FAST MULTIPLICATION OVER ALGEBRAIC NUMBER FIELDS

by
Cory Ahn
B.Sc. (Hons.), University of Western Ontario, 2008
THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
Master of Science
IN THE
Department of Mathematics
Faculty of Science
(C) Cory Ahn 2011 SIMON FRASER UNIVERSITY
Fall 2011

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be reproduced, without authorization, under the conditions for "Fair Dealing." Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review, and news reporting is likely to be in accordance with the law, particularly if cited appropriately.

APPROVAL

Name: Cory Ahn
Degree:Title of thesis:Master of Science
Fast Multiplication Over Algebraic Number Fields
Examining Committee: Petr Lisonek (Chair)
Michael Monagan
Senior supervisor
Professor
Nils Bruin
Supervisor
Associate Professor
Jason Bell
Examiner
Associate Professor
Date Approved:December 1, 2011

Abstract

Let $K=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right)$ be an algebraic number field of degree D over \mathbb{Q}, and let f and g be polynomials in $K[x]$ of degrees at most n. Naïvely computing the product $f \cdot g$ requires $\mathcal{O}\left(n^{2} D^{2}\right)$ arithmetic operations in \mathbb{Q}. We developed a more efficient algorithm that computes $f \cdot g$ modulo a series of primes to avoid working with rationals, and uses the fast Fourier Transform. For each prime p, it also avoids working over multiple extensions by computing a primitive element of K modulo p, which can be done using linear algebra or resultants and gcds. Our algorithm requires $\mathcal{O}\left(D^{3}+D^{2} n+D n \log n\right)$ arithmetic operations in \mathbb{F}_{p} for each prime p. We have implemented our algorithm in Maple and present some timings to demonstrate that there is good speed-up in practice.

To my mother, for providing me with
so much love, wisdom, support, and encouragement

Acknowledgments

First I wish to express my sincere gratitude to my supervisor Dr. Michael Monagan for introducing me to this problem and continually providing guidance, support, patience and insight. I am also grateful for the helpful comments and feedback on the thesis provided by Roman Pearce and Dr. Nils Bruin. I would also like to thank the Department of Mathematics at the Simon Fraser University for giving me the opportunity to do my Master's here. Lastly, I am grateful to all of those who provided emotional and moral support they provided during the completion of this thesis. You know who you are.

Contents

Approval ii
Abstract iii
Dedication iv
Acknowledgments v
Contents vi
List of Tables ix
List of Figures x
List of Algorithms xi
1 Introduction and preliminaries 1
1.1 Preliminaries 3
1.2 The Polynomial Representation 12
1.2.1 The recden representation 12
2 Working modulo p 15
2.1 Modular homomorphism 16
2.2 Chinese Remainder Theorem \& rational number reconstruction 17
2.3 New multiplication strategy 19
3 Fast multiplication using the FFT 21
3.1 The Fast Fourier Transform (FFT) 21
3.2 Inverse FFT 24
3.3 Choosing the right prime 25
3.4 Fast multiplication using the FFT 25
4 Polynomial Representation Simplification 28
4.1 Change-of-basis matrix (in characteristic 0) 29
4.2 Change-of-basis matrix modulo p 33
5 Finding a primitive element (characteristic 0) 38
5.1 Finding a primitive element of $K(\alpha, \beta)$ 38
5.2 Finding a primitive element using linear algebra 45
5.3 Finding a primitive element using resultants 47
5.3.1 Finding $\alpha(\gamma)$ and $\beta(\gamma)$ 47
5.4 Algorithms 48
5.5 Towers with more than two steps 50
6 Finding a primitive element (characteristic p) 53
6.1 Modifications to Algorithm sqfr_norm 54
6.1.1 Handling zero divisors 54
6.1.2 Handling non-square-free M_{1} or M_{2} 55
6.1.3 Choosing a "large enough" p 56
6.1.4 Proof of correctness 59
6.1.5 Modified algorithm of sqfr norm and its complexity 59
6.2 Modifications to Algorithm prim_elt 61
6.2.1 Handling zero divisors 62
6.2.2 Proof of correctness 62
6.2.3 Modified algorithm of prim_elt and its complexity 64
6.3 Towers with more than two steps 66
6.3.1 Finding the normal representations 67
7 Algorithmic improvements 72
7.1 Resultant computation 73
7.1.1 Evaluation and interpolation 73
7.1.2 Resultant computation using evaluation \& interpolation 76
7.1.3 Polynomial remainder sequences 77
7.1.4 Failure cases of the algorithm 80
7.1.5 Modified resultant algorithm 81
7.2 gcd computation 83
7.2.1 Subresultants and properties of subresultant PRS's 85
7.2.2 Unlucky evaluation points 88
7.2.3 Modified resultant algorithm and complexity analysis 93
7.3 Complete algorithm and complexity 96
8 Benchmarks and conclusion 99
8.1 Conclusion and future work 106
Appendix A 108
Bibliography 111

List of Tables

$4.1 n(R)$ denotes the number of primes between 2^{30} and $2^{31.5}$ of the form $c \cdot 2^{R}+1$, and $k(R)$ satisfies the equation $91744290 /\left(2^{k(R)}\right)=n(R)$, where 91744290 is the number of Fourier primes between 2^{30} and $2^{31.5}$. 36
8.1 Polynomial multiplication over a field given as 3-step extensions using naïve multiplication and FFT, with and without converting to a simple extension.
8.2 Polynomial multiplication over fields given as a 4-step extension using naïve multiplication and FFT, with and without converting to a simple extension.
8.3 Multiplication of two polynomials of degree 96 each over a field given as a 3 -step extension of degree $D=\prod_{i=1}^{3} d_{i}=256$ is held constant. . 104

List of Figures

1.1 Overview of various multiplication strategies 3
1.2 The recden representation of f in Example 1.27 13
8.1 The recden representation of an element in $\mathbb{F}_{p}\left[u_{1}, u_{2}, u_{3}\right] /\left\langle M_{1}, M_{2}, M_{3}\right\rangle$ where $\operatorname{deg}_{u_{1}}\left(M_{1}\right)=2, \operatorname{deg}_{u_{2}}\left(M_{2}\right)=2$, and $\operatorname{deg}_{u_{3}}\left(M_{3}\right)=64 \ldots \ldots 105$
8.2 The recden representation of an element in $\mathbb{F}_{p}\left[u_{1}, u_{2}, u_{3}\right] /\left\langle M_{1}, M_{2}, M_{3}\right\rangle$ where $\operatorname{deg}_{u_{1}}\left(M_{1}\right)=64, \operatorname{deg}_{u_{2}}\left(M_{2}\right)=2$, and $\operatorname{deg}_{u_{3}}\left(M_{3}\right)=2 \ldots \ldots 105$

List of Algorithms

$3.1: \operatorname{FFT}(a(x), R, N, \omega)$ 23
3.2 : FFTMult $\left(f(x), g(x), K_{p}\right)$ 26
5.1 : $\mathbf{s q f r} _\operatorname{norm}\left(m_{\beta}(x, \alpha), m_{\alpha}(y)\right)$ 49
5.2 : $\operatorname{prim} _$elt $\left(m_{\beta}(x, \alpha), m_{\alpha}(y)\right)$ 49
6.1 : $\mathbf{s q f r}$ _norm_p $\left(M_{2}(x, \bar{\alpha}), M_{1}(y), K_{p}\right)$ 60
6.2 : prim_elt_p $\left(M_{2}(x, \bar{\alpha}), M_{1}(y), K_{p}\right)$ 65
6.3 : prim_elt_multi $\left(M_{1}\left(u_{1}\right), \ldots, M_{t}\left(u_{t}\right), K_{p}\right)$ 71
7.1 : sr_prs $\left(f_{1}, f_{2}, R\right)$ 79
$7.2:$ res_modp $\left(g(x, y), M_{1}(y), K_{p}\right)$ 82
7.3 : res_modp2 $\left(g(x, y), M_{1}(y), K_{p}\right)$ 94
7.4 : AlgFFTMult $\left(f(x), g(x), K_{p}\right)$ 98

