225 ∈ Q[x].

N(x) is square-free. Hence

Q(γ) ∼= Q(α1, α2, α3) where γ = γ1 + α1 = α1 + (α2 + 0 · α3),

and the minimal polynomial for γ over Q is N(x). Let us now find the normal
representations of α2 and α1 in Q(γ). Since

gcd(N(γ − y, y),m1(y)) = y − 1

25840

(
γ + 2959γ3 − 193γ5 + 9γ7

)
,

we have

α1(γ) = 1
25840

(
γ + 2959γ3 − 193γ5 + 9γ7

)
and

γ1(γ) = γ − 1 · α1(γ) = 1
25840

(
−9γ7 + 22983γ − 2959γ3 + 193γ5

)
.

Finally, recall that α3(γ1) = γ1 − 0 · α2 = γ1. So

α3(γ) = γ1(γ) = 1
25840

(
−9γ7 + 22983γ − 2959γ3 + 193γ5

)
.

Moreover, recall that α2(γ1) = 3
4
α1 − 1

4
α1 · γ2

1 . Thus

α2(γ) = 3
4α1(γ)− 1

4α1(γ) · γ1(γ)2

= 3
4

(
1

25840

(
γ + 2959γ3 − 193γ5 + 9γ7

))
− 1

4

(
1

25840

(
γ + 2959γ3 − 193γ5 + 9γ7

))
·(

1
25840

(
−9γ7 + 22983γ − 2959γ3 + 193γ5

))2 mod 〈N(γ)〉

= −1
981920

(
111909γ3 − 9151γ5 + 815γ7 + 1736191γ

)
.

CHAPTER 5. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC 0) 52

In general, if the field is a t-step extension where t is greater than 2, and we
execute Algorithm prim_elt (t− 1) times to compute a primitive element γ of the
field, we obtain the normal representations

α1(γ), α2(γ1), α3(γ1), . . . , αt−2(γt−2), αt−1(γt−1), αt(γt−1) and

γ, γ1(γ), γ2(γ1), . . . , γt−1(γt−2),

where γi’s are as in (5.5). Thus we must convert α2(γ1), . . . , αt(γt−1) to
α2(γ), . . . , αt(γ) ∈ K(γ). Note that for a fixed j ∈ {2, . . . , t},

αj(γj−1) ∈ K(α1, . . . , αj−2, γj−1).

Hence for each αj(γj−1), we must make the substitutions

αi ← αi(γ), 1 ≤ i ≤ j − 2 and γj−1 ← γj−1(γ).

Chapter 6

Finding a primitive element
(characteristic p)

In what follows, we let K = Q(α1, . . . , αr) ∼= Q[u1, . . . , ur]/〈mα1 , . . . ,mαr〉 where
mαi

(ui) ∈ Q(α1, . . . , αi−1)[ui] is the minimal polynomial of αi over Q(α1, . . . , αi−1)

for 2 ≤ i ≤ r and mα1(u1) ∈ Q[u1] is the minimal polynomial for α1 over Q.
Consider

K(α, β) ∼= K[y, x]/〈m1,m2〉,

where m1 = m1(y) ∈ K[y] and m2 = m2(x) ∈ K(α)[x] are the minimal polynomials
of α over K and β over K(α) respectively. Furthermore, let f, g ∈ K(α, β)[x] be
the polynomials we wish to multiply. As we have seen in Example 5.13, performing
arithmetic in Q leads to a blow-up of coefficients. To control the growth, we work
modulo primes.

Rather than working over K(α, β), we will work over the finite quotient ring

Kp[α, β] ∼= Kp[y, x]/〈M1,M2〉,

where p is a non-bad prime (so that Φp(f),Φp(g),Φp(α1), . . . ,Φp(αr),Φp(α),Φp(β)

are all defined), α := Φp(α), β := Φp(β), M1 := M1(y) = Φp(m1) ∈ Kp[y], and
M2 := M2(x, α) = Φp(m2) ∈ Kp[α][x]. For many primes this ring is not a field, so the
theorems mentioned in Chapter 5 may not apply. Nevertheless, we can implement
modifications to Algorithm prim_elt (and Algorithm sqfr_norm) so that it takes

53

CHAPTER 6. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC P) 54

as input the ring Kp[α, β] and returns

Φp(mγ(x)), α(γ) = Φp(α(γ)) and β(γ) = Φp(β(γ)),

where γ is a primitive element of K(α, β), γ = Φp(γ), and α(γ), β(γ) are normal
representations of α and β respectively in K(γ). In this chapter, we examine the
modifications that are necessary for the algorithms to work modulo p.

6.1 Modifications to Algorithm sqfr_norm

In what follows, let p be a non-bad prime and denote by Kp the ring

Kp = Fp[α1, . . . , αr] ∼= Fp[u1, . . . , ur]/〈Φp(mα1), . . . ,Φp(mαr)〉.

We first describe modifications necessary for Algorithm sqfr_norm to run modulo
p, specifically when the input ring is Kp[α, β] ∼= Kp[y, x]/〈M1,M2〉. Recall that
Algorithm sqfr_norm finds c ∈ Z such that resy(m2(x − cy, y),m1(y)) ∈ K[x] is
square-free. In this section, we show the algorithm may fail over Kp[α, β] if:

(i) division by a zero divisor is encountered,

(ii) M1(y) = Φp(m1(y)) or M2(x, α) = Φp(m2(x, α)) is not square-free over Kp or
Kp[α] respectively, or

(iii) p is not large enough for a suitable c to be found.

We now discuss how to handle each case.

6.1.1 Handling zero divisors

Executing Algorithm sqfr_norm modulo p may fail if a zero divisor is encoun-
tered while computing the resultant (Line 4) using evaluation and interpolation (Sec-
tion 7.2) or the gcd (Line 5) using the Euclidean algorithm. Normally, division by a
zero divisor is encountered only for certain values of c, in which case we can simply
choose a different c and re-enter the while-loop. However, there may exist a prime p
in which every c ∈ Fp results in a division by a zero divisor. In Section 7.1 we provide
an example of such a case, and explain how to handle it.

CHAPTER 6. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC P) 55

6.1.2 Handling non-square-free M1 or M2

Certainly m1 may be square-free over K, but not over Kp. For example, if K = Q
and Kp = F5, then m1 = x2−5 ∈ Q[x] is square-free over K butM1 = Φp(m1) = x2 is
not square-free over Kp. We insist that M1 and M2 must be square-free over Kp and
Kp[α] respectively. To see why this condition is required, we refer to the following
lemma.

Lemma 6.1. Let p be a non-bad prime, degy(m1) > 1, and degx(m2) > 1. If either
M1(y) = Φp(m1) ∈ Kp[y] or M2(x) = Φp(m2) ∈ Kp[α][x] is not square-free over Kp

and Kp[α] respectively, then there does not exist c ∈ Fp for which Np(x) = resy(M2(x−
cy, y),M1(y)) is square-free over Kp.

Proof. Let d1 = degy(m1) and d2 = degx(m2). Because m1 and m2 are monic in y

and x respectively, it follows that degy(M1) = d1 > 1 and degx(M2) = d2 > 1.
Let α1, . . . , αd1 be the roots of m1(x) ∈ K[x] over a splitting field and suppose

that M1(x) is not square-free. Then we must have

αk = αr where 1 ≤ k < r ≤ d1.

If k = degy(M2(x− cy, y)), then by Theorem 1.19 (i) and Theorem 6.2,

Np(x) = resy(M2(x− cy, y),M1(y))

= (−1)d2d1 · resy(M1(y),M2(x− cy, y))

= (−1)d2d1 · resy(Φp(m1(y)),Φp(m2(x− cy, y)))

=
(−1)d2d1

lcoeffy(m1)d2−k
· Φp (resy (m1(y),m2(x− cy, y)))

=
(−1)d2d1

1d2−k
· Φp

(
(−1)d2d1 resy (m2(x− cy, y),m1(y))

)
=

(−1)2d2d1

1
· Φp(norm(m2(x− cα)))

= 1 ·
d1∏
i=1

(Φp(m2(x− cαi)))

= (Φp(m2(x− cαk)))2 · Φp

 d1∏
i=1

i/∈{k,r}

m2(x− cαi)

 .

CHAPTER 6. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC P) 56

Since degx(Φp(m2(x−cαk))) = degx(m2(x)) > 1, Np cannot be square-free for c ∈ Fp.
Now let β1, . . . , βd2 be the roots of m2 over a splitting field and suppose that M2

is not square-free over Kp[α]. Then Φp(βk) = Φp(βr) for some 1 ≤ k < r ≤ d2. Using
the result above,

Np(x) = resy (M2(x− cy, y),M1(y)) =
d1∏
i=1

(Φp(m2(x− cαi))) =
d1∏
i=1

(M2(x− c · Φp(αi))) .

Thus for each i = 1, . . . , d1, {Φp(βj) − c · Φp(αi), j = 1, . . . , d2} are roots of Np(x).
But since Φp(βk) = Φp(βr), there are repeated roots in this set. Hence Np(x) cannot
be square-free over Kp regardless of the value of c ∈ Fp.

Lemma 6.1 implies that if M1 or M2 is not square-free over Kp and Kp[α] respec-
tively, then Algorithm sqfr_norm will fail for all c ∈ Fp. Recall that we call a prime
in which M2 or M1 is not square-free a fail prime (Chapter 2).

To prevent the algorithm from running for many choices of c which yields a non-
square-free Np, or worse, running for all choices of c ∈Fp before returning FAIL, we
modify Algorithm sqfr_norm to return FAIL if three choices of c ∈ Fp do not give
a square-free Np(x).

6.1.3 Choosing a “large enough” p

Suppose now that p is a good, non-fail prime (so that M1 and M2 are square-free)
and let

Np(x) = resy(M2(x− cy, y),M1(y)).

Observe that, by Remark 1.23, Np is not square-free if c is a root of

r(x) := resx(Np, N
′
p) ∈ Kp[x].

If p is less than the number of distinct roots of r, then every choice of c ∈ Fp may
yield a non-square-free Np. Thus must choose p to be larger than the number of
distinct roots of r(x) that belong to Fp. For this, we need to find an upper bound on
the number of such roots of r(x). The following theorem and lemma are helpful for
this purpose.

CHAPTER 6. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC P) 57

Theorem 6.2. Let R and R̃ be commutative rings and let f, g ∈ R[x] with nonzero
degrees m and n respectively. Furthermore let φ : R → R̃ be a homomorphism. If
deg(φ(f)) = m and deg(φ(g)) = k, 0 ≤ k ≤ n, then

φ(res(f, g)) = φ(lcoeff(f))n−k res(φ(f), φ(g)).

Proof. See Geddes et al. [11, Theorem 9.2, p. 408].

Lemma 6.3. Let A(x) ∈ Kp[x] where Kp = Fp or Fp[α1, . . . , αr] and
Mi ∈ Fp[α1, . . . , αi−1][ui] for 2 ≤ i ≤ r and M1 ∈ Fp[u1]. If degx(A) = d ≥ 0, then
the number of roots of A belonging to Fp is at most d.

Proof. Suppose that A(x) ∈ Fp[x]. We show that A(x) has at most d roots in Fp
using induction on d = degx(A). If degx(A) = 0 then there are no roots and we are
done. Suppose now that degx(A) = d+1 and that the statement holds for A of degree
d. If ρ1 ∈ Fp is a root of A, then A(x) = (x − ρ1) · B(x) where B(x) ∈ Fp[x]. If
degx(A) = 1, then degx(B) = 0 so we are done. Otherwise, let ρ2 be a root of A, not
equal to ρ1. Then f(ρ2) = (ρ2 − ρ1) · g(ρ2) = 0. Since ρ2 − ρ1 6= 0 and Fp is a field,
we have B(ρ2) = 0. By induction hypothesis, B has at most d roots. Thus A has at
most d+ 1 roots. This proves that A(x) of degree d can have at most d roots in Fp.

Now suppose that A(x) ∈ Kp[x] where Kp = Fp[α1, . . . , αr]∼=
Fp[u1, . . . , ur]/〈M1, . . . ,Mr〉 and di = degui

(Mi), 1 ≤ i ≤ r. Let

ci(h1, h2, . . . , hr) = coeff(xiuh1
1 u

h2
2 · · ·uhr

r , A) ∈ Fp, 0 ≤ hj ≤ dj, 1 ≤ j ≤ r.

If A(σ) = 0 for some σ ∈ Fp, then σ must also be a root of all of the following
d1d2 · · · dr polynomials

d∑
i=0

ci(0, 0, . . . , 0) · xi ∈ Fp[x],

d∑
i=0

ci(0, 0, . . . , 1) · xi ∈ Fp[x],

...
d∑
i=0

ci(d1 − 1, d2 − 1, . . . , dr − 1) · xi ∈ Fp[x],

(6.1)

CHAPTER 6. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC P) 58

at least one of which is non-zero since A(x) is non-zero. By the proof above, each
polynomial in (6.1) can have at most d roots in Fp. It may be the case that all the
polynomials in (6.1) have the same d roots in Fp. Thus there can be at most d roots
of A(x) in Fp.

By Lemma 6.3, the number of roots of r(x) = resx(Np, N
′
p) belonging to Fp is at

most the degree of r(x). We now determine an upper bound on degree of r(x). Let
M2(x− cy, y) = Φp(m2(x− cy, y)). By Theorem 6.2,

Φp(resy(m2(x− cy, y),m1(y))) = Φp(N(x)) = Np(x) = resy(M2(x− cy, y),M1(y)).

(6.2)
Because N(x) is a minimal polynomial by Remark 5.10, N(x) must be monic. Hence
we must have

degx(N) = degx(Np). (6.3)

Moreover, by Theorems 1.19 (i) and 6.2,

Φp(resx(N,N ′)) = Φp(resx(N ′, N))

= resx(Φp(N
′),Φp(N))

= resx(N ′p, Np)

= (−1)mn resx(Np, N
′
p)

= (−1)mnr(x),

(6.4)

wherem = degx(Np) and n = degx(N
′
p). Let dp = degx(r) and dr = degx(resx(N,N ′)).

By Lemma 5.5 and (6.4), we must have dp ≤ dr and dr ≤ d2
2d1(d1 − 1)/2. That is,

there can be at most d2
2d1(d1− 1)/2 distinct roots of r(x) that belong to Fp. Thus we

require p ≥ d2
2d1(d1 − 1)/2 to guarantee that a square-free Np(x) exists. In fact, we

will choose p so that

p ≥ 2

(
d2

2d1(d1 − 1)

2

)
= d2

2d1(d1 − 1) (6.5)

so that the probability of randomly choosing c ∈ Fp for which Np(x) is square-free will
be at least 1/2. However, in theory the first bd2

2d1(d1 − 1)/2c consecutive choices for
c ∈ Fp may yield a non-square-freeNp(x). If this happens, the while-loop in Algorithm
sqfr_norm would have to run bd2

2d1(d1 − 1)/2c + 1 times, which is inefficient. For
this reason, we also modify the algorithm to choose c at random from Fp, rather than
starting from 0 then counting up by 1.

CHAPTER 6. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC P) 59

6.1.4 Proof of correctness

We now show that if Algorithm sqfr_norm is modified as discussed above and
terminates successfully, then its output, a square-free Np(x), satisfies

Np(x) = Φp(N(x)) = resy(m2(x− cy, y),m1(y)) mod p,

where N(x) is square-free over K.
To show this, observe that by (6.2), if Np(x) is square-free overKp for some c ∈ Fp,

then N(x) must be square-free over K for this c as well. Hence a square-free Np(x)

will always be equal to N(x) mod p, where N(x) is the minimal polynomial for some
primitive element of K(α, β).

6.1.5 Modified algorithm of sqfr_norm and its complexity

We present the modified Algorithm sqfr_norm and its time complexity.
Suppose that d1 = degy(M1(y)) and d2 = degx(M2(x)). We analyze the cost of

Algorithm sqfr_norm_p for Kp = Fp[α1, . . . , αr].