Chapter 1

Introduction and preliminaries

Let $K=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ be an algebraic number field of degree D where each α_{i} is algebraic over \mathbb{Q}. Furthermore let $f(x)$ and $g(x)$ be polynomials in $K[x]$ of degrees at most n. We would like to compute the product of f and g efficiently. If $m_{1} \in \mathbb{Q}\left[u_{1}\right]$ is the minimal polynomial of α_{1} over \mathbb{Q} and $m_{i} \in \mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)\left[u_{i}\right]$ is the minimal polynomial of α_{i} over $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$ for $2 \leq i \leq t$, a straightforward multiplication strategy is to view f and g as $(t+1)$-variate polynomials in $\mathbb{Q}\left[u_{1}, \ldots, u_{t}\right][x]$ and classically multiply them modulo the ideal $\left\langle m_{1}, \ldots, m_{t}\right\rangle$. Unfortunately, performing arithmetic operations in \mathbb{Q} and divisions by the minimal polynomials m_{1}, \ldots, m_{t} can be computationally expensive. In this thesis we speed up the multiplication using various strategies. Namely:

- We eliminate the need for computing over multiple extensions by performing the multiplication over a simple extension $\mathbb{Q}(\gamma)=K$, then converting the product back to $K[x]$ at the end. We discuss two methods for finding a primitive element γ in Chapter 5. One is a linear algebra approach and the other is a resultant approach.
- We eliminate the need for computing over \mathbb{Q} by mapping the rational coefficients of f and g to $\mathbb{F}_{p_{1}}, \mathbb{F}_{p_{2}}, \ldots, \mathbb{F}_{p_{k}}$ where p_{i} 's are primes that do not divide any denominator of $f, g, m_{1}, \ldots, m_{t}$. That is, we consider $f \bmod p_{i}$ and $g \bmod p_{i}$ as polynomials over $K_{p_{i}}=\mathbb{F}_{p_{i}}\left[u_{1}, \ldots, u_{t}\right] /\left\langle M_{1}, \ldots, M_{t}\right\rangle$ where $M_{i}=m_{i} \bmod p_{i}$ for $1 \leq i \leq t$, then compute the product over these rings. We use the Chinese

Remainder Theorem and rational number reconstruction at the end to recover the rational coefficients in the product. These ideas are classical in computer algebra and are briefly discussed in Chapter 2.

- In Chapter 6, we modify the resultant approach for finding a primitive element in K to apply it to $K_{p_{i}}=\mathbb{F}_{p_{i}}\left[u_{1}, \ldots, u_{t}\right] /\left\langle M_{1}, \ldots, M_{t}\right\rangle$ for suitable primes p_{i}. Because $K_{p_{i}}$ may not be a field (it is usually not a field), many modifications to the method are necessary. We show that computing a primitive element γ modulo p_{i} requires $\mathcal{O}\left(D^{3}\right)$ arithmetic operations in $\mathbb{F}_{p_{i}}$, where $D=\operatorname{deg}(K)$.
- Once a primitive element $\bar{\gamma}=\gamma \bmod p_{i}$ is found, one can convert $f, g \in K[x]$ to polynomials in $\mathbb{F}_{p_{i}}(\bar{\gamma})[x]$ and perform the multiplication over this ring instead. In Chapter 4, we discuss how to convert the representations of polynomials over multiple extensions to a simple extension, and vice versa. We also show that the cost of the conversions is $\mathcal{O}\left(D^{3}\right)$ arithmetic operations in $\mathbb{F}_{p_{i}}$.
- We employ a fast multiplication method for the multiplication over $\mathbb{F}_{p_{i}}$, which is based on the Fast Fourier Transform (FFT). The idea of using the FFT for polynomial multiplication is classical in computer algebra and is discussed in Chapter 3. If we naïvely compute the product of two polynomials in $\mathbb{F}_{p_{i}}(\bar{\gamma})[x] \cong$ $\mathbb{F}_{p_{i}}[z] /\left\langle M_{\gamma}(z)\right\rangle[x]$ of degrees n, where $m_{\gamma}(z) \in \mathbb{Q}[z]$ is the minimal polynomial of a primitive element γ of degree D and $M_{\gamma}(z)=m_{\gamma}(z) \bmod p_{i}$, it would require $\mathcal{O}\left(D^{2} n^{2}\right)$ arithmetic operations in $\mathbb{F}_{p_{i}}$. Using the FFT reduces the cost of multiplication to $\mathcal{O}\left(D^{2} n+D n \log n\right)$ arithmetic operations in $\mathbb{F}_{p_{i}}$.
- In Chapter 7 we discuss further efficiency improvements to the primitive element finding algorithm presented in Chapter 6, specifically faster gcd and resultant algorithms.

Our polynomial multiplication algorithm requires

$$
\mathcal{O}\left(D^{3}+D^{2} n+D n \log n\right) \text { arithmetic operations in } \mathbb{F}_{p_{i}}
$$

for each prime p_{i}. Since classical multiplication requires $\mathcal{O}\left(D^{2} n^{2}\right)$ arithmetic operations in \mathbb{Q}, this is an improvement when D is less than n^{2}. We note that it is also
an improvement over performing the FFT multiplication over the multiple extensions when $D<n$.

Figure 1.1 gives an overview of various multiplication strategies. In this thesis, we use the strategy indicated by the double arrows, which we implemented in Maple. We present some timings in Chapter 8 and it shows a significant speed-up compared to the naïve multiplication method.

Figure 1.1: Overview of various multiplication strategies

1.1 Preliminaries

In this section, we give definitions, notations and basic results from algebraic number theory and computer algebra which will be used throughout this thesis.

In what follows, we will assume that K is a field and E is an extension of K.
Definition 1.1. Let K be a proper subfield of a field E. We say that E is an extension field, or simply an extension, of K. To indicate that E is an extension of K we write E / K.

Definition 1.2. Let $\alpha \in E$ and let $K(\alpha)$ be the smallest subfield of E containing both K and α. We say that $K(\alpha)$ is formed from K by adjoining a single element α, and we call it a simple extension of K. More generally for $t \geq 2$, let $K\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ be the smallest field that contains K and $\alpha_{1}, \ldots, \alpha_{t} . K\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ is called a multiple extension of K. For $t \geq 1$, if $K\left(\alpha_{1}, \ldots, \alpha_{t}\right) \cong K(\alpha)$ we say that α is a primitive element for $K\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ over K.

Definition 1.2 implies that $K\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ can be regarded as a field obtained by successively adjoining a single element to K as follows:

$$
\begin{aligned}
& K\left(\alpha_{1}, \alpha_{2}\right)=K\left(\alpha_{1}\right)\left(\alpha_{2}\right) \\
& K\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=K\left(\alpha_{1}, \alpha_{2}\right)\left(\alpha_{3}\right) \\
& \quad \vdots \\
& K\left(\alpha_{1}, \ldots, \alpha_{t-1}, \alpha_{t}\right)=K\left(\alpha_{1}, \ldots, \alpha_{t-1}\right)\left(\alpha_{t}\right)
\end{aligned}
$$

Definition 1.3. An element α in some extension of K is said to be algebraic over K if there exists a nonzero polynomial over K with α as a root.

Example 1.4. Consider the field $\mathbb{Q}(\sqrt{2}, \sqrt{5})$. Since $\sqrt{2}$ is a root of $x^{2}-2 \in \mathbb{Q}[x]$ and $\sqrt{5}$ is a root of $x^{2}-5 \in \mathbb{Q}[x]$, we conclude that $\sqrt{2}$ and $\sqrt{5}$ are algebraic over \mathbb{Q}.

Definition 1.5. Let α be algebraic over K. A monic polynomial of least degree that has α as a root is called a minimal polynomial of α over K and is denoted by $m_{\alpha}(x)$. We say that α and β are conjugates over K if they have the same minimal polynomial over K. In such a case β (respectively α) is a conjugate of α (respectively β) over K.

Lemma 1.6. Let α be algebraic over K. Then a minimal polynomial $m_{\alpha}(x)$ is unique and irreducible over K. Moreover, if $f(x) \in K[x]$ and $f(\alpha)=0$ then $m_{\alpha}(x)$ divides $f(x)$.

Proof. See, for example, Alaca and Williams [1, Theorem 5.1.1, p. 89].
Theorem 1.7. Let K be a subfield of E and $\alpha \in E$ be algebraic over K. If $n=$ $\operatorname{deg}\left(m_{\alpha}\right)$ then

$$
K(\alpha)=\left\{c_{0}+c_{1} \alpha+\cdots+c_{n-1} \alpha^{n-1} \mid c_{0}, \ldots, c_{n-1} \in K\right\} .
$$

Proof. Let

$$
L=\left\{\frac{f(\alpha)}{g(\alpha)}: f(x)=\sum_{i=0}^{k} a_{i} x^{i}, g(x)=\sum_{i=0}^{h} b_{i} x^{i}, k, h \in \mathbb{Z}_{\geq 0}, a_{i}, b_{i} \in K, g(\alpha) \neq 0\right\} .
$$

Then L is a subfield of E that contains both α and K. Furthermore it is the smallest subfield containing α and K, since any subfield of E containing both α and K must contain all the elements of L. Therefore $L=K(\alpha)$. Now pick an element $\beta \in L=$ $K(\alpha)$. Then $\beta=\frac{f(\alpha)}{g(\alpha)}$ where

$$
\begin{aligned}
& f(x)=a_{0}+a_{1} x+\cdots+a_{k} x^{k} \in K[x], \\
& g(x)=b_{0}+b_{1} x+\cdots+b_{h} x^{h} \in K[x], \text { and } g(\alpha) \neq 0 \text { for some } a_{i}, b_{i} \in K .
\end{aligned}
$$

Since $g(\alpha) \neq 0$, we must have $m_{\alpha}(x) \nmid g(x)$. Moreover, since $m_{\alpha}(x)$ is irreducible over $K, \operatorname{gcd}\left(m_{\alpha}(x), g(x)\right)=1$. By the Extended Euclidean algorithm there exist $r(x)$ and $s(x)$ in $K[x]$ such that

$$
\begin{equation*}
r(x) \cdot m_{\alpha}(x)+s(x) \cdot g(x)=1 \tag{1.1}
\end{equation*}
$$

Substituting α for x in (1.1), we get $r(\alpha) \cdot 0+s(\alpha) \cdot g(\alpha)=1$, so

$$
\beta=\frac{f(\alpha)}{g(\alpha)}=f(\alpha) \cdot s(\alpha) .
$$

That is, every $\beta \in L=K(\alpha)$ can be expressed as

$$
d_{0}+d_{1} \alpha+\cdots+d_{l} \alpha^{l} \text { where } l \in \mathbb{Z}_{\geq 0} \text { and } d_{0}, \ldots, d_{l} \in K
$$

Let $h(x)=d_{0}+d_{1} x+\cdots+d_{l} x^{l} \in K[x]$. Since K is a field, we have

$$
h(x)=q(x) m_{\alpha}(x)+r(x), \text { where } r(x)=0 \text { or } \operatorname{deg}(v(x))<\operatorname{deg}\left(m_{\alpha}(x)\right)=n .
$$

Thus we have $h(\alpha)=q(\alpha) \cdot 0+r(\alpha)=r(\alpha)$. That is, every element of $K(\alpha)$ can be written as $c_{0}+c_{1} \alpha+\cdots+c_{n-1} \alpha^{n-1}$, where $c_{0}, \ldots, c_{n-1} \in K$ and $n=\operatorname{deg}\left(m_{\alpha}(x)\right)$.

Theorem 1.7 implies that $K(\alpha)$ can be viewed as an n-dimensional vector space over K with basis $\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}$. Furthermore, it is easy to see that there is an isomorphism between $K(\alpha)$ and a quotient ring as follows:

$$
K(\alpha) \cong K[x] /\left\langle m_{\alpha}(x)\right\rangle
$$

In general, if $\left\{\alpha_{1}, \ldots, \alpha_{t}\right\} \subseteq E$, each α_{i} is algebraic over $K, \alpha_{1} \notin \mathbb{Q}$ and $\alpha_{i} \notin$ $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$ for $2 \leq i \leq t$, then

$$
\begin{equation*}
K\left(\alpha_{1}, \ldots, \alpha_{t}\right) \cong K\left[u_{1}, \ldots, u_{t}\right] /\left\langle m_{1}, \ldots, m_{t}\right\rangle \tag{1.2}
\end{equation*}
$$

where each $m_{i}:=m_{i}\left(u_{i}\right)$ represents the minimal polynomial of α_{i} over $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$ for $2 \leq i \leq t$ and $m_{1}:=m_{1}\left(u_{1}\right)$ is the minimal polynomial of α_{1} over \mathbb{Q}.

In this thesis, we will assume that $\left\{m_{1}, m_{2}, \ldots, m_{t}\right\}$ is a triangular set of minimal polynomials. By this we mean that if $K\left(\alpha_{1}, \ldots, \alpha_{t}\right) \cong K\left[u_{1}, \ldots, u_{t}\right] /\left\langle m_{1}, \ldots, m_{t}\right\rangle$ then:

- α_{1} is a root of $m_{1}\left(u_{1}\right) \in K\left[u_{1}\right]$,
- α_{2} is a root of $m_{2}\left(\alpha_{1}, u_{2}\right) \in K\left(\alpha_{1}\right)\left[u_{2}\right]$,
!
- α_{t} is a root of $m_{t}\left(\alpha_{1}, \ldots, \alpha_{t-1}, u_{t}\right) \in K\left(\alpha_{1}, \ldots, \alpha_{t-1}\right)\left[u_{t}\right]$.

Example 1.8. The field $K\left(\alpha_{1}, \alpha_{2}\right) \cong K\left[u_{1}, u_{2}\right] /\left\langle u_{1}^{2}-2, u_{2}^{2}-u_{2} u_{1}+3\right\rangle$ involves a triangular set of minimal polynomials $\left\{u_{1}^{2}-2, u_{2}^{2}-u_{2} u_{1}+3\right\}=\left\{m_{1}\left(u_{1}\right), m_{2}\left(u_{1}, u_{2}\right)\right\}$.

Definition 1.9. Let α be algebraic over K. The degree of α over $K, \operatorname{deg}_{K}(\boldsymbol{\alpha})$, is equal to $\operatorname{deg}_{x}\left(m_{\alpha}\right)$, where $m_{\alpha}(x) \in K[x]$ is the minimal polynomial of α over K.