• Line 7: To find the expanded form of M2(x− cα, α), we pre-compute C = −cα
then apply the substitution x← x+ C from the rightmost x to the leftmost x
in the Horner form of M2(x, α):

M2(x, α) = a0(α) + x(a1(α) + x(a2(α) + · · ·+ x(ad2−1(α) + x) · · ·)).

When substituting the k-th rightmost x for x + C (for 1 ≤ k ≤ d2), we are
required to compute the expanded form of

ad2−k(α) + (x+ C) · r(x, α) = ad2−k(α) + x · r(x, α) + C · r(x, α),

where r(x, α) is a polynomial in Kp[α][x] whose degree in x is k − 1. Mul-
tiplying x by r(x, α) is equivalent to shifting the degrees of x in r(x, α) by
+1, so no arithmetic operation is required for this step. On the other hand,
multiplying C = −cα by r(x, α) requires degx(r) multiplications in Kp[α], or

CHAPTER 6. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC P) 60

Algorithm 6.1 : sqfr_norm_p(M2(x, α),M1(y), Kp)
Input: M2(x, α) = Φp(m2(x, α)) ∈ Kp[α][x] and M1(y) = Φp(m1(y))) ∈ Kp[y] where

m2(x, α) and m1(y) are minimal polynomials for β over K(α) and α over K
respectively where K = Q(α1, . . . , αr) and Kp = Fp[α1, . . . , αr] for a good prime
p satisfying p > (degx(M2)

2 · degy(M1) · (degy(M1)− 1)).
Output: c ∈ Fp, g(x, α) = M2(x− cα) ∈ Kp[α][x], and square-free

Np(x) = resy(g(x, y),M1(y)) ∈ Kp[x], or FAIL.
1: c← 0; S ← {0}; i← 1; g(x, α)←M2(x, α);
2: if deg1(g) = 0 then
3: {norm(g(x, α)) = M2(x, α) is known to be not square-free by Lemma 1.20}
4: c← random integer in Fp\S; S ← S ∪ {c};
5: end if
6: while true do
7: g(x, α)←M2(x− cα, α);
8: Np(x)← resy(g(x, y),M1(y));
9: {computeNp(x) using evaluation homomorphism & interpolation (Section 7.1)}
10: {Np(x) returns FAIL if a zero divisor is encountered}
11: if Np(x) 6= FAIL then
12: T (x) ← gcd(Np(x), N ′p(x)); {compute T (x) using the Euclidean algorithm

over Kp; if the Euclidean algorithm encounters a division by a zero divisor,
it returns FAIL}

13: if {T (x) 6= FAIL and degx(T) = 0} then
14: {No division by a zero divisor is encountered during the computation of

T (x), and Np(x) is square-free over Kp}
15: return c, g(x, α), Np(x);
16: end if
17: else if Np(x) is not square-free for three values of c then
18: return FAIL;
19: end if
20: c← random element in Fp\S; S ← S ∪ {c}; i← i+ 1;

21: end while

CHAPTER 6. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC P) 61

(degx(r) · (deg(α)2) = k · d2
1 multiplications in Kp. Hence the total number of

multiplications required (in Kp) for expanding out M(x− cα, α) is
d2∑
k=1

k · d2
1 =

d2(d2 + 1)

2
d2

1 ⊆ O(d2
1d

2
2).

• Line 8: In Section 7.1 we discuss an efficient method for computing multivariate
resultants (based on evaluation and interpolation of the variable x), and show
that it requires

O(d3
1d2 + d2

1d
2
2) arithmetic operations in Kp.

• Line 12: By (6.3), degx(Np) = d1d2. One can attempt to find the gcd of Np(x)

and N ′p(x) via the Euclidean algorithm, which requires

O((d1d2)(d1d2 − 1)) ⊆ O(d2
1d

2
2) arithmetic operations over Kp.

Since the while-loop in the algorithm will be executed at most three times, the number
of arithmetic operations in Kp in executing Algorithm sqfr_norm_p is

O(d3
1d2 + d2

1d
2
2) +O(d2

1d
2
2) +O(d2

1d
2
2) ⊆ O(d3

1d2 + d2
1d

2
2).

We remark that, because of the asymmetry in the cost, if d1 ≤ d2 then this cost can
be simplified to

O(d2
1d

2
2 + d2

1d
2
2) ⊆ O(d2

1d
2
2).

Thus in the special case where m2(x) has no dependence on α (i.e. m2(x) ∈ Kp[x])
and degy(m1) > degy(m2), switching the variable ordering allows the resultant to be
computed in O(d2

1d
2
2), rather than in O(d3

1d2).

6.2 Modifications to Algorithm prim_elt

We now discuss modifications we must implement to Algorithm prim_elt so
that it takes inputs M1(y) ∈ Kp[y] and M2(x, α) ∈ Kp[α][x] and, if it does not return
FAIL, then it successfully outputs

Φp(mγ(x)), α(γ), and β(γ),

where α(γ) = Φp(α(γ)) and β(γ) = Φp(β(γ)).

CHAPTER 6. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC P) 62

6.2.1 Handling zero divisors

In Section 7.2 we introduce a method for computing a gcd required in Line 5 of
Algorithm prim_elt for which no inversion of zero divisors is encountered. However,
the gcd found using this method may not be monic. Since Algorithm prim_elt
requires the monic gcd, Algorithm prim_elt may still fail over Kp if a zero divisor
is encountered while trying to make the gcd monic. If this is the case, we will choose
a new prime p and restart the algorithm. Experimentally, we have found that such
failure is rare.

6.2.2 Proof of correctness

Let mγ(x) ∈ K[x] is the minimal polynomial for a primitive element γ satisfying
K(α, β) = K(γ). We have already shown that Algorithm sqfr_norm_p either
returns FAIL or correctly returns Φp(mγ(x)). Thus here we show that if Algorithm
prim_elt over Kp successfully terminates for input polynomials M1 and M2, then
it outputs α(γ) and β(γ).

Suppose that Algorithm prim_elt successfully terminates and let

G(x, y) := M2(x− cy, y) and g(x, y) := m2(x− cy, y),

where c ∈ Fp is chosen so that Np(x) = resy(G(x, y),M1(y)) is square-free over
Kp. We know by Theorem 5.8 that deg(gcd(g(γ, y),m1(y)) = 1. However, it could
be that deg(gcd(Φp(g(γ, y)),Φp(m1(y))) > 1. If deg(gcd(Φp(g(γ, y)),Φp(m1(y))) ≤
deg(gcd(g(γ, y),m1(y)) and the gcds are monic, then one can show that
Φp(gcd(g(γ, y),m1(y))) = gcd(G(γ, y),M1(y)) (Geddes et al. [11, Lemma 7.3, p.300]).
Hence after we compute gcd(Φp(g(γ, y)),Φp(m1(y)) in the modified algorithm, we
check that its degree is one. If it is not, then it returns FAIL.

Moreover, by Theorem 5.8

gcd(g(γ, y),m1(y)) = y − α(γ) ∈ K(γ)[y] ∼= K[x]/〈mγ(x)〉[y], (6.6)

where α(γ) is the normal representation of α in K(γ). Thus the solution to

gcd(G(γ, y),M1(y)) = Φp(y − α(γ)) = y − Φp(α(γ)) = y − α(γ)

CHAPTER 6. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC P) 63

is α(γ) = Φp(α(γ)), as required.
Furthermore, recall that β(γ) can be found by the formula β(γ) = γ − c · α(γ).

Thus β(γ) = Φp(β(γ)) can be computed in an analogous way:

γ − c · α(γ) = Φp(γ − c · α(γ)) = β(γ).

In summary, if Algorithm prim_elt, is executed over Kp successfully, then it returns
Φp(mγ(x)),Φp(α(γ)) = α(γ) and Φp(β(γ)) = β(γ).

Example 6.4. Let m1(y) and m2(x, α) be as in Examples 5.14 and 5.15:

m1(y) = y4 − 2 ∈ Q[y] and m2(x, α) = x4 − α2x2 − 2 ∈ Q(α)[x].

We wish to find c ∈ Z for which Q(β + cα) ∼= Q(α, β). By (6.5), we choose the prime
p to be greater than

degx(m2)
2 · degy(m1) · (degy(m1)− 1)

2
=

42 · 4 · (4− 1)

2
= 96

so that there exists c ∈ Fp for which α+cβ is a primitive element modulo p of Q(α, β)

with probability greater than 1/2. Let p = 113. Then

M1(y) := Φp(m1(y)) = (y − 47) (y + 27) (y + 47) (y − 27) and
M2(x, α) := Φp(m2(x, α)) = x4 − α2x2 − 2, where α is a root of M1(y).

One can check that M1(y) and M2(x, α) are square-free over Kp and Kp[α] respec-
tively.

We let c = 0 and compute the resultant of M2(x− cy, y) and M1(y):

resy(M2(x, y),M1(y)) = resy(x4 − y2x2 − 2, y4 − 2)

= (x8 − 6x4 + 4)2 ∈ Fp[x].
(6.7)

Since (6.7) is not square-free, we choose a new, random c. We use c = 1 so that we
can compare the output with Example 5.14. Using this new c, the resultant is:

Np(x) = resy(M2(x− y, y),M1(y)) = resy((x− y)4 − y2(x− y)2 − 2, y4 − 2)

= x16 − 44x12 − 16x8 + 13x4 + 16 ∈ Fp[x].

One can check that Np(x) is square-free over Fp. Thus γ := Φp(γ) = β+ c ·α = β+α

is a primitive element (modulo p) of Q(α, β), and Np(x) is equal to Φp(mγ(x)), where

CHAPTER 6. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC P) 64

mγ(x) ∈ Q[x] is the minimal polynomial for γ over Q. Indeed, one can verify this by
comparing Np(x) with mγ(x) found in Example 5.14.

Now let us find α(γ) and β(γ). In this example, we will do this using the Euclidean
algorithm over Fp[γ] ∼= Fp[x]/〈〈Np(x)〉. No zero divisor is encountered during the
computation and we obtain

gcd(M2(γ − y, y),M1(y)) = y − 45γ − 24γ5 − 36γ9 + 5γ13 ∈ Fp[γ][y].

Therefore,

α(γ) = 45γ + 24γ5 + 36γ9 − 5γ13 ∈ Fp[γ] and
β(γ) = γ −A(γ) = γ − (45γ + 24γ5 + 36γ9 − 5γ13) = −44γ − 24γ5 − 36γ9 + 5γ13 ∈ Fp[γ].

Again, one can verify that α(γ) = Φp(α(γ)) and β(γ) = Φp(β(γ)) where α(γ) and
β(γ) were computed in Example 5.15.

6.2.3 Modified algorithm of prim_elt and its complexity

We present the modified version of Algorithm prim_elt to work modulo p and
its time complexity.

Let d1 = degy(M1) and d2 = degx(M2). We analyze the cost of Algorithm
prim_elt_p.

• Line 1: we showed in Section 6.1.5 that Algorithm sqfr_norm_p requires

O(d3
1d2 + d2

1d
2
2) arithmetic operations in Kp.

• Line 5: We will use evaluation & interpolation to find the gcd (Section 7.2).
There, we show that this method requires

O((d1d2)
2) arithmetic operations in Kp.

• Line 13: Since degx(Np) = d1d2, in computing B(γ) we perform at most one
scalar multiplication and one subtraction in Kp[x]/〈Np(x)〉. Since degx(Np) =

d1d2, the cost of finding A(γ) and B(γ) is

O(d1d2) arithmetic operations in Kp.

CHAPTER 6. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC P) 65

Algorithm 6.2 : prim_elt_p(M2(x, α),M1(y), Kp)
Input: M2(x, α) = Φp(m2(x, α)) ∈ Kp[α][x] and M1(y) = Φp(m1(y))) ∈ Kp[y] where

m2(x, α) and m1(y) are minimal polynomials for β over K(α) and α over K
respectively, where K = Q(α1, . . . , αr) and Kp = Fp[α1, . . . , αr] for good prime p
satisfying p > (degx(M2)

2 · degy(M1) · (degy(M1)− 1).
Output: c ∈ Fp, square-free Np(x) ∈ Kp[x] satisfying N(γ = β + cα) = 0, and

A(γ), B(γ), the normal representations of α and β respectively in Kp[γ] ∼=
Kp[x]/〈Np(x)〉, or FAIL.

1: c, g(x, α), Np(x)← sqfr_norm_p(M2(x, α),M1(y), Kp, p);
2: if Algorithm sqfr_norm_p outputs FAIL then
3: return FAIL;
4: end if
5: h(γ, y)← monic gcd(g(γ, y),M1(y)); {h is computed over Kp[γ] ∼= Kp[x]/〈Np(x)〉

via evaluation & interpolation (Section 7.2). Note: h(γ, y) = y+a(γ) ∈ Kp[γ][y]}
6: if division by a zero divisor is encountered while computing h(γ, y) then
7: return FAIL;
8: end if
9: if degy(h) 6= 1 then
10: return FAIL;
11: end if
12: A(γ)← −a(γ);
13: B(γ)← γ − cA(γ);
14: return c,Np(x), A(γ), B(γ);

Thus in total, the cost of running Algorithm prim_elt_p is

O((d3
1d2 + d2

1d
2
2) + (d1d2)

2 + d1d2) ⊆ O(d3
1d2 + d2

1d
2
2) arithmetic operations in Kp.

As with Algorithm sqfr_norm_p, if d1 ≤ d2 then this cost simplifies to

O(d2
1d

2
2 + d2

1d
2
2) ⊆ O(d2

1d
2
2) arithmetic operations in Kp.

CHAPTER 6. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC P) 66

6.3 Towers with more than two steps

Recall that to find a primitive element of a field towers with more than two steps
of the form K(α1, . . . , αt) where mi(ui) ∈ K(α1, . . . , αi−1)[ui] for i = 2, . . . , t, we find
a primitive element of two successive towers at a time:

K(α1, α2, . . . , αt) = K(α1, . . . , αt−3, αt−2)(αt−1, αt)

= K(α1, . . . , αt−3, αt−2)(γt−1)

= K(α1, . . . αt−3)(αt−2, γt−1)

= K(α1, . . . , αt−3)(γt−2)
...

= K(α1, γ1)

= K(γ).

Let
Mi = Φp(mi) for i = 1, . . . , t, Mγi

= Φp(mγi
) for i = 2, . . . , t,

di = degx(mi) for i = 1, . . . , t, and D =
∏t

i=1 di.

For the algorithm to work, we need to choose p such that a set {c2, . . . , ct} ∈ Ft−1
p

exists for which we can find square-free

Mγt(x) = resy(Mt(x− cty, y),Mt−1(y)) and
Mγk

(x) = resy(Mγk+1
(x− cky, y),Mk−1(y)) for k = 2, . . . , t− 1.

By Lemma 5.5 there are at most

d2
t · dt−1(dt−1 − 1)

2
<
d2
t · d2

t−1

2

distinct ct ∈ Fp for which Mγt(x) = resy(Mt−1(x − cty, y),Mt(y)) is not square-free.
Note that degx(Mγt) = dt−1dt. Thus once we have found Mγt , there are at most

deg(Mγt)
2 dt−2(dt−2 − 1)

2
=

(dt−1dt)
2 dt−2(dt−2 − 1)

2
<
d2
t−2d

2
t−1d

2
t

2

distinct ct−1 ∈ Fp for which resy(Mγt(x−cy, y),Mt−2(y)) is not square-free. In general,
for 2 ≤ i ≤ t− 1, there are at most

d2
i−1d

2
i · · · d2

t

2

CHAPTER 6. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC P) 67

distinct ci ∈ Fp for which resy(Mγi+1
(x − ciy, y),Mi−1(y)) is not square-free. By

application of Lemma 5.5, if we choose p so that it satisfies

p > max

{
d2
t−1d

2
t

2
,
d2
t−2d

2
t−1d

2
t

2
, . . . ,

d2
1d

2
2 · · · d2

t

2

}
=
d2

1d
2
2 · · · d2

t

2
, (6.8)

then there must exist {c2, . . . , ct} ∈ Ft−1
p such that every resy(Mγi

(x−ciy, y),Mi−1(y))

(for 2 ≤ i ≤ t − 2) and resy(Mt(x − cty, y),Mt−1(y)) are square-free. In fact, if we
choose p so that

p > 2

(
d2

1d
2
2 · · · d2

t

2

)
= d2

1d
2
2 · · · d2

t = D2,

the probability that a random ci gives a square-free resultant at the (i− 1)-th step is
at least 1/2.