When the field K is clear from context, we will simply write $\operatorname{deg}(\alpha)$.

Let α be algebraic over K and let $m_{\alpha}(x) \in K[x]$ be the minimal polynomial of α over K so that $K(\alpha) \cong K[x] /\left\langle m_{\alpha}\right\rangle$. If $d=\operatorname{deg}_{K}(\alpha)$ then every polynomial $f(x) \in K[x]$ can be reduced modulo $m_{\alpha}(x)$ to some $r(x)$ with $\operatorname{deg}(r)<d$. Note that two different polynomials $r(x)$ and $s(x)$ with $\operatorname{deg}(r), \operatorname{deg}(s)<d$ cannot be congruent modulo $f(x)$, as that would imply that $r(x)-s(x)$ (a non-zero polynomial) is a multiple of $m_{\alpha}(x)$. Thus every element $A \in K(\alpha)$ has a unique representation

$$
A(x)=\sum_{i=0}^{d-1} a_{i} x^{i}+\left\langle m_{\alpha}(x)\right\rangle, \quad a_{i} \in K
$$

Hence we arrive at the following definition.

Definition 1.10. Let α be algebraic over K with $d=\operatorname{deg}_{K}(\alpha)$ and let $m_{\alpha}(x) \in K[x]$ be the minimal polynomial of α over K. We say that the unique representation of any element $A \in K(\alpha)$

$$
A(x)=\sum_{i=0}^{d-1} a_{i} x^{i}+\left\langle m_{\alpha}(x)\right\rangle, a_{i} \in K
$$

is the normal representation of A and sometimes write it as $A(\alpha)$.
Definition 1.11. Let K be a subfield of E and let $\alpha \in E$ be algebraic over K of degree n. The degree of $K(\alpha)$ over K, denoted $[K(\alpha): K]$, is defined as $[K(\alpha): K]=n$. More generally, if E is an extension of K, we denote by $[E: K$] the dimension of E viewed as a vector space over K and call it the degree of E over K.

Lemma 1.12. Let F be a subfield of a field K and let K be a subfield of a field E. Then

$$
[E: F]=[E: K] \cdot[K: F] .
$$

Proof. See, for example, Gaal [9, Theorem, p. 34].
Example 1.13. Let us find $[\mathbb{Q}(\sqrt{2}, \sqrt{5}): \mathbb{Q}]$. Applying Lemma 1.12, we have

$$
[\mathbb{Q}(\sqrt{2}, \sqrt{5}): \mathbb{Q}]=[\mathbb{Q}(\sqrt{2}, \sqrt{5}): \mathbb{Q}(\sqrt{5})] \cdot[\mathbb{Q}(\sqrt{5}): \mathbb{Q}] .
$$

Since $[\mathbb{Q}(\sqrt{5}): \mathbb{Q}]=\operatorname{deg}_{\mathbb{Q}}(\sqrt{5})=\operatorname{deg}_{x}\left(x^{2}-5\right)=2$ and noting that $x^{2}-2$ is irreducible over $\mathbb{Q}(\sqrt{5})$,

$$
[\mathbb{Q}(\sqrt{2}, \sqrt{5}): \mathbb{Q}(\sqrt{5})]=[\mathbb{Q}(\sqrt{2})(\sqrt{5}): \mathbb{Q}(\sqrt{5})]=\operatorname{deg}_{x}\left(x^{2}-2\right)=2,
$$

we conclude that $[\mathbb{Q}(\sqrt{2}, \sqrt{5}): \mathbb{Q}]=2 \cdot 2=4$. One can also argue that, since $\{1, \sqrt{2}, \sqrt{5}, \sqrt{2} \sqrt{5}\}$ is a basis for the vector space $\mathbb{Q}(\sqrt{2}, \sqrt{5})$ and it has dimension 4 , $[\mathbb{Q}(\sqrt{2}, \sqrt{5}): \mathbb{Q}]=4$.

Throughout this thesis, we will denote by m_{i} the minimal polynomial of α_{i} and D the degree of $K=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ over \mathbb{Q}. Since m_{i} is irreducible over $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$, it follows from Lemma 1.12 that $D=\prod_{i=1}^{t} \operatorname{deg}\left(m_{i}\right)$. The cost of arithmetic in K will depend on D.

Definition 1.14. Let $f(x)$ be a polynomial over K. A field extension E over K in which $f(x)$ factors into linear factors is called a splitting field of $f(x)$ over K.

Definition 1.15. Let R be a commutative ring. A polynomial $f \in R\left[x_{1}, \ldots, x_{n}\right]$ is square-free if and only if no square polynomial of non-zero degree divides f. That is, if f is square-free then no polynomial $g \in R\left[x_{1}, \ldots, x_{n}\right]$ with $g \notin R$ exists such that $g^{2} \mid f$.

Theorem 1.16. Let $f(x)$ be a non-constant polynomial in $K[x]$ where K is a field of characteristic 0 . Then $f(x)$ is square-free if and only if $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=1$, where $f^{\prime}(x)$ is the derivative of $f(x)$ with respect to x.

Proof. Suppose that $f(x)$ is not square-free. Then it can be written as $f(x)=g(x)^{2}$. $h(x)$ where g is a polynomial of degree greater than zero. Differentiating f with respect to x, we have

$$
f^{\prime}(x)=2 g(x) g^{\prime}(x) h(x)+g(x)^{2} h^{\prime}(x)=g(x)\left(2 g^{\prime}(x) h(x)+g(x) h^{\prime}(x)\right) .
$$

Thus $f(x)$ and $f^{\prime}(x)$ have a non-trivial gcd since $g(x)$ divides them both. Thus if $\operatorname{gcd}\left(f, f^{\prime}\right)=1$ then f is square-free.

On the other hand, if f is square-free we can write it as $f(x)=\prod_{i=1}^{n} f_{i}(x)$ where the $f_{i}(x)$'s are non-constant pairwise relatively prime irreducible polynomials. Again, differentiating $f(x)$ with respect to x, we get

$$
f^{\prime}(x)=\sum_{i=1}^{n}\left(f_{i}^{\prime}(x) \prod_{j=1, j \neq i}^{n} f_{j}(x)\right)
$$

Observe that f_{i} divides all the summands of $f^{\prime}(x)$ except the i-th. Because K has characteristic $0, f_{i}^{\prime}(x) \neq 0$ since $f_{i}(x)$ is a non-constant polynomial. Hence $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=1$.

We remark that Theorem 1.16 does not generalize to polynomials over commutative rings. For example, consider the polynomial $f(x)=x^{3}+t \in F_{3}(t)[x]$. Since $f^{\prime}(x)=0$, we have $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=x^{3}+t$. However, $f(x)$ is an irreducible (hence square-free) polynomial. In our algorithm, we discard any polynomial f for which
$\operatorname{gcd}\left(f, f^{\prime}\right) \in \mathbb{F}_{p}\left[u_{1}, \cdots, u_{t}\right] /\left\langle M_{1}, \cdots, M_{t}\right\rangle[x]$ does not equal 1 (see Algorithm 6.1 Line 12) even if f is a square-free polynomial. This scheme does not cause an increase in the overall complexity of the algorithm.

One way to compute a primitive element of a multiple extension is by computing resultants, which we define below.

Definition 1.17. Let R be a commutative ring and let $f(x), g(x) \in R[x] \backslash\{0\}$ with $f(x)=\sum_{i=0}^{m} a_{i} x^{i}$ and $g(x)=\sum_{i=0}^{n} b_{i} x^{i}$. The Sylvester matrix of f and g, denoted $\operatorname{Syl}_{x}(f, g)$, is the $(m+n)$ by $(m+n)$ matrix

$$
\operatorname{Syl}_{x}(f, g)=\left[\begin{array}{ccccccc}
a_{m} & a_{m-1} & \cdots & a_{1} & a_{0} & & \\
& a_{m} & a_{m-1} & \cdots & a_{1} & a_{0} & \\
& & & \vdots & & & \\
& & & a_{m} & \cdots & \cdots & a_{0} \\
b_{n} & b_{n-1} & \cdots & b_{1} & b_{0} & & \\
& b_{n} & b_{n-1} & \cdots & b_{1} & b_{0} & \\
& & & \vdots & & & \\
& & & b_{n} & \cdots & \cdots & b_{0}
\end{array}\right],
$$

where the first n rows consist of the coefficients of $f(x)$, the remaining m rows consist of the coefficients of $g(x)$, and the entries not shown are zero.

Definition 1.18. Let R be a commutative ring and let $f, g \in R[x]$. The resultant of f and g with respect to x, written $\operatorname{res}_{x}(f, g)$, is the determinant of $\operatorname{Syl}_{x}(f, g)$.

We now list some properties of resultants as theorems and lemmas.
Theorem 1.19. Let R be a commutative ring and let $f, g \in R[x]$ with nonzero degrees m and n respectively. Then
(i) $\operatorname{res}(f, g)=(-1)^{m n} \operatorname{res}(g, f)$.
(ii) If R is an integral domain and $g(x)=b_{n} \prod_{i=1}^{n}\left(x-\beta_{i}\right)$ then

$$
\operatorname{res}(f, g)=b_{n}^{m} \prod_{i=1}^{n} f\left(\beta_{i}\right)
$$

Proof. See Geddes et al. [11, Theorem 9.2, p. 408] and Zippel [22, p. 142].
Lemma 1.20. Let R be a commutative ring, $f(x) \in R[x]$, and $g(x, y) \in R[x][y]$. If $\operatorname{deg}_{y}(g)=n>0$ and $\operatorname{deg}_{x}(g)=0$ then $\operatorname{res}_{y}(f(x), g(y))=(f(x))^{n}$.

Proof. The Sylvester matrix formed by f and g (in y) is a diagonal matrix of the form:

$$
\operatorname{Syl}_{y}(f(x), g(y))=\left[\begin{array}{cccc}
f(x) & 0 & \cdots & 0 \\
0 & f(x) & \cdots & 0 \\
& \vdots & & \\
0 & 0 & \cdots & f(x)
\end{array}\right]=(f(x))^{n} .
$$

Theorem 1.21. Let J be an integral domain and let $f(x), g(x) \in J[x]$ have degrees m and n respectively with $m+n \geq 1$. Then there exist $s(x), t(x) \in J[x]$ with $\operatorname{deg}(s)<n$ and $\operatorname{deg}(t)<m$ such that $f(x) s(x)+g(x) t(x)=\operatorname{res}(f, g)$.

Proof. See Geddes et al. [11, Theorem 7.1, p. 287].
Corollary 1.22. Let U be a UFD and let $f(x), g(x) \in U[x]$, not both zero. Then f and g have a non-trivial common factor if and only if $\operatorname{res}_{x}(f, g)=0$.

Proof. If $\operatorname{res}(f, g) \neq 0$ then, by a consequence of Theorem 1.21, any common factor of f and g must divide $\operatorname{res}(f, g)$. But since $\operatorname{res}(f, g)$ belongs to U, a common factor of f and g must have degree 0 . So there cannot be any non-trivial factors. Conversely, if $\operatorname{res}(f, g)=0$ then, again, Theorem 1.21 tells us that $f(x) s(x)=-g(x) t(x)$ with $\operatorname{deg}(s)<\operatorname{deg}(g)$ and $\operatorname{deg}(t)<\operatorname{deg}(f)$. Suppose for contradiction that $f(x)$ and $g(x)$ do not have a non-trivial common factor. Then $g(x)$ must divide $s(x)$. However $\operatorname{deg}(s)<\operatorname{deg}(g)$, so this is impossible.

Remark 1.23. Let K be a field of characteristic 0. Corollary 1.22 and Theorem 1.16 imply that $f \in K[x]$ is square-free if and only if $\operatorname{res}_{x}\left(f(x), f^{\prime}(x)\right) \neq 0$.

One can use resultants to compute norms, which we define below.

Definition 1.24. Let $h(x, \alpha)$ belong to $K(\alpha)[x]$ where K is a field of characteristic 0 , and let $m_{\alpha}(x) \in K[x]$ be the minimal polynomial of α over K. The norm of h, denoted by $\operatorname{norm}_{[K(\alpha)[x] / K[x]]}(h(x, \alpha))$, is

$$
\operatorname{norm}_{[K(\alpha)[x] / K[x]]}(h(x, \alpha)):=\prod_{i=1}^{n} h\left(x, \alpha_{i}\right)
$$

where $\alpha_{1}=\alpha, \alpha_{2}, \ldots, \alpha_{n}$ are conjugates of α over K in an algebraic closure of K.
When the minimal polynomial of α is clear from context, we simply write norm (\cdot). The following theorem describes a relationship between resultants and norms.

Theorem 1.25. Let K be a field of characteristic 0. Further let $h(x, \alpha)$ be a monic polynomial over $K(\alpha)$ and let $m_{\alpha}(y) \in K[y]$ be the minimal polynomial of α over K. Then

$$
\operatorname{norm}(h(x, \alpha))=\operatorname{res}_{y}\left(h(x, y), m_{\alpha}(y)\right) \in K[x] .
$$

Proof. Let the roots of $m_{\alpha}(y)$ be $\alpha_{1}=\alpha, \ldots, \alpha_{n}$. By Theorem 1.19, $\operatorname{res}_{y}\left(h(x, y), m_{\alpha}(y)\right)=\prod_{i=1}^{n} h\left(x, \alpha_{i}\right)$, which, by definition, is equal to $\operatorname{norm}(h(x, \alpha))$. Clearly, norm $(h(x, \alpha))$ belongs to $K[x]$, since taking the resultant of $h(x, y) \in K[x, y]$ and $m_{\alpha}(y) \in K[y]$ with respect to y eliminates the variable y.

Example 1.26. Let $K(\alpha)=\mathbb{Q}(\sqrt{2})$. Then $m_{\alpha}(y)=y^{2}-2$ and the conjugates of $\alpha=\sqrt{2}$ are $\sqrt{2},-\sqrt{2}$. If $h(x, \alpha)=x^{4}-\alpha x^{2}+5$, then

$$
\begin{aligned}
\operatorname{norm}(h(x, \alpha)) & =h(x, \sqrt{2}) \cdot h(x,-\sqrt{2}) \\
& =x^{8}+10 x^{4}-\alpha^{2} x^{4}+25 \\
& =x^{8}+8 x^{4}+25 \\
& =\operatorname{norm}(h(x,-\alpha)) \in \mathbb{Q}[x] .
\end{aligned}
$$

Furthermore,

$$
\operatorname{res}_{y}\left(h(x, y), m_{\alpha}(y)\right)=\operatorname{det}\left(\left[\begin{array}{ccc}
-x^{2} & x^{4}+5 & 0 \\
0 & -x^{2} & x^{4}+5 \\
1 & 0 & -2
\end{array}\right]\right)=x^{8}+8 x^{4}+25=\operatorname{norm}(h(x, \alpha)),
$$

as expected.