6.3.1 Finding the normal representations

As mentioned in Section 5.5, if the number of extensions t is greater than two,
then executing Algorithm prim_elt_p does not directly give us the normal repre-
sentations αi(γ). For example, if t = 3 then running Algorithm prim_elt_p twice
returns the normal representations

α2(γ3), α3(γ3), α1(γ) and γ3(γ),

where Kp[α1, α2, α3] = Kp[α1, γ3] and Kp[α1, α2, α3] = Kp[γ]. Thus at this point we
must still determine α2(γ) and α3(γ). In this section, we explain in detail how to do
so, and also analyze it complexity.

To find the normal representation α2(γ) from α2(α1, γ3) we need to make the
substitutions α1 7→ α1(γ) and γ3 7→ γ3(γ) to α2(α1, γ3). Note that

α2(α1, γ3) =

d1−1∑
j=0

(
d2d3−1∑
i=0

kijγ
i
3

)
αj1, where kij ∈ Fp. (6.9)

We first pre-compute α1(γ)j ∈ Fp[γ] for 2 ≤ j ≤ d1 − 1 and γ3(γ)i ∈ Fp[γ] for
2 ≤ i ≤ d2d3 − 1. If D = d1d2d3, then computing all of the required powers of α1(γ)

and γ3(γ) requires O(d1D
2) and O(d2d3D

2) arithmetic operations in Fp respectively.

CHAPTER 6. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC P) 68

Now we make the substitutions

αi1 7→ α1(γ)i for 1 ≤ i ≤ d1 − 1 and γj3 7→ γ3(γ)j for 1 ≤ j ≤ d2d3 − 1

to (6.9). Making these substitutions in the inner summation of (6.9) for a fixed j

requires O(d2d3D) multiplications in Fp since kij ∈ Fp. Therefore, the total cost of
computing the inner summation for all i and j is

O(d1 · (d2d3D)) = O(D2) arithmetic operations in Fp.

Now for each j, the inner summation
∑d2d3−1

i=0 kijγ3(γ)i is a polynomial in Fp[γ] of
degree less than D. So the cost of computing the outer summation is equal to the
cost of multiplying (d1 − 1) pairs of polynomials in Fp[γ], which is

O(d1D
2) arithmetic operations in Fp.

Hence computing α2(γ) from α2(α1, γ3) from (6.9) requires

O(d1D
2) +O(d2d3D

2) +O(D2) +O(d1D
2) ⊆ O(D2(d1 + d2d3))

arithmetic operations in Fp.
To find α3(γ), we can simply solve the equation γ2(γ) = α2(γ) + c3α3(γ) for α3(γ)

where c3 ∈ Fp is returned by Algorithm prim_elt_p. This requires at most D
arithmetic operations in Fp. In summary, the cost in Fp of computing the normal
representations α2(γ) and α3(γ) is

O(D2(d1 + d2d3) +O(D) ⊆ O(D2(d1 + d2d3)).

In general, one can show that the total number of arithmetic operations in Fp
required in finding αk(γ), k = 2, . . . , t, where t is the number of extensions, is

O(D2(d2 · · · dt + d1)) +O(D2(d3 · · · dt + d1d2)) + · · ·
+O(D2(dt−1dt + d1 · · · dt−2)) +O(D)

⊆ O
(
D2(d2 · · · dt + d3 · · · dt + · · ·+ dt−1dt) +D2(d1 + d1d2 + · · ·+ d1 · · · dt−2)

)
.

CHAPTER 6. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC P) 69

Observe that

d2 · · · dt + d3 · · · dt + · · ·+ dt−1dt = D

(
1
d1

+
1

d1d2
+ · · ·+ 1

d1d2 · · · dt−2

)

< D

(
d2 · · · dt−2 + d3 · · · dt−2 + · · ·+ dt−3dt−2 + 2dt−2

d1d2 · · · dt−2

)

< D

(
d2 · · · dt−2 + d3 · · · dt−2 + · · ·+ 3dt−3dt−2

d1d2 · · · dt−2

)
...

< D

(
(t− 3)d2 · · · dt−2

d1d2 · · · dt−2

)
= D

(
t− 3
d1

)
.

Using a similar argument, it is easy to see that

d1 + d1d2 + · · ·+ d1 · · · dt−2 < D

(
t− 3

dt−1dt−2

)
.

Therefore, the total number of arithmetic operations required in Fp in finding αk(γ), k =

2, . . . , t can be simplified to

O
(
D2 ·D

(
t− 3

d1

)
+D2 ·D

(
t− 3

dt−1dt−2

))
⊆ O

(
D3t

(
1

d1

+
1

dt−1dt−2

))
. (6.10)

Note, in particular, that if d1 = d2 = · · · = dt, then di = t
√
D for all i, so (6.10)

becomes

O

(
D3t

(
1

t
√
D

+
1

t
√
D

2

))
⊆ O

(
D3t
t
√
D

)
= O(D3−1/t · t).

We now present a generalization of Algorithm prim_elt_p which outputs a
primitive element γ modulo p of Q(α1, α2, . . . , αt) ∼= Q[u1, . . . , ut]/〈m1, . . . ,mt〉 for ar-
bitrary finite t, together with the minimal polynomial (modulo p) of γ, and α1(γ), . . . ,

αt(γ), the normal representations (modulo p) of α1(γ), . . . , αt(γ).
Let us analyze the cost of Algorithm prim_elt_multi. As before, we denote by

di the degree of mi(ui) ∈ Q(α1, . . . , αi−1)[ui] for 1 ≤ i ≤ t, and let D =
∏t

i=1 di.

• Lines 3 to 13: When we execute this loop the first time, we perform O(dtd
3
t−1 +

CHAPTER 6. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC P) 70

d2
td

2
t−1) arithmetic operations over Fp[α1, . . . , αt−2], which is equivalent to

O
(
(d2
td

2
t−1 + dtd

3
t−1) · (d1 · · · dt−2)

2
)

⊆ O
([

(d2
td

2
t−1) · (d1 · · · dt−2)

2
]

+
[
(dtd

3
t−1) · (d1 · · · dt−2)

2
])

⊆ O([D2] + [(dtd
3
t−1) · (d1 · · · dt−2)

2])

⊆ O(D2 +D2dt−1)

⊆ O(D2dt−1) arithmetic operations in Fp.

In general, one can show that when executing the loop for the k-th time (1 ≤
k ≤ t− 1) we perform O(D2(dt−k)) arithmetic operations in Fp. Thus the total
cost of executing the while-loop is

O

(
t−1∑
k=1

(
D2dt−k

))
⊆ O

(
D2

(
t−1∑
i=1

di

))
arithmetic operations in Fp. (6.11)

• Lines 14 to 17: this for-loop computes αi(γ), 2 ≤ i ≤ t in Fp. The analysis in
Section 6.3.1 shows that this requires

O
(
D3t

(
1

d1

+
1

dt−1dt−2

))
arithmetic operations in Fp.

The cost of Algorithm prim_elt_p_multi is dominated by the computations above.
Thus the total cost of running this algorithm on a t-step extension for t greater than
three is

O
(
D2
(∑t−1

i=1 di

))
+O

(
D3t

(
1
d1

+
1

dt−1dt−2

))
⊆ O

(
D3t

(
1
d1

+
1

dt−1dt−2

))
arithmetic operations in Fp. Observe that unfortunately the cost of the algorithm is
dominated by the cost of finding the normal representations αi’s.

CHAPTER 6. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC P) 71

Algorithm 6.3 : prim_elt_multi(M1(u1), . . . ,Mt(ut), Kp)

Input: Mi(ui) = Φp(mi(ui)), 1 ≤ i ≤ t, where mi(ui) is the minimal poly. for αi
over Q(α1, . . . , αi−1) for 2 ≤ i ≤ t, m1(u1) is the minimal poly. for α1 over Q,
and p is a good prime satisfying p >

∏t
i=1(degui

(mi))
2.

Output: γ: a primitive element (mod p) of Q(α1, . . . , αt), Np(y) = Φp(mγ(y)) where
mγ(y) is the minimal polynomial for γ, and A = [α1(γ), . . . , αt(γ)] where αi(γ) =

Φp(αi(γ)), or FAIL.
1: A← empty list of length t; B ← empty list of length t− 2;
2: c← empty list of length t− 1; k ← t− 1;
3: while k ≥ 1 do
4: if k = t− 1 then
5: c[k], Np(y), A[k], A[k + 1]←prim_elt_p(Mt(x, αk),Mk(y),Fp[α1, . . . , αk−1], p);

6: else
7: c[k], Np(y), A[k], B[k]← prim_elt_p(N(x, αk),Mk(y),Fp[α1, . . . , αk−1], p);

8: end if
9: if (Algorithm prim_elt_p outputs FAIL) then
10: return FAIL;
11: end if
12: k ← k − 1;
13: end while

{Note: A = [α1(γ), α2(γ2), . . . , αt−2(γt−2), αt−1(γt−1), αt(γt−1)] and B =

[γ2(γ), . . . , γt−1(γt−2)], where γk = Φp(γk) and γk satisfies Q(α1, . . . , αt) =

Q(α1, . . . , αk−2, γk−1) for 3 ≤ k ≤ t. γ = Φp(γ) and γ is a primitive element of
Q(α1, . . . , αt). }

14: for i = 2 to t− 2 do
15: A[i]←subs({γi = B[i− 1], α1 = A[1], . . . , αi−1 = A[i− 1]}, A[i]);
16: B[i]← B[i− 1]− c[i+ 1] ·A[i+ 1] ; {γi+2 = γi+1 − ciαi }
17: end for
18: if t > 2 then
19: A[t− 1]←subs({γt = B[t− 2], α1 = A[1], . . . , αt−2 = A[t− 2]}, A[t− 1]);
20: A[t]← B[t− 2]− c[t− 1] ·A[t− 1] ; { αt ← γt − ct−1αt−1 }
21: end if
22: γ ← c[1] · α1 + c[2] · α2 + · · ·+ c[t− 1] · αt−1 + αt;
23: return γ, Np(y), A;

Chapter 7

Algorithmic improvements

To improve the time complexity of Algorithm sqfr_norm_p and Algorithm
prim_elt_p, we developed efficient methods for computing the resultant and gcd.

In Algorithm sqfr_norm_p we must compute the resultant

Np(x) = resy(M2(x− cy, y),M1(y)) ∈ Kp[x].

Although one can compute Np(x) by computing the determinant of a Sylvester’s
matrix, it is more efficient to use the subresultant algorithm of Brown ([4], [5]).
The subresultant algorithm computes Np(x) by modifying the Euclidean algorithm
to use pseudo-division instead of ordinary polynomial division and by scaling the
polynomials appearing in the Euclidean remainder sequence by elements of Kp[x].

Suppose that d1 = degy(M1), d2 = degx(g) and dy = degy(g). Since dy < d1, the
subresultant algorithm performs O(d1dy) ⊆ O(d2

1) arithmetic operations in Kp[x],
which is the same as the cost of the Euclidean algorithm in Kp[x]. The polynomials
appearing in the sequence belong toKp[x, y] and have degree (d1d2)/2 in x on average.
Hence if classical algorithms for multiplication and exact division in Kp[x] are used,
the algorithm performs O((d2

1)(d1d2/2)2) ∈ O(d4
1d

2
2) arithmetic operations in Kp.

To improve on this for multivariate polynomials, Collins [7] showed that one can
compute their resultant using evaluation and interpolation. The idea (as applied
to our application) is to evaluate x in g(x, y) at points chosen from Fp, use the
subresultant algorithm on the univariate polynomials in Kp[y], then interpolate in x
to obtain the resultant Np(x) ∈ Kp[x]. We show that this approach reduces the cost

72

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 73

to O(d3
1d2 + d2

1d
2
2) arithmetic operations in Kp.

Recall that Np(x) is the minimal polynomial (mod p) of degree D = d1d2 for a
primitive element γ of K(α, β) ∼= K[y, x]/〈m1,m2〉. As before, assume that γ =

Φp(γ). To determine the normal representation A(γ) = Φp(α(γ)) by computing
gcd(M2(γ − cy, y),M1(y)) using classical quadratic algorithms for polynomial arith-
metic in Kp[γ], we require O(d2

1 · (d2
1d

2
2)) ⊆ O(d4

1d
2
2) arithmetic operations in Kp. In

Section 7.2, we show that we can modify the subresultant algorithm to use evalua-
tion and interpolation (for x) to simultaneously compute α(γ) as well as Np(x) in
O(d3

1d2 + d2
1d

2
2) arithmetic operations in Kp.

7.1 Resultant computation

We now explain how to use evaluation and interpolation to compute bivariate
resultants.

7.1.1 Evaluation and interpolation

Let J be an integral domain, R = J [x, y], and σ ∈ J . An evaluation homomor-
phism Φx=σ : J [x, y]→ J [y] is a homomorphism defined by

Φx=σ(f(x, y)) = f(σ, y), f(x, y) ∈ R.

We say that σ is an evaluation point. We may alternatively write f(x = σ, y) or
f(x, y)|x=σ to mean Φx=σ(f(x, y)).

The “inverse” of evaluation homomorphism is interpolation, defined as follows:
The Interpolation Problem (over a field):

Let K be a field. Given distinct evaluation points {σ0, ..., σn} ∈ K and
the values {y0, y1, ..., yn} ⊂ K, find a polynomial f(x) ∈ K[x] satisfying

f(σi) = yi, i = 0, . . . , n.

The following well-known theorem gives the condition for which there exists a (unique)
f(x):

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 74

Theorem 7.1. If the evaluation points σ0, σ1, ..., σn are distinct, there exists a unique
polynomial f(x) ∈ K[x] of degree at most n such that f(σi) = yi, i = 0, . . . , n.

Proof. See Geddes et al. [11, Theorem 5.8, p. 185].

There are several algorithms for interpolating f(x) ∈ K[x] of degree at most n.
For example, the algorithms known as Newton interpolation and Lagrange interpola-
tion both perform O(n2) arithmetic operations in K (von zur Gathen, Gerhard [18,
p. 132]).

In our application, we wish to interpolate over Kp = Fp[u1, . . . , ur]/〈M1, . . . ,Mr〉.
We can state the interpolation problem over Kp as follows.

The Interpolation Problem (over the ring Kp):

Let Kp = Fp[u1, . . . , ur]/〈M1, . . . ,Mr〉, where M1 ∈ Fp[u1] and
Mi ∈ Fp[u1, . . . , ui−1]/〈M1, . . . ,Mi−1〉[ui] for 2 ≤ i ≤ r. Given evalua-
tion points {σ0, ..., σn} ⊂ Fp and the values {y0, y1, ..., yn} ⊂ Kp, find a
polynomial f(x) ∈ Kp[x] satisfying

f(σi) = yi, i = 0, . . . , n.

When working over Kp and one runs the Newton or Lagrange interpolation, one may
encounter divisions by zero divisors. However, the following lemma says that if the
evaluation points are chosen from Fp, no zero divisors are encountered.

Lemma 7.2. (existence) If all the evaluation points belong to Fp and are distinct,
then Newton interpolation can be performed over Kp = Fp[u1, . . . , ur]/〈M1, . . . ,Mr〉,
even if Kp has zero divisors.