1.2 The Polynomial Representation

In what follows, let $K=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right) \cong \mathbb{Q}\left[u_{1}, \ldots, u_{t}\right] /\left\langle m_{1}, \ldots, m_{t}\right\rangle$ where $m_{1}\left(u_{1}\right) \in \mathbb{Q}\left[u_{1}\right]$ is the minimal polynomial for α_{1} over $\mathbb{Q}, m_{i}\left(u_{i}\right) \in \mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)\left[u_{i}\right]$ is the minimal polynomial for α_{i} over $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$, and $f, g \in K[x]$. In this chapter, we introduce the data structure we will use to represent f and g.

1.2.1 The recden representation

We will represent each α_{i} by the variable u_{i}. Hence f and g will be stored as t-variate polynomials in $\mathbb{Q}\left[u_{1}, \ldots, u_{t}\right] /\left\langle m_{1}, \ldots, m_{t}\right\rangle[x]$. Since f and g can be dense polynomials, we will use a recursive dense (recden package in Maple) data structure to represent them. The recden data structure takes as input a polynomial together with information about the polynomial ring and outputs a recursive list that represents the polynomial.

Example 1.27. Let $f(x)=8 \sqrt[3]{5} x^{2}-4(\sqrt[3]{5})^{2} \sqrt{3}+13 \in \mathbb{F}_{7}(\sqrt[3]{5}, \sqrt{3})[x]$. Observe that f can be equivalently expressed as $f(x, y, z)=8 x^{2} y-4 y^{2} z+13 \in \mathbb{F}_{7}[y, z] /\left\langle y^{3}-5, z^{2}-\right.$ $3\rangle[x]$. We can represent f using the recden data structure in Maple as follows:

```
> f:= 8*x^2*y - 4*z*y^2 +13:
> F:=rpoly(f,[x,y,z],[z=RootOf(a^2-3), y=RootOf(a^3-5)],7);
    F:=( (x y + 6+3zy2) mod \langle y 3}+2, z' 2 +4,7
> lprint(F);
POLYNOMIAL([7, [x, y, z], [[[2], 0, 0, [1]], [4, 0, 1]]],
[[[6], 0, [0, 3]], 0, [0, [1]]])
```

The first list $[7,[\mathrm{x}, \mathrm{y}, \mathrm{z}],[[[2], 0,0,[1]],[4,0,1]]]$ provides information about the polynomial ring, namely the characteristic, the list of variables, and a list of the minimal polynomials in recden representation. The second list $[[[6], 0,[0,3]], 0,[0,[1]]]$ is the recden representation of f, as depicted in Figure 1.2.

Figure 1.2: The recden representation of f in Example 1.27

Observe the recursive nature of this data structure and the importance in the ordering of the variables. It is a "dense" representation because some zero coefficients of $x^{i} y^{j} z^{k}$ (for $i=0,1,2, j=0,1,2$, and $k=0,1$) are stored. For example, the coefficient of x^{1} is 0 so it does not recurse on this coefficient. We also remark that this polynomial representation is not unique to Maple. A recursive dense data structure in Magma can be constructed using the command quo:

```
Q := RationalField();
K<z> := PolynomialRing(Q); # build the polynomial ring Q[z]
m := z^2-2;
L<a> := quo<K|m>; # build the field Q[z]/<m>
K2<y> := PolynomialRing(L); # build the polynomial ring Q[z,y]/<m>
m2 := y^2+a*y+1;
L2<b> := quo<K2|m2>; # build the field Q[z,y]/<m,m2>
f := a+b;
g := 2*a+b+1;
f*g;
(2*a + 1)*b + a + 3
P<x> := PolynomialRing(L2); # build the poly. ring Q [z,y]/<m,m2>[x]
```

```
f := x+a+b+1;
g := a*x+b+2;
f*g;
a*x^2 + ((a + 1)*b + (a + 4))*x + 3*b + 2*a + 1
```


Chapter 2

Working modulo p

Let $m_{1}\left(u_{1}\right) \in \mathbb{Q}\left[u_{1}\right]$ be the minimal polynomial for α_{1} over \mathbb{Q} let $m_{i}\left(u_{i}\right) \in$ $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)\left[u_{i}\right]$ be the minimal polynomials for α_{i} over $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right), 2 \leq i \leq t$. Multiplying polynomials in $K[x]=\mathbb{Q}\left[u_{1}, \ldots, u_{t}\right] /\left\langle m_{1}, \ldots, m_{t}\right\rangle[x]$ is relatively expensive partly due to expression swell in the size of the rationals. To control the swell, we shall make use of modular homomorphisms.

A basic tool in elementary number theory and computer algebra is the ring homomorphism $\Phi_{p}: \mathbb{Z} \mapsto \mathbb{F}_{p}$, where p is a prime. This morphism naturally extends to a homomorphism $\mathbb{Z}\left[u_{1}, \ldots, u_{t}\right] \mapsto \mathbb{F}_{p}\left[u_{1}, \ldots, u_{t}\right]$ via coefficient-wise application, which we also denote by Φ_{p}. It follows that for any ideal $\left\langle m_{1}, \ldots, m_{t}\right\rangle \subset \mathbb{Z}\left[u_{1}, \ldots, u_{t}\right]$ where the m_{i} 's form a triangular set so that $m_{i} \in \mathbb{Z}\left[u_{1}, \cdots, u_{i-1}\right]\left[u_{i}\right]$, and $\operatorname{lcoeff}_{u_{i}}\left(m_{i}\right)=1$, we get a ring $\mathbb{Z}\left[u_{1}, \ldots, u_{t}\right] /\left\langle m_{1}, \ldots, m_{t}\right\rangle$ and a corresponding homomorphism

$$
\begin{aligned}
\mathbb{Z}\left[u_{1}, \ldots, u_{t}\right] /\left\langle m_{1}, \ldots, m_{t}\right\rangle \mapsto & \mathbb{F}_{p}\left[u_{1}, \ldots, u_{t}\right] /\left\langle\Phi_{p}\left(m_{1}\right), \ldots, \Phi_{p}\left(m_{t}\right)\right\rangle \\
& \cong \mathbb{Z}\left[u_{1}, \ldots, u_{t}\right] /\left\langle p, m_{1}, \ldots, m_{t}\right\rangle
\end{aligned}
$$

which is denoted yet again by Φ_{p}. The context will clarify which Φ_{p} we mean. Many computational tasks in $\mathbb{Z}\left[u_{1}, \ldots, u_{t}\right] /\left\langle m_{1}, \ldots, m_{t}\right\rangle$ can be solved by performing the tasks on the images under various Φ_{p}. The original answer can later be constructed by applying the Chinese Remainder Theorem. In Section 2.1, we will investigate to what extent the homomorphism Φ_{p} can be extended to \mathbb{Q}. In Section 2.2 we discuss the Chinese Remainder Theorem and rational number reconstruction, which is used for reconstructing the rational answers. In Section 2.3 we show by example how we
will use this method for the purpose of polynomial multiplication.