Proof. We wish to find f(x) ∈ Kp[x] satisfying f(σi) = yi for i = 1, . . . , n where σi ∈
Fp. Let us write f(x) as

f(x) = a0+a1(x−σ1)+a2(x−σ1)(x−σ2)+· · ·+an(x−σ1)(x−σ2) · · · (x−σn) ∈ Kp[x],

where a0, a1, . . . , an ∈ Kp are unknown. Substituting σ1 for x in f(x), we obtain

f(σ1) = a0 = y1 ∈ Kp.

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 75

Next, substituting σ2 for x in in f(x) we obtain

f(σ2) = a0 + a1(σ2 − σ1) = y2 ⇒ a1 =
y2 − a0

σ2 − σ1

=
y2 − y1

σ2 − σ1

∈ Kp.

Since σ2 − σ1 ∈ Fp\{0}, a1 is well-defined. Similarly, substituting σ3 for x in f(x)

gives

a2 =
1

σ3 − σ1

(
y3 − y2

σ3 − σ2

− y2 − y1

σ2 − σ1

)
∈ Kp. (7.1)

Again, every denominator in (7.1) is invertible, since it is a non-zero integer. Contin-
uing in this manner, one can show that the only inverses that need to be computed
in determining a1, a2, . . . , an are of the form σi − σj ∈ Fp\{0}, 1 ≤ i 6= j ≤ n. Thus
if the evaluation points σ1, . . . , σn belong to Fp and are all distinct, then one can
successfully find the polynomial f(x) ∈ Kp[x] satisfying f(σi) = yi, i = 0, . . . , n.

In fact, the interpolated f(x) ∈ Kp[x] is unique, as the following lemma states.

Lemma 7.3. (uniqueness) Let Kp = Fp[u1, . . . , ur]/〈M1, . . . ,Mr〉. Given distinct
points {σ0, . . . , σn} ⊂ Fp and corresponding values {y0, . . . , yn} ⊂ Kp, there exists a
unique polynomial f(x) ∈ Kp[x] of degree ≤ n such that f(σi) = yi, i = 0, . . . , n.

Proof. Let degui
(Mi) = di for 1 ≤ i ≤ r. Then Kp = Fp[u1, . . . , ur]/〈M1, . . . ,Mr〉 is a

vector space of dimension D = d1d2...dr over Fp whose monomial basis is

B = {uh1
1 u

h2
2 · · ·uhr

r : 0 ≤ hj ≤ dj − 1, 1 ≤ j ≤ r}.

Since {y0, . . . , yn} ⊂ Kp, each yi can be written as a linear combination of elements in
B. Let ci(h1, h2, . . . , hr) ∈ Fp denote the coefficient of uh1

1 u
h2
2 · · ·uhr

r in yi, i = 0, . . . , n.
Then interpolating the yi’s is equivalent to interpolating the values

c0(h1, h2, . . . , hr), c1(h1, h2, . . . , hr), . . . , cn(h1, h2, . . . , hr)

with the corresponding evaluation points σ0, σ1, . . . , σn for 0 ≤ hj ≤ dj−1, 1 ≤ j ≤ r

separately, which is an interpolation over the field Fp. Since each of these interpolated
polynomials is unique by Theorem 7.1, f(x) ∈ Kp[x] must be unique as well.

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 76

7.1.2 Resultant computation using evaluation & interpolation

To compute Np(x) = resy(M2(x − cy, y),M1(y)) ∈ Kp[x, y] using evaluation and
interpolation, we first evaluate g(x, y) at x = σi ∈ Fp to obtain a univariate polyno-
mial g(σi, y) ∈ Kp[y] for sufficiently many evaluation points σi’s. We then compute
the resultants of the univariate g(σi, y) and M1(y) and apply interpolation to recover
the resultant of g(x, y) := M2(x− cy, y) and M1(y).

Let us determine an upper bound on the number of evaluation points needed. Let

g(x, y) =

dy∑
i=0

ai(x)yi, M1(y) =

d1∑
i=0

biy
i, and d2 = degx(g).

Observe that bd1 = 1, degy(g) < d1 and degx(M1) = 0. For reasons that will become
apparent in the next section, we will compute resy(M1, g), rather than resy(g,M1).
Since the two are equal up to a multiplication by (−1) and resy(g,M1) is monic, we
may need to multiply resy(M1, g) by (−1) if necessary. The Sylvester matrix formed
by g(x, y) and M1(y), Syly(M1, g), is the (dy +d1) by (dy +d1) matrix of the following
form

Syly(M1, g) =

row 1 1 bd1−1 · · · b1 b0

row 2 1 bd1−1 · · · b1 b0
...

...
row dy 1 · · · · · · b0
row (dy + 1) ady (x) ady−1(x) · · · a1(x) a0(x)

row (dy + 2) ady (x) ady−1(x) · · · a1(x) a0(x)
...

...
row (dy + d1) ady

(x) · · · · · · a0(x)

.

Observe that a0(x) contains the term with the largest degree of x in Syly(M1, g),
namely xd2 . Thus xd2 appears in the last d1 rows of Syly(M1, g). Since every element
in the first dy rows of Syly(M1, g) has degree 0 in x and the determinant of a matrix
is a sum (up to sign) of the products obtained by multiplying one element from every
row of the matrix, we conclude that

degx(resy(g(x, y),M1(y))) = degx(det(Syly(M1, g))) = d1d2.

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 77

That is, d1d2 + 1 distinct evaluation points must suffice to interpolate the resultant.
One may ask, are there any evaluation points from Fp that cannot be used? In

particular, it may not be obvious whether or not an evaluation point σ for which
ady(σ) = 0 still satisfies det(Syly(M1, g))|x=σ = det(Syly(M1|x=σ, g|x=σ)). LetNp(x) =

resy(M1(y), g(x, y)). Since lcoeffy(M1) = 1, Theorem 6.2 implies that

Np(x = σ) = resy(M1(y), g(x, y))|x=σ = resy(M1(y), g(x = σ, y)) ∀σ ∈ Fp.

That is, every element from Fp can be used as an evaluation point.
We have now reduced the problem of solving a bivariate resultant to that of solving

the resultant of univariate polynomials M1(y) and g(σ, y) over Kp. For this, we use
an efficient algorithm involving computation of a polynomial remainder sequence.

7.1.3 Polynomial remainder sequences

To understand the definition of a polynomial remainder sequence, we first need to
give some preliminary definitions and lemmas.

Theorem 7.4. Let J be an integral domain, f(x), g(x) ∈ J [x]\{0} and m = deg(f) ≥
n = deg(g). Then there exist polynomials q(x), r(x) ∈ J [x] such that

lcoeff(g)m−n+1 · f(x) = q(x) · g(x) + r(x) (7.2)

where either r(x) = 0 or deg(r) < deg(g). We call r(x) is the pseudo remainder of
f and g, which we denote as prem(f, g).

Proof. See Winkler [21, Theorem 2.2.2, pp. 40-41].

Definition 7.5. Let U be a UFD. The polynomials f(x), g(x) ∈ U [x] are said to be
similar, written f(x) ' g(x), if there exist α, β ∈ U\{0} such that α ·f(x) = β ·g(x).

Lemma 7.6. Let U be a UFD and f, g ∈ U [x]\{0}. If deg(f) ≥ deg(g) and r '
prem(f, g), then gcd(f, g) ' gcd(g, r).

Proof. See Winkler [21, Lemma 4.1.2, p. 83].

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 78

Definition 7.7. Let J be an integral domain and f1, f2, . . . , fn+1 be polynomials in
J [x], n ≥ 2. We say that {f1, f2, . . . , fn+1} is a polynomial remainder sequence
starting from f1 and f2, denoted PRSx(f1, f2), if and only if:

• deg(f1) ≥ deg(f2),

• fi 6= 0 for i = 1, . . . , k and fn+1 = 0, and

• fi ' prem(fi−2, fi−1) for i = 3, . . . , n+ 1.

Remark 7.8. If f1, f2 ∈ U [x] and {f1, f2, . . . , fn, 0} is a PRS, then Lemma 7.6
implies that

gcd(f1, f2) ' gcd(f2, f3) ' . . . ' gcd(fn−1, fn) ' gcd(fn, 0) = fn.

That is, the gcd of two polynomials can be computed using their PRS.

A subresultant polynomial remainder sequence (sPRS) starting with f1(x) and
f2, denoted by sPRSx(f1, f2), is a PRS whose last non-zero polynomial is equal to
resx(f1, f2). In this thesis, we will not provide the rather cumbersome definition of
the subresultant PRS (for this one can refer to Brown [4]), but we do present the
sPRS algorithm and its time complexity. Even though PRS’s are defined for integral
domains, Algorithm sr_prs (Algorithm 7.1) takes as input polynomials over any
commutative ring. It returns FAIL if a division by a zero divisor occurs.

We analyze the cost of Algorithm sr_prs assuming that R = Kp, d1 = degx(f1),
d2 = degx(f2) and d1 ≥ d2 ≥ 0.

• Line 5: The asymptotic cost of computing all the pseudo-remainders in this
algorithm is the same as that of the Euclidean algorithm, which is O(d1d2)

arithmetic operations inKp (von zur Gathen, Gerhard [18, Theorem 3.11, pp.50-
51]).

• Line 7: Since h, g ∈ Kp, we perform δ multiplications and one inversion in Kp

when computing 1/(g · hδ). Moreover, we perform at most degx(f
′) multiplica-

tions in Kp in multiplying f ′ by 1/(g · hδ). Since δ < d1 and degx(f
′) < d1, it

requires

O(δ + 1 + degx(f
′)) ⊆ O(d1 + d1) ⊆ O(d1) arithmetic operations in Kp.

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 79

Algorithm 7.1 : sr_prs(f1, f2, R)

Input: f1, f2 ∈ R[x], R a commutative ring.
Output: r(x) = resx(f1, f2) and subresultant PRS [f1, f2, . . . , fn] where fn+1 = 0, or

FAIL.
1: g ← 1; h← 1; f ′ ← f2; i← 3; s← 1;

2: while f ′ 6= 0 and deg(f ′) > 0 do
3: δ ← deg(fi−2)− deg(fi−1);

4: s← s · (−1)deg(fi−2)·deg(fi−1);
5: f ′ ← prem(fi−2, fi−1);

6: if f ′ 6= 0 then
7: fi ← (−1)δ+1f ′/(g · hδ);
8: if fi = FAIL then {g · hδ is a zero divisor in R} return FAIL; end if
9: g ← lcoeff(fi−1);
10: h← h1−δ · gδ;
11: if h = FAIL then {δ > 1 and hδ−1 is a zero divisor in R} return FAIL;

end if
12: i← i+ 1;
13: end if
14: end while
15: r ← s · (fi−1)

deg(fi−2) · h1−deg(fi−2);

16: if r = FAIL then
17: {deg(fi−2) > 1 and hdeg(fi−2)−1 is a zero divisor in R}
18: return FAIL;
19: end if
20: return r, [f1, f2, . . . , fi−1];

• Line 10: If δ = 1, no operations are necessary. If δ 6= 1, in computing h1−δ

we perform |1 − δ| − 1 multiplications and ≤ 1 inversion (if δ > 1), each in
Kp. Moreover, we require δ additional multiplications in multiplying h1−δ by
gδ. Hence this line requires

O((|1− δ| − 1) + 1 + δ) ⊆ O(δ) ⊆ O(d1) arithmetic operations in Kp.

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 80

• Line 15: This line can be analyzed in a similar manner as in Line 10, and it
requires

O(d1) arithmetic operations in Kp.

Since the while-loop is executed at most d2 times, we conclude that Algorithm sr_prs
requires

O(d2(d1 + d1) + d1) ⊆ O(d1d2) arithmetic operations in Kp.

7.1.4 Failure cases of the algorithm

In our application, we wish to use Algorithm sr_prs to compute the resultant of
M2(σ−cy, y) andM1(y) over Kp. However, in some cases the choice of the evaluation
point σ ∈ Fp may lead to a division by a zero divisor. In other cases, the choice of p
results in a division by a zero divisor for every σ ∈ Fp. In either case, the algorithm
will return FAIL. We illustrate these two types of failure by examples.

Example 7.9. Let p = 101,

M1(z) = z2 + 37 ∈ Fp[z],

M2(y) = y3 + (46 z − 8) y2 − 30 y − 1 ∈ Fp[z]/〈M1(z)〉[y], and
M3(x) = x2 + (3x+ 65 + 46 z) y2 + x2y + 3 ∈ Fp[z, y]/〈M1(z),M2(y)〉[x].

We must find resy(M3(x − cy, y),M2(y)). Suppose that we choose c = 0. Let us
find resy(M3(x − 0 · y, y),M2(y)) using evaluation & interpolation. Consider the
evaluation point σ = 0. Then M3(σ, y) = (65 + 46 z) y2 + 3 ∈ Fp[z]/〈M1(z)〉[y]. We
use Algorithm sr_prs to find resy(M3(σ, y),M2(y)). Since degy(M2) > degy(M3), we
start the sequence with f1 := M2 and f2 := M3. After executing the while-loop the
first time, we obtain f3 = (17 + 40z)y+ (29− 9z). The second time in the while-loop,
the algorithm computes

f4 = (−1)2 prem(f2, f3)/(g · h).

However, g · h ≡ 21z − 34 mod 〈M1(z)〉 = 21(z + 8) mod 〈M1(z)〉 is not invertible
in Kp = Fp[z]/〈M1(z)〉 since (z + 8) divides M1(z) = z2 + 37. One can check that
Algorithm sr_prs also fails for the evaluation point σ = 24 as it encounters a division
by a zero divisor, but does not fail for all other evaluation points in Fp.

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 81

Example 7.10. Let

m1(z) = z2 − 2 ∈ Q[z],

m2(y) = y4 − 3 ∈ Q[z]/〈m1〉[y], and
m3(x) = x2 + (z − 11)y3 − 2 ∈ Q[y, z]/〈m1,m2〉[x].

If p = 17, then

M1(z) = z2 + 15 ∈ Fp[z],

M2(y) = y4 + 14 ∈ Fp[z]/〈M1〉[y], and
M3(x) = x2 + (z + 6)y3 + 15 ∈ Fp[y, z]/〈M1,M2〉[x].

Consider the evaluation point σ ∈ Fp. We first find the resultant of M3(σ − cy, y)

and M2(y) using Algorithm sr_prs. After executing the while-loop the first time,
we obtain

f3 :=
(
c4 + (2 z + 12)σc

)
y2 +

(
15 c3σ + 12 + (16 z + 11)σ2 + 2 z

)
y

+
((
σ2 + 15

)
c2 + 5 + 15 z

)
.

The second time in the loop the algorithm computes f ′ = prem(M3(σ, y), f3(y)).
Then a division of f ′ by

A(x) := lcoeffy(M3(x− cy, y))2 = z2 + 12z + 2 ≡ 12z + 4 = 12(z + 6)

is required in Line 7. However, (z+6) dividesM1(z) = z2 +15 = (z+6)(z+11), so it
is a zero divisor in Fp[z]/〈M1〉. Hence the algorithm returns FAIL. Since A(x) does
not have any dependence on σ, a division by a zero divisor will always be encountered
regardless of the value of σ.

In such cases, a new prime must be chosen. In light of the fact that such a
situation can occur, if three (random) evaluation points cause Algorithm sr_prs to
output FAIL, then we return FAIL. A new prime must be chosen and the algorithm
must be re-executed. This strategy avoids the case in which every evaluation point is
tried before returning FAIL.

7.1.5 Modified resultant algorithm

We now present Algorithm res_modp that takes as input g(x, y) ∈ Kp[x, y],
M1(y) ∈ Kp[y] and Kp, and returns resy(g,M1) computed via evaluation & in-
terpolation and subresultant PRS’s, or FAIL. We analyze the cost of Algorithm

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 82

Algorithm 7.2 : res_modp(g(x, y),M1(y), Kp)
Input: g(x, y) ∈ Kp[x, y], M1(y) ∈ Kp[y], where degy(M1) ≥ degy(g) > 0 and Kp =

Fp[u1, . . . , ur]/〈N1, . . . , Nr〉 or Fp with p >
∏r

i=1 degui
(Ni).

Output: Np(x) = resy(g(x, y),M1(y)) ∈ Kp[x], or FAIL.
1: d1 ← degy(M1); d2 ← degx(g); B ← d1d2 + 1;

2: C,R← empty lists of length B each; S ← {0}; k ← 1;

3: σ ← 0;

4: while k ≤ B do
5: ĝ(y)← g(σ, y);

6: cσ, C ← sr_prs(M1(y), ĝ(y), Kp); {cσ = resy(M1, ĝ), C = sPRS(M1, ĝ)}
7: if Algorithm sr_prs does not return FAIL then
8: {Algorithm sr_prs returns FAIL if a zero divisor is encountered}
9: C[k]← σ; R[k]← (−1)degy(ĝ)·d1 ·cσ; {C[k] ∈ Fp, R[k] = resy(ĝ,M1) ∈ Kp}
10: k ← k + 1;
11: else if Algorithm sr_prs returned FAIL for three σ’s then
12: return FAIL;
13: end if
14: σ ← random element of Fp\S; S ← S ∪ {σ};
15: end while
16: interpolate Np(x) ∈ Kp[x] from points [C[1], . . . , C[B]] ∈ FBp and values

[R[1], . . . , R[B]] ∈ KB
p ;

17: return Np(x);

res_modp for input polynomials g(x, y) ∈ Kp[x, y] and M1(y) ∈ Kp[y] where
d1 = degy(M1), d2 = degx(g), and degy(g) < d1.

• Line 5: Evaluating g(x, y) at x = σ ∈ Fp using Horner’s algorithm requires

O(d1d2) scalar multiplications and additions inKp

(von zur Gathen, Gerhard [18, Theorem 5.1, pp.100-101]).

• Line 6: Executing Algorithm sr_prs with g(σ, y) and M1(y) as inputs requires

O(degy(g) degy(M1)) ⊆ O(d2
1) arithmetic operations in Kp (Section 7.1.3).

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 83

• Line 16: We interpolate B images in Kp corresponding to distinct evaluation
points from Fp using Newton interpolation. Since B = d1d2 + 1 ∈ O(d1d2), at
most O(d2

1d
2
2) arithmetic operations in Kp are needed (von zur Gathen, Gerhard

[18, p.132]). We remark here that because all the evaluation points are in Fp,
most of the arithmetic operations required in the interpolation are done in Fp,
not Kp. However, this does not change the overall complexity of Algorithm
res_modp.

Since Algorithm res_modp will return FAIL only if three failures were encoun-
tered while executing Algorithm sr_prs, the while-loop will be executed at most
(d1d2 + 1) + 3 ∈ O(d1d2) times.

In summary, Algorithm res_modp requires:

O([(d1d2)(d1d2 + d2
1)] + d2

1d
2
2) ∈ O(d3

1d2 + d2
1d

2
2) arithmetic operations in Kp.

If d1 ≤ d2 then this cost simplifies to O(d2
1d

2
2) arithmetic operations in Kp. Compared

with the cost of the linear algebra method (O(d3
1d

3
2)), this is an improvement.

7.2 gcd computation

Let Np(x) = resy(g(x, y),M1(y)) ∈ Kp[x] be the minimal polynomial (modulo
p) for γ and g(x, y) = M2(x − cy, y) be square-free. Lines 5 and 12 of Algorithm
prim_elt_p (Algorithm 6.2) compute the monic gcd

G = gcd(g(γ, y),M1(y)) = y + c(γ) ∈ Kp[γ][y] ∼= Kp[x]/〈Np(x)〉[y].

Let d1 = degy(M1), d2 = degx(g) and dy = degy(g). Since degx(Np) = d1d2 and dy <
d1, computing G using the Euclidean algorithm requires O(d1dy) arithmetic operation
in Kp[γ], or equivalently,

O ((d1dy) · (degx(Np))
2) ∈ O(d2

1 · (d1d2)
2) = O(d4

1d
2
2) arithmetic operations in Kp.

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 84

In this section, we show that this cost can be reduced by using the following idea.
Let

PRSx = sPRSy(M1(y), g(x, y))

= {f1(x, y) = M1(y), f2(x, y) = g(x, y), f3(y), . . . , fn−1(x, y), fn(x, y), 0} and
PRSγ = sPRSy(M1(y), g(γ, y))

= {h1(γ, y) = M1(y), h2(γ, y) = g(γ, y), h3(y), . . . , hm−1(γ, y), hm(γ, y), 0}.

By Remark 7.8 and Lemma 5.7,

hm(γ, y) = a(γ)y + b(γ) ' G = gcd(g(γ, y),M1(y)).

Moreover, we shall see in this section that fn−1(x = γ, y) = hm(γ, y). Thus if we
can determine fn−1(x, y), there is no need to compute sPRSγ (or any variant of
the Euclidean algorithm) to determine G. Observe that the sPRS’s of g(σi, y) and
M1(y), 1 ≤ i ≤ degx(Np), are known from having computed resy(g(x, y),M1(y))

using Algorithm res_modp. Thus we can compute fn−1(x, y) by interpolating the
fn−1(σi, y)’s appearing in these sequences. Making the substitution x 7→ γ to the
interpolated polynomial, then making it monic, (provided that the leading coefficient
is not a zero divisor in Kp) we obtain G. We illustrate this idea with an example.

Example 7.11. Let p = 17,

g(x, y) = x2 +
(
8 + 15 y2 + 3 y

)
x+ (5 + 11 y2 + 4 y), and M1(y) = y3 + 9.

Algorithm res_modp computes degx(g) degy(M1) + 1 = 7 evaluation homomor-
phisms:

σ f2(y) = g(σ, y) f3(y) = fn−1(σ, y) f4(y) = fn(σ, y) f5(y) = fn+1(σ, y)

0 11 y2 + 4 y + 5 12 y + 4 1 0

1 9y2 + 7y + 14 8 y + 11 2 0

2 7 y2 + 10 y + 8 10 y + 11 7 0

3 5 y2 + 13 y + 4 13 y + 5 3 0

4 3 y2 + 16 y + 2 12 y + 11 2 0

5 y2 + 2 y + 2 2 y + 13 6 0

6 16 y2 + 5 y + 4 12 y + 12 1 0

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 85

To obtain resy(g(x, y),M1(y)), recall that we interpolate fn(σ, y) for 0 ≤ σ ≤ 6:

Np(x) := resy(g(x, y),M1(y)) = x6 + 7x5 + 11x4 + 5x3 + 9x2 + 8x+ 12.

Interpolating the next-to-last non-zero polynomials fn−1(σ, y) for 0 ≤ σ ≤ 6 gives(
2x3 − 3x2 − 3x− 5

)
y + (3x3 − 4x2 + 8x+ 4),

which, upon division by its leading coefficient of y in Fp[x]/〈Np(x)〉 yields

A(x, y) = y + (16x5 + 13x4 + 9x3 + 13x2 + x+ 15).

Indeed, one can verify that

G = gcd(g(γ, y),M1(y)) = A(x = γ, y) = y + (16 γ5 + 13 γ4 + 9 γ3 + 13 γ2 + γ + 15).

To prove the correctness of the method described above in computing G, we define
subresultants and discuss properties of subresultants and subresultant PRS’s.

7.2.1 Subresultants and properties of subresultant PRS’s

Definition 7.12. Let R be a commutative ring and let f1(y), f2(y) ∈ R[y]/{0} with
d1 = deg(f1) and d2 = deg(f2). For j = 0, . . . ,min{d1, d2}−1, the j-th subresultant
of f1 and f2, denoted by sResj(f1, f2), is

sResj(f1, f2) =

j∑
i=0

det(Syly(f1, f2)i,j)y
i,

where Syly(f1, f2)i,j is the matrix derived from the Sylvester matrix of f1 and f2 by
deleting

• the last j rows of coefficients of f1,

• the last j rows of coefficients of f2, and

• the last 2j + 1 columns except the (d1 + d2 − i− j)th.

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 86

Theorem 7.13. Let U be a UFD and f1, f2 ∈ U [y] with degy(f1) > degy(f2). Further
let sPRSy(f1, f2) = {f1, f2, . . . , fn, 0} and ni = degy(fi) for 1 ≤ i ≤ n. Then for
0 ≤ j ≤ degy(f2)− 1,

sResj(f1, f2) =

fi if j = ni−1 − 1,

τifi if j = ni where τi ∈ U,

0 otherwise.

Proof. See Brown and Traub [5].

Recall that we defined PRSx and PRSγ as follows:

PRSx = sPRSy(M1(y), g(x, y)) = {M1(y), g(x, y), f3(x, y), . . . , fn−1(x, y), fn(x, y), 0} and

PRSγ = sPRSy(M1(y), g(γ, y)) = {M1(y), g(γ, y), h3(y), . . . , hm−1(γ, y), hm(γ, y), 0}.

Since hm is linear in y (Lemma 5.7), Theorem 7.13 implies that

sRes1(M1(y), g(γ, y)) =

 hm, if deg(hm−1) = 2

τ · hm for some τ ∈ Kp, if deg(hm−1) > 2.
(7.3)

Theorem 7.14. Let Φ : R → R′ be a ring homomorphism and let Φ also denote
the induced homomorphism R[y] → R′[y]. Further let f, g ∈ R[y]\{0} and deg(f) >

deg(g). If deg(Φ(f)) = deg(f) and δ = deg(g)− deg(Φ(g)), then for 0 ≤ j < deg(f),

Φ(sResj(f, g)) = Φ(lcoeff(f))δ · sResj(Φ(f),Φ(g)).

Proof. See Mishra [14, Lemma 7.8.1, pp.263-265].

By Theorem 7.13, each fi in PRSx is similar to a subresultant of M1(y) and
g(x, y). Moreover, Theorem 7.14 implies that each fi must be similar to some hj. In
particular, we know that

fn(x) = resy(M1(y), g(x, y)) = sRes0(M1(y), g(x, y)) = Φp(mγ(x)),

a polynomial of degree 0 in y. Since (Φp(mγ(x)))|x=γ = 0, we have fn(x = γ, y) =

hm+1(γ, y) = 0. Furthermore, there must exist some fi that is similar to

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 87

sRes1(M1(y), g(x, y)), a degree 1 polynomial. Since every PRS is a sequence of poly-
nomials of decreasing degree and degy(fn) = 0, the next-to-last non-zero polynomial
fn−1 in PRSx must be similar to sRes1(M1(y), g(x, y)). Combining this observation
with (7.3) and Theorem 7.14, we obtain

fn−1|x=γ ' sRes1(M1(y), g(x, y))|x=γ
= lcoeff(M1)

δ|x=γ · sRes1(M1|x=γ, g|x=γ)
' hm,

where δ = degx(g) − degx(Φγ(g)). That is, the next-to-last polynomial fn−1(x, y)

in PRSx = sPRSy (g(x, y),M1(y)) can be used to find gcd(g(γ, y),M1(y)) via the
substitution x 7→ γ.

Example 7.15. Suppose that K = Q and Kp = F4133. Let

g(x, α) = M2(x− α, α) = m2(x, α) mod 4133 = (x− α)4 − α2(x− α)2 − 2 and
M1(y) = m1(y) mod 4133 = y4 − 2.

We determined in Example 6.4 that a primitive element of K(α, β) is γ = α+β with

Np(x) = mγ(x) mod p = x16 − 44x12 − 468x8 − 1456x4 + 16, and

gcd(g(γ, y),M1(y)) = y − 951 γ + 588 γ5 + 982 γ9 + 980 γ13.

The sPRSy(M1(y), g(x, y)) over Kp[x] is

f1(x, y) = M1(y) ≡ y4 + 4131,

f2(x, y) = g(x, y) = (x− y)4 − y2(x− y)2 − 2

≡ 4131xy3 + 5x2y2 + 4129x3y + x4 + 4131,

f3(x, y) = 17x4y2 +
(
4115x5 + 4129x

)
y + 5x6 + 4115x2,

fn−1(x, y) = f4(x, y) =
(
4107x9 + 3993x5 + 4125x

)
y + 11x10 + 86x6 + 4097x2,

fn(x, y) = f5(x, y) = x16 + 16 + 4089x12 + 3665x8 + 2677x4,

f6(x, y) = 0.

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 88

As expected, fn = Np(x). The sPRSy(M1(y), g(γ, y)) over Kp[γ] ∼= Kp[x]/〈Np(x)〉 is:

h1(γ, y) = y4 − 2,

h2(γ, y) = (γ − y)4 − y2(γ − y)2 − 2

≡ 4131 γy3 + 5 γ2y2 + 4129 γ3y + γ4 + 4131,

hm−1(γ, y) = h3(γ, y) = 17 γ4y2 +
(
4115 γ5 + 4129 γ

)
y + 5 γ6 + 4115 γ2,

hm(γ, y) = h4(γ, y) =
(
4107 γ9 + 3993 γ5 + 4125 γ

)
y + 11 γ10 + 86 γ6 + 4097 γ2,

h5(γ, y) = 0.
(7.4)

One can verify that fi(x = γ, y) = hi(γ, y) for i = 1, . . . , 5. In particular,

fn−1(x = γ, y) = hm(γ, y) ' gcd(g(γ, y),M1(y)).

To obtain the monic gcd, we invert lcoeffy(fn−1(γ, y)) = −26 γ9−140 γ5−8 γ ∈ Kp[γ]

using the Extended Euclidean algorithm and multiplying it by fn−1(γ, y).

7.2.2 Unlucky evaluation points

We must determine how many evaluation points are sufficient to interpolate the
next-to-last linear polynomials fn−1(σi, y)’s in the subresultant PRS’s obtained from
Algorithm res_modp to determine fn−1(x, y). Since

degx(fn−1) < deg(Np) = degy(M1) · degx(g),

degy(M1)·degx(g) images are sufficient to interpolate x in fn−1(x, y). Note that this is
less than the number of images we computed in Algorithm res_modp for computing
the resultant, which is degy(M1) ·degx(g) + 1. However, not every image can be used,
as the following examples illustrate.

Example 7.16. Let p = 17, M1(y) = y3 − 2y2 − 1 and g(x, y) = x2 − 5xy2 − x + 4.

Then sPRSy(M1(y), g(x, y)) is:

f1(x, y) = M1(y) = y3 − 2y2 − 1,

f2(x, y) = g(x, y) = x2 − 5xy2 − x+ 4,

fn−1(x, y) = f3(x, y) = (5x3 + 12x2 + 3x)y + 7x3 + 2x2 + 11x,

fn(x, y) = f4(x, y) = x6 + 11x5 + 6x4 + 8x3 + 7x2 + 6x+ 13,

f5(x, y) = 0.

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 89

It is fn−1(x, y) that we wish to interpolate. However, sPRSy(M1(y), g(x = 6, y)) is:

f̂1(y) = M1(y) = y3 + 15 y2 + 10 = f1(x = 6, y),

f̂m−1(y) = f̂2(y) = 4y2 = f2(x = 6, y),

f̂m(y) = f̂3(y) = 13 = f3(x = 6, y),

= f̂4(y) = 0 = f4(x = 6, y).

Since lcoeffy(f3)|x=6 = 0, the next-to-last non-zero polynomial f̂m−1 is not equal to
the desired fn−1(x = 6, y) = 1, and it is not even linear in y. This evaluation point
cannot be used.

Example 7.17. Let p = 17, M1(y) = y4 + 11 y2 + 15, and g(x, y) = x3 + 8 yx+ 15 y3.

The sPRSy(M1(y), g(x, y)) computed over F17[x] is:

f1(x, y) = M1(y) = y4 + 11 y2 + 15,

f2(x, y) = g(x, y) = x3 + 8 yx+ 15 y3,

f3(x, y) = (10 + 16x)y2 + 2x3y + 9,

fn−1(x, y) = f4(x, y) = (15x6 + 11 + 2x3 + 11x2)y + 13x5 + 12x4 + 16x3,

fn(x, y) = f5(x, y) = x12 + 8 + 7x8 + 5x7 + 12x6 + 2x4 + 11x3 + 4x2 + 5x,

f6(x, y) = 0.