2.1 Modular homomorphism

Not all elements in \mathbb{Q} can be mapped to \mathbb{F}_{p} for prime p. In particular, any element in \mathbb{Q} whose denominator is divisible by p cannot be mapped. For example, if $m_{1}(x)=x^{2}-\frac{3}{55}$ then $p=5$ and $p=11$ cannot be used since $\Phi_{11}\left(m_{1}\right)$ and $\Phi_{5}\left(m_{1}\right)$ are not defined. On the other hand, if the denominator $r \in \mathbb{Z}$ is not divisible by p then $\Phi_{p}(r)$ is invertible in \mathbb{F}_{p}, so we can extend Φ_{p} to $\mathbb{Z}[1 / r]$ by prescribing

$$
\Phi_{p}(1 / r):=\left(\Phi_{p}(r)\right)^{-1} .
$$

The subset of \mathbb{Q} consisting of 0 and elements whose denominators are not divisible by p is a subring of \mathbb{Q}, and it is called the localization of \mathbb{Z} at the prime ideal $\langle p\rangle$. It is denoted by

$$
\mathbb{Z}_{\langle p\rangle}:=\mathbb{Z}[1 / r: r \text { prime, } r \neq p]=\mathbb{Q} \backslash\{n / d: p \mid d, p \nmid n, d \neq 0\} .
$$

The ring $\mathbb{Z}_{\langle p\rangle}$ has a unique maximal ideal $p \mathbb{Z}_{\langle p\rangle}$ and by construction $\mathbb{Z}_{\langle p\rangle} / p \mathbb{Z}_{\langle p\rangle} \cong$ $\mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p}$ so the homomorphism $\Phi_{p}: \mathbb{Z} \mapsto \mathbb{F}_{p}$ naturally extends to $\Phi_{p}: \mathbb{Z}_{\langle p\rangle} \mapsto \mathbb{F}_{p}$. It is straightforward to check that any element $a \in \mathbb{Q} \backslash \mathbb{Z}_{\langle p\rangle}$ is the inverse of an element $b \in \mathbb{Z}_{\langle p\rangle}$ with $\Phi_{p}(b)=0$. This shows that Φ_{p} cannot be extended to any subring of \mathbb{Q} bigger than $\mathbb{Z}_{\langle p\rangle}$.

In our setting, we are given $f, g, m_{1}, \ldots, m_{t} \in \mathbb{Q}\left[u_{1}, \ldots, u_{t}\right]$ and we are interested in computing a representative of the residue class of $f \cdot g$ in $\mathbb{Q}\left[u_{1}, \ldots, u_{t}\right] /\left\langle m_{1}, \ldots, m_{t}\right\rangle$. Since there are only finitely many coefficients in $f, g, m_{1}, \ldots, m_{t}$, there are only finitely many primes that occur in any of their denominators. Hence we have $f, g, m_{1}, \ldots, m_{t} \in$ $\mathbb{Z}_{\langle p\rangle}\left[u_{1}, \ldots, u_{t}\right]$ for all but finitely many p. If p is a prime such that $f, g, m_{1}, \ldots, m_{t} \notin$ $\mathbb{Z}_{\langle p\rangle}\left[u_{1}, \ldots, u_{t}\right]$, then we say that it is a bad prime. For any non-bad prime p, we can study the class of $\Phi_{p}(f \cdot g)$ in $\mathbb{F}_{p}\left[u_{1}, \ldots, u_{t}\right] /\left\langle\Phi_{p}\left(m_{1}\right), \ldots, \Phi_{p}\left(m_{t}\right)\right\rangle$ and use fast multiplication techniques for polynomials over finite fields (Chapters 3 and 6). We repeat this procedure for several primes p, then use the Chinese remainder Theorem and rational number reconstruction to lift the answer back to our original quotient $\operatorname{ring} \mathbb{Q}\left[u_{1}, \ldots, u_{t}\right] /\left\langle m_{1}, \ldots, m_{t}\right\rangle$.

As it turns out, we need to impose additional conditions on our primes p in order for efficient multiplication techniques to apply. We explain these conditions below.

In our original description, we consider a triangular system m_{1}, \ldots, m_{t} and write α_{i} for the residue class of u_{i} in $\mathbb{Q}\left[u_{1}, \ldots, u_{i}\right] /\left\langle m_{1}, \ldots, m_{i}\right\rangle$. Furthermore, we insist that each such quotient ring is a field, so each polynomial $m_{i}\left(\alpha_{1}, \ldots, \alpha_{i-1}, u_{i}\right) \in$ $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)\left[u_{i}\right]$ must be irreducible and hence certainly square-free. For ease of notation, suppose that p is a non-bad prime and consider the induced reduction homomorphism (which we call modular homomorphism)

$$
\Phi_{p}: \mathbb{Z}_{\langle p\rangle}\left[u_{1}, \ldots, u_{t}\right] /\left\langle m_{1}, \ldots m_{t}\right\rangle \mapsto \mathbb{F}_{p}\left[u_{1}, \ldots, u_{t}\right] /\left\langle\Phi_{p}\left(m_{1}\right), \ldots, \Phi_{p}\left(m_{t}\right)\right\rangle
$$

and write $\bar{\alpha}_{i}:=\Phi_{p}\left(\alpha_{i}\right)$. Insisting that the monic $m_{i}\left(\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{i-1}, u_{i}\right)$ is irreducible over
$\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{i-1}\right]$ turns out to be too restrictive and computationally expensive to check, but we do impose that it is square-free. The reason for this restriction is explained in Chapter 6. Primes that do not satisfy the square-free condition for some m_{i} are called fail primes. A non-bad, non-fail prime is called a good prime.

If m_{1}, \ldots, m_{t} are monic and have integral coefficients then algebraic number theory associates to a ring $\mathbb{Z}\left[\alpha_{1}, \ldots, \alpha_{t}\right] \cong \mathbb{Z}\left[u_{1}, \ldots, u_{t}\right] /\left\langle m_{1}, \ldots, m_{t}\right\rangle$ an integer called a discriminant whose definition can be found in, for example, Lang [12, pp. 64-66]. A prime p is a fail prime if and only if it divides the discriminant of the ring. One can extend this notion to more general m_{i}. The important observation for us is that primes are fail primes only if they divide an integer that depends only on m_{1}, \ldots, m_{t} and hence there are only finitely many fail primes.

2.2 Chinese Remainder Theorem \& rational number reconstruction

Let $f, g \in K[x]=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right)[x]$. Furthermore let p_{1}, \ldots, p_{k} be good primes and suppose that we computed $h_{i}=\Phi_{p_{i}}(f) \cdot \Phi_{p_{i}}(g) \in \mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{t}\right][x]$ for $1 \leq i \leq k$. To recover the product $f \cdot g$ as a polynomial in $K[x]$, one can apply Chinese Remainder Theorem and rational reconstruction to the h_{i} 's.

The integer Chinese remainder problem can be stated as follows:

Given moduli $m_{0}, \ldots, m_{k} \in \mathbb{Z}$ and the corresponding residues $u_{i} \in \mathbb{F}_{m_{i}}$ for $1 \leq i \leq k$, find an integer $u \in \mathbb{Z}$ satisfying $u \equiv u_{i} \bmod m_{i}$.

An algorithm for solving the Chinese remainder problem is the "inverse" of the modular homomorphism, since it reconstructs the integer u from the residues $u_{i} \equiv u$ $\bmod m_{i}$.

The following theorem provides the sufficient condition for which the Chinese remainder problem can be solved with a unique solution.