It is fn−1(x, y) that we wish to interpolate. However, sPRSy(M1(y), g(x = 10, y)) is:

f̂1(y) = M1(y) = y4 + 15 + 11 y2 = f1(x = 10, y),

f̂2(y) = 15y3 + 12y + 14 = f2(x = 10, y),

f̂m−1(y) = f̂3(y) = 11 y + 9 = f3(x = 10, y),

f̂m(y) = f̂4(y) = 11 6= f4(x = 10, y),

f̂5(y) = 0 = f5(x = 10, y).

The next-to-last non-zero polynomial f̂m−1 is linear, but it corresponds to f3 of degree
2, since lcoeffy(f3)|x=10 = 0. As such, we cannot use 10 as an evaluation point.

We say that an evaluation point σ is unlucky if a leading coefficient (in y) of
any polynomial in sPRSy(M1(y), g(x, y)) vanishes with the substitution x 7→ σ. By
definition, an unlucky evaluation point causes an abnormal degree drop. Thus either
the number of polynomials in Sσ = sPRSy(M1(y), g(σ, y)) will be smaller or will have
a different degree sequence than that of Sx = sPRSy(M1(y), g(x, y)). For example, the

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 90

degree sequence of the non-zero polynomials of Sx may be {7, 6, 4, 2, 1, 0} and that of
Sσ may be {7, 6, 4, 1, 0} or {7, 6, 3, 2, 1, 0}. The polynomials after the abnormal degree
drop will not correspond to the polynomials in Sx, since each polynomial depends on
the leading coefficient of the previous polynomial.

There is no way of determining the number of polynomials in sPRSy(M1(y), g(x, y))

without computing it. However, one can detect unlucky evaluation point by com-
paring the degree sequence of this sPRS with the degree sequences of the sPRS’s
computed so far. To explain, we need the following definition.

Definition 7.18. Let A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bm}, where each ai

and bi belong to Z. We write A � B if and only if

• n > m, or

• ai = bi for 1 ≤ i ≤ k < n and ak+1 > bk+1.

Based on the above definition, we can devise an unlucky evaluation point detection
scheme as follows. A similar scheme has been used by Collins [8]. Let ∆prev be the
degree sequence of the non-zero polynomials in the sPRS obtained using the first
evaluation point and let ∆current be the degree sequence of the non-zero polynomials
obtained using the second evaluation point. If

• ∆current ≺ ∆prev, discard second sPRS (current evaluation point is unlucky).

• ∆current � ∆prev, discard first sPRS’s (all previous evaluation points unlucky).
Set ∆prev ← ∆current.

• ∆current = ∆prev, keep both sPRS’s (current and previous evaluation points
likely not unlucky).

We repeat this process with other evaluation points until we have the desired number
of linear polynomials.

Example 7.19. Suppose that the degree sequence of sPRSy(M1(y), g(σ1, y)) is

∆1 = {a1, a2, a3, a4, a5, a6} = {7, 6, 4, 2, 1, 0}

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 91

and that of sPRSy(M1(y), g(σ2, y)) is

∆2 = {b1, b2, b3, b4, b5, b6} = {7, 6, 3, 2, 1, 0}.

We have ∆1 � ∆2 since a1 = b1, a2 = b2 and a3 > b3. Hence σ1 is an unlucky
evaluation point, so we discard the sequence sPRSy(M1(y), g(σ2, y)).

Now suppose that the degree sequence of sPRSy(M1(y), g(σ3, y)) is

∆3 = {c1, c2, c3, c4, c5, c6, c7} = {7, 6, 5, 4, 2, 1, 0}.

Since |∆3| > |∆1|, we conclude that ∆3 � ∆1. Hence σ1 is an unlucky evaluation
point. As such, we discard sPRSy(M1(y), g(σ1, y)).

We remark that if the degrees of the non-zero polynomials in an sPRS decreases
by one each time, then the number of polynomials in the sPRS is maximal and any
abnormal degree drop will produce a shorter degree sequence, so we simply need to
check the number of polynomials in the future sequences in such cases.

Unfortunately, all the B = degy(M1) · degx(g) linear polynomials we found could
be unlucky; for example, all of sPRSy(g(σi, y),M1(y)) for i = 1, . . . , B found could
have the degree sequence {7, 6, 3, 2, 1, 0}, whereas that of sPRSy(g(x, y),M1(y)) is
{7, 6, 4, 2, 1, 0}. However, the following lemma shows that this happens rarely.

Lemma 7.20. Let f1 ∈ Kp[y], f2 ∈ Kp[x, y] where d1 = degy(f1) > degy(f2) and
d2 = degx(f2). If sPRSy(f1, f2) = {f1, f2, . . . , fn, 0}, then the number of unlucky
evaluation points in Fp is at most

d1(d1 − 1)d2

2
.

Proof. Let f1(y) =
∑d1

i=0 biy
i, f2(x, y) =

∑d2
i=0 ai(x)yi and dy = degy(f2). Then

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 92

n ≤ dy and

Syly(f1, f2) =

row 1 bd1 bd1−1 · · · b1 b0

row 2 bd1 bd1−1 · · · b1 b0
...

...
row dy bd1 · · · · · · b0
row (dy + 1) ady (x) ady−1(x) · · · a1(x) a0(x)

row (dy + 2) ady
(x) ady−1(x) · · · a1(x) a0(x)

...
...

row (dy + d1) ady
(x) · · · · · · a0(x)

.

For k = 3, . . . , n, fk is similar to a subresultant of f1 and f2 by Theorem 7.13, and

sResj(f1, f2) =

j∑
i=0

det(M(f1, f2)i,j) · yi, (7.5)

where M(f1, f2)i,j is obtained from Syly(f1, f2) by deleting the last j rows of coeffi-
cients of f1, the last j rows of coefficients of f2, and the last 2j + 1 columns except
the (d1 + dy − i − j)-th, for 0 ≤ i ≤ j ≤ dy − 1. Hence for a fixed j and 0 ≤ i ≤ j,
M(f1, f2)i,j is a square matrix of dimension d1 + dy − 2j. Observe from (7.5) that

lcoeffy(sResj(f1, f2)) = det(M(f1, f2)j,j) ∈ Kp[x].

Thus an evaluation point σ is unlucky if Φx=σ(det(M(f1, f2)j,j)) = 0 for some j =

1, . . . , dy − 1. Since f2 ∈ Kp[x, y] and f1 ∈ Kp[y], only the elements in the last dy − j
rows of M(f1, f2)j,j have terms in them whose degree in x is non-zero (and at most
d2). Thus

degx (det (M(f1, f2)j,j)) ≤ d2(dy − j) < d2(d1 − j).

Hence by Lemma 6.3, the number of roots in Fp of det(M(f1, f2)j,j) is at most d2(d1−
1). In total then, the number of unlucky evaluation points must be at most

dy−1∑
j=1

degx (M(f1, f2)j,j) <

d1−1∑
j=1

d2(d1 − j) =
d1(d1 − 1)d2

2
.

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 93

Lemma 7.20 implies that since evaluation points are chosen from Fp where p is
large, the probability of choosing B = d1d2 evaluation points that are all unlucky
that have the same degree sequence will be highly unlikely.

Another problem one may encounter in computing the gcd via evaluation and in-
terpolation and sPRS’s is that there may exist a prime p in which no linear polynomial
appears in Sσ for any σ ∈ Fp, as the following example illustrates.

Example 7.21. Let m1(y) = y3 − 2 ∈ Q[y] and m2(x, y) = x2 − y + 101y2 + 103 ∈
Q[y]/〈m1〉[x]. If p = 101 thenM1(y) = Φp(m1(y)) = y3+99 andM2(x, y) = Φp(m2) =

x2 + 2. Regardless of the value of the evaluation point σ ∈ Fp we have

Sσ = sPRSy(M1(y), g(σ, y)) = {M1(y) = y3 + 99, σ2 + 2, 0}.

Rather than trying all elements in Fp as evaluation points before returning FAIL,
we proceed as follows: if three evaluation points produce subresultant PRS’s without
a linear polynomial in y, then we return FAIL. In such cases, one must re-run
the algorithm using a different prime. This strategy also prevents the rare case in
which the first d1(d1− 1)d2/2 evaluation points tried are unlucky, which would make
algorithm computationally expensive. It also detects with high probability the case
in which Np(x) = resy(g(x, y),M1(y)) or g(x, y) is not square-free, since a linear
polynomial may not exist in sPRSy(g(x, y),M1(y)) if Np(x) is not square-free.

7.2.3 Modified resultant algorithm and complexity analysis

Algorithm res_modp2 is a modified version of Algorithm res_modp that takes
as input g(x, y) ∈ Kp[x, y] andM1(y) ∈ Kp[y] and returnsNp(x) = resy(g(x, y),M1(y))

∈ Kp[x] and G(x, y) ∈ Kp[x, y] such that G(γ, y) = gcd(g(γ, y),M1(y)) where γ is the
root of Np(x), or FAIL.

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 94

Algorithm 7.3 : res_modp2(g(x, y),M1(y), Kp)
Input: g(x, y) ∈ Kp[x, y], M1(y) ∈ Kp[y], where degy(M1) > degy(g) > 0 and Kp =

Fp[α1, . . . , αr] ∼= Fp[u1, . . . , ur]/〈N1, . . . , Nr〉, p >
∏r
i=1 degui

(Ni).
Output: Np(x) = resy(g(x, y),M1(y)) ∈ Kp[x] and G(x, y) ∈ Kp[x, y] where

G(γ, y) = gcd(g(γ, y),M1(y)) and γ is a root of Np, or FAIL.
1: d1 ← degy(M1); d2 ← degx(g); B ← d1d2 + 1;

2: C,R,G← empty lists of length B each; S ← {0}; k ← 1; σ ← 0; ∆← {}; c← 0;

3: while k ≤ B do
4: ĝ(y)← g(σ, y); cσ, C ← sr_prs(M1(y), ĝ(y),Kp);
5: if Algorithm sr_prs does not return FAIL then
6: ∆current ← degree sequence of C;
7: if (∆current � ∆prev) then
8: ∆prev ← ∆current; k ← 0; {discard all previous evaluation points}
9: else if (∆current = ∆prev) then
10: if (degree of the next-to-last element in C) = 1 then
11: k ← k + 1; G[k]← next-to-last element of C; {G[k] ∈ Kp[y]}

12: C[k]← σ; R[k]← (−1)degy(ĝ)·d1 · cσ; {C[k] ∈ Fp, R[k] = resy(ĝ,M1) ∈ Kp}
13: else
14: if (no linear polynomial found for three σ’s) then
15: return FAIL; {resy(g,M1) highly likely not square-free}
16: end if
17: end if
18: else
19: skip; {∆current ≺ ∆prev, so σ is unlucky}
20: end if
21: else if Algorithm sr_prs returned FAIL for three σ’s then
22: return FAIL;
23: end if
24: σ ← random integer in Fp\S; S ← S ∪ {σ};
25: end while
26: Interpolate Np(x) ∈ Kp[x] from [C,R]; Interpolate fn−1(x, y) ∈ Kp[x, y] from [C,G];
27: G(x, y)← lcoeffy(fn−1)−1 · fn−1(x, y); {make fn−1(x, y) monic in y}
28: if G = FAIL then return FAIL; {division by zero divisor encountered} end if
29: return Np(x), G(x, y);

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 95

Let us analyze the time complexity of Algorithm res_modp2, where d1 =

degy(M1) and d2 = degx(g). The only difference between Algorithm res_modp
and Algorithm res_modp2 is that the latter also outputs G(x, y). Thus the only
extra cost associated with Algorithm res_modp2 is an additional interpolation of x
in fn−1(x, y) from fn−1(σi, y) ∈ Kp[y], i = 1, . . . , degx(Np) (Line 26), which requires

O((deg(Np) + 1)2) ⊆ O(d2
1d

2
2) arithmetic operations in Kp.

This is an improvement from computing gcd(g(γ, y),M1(y)) ∈ Kp[γ] using, for exam-
ple, the Euclidean algorithm, which would cost O(d4

1d
2
2) arithmetic operations in Kp.

The while-loop in Algorithm res_modp2 may be executed more number of times
than the while-loop in Algorithm res_modp because some evaluation points may
be unlucky. However, the algorithm returns FAIL if three unlucky evaluation points
are encountered. Hence this extra cost is asymptotically negligible. Since we have
shown that Algorithm res_modp requires O(d3

1d2 + d2
1d

2
2) arithmetic operations in

Kp (Section 7.1.5), Algorithm res_modp2 requires

O(d3
1d2 + d2

1d
2
2) +O(d2

1d
2
2) ⊆ O(d3

1d2 + d2
1d

2
2) arithmetic operations in Kp,

which is equivalent to O(d2
1d

2
2) arithmetic operations in Kp if d1 ≤ d2. Attempting to

compute a primitive element of Fp[α1, . . . , αt]∼= Fp[u1, . . . , ut]/〈M1, . . . ,Mt〉 for t > 2

requires executing Algorithm res_modp2 (t− 1) times. If D =
∏t

i=1 deg(Mi), then
by the analysis done on page 70, we conclude that the total number of arithmetic
operations required in Fp isO(tD2) if di ≤ dj, 1 ≤ i < j ≤ t,

O((
∑t−1

i=1 di)D
2) otherwise.

Remark 7.22. Theorem 7.14 and inspecting the structure of the Sylvester matrices
Syly(M1, g)i,1 for 0 ≤ i ≤ 1 imply that

degx(sRes1(M1, g)) ≤ (degx(g)− 1)(degx(M1)).

That is, we only need (degx(g)−1)(degx(M1))+1 evaluation points to interpolate the
gcd, rather than (degx(g))(degx(M1)) + 1 evaluation points that we used in Algorithm

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 96

res_modp2. However, reducing the number of evaluation points does not change the
overall complexity of Algorithm res_modp2. We also remark that we used (degx(g)−
1)(degx(M1)) + 1 evaluation points in our Maple implementation of this algorithm.

7.3 Complete algorithm and complexity

Algorithm AlgFFTMult uses the resultant-based primitive element finding al-
gorithm (Algorithm prim_elt_multi), and FFT polynomial multiplication (Algo-
rithm FFTMult) to compute the product of polynomials inKp[x] = Fp[α1, . . . , αt][x].

Let deg(f) = m ≤ deg(g) = n and D =
∏t

i=1 degui
(Mi). We analyze the com-

plexity of Algorithm AlgFFTMult.

• Line 2: The cost in Fp of executing Algorithm prim_elt_multi is
O
(
D3t

(
1
d1

+ 1
dt−2dt−1

))
(see Chapter 6).

• Line 5: To build the change-of-basis matrix C, we need to compute αj11 · · ·α
jt
t

for 1 ≤ ji ≤ degui
(Mi) and 1 ≤ i ≤ t. Because the normal representations

of each αi ∈ Fp[γ] ∼= Fp[z]/〈Mγ(z)〉 are known from executing Algorithm
prim_elt_multi, all the α1

j1 · · ·αt jt ∈ Fp[γ] can be computed in at most
D multiplication in Fp[γ]. Converting each of these elements from its recden
representation to CDR does not require any arithmetic operations, as we merely
need to “pad” the vector with zeros. Since the cost of one arithmetic operation in
Fp[γ] is equivalent to O(D2) arithmetic operations in Fp, the cost of computing
C in Fp is O(D ·D2) ⊆ O(D3) arithmetic operations in Fp.

• Lines 7-10 and 11-14: Each of these for-loops requires multiplying the matrix
C ∈ FDp × FDp by a column vector (∈ FDp) each time in the loop. Thus both
for-loops require O(D2n+D2m) ⊆ O(D2n) multiplications in Fp.

• Line 16: Algorithm FFTMult requires O(Dn log n + D2n) arithmetic opera-
tions in Fp (see Chapter 3).

• Lines 18 - 21: For each i, we must substitute γi for (c1α1 + · · · + αt)
i ∈ Kp.

There are at most m+n+1 terms that contain γi in h. After each substitution,

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 97

one may need to perform a scalar multiplication with (c1α1 + · · · + αt)
i ∈ Kp,

which has at most D terms. Hence Line 19 requires O((m+n+ 1)D) ⊆ O(Dn)

multiplications in Fp per loop, and Line 20 requires of one multiplication in
Kp, or O(D2) arithmetic operations in Fp per loop. In total, completing this
for-loop requires O((Dn+D2)D) = O(D2n+D3) arithmetic operations in Fp.

Thus the total number of arithmetic operations in Fp required by Algorithm Al-
gFFTMult is

O
(
D3t

(
1
d1

+ 1
dt−2dt−1

)
+D3 +D2n+ (Dn log n+D2n) + (D2n+D3)

)
⊆ O(D3 +D2n+Dn log n).

CHAPTER 7. ALGORITHMIC IMPROVEMENTS 98

Algorithm 7.4 : AlgFFTMult(f(x), g(x), Kp)

Input: f(x), g(x) ∈ Kp[x] = Fp[α1, . . . , αt][x] ∼= Fp[u1, . . . , ut]/〈M1, . . . ,Mt〉[x] where
p is a good Fourier prime greater than (

∏t
i=1 degui

(Mi))
2.

Output: h = f · g ∈ Kp[x], or FAIL.
1: m← degx(f); n← degx(g);
2: γ, Mγ(z), A← prim_elt_multi(M1, . . . ,Mt);

3: {γ = c1α1 + c2α2 + · · ·+ ct−1αt−1 + αt;
Mγ(z) : minimal polynomial for γ (modulo p) where γ is a primitive element for
Q(α1, . . . , αt);
A : [α1(γ), α2(γ), . . . , αt(γ)]}

4: if Algorithm prim_elt_multi outputs FAIL then return FAIL; end if
5: Compute change-of-basis matrix C from
Bα = {ud11 · · ·udt

t , 0 ≤ di ≤ deg(Mi) − 1, 1 ≤ i ≤ t} to Bγ = {zi, 0 ≤ i ≤ D − 1}
where D =

∏t
i=1 degui

(Mi);
6: F,G← empty lists of length (m+ 1) and (n+ 1) respectively;
7: for i = 0 . . .m do
8: R← CDR of coeff(f, xi) as a column vector;
9: F [i]← recden rep. of C · r; {F [i] = coeff(f, xi) ∈ Fp[z]/〈Mγ(z)〉}
10: end for
11: for i = 0 . . . n do
12: R← CDR of coeff(g, xi) as a column vector;
13: G[i]← recden rep. of C · r; {G[i] = coeff(g, xi) ∈ Fp[z]/〈Mγ(z)〉}
14: end for
15: {F and G are recden reps of f, g ∈ Fp(γ) ∼= Fp[z]/〈Mγ(z)〉[x] respectively}
16: h← FFTMult(F,G,Fp(γ)); { h = f · g ∈ Zp[z]/〈Mγ(z)〉[x]}
17: k ← c1α1 + c2α2 + · · ·+ ct−1αt−1 + αt (= γ);
18: for i = 1 . . . D − 1 do
19: substitute γ i for k in h;
20: k ← k · γ ∈ Fp[α1, . . . , αt];
21: end for
22: return h(x) ∈ Fp[α1, . . . , αt][x];

Chapter 8

Benchmarks and conclusion

We have implemented the resultant-based polynomial multiplication algorithm as
described by Algorithm AlgFFTMult. This routine and all of its sub-routines were
implemented in Maple, except for the resultant algorithm (Algorithm res_modp2)
for the 2-step extensions case, which we implemented in C by modifying the existing
Maple’s kernel resultant routine to return not only the resultant but also the next-
to-last element in the subresultant PRS and the degree sequence of the PRS. We
gratefully acknowledge Roman Pearce for helping us with this implementation.

We compare the performance (in seconds) of our algorithm and the naïve mul-
tiplication algorithm over 3- and 4-step extensions of varying degrees. All timings
were obtained using Maple 15 on a 64-bit Intel Core i7 2.67 GHz running Linux.
The polynomials to be multiplied (f and g) and all the minimal polynomials were
generated at random. In each table, the column labelled ‘n’ indicates the degrees
of polynomials being multiplied, which were chosen to be the median of two con-
secutive powers of two, so that FFT multiplication requires the most number of
“unnecessary” calculations. The ‘di’s in the second column denote the degree (in ui)
of mi(ui) ∈ Q(α1, . . . , αi−1)[ui], the minimal polynomial of αi over Q(α1, . . . , αi−1).
Under the multi-columns ‘Fp[α1, . . . , αt]’ and ‘Fp[γ]’, we list the timings for computing
the product of f and g over the respective rings using naïve multiplication (column
labelled ‘mult’) and FFT (column labelled ‘FFT’). Under the multi-column ‘Fp[γ]’,
we further have the following columns:

99

CHAPTER 8. BENCHMARKS AND CONCLUSION 100

• ‘prim’: timings for computing the mapping from Fp[α1, . . . , αt] to Fp[γ], which
includes computing γ = Φp(γ), the minimal polynomial of γ (mod p), and the
normal representations (mod p) of each αi (line 2 in Algorithm AlgFFTMult).

• ‘COB’: timings for computing the change-of-basis matrix (Line 5 in Algorithm
AlgFFTMult).

• ‘φ’: timings for applying the mapping from Fp[α1, . . . , αt] to Fp[γ] by represent-
ing f and g as polynomials over Fp[γ] using a series of matrix-vector multipli-
cations (Lines 7-14 in Algorithm AlgFFTMult).

• ‘φ−1’: timings of mapping the product f ·g back to Fp[α1, . . . , αt][x] (Lines 18-21
in Algorithm AlgFFTMult).

• ‘total’: total timings for computing the polynomial product using the resultant
approach (i.e. the sum of the columns ‘prim’, ‘COB’, ‘φ’, ‘FFT’ and ‘φ−1’).

Table 8.1 lists the timings for polynomial multiplication over a field with a tower
of three extensions. It shows that it is more efficient to use FFT and to perform
multiplications in Fp[γ] in all cases. In particular, when n = 384 and di = 10 (last
row in the table), using FFT multiplication over Fp[α1, α2, α3] provides a gain by a
factor of 19584

409.01
≈ 50 over naïve multiplication performed over Fp[α1, α2, α3]. Finding

the product using FFT multiplication over Fp[γ] shows a greater gain by a factor
of 19584

55.561
≈ 350 over naïve multiplication performed over Fp[α1, α2, α3]. The table

also shows that when the degree of the field D is held constant and the degree of
the polynomials n becomes large, the speed gain obtained by converting to a simple
extension becomes more pronounced. For example, when n = 24 and di = 10 (fifth
row from the bottom of the table), 11.896+1.568+0.738+9.102

24.161
≈ 96% of the total time is

taken in mapping and applying the conversions (i.e., sum of columns ‘prim’, ‘COB’,
‘φ’, and ‘φ−1’). However, when n = 384 and di = 10 (last row in the table), it
comprises only 12.944+1.651+6.168+13.630

55.561
≈ 62% of the total time.

CHAPTER 8. BENCHMARKS AND CONCLUSION 101

Fp[α1, α2, α3] Fp[γ]

n di mult FFT mult prim COB φ FFT φ−1 total

24 2 0.450 0.116 0.003 0.018 0.000 0.004 0.018 0.003 0.043

48 2 1.456 0.292 0.012 0.020 0.000 0.008 0.039 0.005 0.072

96 2 5.736 0.634 0.052 0.018 0.000 0.015 0.087 0.008 0.128

192 2 22.722 1.343 0.203 0.018 0.000 0.030 0.193 0.016 0.258

384 2 90.865 2.960 0.799 0.018 0.000 0.060 0.446 0.040 0.564

24 4 3.010 0.772 0.017 0.160 0.003 0.016 0.036 0.013 0.228

48 4 11.146 1.609 0.067 0.159 0.004 0.029 0.080 0.020 0.293

96 4 43.094 3.445 0.248 0.163 0.003 0.056 0.185 0.037 0.445

192 4 171.06 7.310 0.984 0.157 0.010 0.118 0.421 0.076 0.782

384 4 692.71 15.941 4.030 0.171 0.003 0.238 0.994 0.146 1.552

24 6 11.894 2.859 0.252 0.846 0.037 0.063 0.109 0.132 1.187

48 6 43.224 5.868 0.934 0.823 0.036 0.112 0.249 0.165 1.385

96 6 167.42 12.286 3.719 0.830 0.036 0.204 0.566 0.229 1.864

192 6 669.19 26.325 15.293 0.853 0.037 0.388 1.291 0.355 2.923

384 6 2755.4 58.134 64.923 0.890 0.050 0.757 2.991 0.625 5.313

24 8 34.920 8.306 1.134 3.519 0.237 0.241 0.324 1.323 5.644

48 8 124.36 16.652 4.155 3.467 0.236 0.375 0.719 1.427 6.225

96 8 484.05 35.078 16.728 3.456 0.235 0.753 1.596 1.634 7.675

192 8 1959.7 76.118 70.455 3.596 0.236 1.259 3.638 2.024 10.753

384 8 8280.6 173.57 312.56 3.857 0.237 2.377 8.579 2.893 17.943

24 10 84.206 20.112 3.757 11.896 1.568 0.738 0.857 9.102 24.161

48 10 287.65 38.758 13.412 11.527 1.455 1.196 1.823 9.434 25.434

96 10 1121.9 81.923 54.589 11.761 1.479 1.914 3.985 10.041 29.180

192 10 4576.6 179.50 234.14 12.164 1.529 3.411 9.005 11.240 37.348

384 10 19584 409.01 1053.3 12.944 1.651 6.168 21.167 13.630 55.561

Table 8.1: Polynomial multiplication over a field given as 3-step extensions using
naïve multiplication and FFT, with and without converting to a simple extension.

On the other hand, when the degree of the polynomials n stays constant and D =

d1d2d3 becomes larger, mapping and applying the conversions become the bottleneck

CHAPTER 8. BENCHMARKS AND CONCLUSION 102

of the algorithm, which is as expected. For example, when n = 384 and di = 2 (fifth
row in the table) so that D =

∏3
i=1 di = (2)(2)(2) = 8, the time spent on mapping and

applying the conversions is 0.018+0.000+0.060+0.040
0.564

≈ 21%, whereas when n = 384 and
di = 10 (last row in the table) so thatD =

∏3
i=1 di = (10)(10)(10) = 1000, the fraction

of the time spent on mapping and applying the conversions as we have computed
above is higher at ≈ 62%. However, the gain in the speed of FFT multiplication over
a simple extension offsets this bottleneck.

Fp[α1, . . . , α4] Fp[γ]

n di mult FFT mult prim COB φ FFT φ−1 total

24 2 2.446 0.492 0.005 0.064 0.001 0.009 0.019 0.005 0.098

48 2 9.113 1.035 0.016 0.093 0.000 0.018 0.043 0.010 0.164

96 2 35.313 2.202 0.061 0.093 0.000 0.035 0.096 0.018 0.243

192 2 139.92 4.672 0.298 0.064 0.000 0.069 0.243 0.036 0.412

384 2 563.64 10.166 1.076 0.065 0.001 0.172 0.544 0.071 0.852

24 4 70.976 13.540 0.321 2.051 0.065 0.126 0.139 0.208 2.590

48 4 262.37 27.549 1.149 2.050 0.094 0.197 0.308 0.255 2.903

96 4 1029.0 57.716 4.668 2.054 0.065 0.407 0.670 0.372 3.568

192 4 4188.6 124.38 19.580 2.172 0.107 0.623 1.622 0.533 5.058

384 4 17657 281.46 85.102 2.339 0.066 1.379 3.805 1.011 8.600

24 6 631.72 132.23 7.785 36.767 4.881 1.286 1.531 19.541 64.006

48 6 2236.1 256.89 29.268 36.174 4.839 1.925 3.143 20.111 66.191

96 6 8773.4 537.74 120.10 36.936 5.026 3.392 6.922 21.202 73.479

192 6 36390 1218.3 493.65 38.313 5.210 5.758 14.989 23.045 87.315

384 6 154166 2664.4 2318.2 41.428 5.738 10.618 35.881 26.733 120.40

Table 8.2: Polynomial multiplication over fields given as a 4-step extension using
naïve multiplication and FFT, with and without converting to a simple extension.

Table 8.2 lists the timings for polynomial multiplication over a field with a tower
of four extensions. It indicates, there is even more significant speed-up in using our
algorithm over fields given as four-step extensions. However, because the degree of
the field D =

∏4
i=1 di is large in all cases, the bottleneck is computing and applying

CHAPTER 8. BENCHMARKS AND CONCLUSION 103

the conversions, as expected. For example, for the case n = 384 and di = 6 (last row
in the table) so that D = 64 = 1296, approximately 41.428+5.738+10.618+26.733

120.40
≈ 70% of

the time is spent on computing and applying the conversions (sum of columns ‘prim’,
‘COB’, ‘φ’, and ‘φ−1’). Nevertheless, as with the 3-step extension case, performing
the FFT multiplication over a simple extension provides a significant speed advantage
over performing the multiplication over multiple extension, so this offsets the high
conversion costs. For example, in the case n = 384 and di = 6 (last row in table),
the speed-up in performing the FFT multiplication over the simple extension versus
multiple extensions is approximately a factor of 2664.4

35.881
≈ 74.

Table 8.3 lists timings for computing the product of two polynomials of degree
96 each (that is, n = 96) over a field given as a three-step extension of degree 256,
where the degrees of each extension vary. As mentioned in Chapter 4, the table
shows that when d1 is small relative to D, naïve multiplication is very slow; in par-
ticular, when [d1, d2, d3] = [2, 2, 64] (that is, when multiplying over Fp[u1, u2, u3]〈u2

1 +

. . . , u2
2 + . . . , u64

3 + · · ·〉), the speed gain in computing over a simple extension is a
factor of 4485.2

3.462
≈ 1300. However, when d1 is large, naïve multiplication is relatively

efficient; for example, when [d1, d2, d3] = [64, 2, 2] (that is, when multiplying over
Fp[u1, u2, u3]〈u64

1 + . . . , u2
2 + . . . , u2

3 + · · ·〉), the gain is only a factor of 15.870
2.133

≈ 7.5.
In fact, in this case it is more efficient to compute the product using FFT multipli-
cation over multiple extensions than using the FFT multiplication after converting
to a simple extension, by a factor of 2.133

1.393
≈ 1.5. There are two underlying reasons

for such drastically different timings observed in Table 8.3 when d1 is small and d1 is
large. The first reason arises from the structure of the recden representation. When
[d1, d2, d3] = [2, 2, 64] the recden data structure is illustrated in Figure 8.1.

CHAPTER 8. BENCHMARKS AND CONCLUSION 104

Fp[α1, α2, α3] Fp[γ]

d1 d2 d3 mult FFT mult prim COB φ FFT φ−1 total

2 2 64 4485.2 329.69 5.203 1.637 0.035 0.604 0.714 0.472 3.462

2 4 32 2347.9 172.81 4.995 3.379 0.034 0.487 0.722 0.448 5.069

2 8 16 1529.5 114.54 4.842 4.942 0.036 0.676 0.708 0.429 6.792

2 16 8 1246.8 90.899 4.768 8.338 0.046 0.661 0.700 0.421 10.166

2 32 4 1284.7 83.377 5.013 19.276 0.066 0.358 0.742 0.409 20.852

2 64 2 1569.8 78.457 5.016 55.292 0.108 0.353 0.744 0.408 56.906

4 2 32 1086.5 81.055 4.723 0.761 0.034 0.391 0.692 0.367 2.245

4 4 16 616.42 44.876 4.758 1.210 0.054 0.327 0.676 0.364 2.631

4 8 8 429.45 31.060 4.710 1.936 0.046 0.287 0.686 0.344 3.299

4 16 4 401.33 26.480 4.955 3.721 0.066 0.331 0.729 0.347 5.194

4 32 2 439.63 23.065 4.969 9.262 0.108 0.308 0.717 0.346 10.741

8 2 16 302.85 22.256 4.637 0.596 0.051 0.256 0.678 0.320 1.901

8 4 8 178.78 13.064 4.594 0.790 0.046 0.249 0.674 0.314 2.072

8 8 4 142.42 9.921 4.806 1.136 0.090 0.230 0.710 0.306 2.473

8 16 2 140.06 8.222 4.801 2.111 0.107 0.249 0.713 0.305 3.485

16 2 8 89.932 6.910 4.362 0.570 0.046 0.232 0.647 0.293 1.787

16 4 4 62.592 4.770 4.746 0.769 0.066 0.184 0.695 0.293 2.007

16 8 2 49.766 3.462 4.357 0.861 0.127 0.184 0.643 0.286 2.101

32 2 4 34.439 2.806 4.714 0.734 0.077 0.181 0.691 0.285 1.969

32 4 2 24.753 1.934 4.411 0.767 0.109 0.172 0.642 0.279 1.968

64 2 2 15.870 1.393 4.564 0.902 0.135 0.157 0.664 0.275 2.133

Table 8.3: Multiplication of two polynomials of degree 96 each over a field given as a
3-step extension of degree D =

∏3
i=1 di = 256 is held constant.

CHAPTER 8. BENCHMARKS AND CONCLUSION 105

[[[�,�], [�,�]], · · · , [[�,�], [�,�]]]

64 lists

Figure 8.1: The recden representation of an element in Fp[u1, u2, u3]/〈M1,M2,M3〉
where degu1

(M1) = 2, degu2
(M2) = 2, and degu3

(M3) = 64.

On the other hand, when [d1, d2, d3] = [64, 2, 2], the recden data structure is
illustrated by Figure 8.2.

[[[�,�,�, . . . ,�], [�,�,�, . . . ,�]], [[�,�,�, . . . ,�], [�,�,�, . . . ,�]]]

64 elements 64 elements 64 elements 64 elements

Figure 8.2: The recden representation of an element in Fp[u1, u2, u3]/〈M1,M2,M3〉
where degu1

(M1) = 64, degu2
(M2) = 2, and degu3

(M3) = 2.

Because of the nature of the data structure, there relatively large overhead costs
associated with doing polynomial arithmetic (for example, allocating storage, copying
objects, et cetera) when d1 is small compared with the case when d1 is large.

The second reason depends on the number of polynomial multiplications and divi-
sions performed in each case. When [d1, d2, d3] = [2, 2, 64], multiplying a coefficient of
f by a coefficient of g requires a multiplication of two polynomials of three variables,
followed by a division by a degree 64 polynomial (M3), then a division by M2 up to
64 times (one for each coefficient of M3), and subsequently by M1 another 64 times
(once for each coefficient of M3). On the other hand, when [d1, d2, d3] = [64, 2, 2],
after the multiplication one must divide by a degree two polynomial M3, followed by
a degree two polynomial M2 at most two times, then finally a division by a degree 64
polynomial M1 at most twice. Clearly there are many more multiplications one must
perform in the case when d1 is small compared to other di’s.

Observe further from the table that our algorithm is quite inefficient at comput-
ing the mapping from multiple extensions to a simple extension when [d1, d2, d3] =

CHAPTER 8. BENCHMARKS AND CONCLUSION 106

[2, 64, 2] (sixth row and column ‘prim_elt’ of the table). We now explain why this
is so. Recall that to convert from a fields given as a 3-step extension to a field with
a simple extension, we first collapse the last two extensions by finding a γ1 satis-
fying Fp[α1][α2, α3] = Fp[α1, γ1], after which we collapse Fp[α1, γ1] to Fp[γ2]. Since
the cost of mapping from three extensions to two is O(d3

2d3 + d2
2d

2
3) (Chapter 6), the

cost of mapping is high if d2 � d3, as is the case when [d1, d2, d3] = [2, 64, 2] and
[d1, d2, d3] = [2, 32, 4]. The next step of mapping from two extensions to one costs
O(d3

1(d2d3) + d2
1(d2d3)

2) arithmetic operations. Hence if d1 � d2d3, the cost of the
algorithm must become expensive. However, this is not reflected in Table 8.3 (for
example, when [d1, d2, d3] = [64, 2, 2] the algorithm is relatively efficient) because the
resultant algorithm used in the two extensions case (used in finding γ2) is imple-
mented in C, which is much more efficient than the Maple resultant algorithm used
in finding γ1.

Our algorithm is most efficient when d2 ≈ d3 and d1 ≈ d2d3, which is expected,
since the cost of mapping to a simple extension for these cases is O(d2

1d
2
2).

8.1 Conclusion and future work

In this thesis we presented two efficient algorithms for computing the product
of univariate polynomials of degrees at most n over a multiple extension field K =

Q(α1, . . . , αt) of degree D. The main ideas used were: mapping the rational coef-
ficients to integers modulo a prime p, collapsing the multiple extension to a simple
extension, computing the product over the simple extension using the FFT for bivari-
ate polynomials, and using efficient methods of computing the resultant and the gcd.
We have shown that the time complexity of applying the resultant & gcd method and
the FFT to compute the product is O(D3 + D2n + Dn log n) arithmetic operations
in Fp for each prime p. This is an improvement (for the case D ≤ n2) over the naïve
multiplication method,which requires O(D2n2) arithmetic operations in Q.

To speed up the computation, we mapped K = Q(α1, . . . , αt) to Kp =

Fp[u1, . . . , ut]/〈Φp(m1), . . . ,Φp(mt)〉, where p was chosen to be a good Fourier prime
between 230 and 231.5. However, because Kp may not be a ring depending on p, many
complications arose. In particular, there were problems arising from: attempting to

CHAPTER 8. BENCHMARKS AND CONCLUSION 107

divide by zero divisors, Φp(mi) not being square-free over Fp[α1, . . . , αi−1], p being
a fail prime, and encountering unlucky evaluation points while computing the gcd.
However, we showed that these complications rarely occur; in fact they are polyno-
mially bounded by D. Thus, provided p is sufficiently large the algorithm will not
fail with high probability.

To collapse the multiple extension to a simple extension, we discussed two meth-
ods: a linear algebra approach (which was previously known) and a resultants &
gcd approach (whose modular method is new). Of the two approaches, computing
the minimal polynomial (modulo p) for a primitive element of the multiple extension
field using the resultant method is more efficient (O((

∑t
i=1 di)D

2) arithmetic opera-
tions in Fp are required in executing Algorithm res_modp2) than the linear algebra
method (O(D3) arithmetic operations in Fp required in computing the change-of-
basis matrix). We do note however that we can lower the complexity of making
the substitutions by viewing the series of matrix-vector multiplication problem as a
single matrix-matrix multiplication problem, then employing the Schönhage-Strassen
method (Strassen [16]) for efficiency.

However, computing the normal representations (modulo p) and making the sub-
stitutions using the normal representations to the polynomials causes a bottleneck of
the resultant method (O(D3) arithmetic operations in Fp), making it only as efficient
as the linear algebra method. In the future, we will investigate a faster method for
this step in order to prevent the bottleneck.

Appendix A

Proof of Lemma 4.11

Proof. For i > 1, we have

(cx+ y)i mod 〈m1,m2〉
= ((cx+ y) · ri−1) mod 〈m1,m2〉
= (cx · ri−1 mod 〈m1〉) + ((y · ri−1 mod 〈m2〉) mod 〈m1〉)
= (c · A(d1,d2−1) · xd1yd2−1 + · · ·+ A(0,0)) mod 〈m1〉+

((B(d1−1,d2) · xd1−1yd2 + · · ·+B(0,0)) mod 〈m2〉) mod 〈m1〉

(1)

where A(i,j), B(k,r) ∈ Z. Let

g1 = c ·A(d1,d2−1) · xd1yd2−1 + · · ·+A(0,0), and g2 = B(d1−1,d2) · yd2xd1−1 + · · ·+B(0,0).

Only the first term of g1 requires division by m1. If c̃ = max{|c|, 1}, then by Lemma
4.10,

‖ĝ1‖ := ‖g1 mod 〈m1〉‖ ≤ (1 + ‖m1‖)d1−d1+1 · c̃ · ‖ri−1‖ ≤M · c̃ · ‖ri−1‖.

Similarly,

‖ĝ2‖ := ‖g2 mod 〈m2〉‖ ≤ (1 + ‖m2‖)d2−d2+1 · ‖ri−1‖ ≤M · ‖ri−1‖.

At this point, degx(ĝ2) ≤ (d1− 1) + (d1− 1) = 2d1− 2. Thus after division by m1, we
get

‖ĝ2 mod 〈m1〉‖ ≤ (1 + ‖m1‖)(2d1−2)−deg(m1)+1 · (M · ‖ri−1‖)
≤M (2d1−2)−d1+1 ·M · ‖ri−1‖
= Md1 · ‖ri−1‖.

108

APPENDIX A 109

Hence,

‖ri‖ = ‖(cx+ y)i mod 〈m1,m2〉‖ = ‖ĝ1 + ĝ2‖
≤ ‖ĝ1‖+ ‖ĝ2‖
≤M · c̃ · ‖ri−1‖+Md1 · ‖ri−1‖
= ‖ri−1‖ · (c̃M +Md1)

= ‖ri−1‖ · (c̃+ 1) ·Md1 for 2 ≤ i ≤ D − 1.

(2)
Since ‖r1‖ = ‖cx+ y‖ = c̃ = max{|c|, 1}, we have

‖(cx+ y)i‖ = ‖ri‖ = ‖ri−1‖(c̃+ 1)Md1 = c̃
[
(c̃+ 1)Md1

]i−1 for i = 2, · · · , D.

Let C be the change-of-basis matrix whose i-th column consists of the coefficients of
(cx+ y)i−1 for i = 1, · · · , D. If aij denotes the entry in the i-th row and j-th column
of C, then by Hadamard’s inequality we have

| det(C)| = | det(C)T | ≤
∏D

i=1

√∑D
j=1 a

2
ij

≤
∏D−1

i=0

√
D(‖ri‖2)

= (
√
D‖r0‖) ·

∏D−1
i=1 (
√
D‖ri‖)

≤
√
D ·
∏D−1

i=1

(√
D
[
c̃
[
(c̃+ 1)Md1

]i−1
])

= DD/2c̃D
([

(c̃+ 1)Md1
] (D−1)(D−2)

2

)
.

Taking the log of both sides with base B, we obtain

logB(| det(C)|) ≤ logB(DD/2c̃D) +
(

(D−1)(D−2)
2

) (
logB(c̃+ 1) + logB(Md1)

)
< D logB(Dc̃) +

(
(D−1)(D−2)

2

)
(logB(c̃+ 1) + d1 logB(M)) .

That is, the number of digits of det(C) in base B is at most

D logB(Dc̃) +
(

(D−1)(D−2)
2

)
(logB(c̃+ 1) + d1 logB(M))

∈ O
(
D2(logB(c̃) + d1 logB(M))

)
.

APPENDIX A 110

Proof of Lemma 4.12

Proof. Let ‖ri‖ ≡ (c1x1 + · · · ct−1xt−1 + xt)
i mod 〈m1, · · · ,mt〉 for i = 0, · · · , D− 1.

Using a similar reasoning as in the proof of Lemma 4.11, one can show that, for i ≥ 0,

‖(c1x1 + c2x2 + · · ·+ ct−1xt−1 + xt)
i‖ = ‖ri‖ ≤ c̃

(
(s̃+ 1)M d̃

)i−1

.

Hence
‖ det(C)‖ ≤

∏D−1
i=0

√
D(‖c1x1 + · · ·+ ct−1xt−1 + xt)i‖)2

≤
√
D ·
∏D−1

i=1

(√
Dc̃
[
(s̃+ 1)M d̃

]i−1
)

= DD/2c̃D
[
(s̃+ 1)M d̃

](D−1)(D−2)/2

< (Dc̃)D
[
(s̃+ 1)M d̃

](D−1)(D−2)/2

,

(3)

so

logB(‖ det(C))‖ < logB

(
(Dc̃)D

[
(s̃+ 1)M d̃

](D−1)(D−2)/2
)

= D logB(Dc̃) +
(

(D−1)(D−2)
2

)
logB((s̃+ 1)M d̃)

= D logB(Dc̃) +
(

(D−1)(D−2)
2

) [
logB(s̃+ 1) + d̃ logB(M)

]
∈ O

(
D2
[
logB(s̃) + d̃ logB(M)

])
.

(4)

Bibliography

[1] Alaca, S., Williams, K. S. Introductory Algebraic Number Theory. Cambridge
University Press, 1st edition, 2004.

[2] Basu, S., Pollack, R., Roy, M. Algorithms in Real Algebraic Geometry. Springer,
2nd edition, 2006, p. 316-317.

[3] Bronstein, M. Symbolic Integration I: Transcendental Functions. Springer, 2nd
edition, 2005.

[4] Brown, W. S. The subresultant PRS algorithm. ACM Trans. Math. Software, 4
(1978), no. 3, p. 237-249.

[5] Brown, W. S., Traub, J.F. On Euclid’s algorithm and the theory of subresultants.
J. Assoc. Comput. Mach. 18 (1971), p. 505-514.

[6] Chen, L., Monagan, M. Algorithms for solving linear systems over cyclotomic
fields. J. Symbolic Comput. 45 (2010), p. 902-917.

[7] Collins, G.E. The calculation of multivariate polynomial resultants. J. Assoc.
Comput. Mach. 18 (1971), p. 515-532.

[8] Collins, G.E. Subresultants and Reduced Polynomial Remainder Sequences. J.
ACM, 14(1) (1967) p. 128-142.

[9] Gaal, L. Classical Galois Theory, with Examples. American Mathematical Soci-
ety, 5th edition, 1998.

[10] Garling, D.J.H. Inequalities: a journey into linear analysis. Cambridge Univer-
sity Press, 1st edition, 2007.

111

BIBLIOGRAPHY 112

[11] Geddes, K.O., Czapor, S.R., & Labahn, G. Algorithms for Computer Algebra.
Kluwer Academic Publishers, 1st edition, 1992.

[12] Lang, S. Algebraic Number Theory. Springer-Verlag, 2nd edition, 1994.

[13] McCarthy, P. Algebraic Extensions of Fields. Chelsea Publishing Company, 2nd
edition, 1976.

[14] Mishra, B. Algorithmic Algebra. Texts and Monographs in Computer Science,
Springer-Verlag, New York, 1993.

[15] Monagan, M. Maximal Quotient Rational Reconstruction: An Almost Optimal
Algorithm for Rational Reconstruction. Proceedings of ISSAC ’04, ACM Press,
pp. 243-249, 2004.

[16] Strassen, V. Gaussian elimination is not optimal. Numerische Mathematik,
Springer Berlin, 1969.

[17] Trager, B. Algebraic Factoring and Rational Function Integration. Proceedings
of the 1976 ACM Symposium on Symbolic and Algebraic Computation, 1976.

[18] von zur Gathen, J., Gerhard, J. Modern Computer Algebra. Cambridge Univer-
sity Press, 2nd edition, 2003.

[19] Wang, P. S., Guy, M. J. T., Davenport, J. H. p-adic reconstruction of rational
numbers. ACM SIGSAM Bulletin, 16, No 2, 1982.

[20] Wang, P. S. A p-adic Algorithm for Univariate Partial Fractions. Proceedings of
SYMSAC ‘81, ACM Press, p.212-217, 1981.

[21] Winkler, F. Polynomial Algorithms in Computer Algebra. Springer-Verlag/Wien,
1st edition, 1996.

[22] Zippel, R. Effective polynomial computation. Kluwer Academic Publishers Group,
1st edition, 1993.