Theorem 2.1. Let $m_{0}, m_{1}, \ldots, m_{k} \in \mathbb{Z}$ be pairwise relatively prime. Further, let $u_{i} \in \mathbb{F}_{m_{i}}$ for $1 \leq i \leq k$ be the $k+1$ residues. Then there exists a unique integer $u \in \mathbb{Z}$ satisfying

$$
\begin{aligned}
& u \equiv u_{i} \quad \bmod m_{i} \quad \text { for } 0 \leq i \leq k \text { and } \\
& 0 \leq u<m_{0} \cdot m_{1} \ldots m_{k} .
\end{aligned}
$$

Proof. See Geddes et al. [11, Theorem 5.7, p. 175].
The Chinese remainder theorem generalizes to any finitely generated torsion-free \mathbb{Z} module. We will apply it to the coefficients of polynomials in $\mathbb{F}_{p_{i}}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{t}\right][x]$ for primes p_{1}, \ldots, p_{k}. Since the moduli p_{1}, \ldots, p_{k} are relatively prime, Theorem $2.1 \mathrm{im}-$ plies that given $h_{i}(x)=\Phi_{p_{i}}(f) \cdot \Phi_{p_{i}}(g) \in \mathbb{F}_{p_{i}}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{t}\right][x]$ for $1 \leq i \leq k$, we can find a unique $h(x)$ satisfying $h(x) \equiv h_{i}(x) \bmod p_{i}$ for $1 \leq i \leq k$, where the coefficients of $h(x)$ lie between 0 and $m-1$ inclusive, where $m=p_{1} p_{2} \cdots p_{k}$.

Once we obtain $h(x)$, we must find the rational coefficients of $f \cdot g$, which currently belong to \mathbb{F}_{m}. We accomplish this using rational number reconstruction on the coefficients of $h(x)$.

The rational number reconstruction problem can be stated as follows:

$$
\begin{aligned}
& \text { Let } \frac{n}{d} \in \mathbb{Q} \text { with } \operatorname{gcd}(n, d)=1 \text { and } m \in \mathbb{Z} \text { be the modulus with } \\
& \operatorname{gcd}(m, d)=1 \text {. If } u \equiv \frac{n}{d} \bmod m \text {, recover } \frac{n}{d} \text { from } u \text { and } m \text {. }
\end{aligned}
$$

We use the Euclidean algorithm to recover n and d given u and m. Recall that on input of m and u, the extended Euclidean algorithm computes a sequence of integers r_{i}, s_{i}, and t_{i} satisfying

$$
\begin{aligned}
& r_{0}=m, s_{0}=1, t_{0}=0, \\
& r_{1}=u, s_{1}=0, t_{1}=1, \text { and } \\
& s_{i} \cdot m+t_{i} \cdot u=r_{i} \text { for } i>1 .
\end{aligned}
$$

Thus the rationals $\frac{r_{i}}{t_{i}}$ with $\operatorname{gcd}\left(t_{i}, m\right)=1$ satisfy $\frac{r_{i}}{t_{i}} \equiv u \bmod m$. The following theorem states that if the modulus m is "large enough", then one of the $\frac{r_{i}}{t_{i}}$'s is equal to $\frac{n}{d}$.

Theorem 2.2. (Wang et al. [20]) If $m>2|n \cdot d|$ then there exists $i \in \mathbb{N}$ such that $\frac{r_{i}}{t_{i}}=\frac{n}{d}$.

The question then is, how do we select $\frac{n}{d}$ from the $\frac{r_{i}}{t_{i}}$,s? The approach taken by Wang et al. [20] requires input bounds $D>|d|$ and $N>|n|$. However, we will use the algorithm of Monagan [15] which does not require bounds and succeeds with high probability when m is a few (≈ 30) bits longer than $2|n \cdot d|$. Since both algorithms use the Extended Euclidean algorithm, the cost of rational number reconstruction of $\frac{n}{d}$ from $u \in \mathbb{F}_{m}$ is $\mathcal{O}\left((\log m)^{2}\right)$. Both algorithms are implemented in Maple's iratrecon command and irrrpoly command (for the recden data structure).

2.3 New multiplication strategy

We now illustrate our multiplication strategy using an example.
Example 2.3. Let $K=\mathbb{Q}\left[u_{1}, u_{2}\right] /\left\langle u_{1}^{2}-2, u_{2}^{2}-5\right\rangle \cong \mathbb{Q}(\sqrt{2}, \sqrt{5})[x]$. Furthermore let

$$
f(x)=\frac{2}{7} x^{2}-2 u_{1} x+\frac{19}{11} u_{2} \in K[x], \text { and } g(x)=\frac{6}{121} x^{2}+\frac{1}{3} u_{2} u_{1} x-\frac{51}{2}+u_{2} \in K[x] .
$$

We first note that the answer we seek is

$$
\begin{aligned}
h(x)=f(x) \cdot g(x)= & \frac{12}{847} x^{4}+\left(\frac{2}{21} u_{2}+\frac{12}{121}\right) u_{1} x^{3}+\left(\frac{47648}{27951} u_{2}-\frac{51}{7}\right) x^{2} \\
& +\left(2 u_{2}-\frac{1588}{33}\right) u_{1} x-\frac{969}{22} u_{2}+\frac{95}{11} .
\end{aligned}
$$

To find the product of f and g, we apply a modular homomorphism on f and g. Let $|n|$ and $|d|$ denote the maximum coefficients (in magnitude) in the numerator and the denominator of the product, respectively. We remark that one can compute a bound on $|n|$ and $|d|$ by examining the coefficients appearing in $f(x)$ and $g(x)$. Recall that we must choose the modulus $m=\prod_{i=1}^{k} p_{i}$ to be a few bits larger than $2|n \cdot d|$ in order for the rational reconstruction to succeed (Monagan [15]). In this example, $2|n \cdot d|=$
$2|47648 \cdot 27951|=2663618496$. Let $p_{1}=101, p_{2}=103, p_{3}=107, p_{4}=113, p_{5}=131$, and $p_{6}=137$. Then $m=\prod_{i=1}^{6} p_{i}=2257421632331>2|n \cdot d|$. We compute the product of f and g modulo these primes in Maple as follows.

```
> f:=2/7*x^2 + 2*u_1*x + 19/11*u_2:
> g:= 6/121*x^2 + 1/3 *u_2*u_1*x - 51/2 + u_2:
> p:=[101,103,107,113,131,137]:
> FGp:=Array(1..nops(p)):
> vars:=[x,u_1,u_2]:
> r:= [u_1=RootOf(x^2-2), u_2=RootOf(x^2-5)]:
> for i from 1 to nops(p) do
> Fp:= rpoly(f,vars,r,p[i]):# modular homomorphism (f mod p[i])
> Gp:= rpoly(g,vars,r,p[i]):# modular homomorphism (g mod p[i])
> FGp[i]:= mulrpoly(Fp,Gp); # Fp x Gp (over K mod p[i])
> FGp[i]:= retextsrpoly(FGp[i]); # Make FGp[i] an element of
# Zp[x,u_1,u_2] (i.e. drop extensions)
> od:
```

Now we use Chinese remaindering to find the product mod m, where m is the product of primes in the list p .

```
> fg:= ichremrpoly(convert(FGp,list));
    fg:= 538369739942x 4}+(859970145650u\mp@subsup{u}{2}{}+1511166547263) u\mp@subsup{u}{1}{}\mp@subsup{x}{}{3
    +(225249505657u + 1934932827705) 午+(2u + 1162914174183) u}\mp@subsup{u}{1}{}
    +718270519334u}\mp@subsup{u}{2}{}+1231320890371 \operatorname{mod}225742163233
```

Finally we apply rational number reconstruction on fg .

$$
\begin{aligned}
& >\text { FGrat }:=\text { irrrpoly(fg); } \\
& \qquad \begin{aligned}
\text { FGrat }:=\frac{12}{847} x^{4}+\left(\frac{2}{21} u_{2}+\frac{12}{121}\right) u_{1} x^{3}+\left(\frac{47648}{27951} u_{2}-\frac{51}{7}\right) x^{2}+\left(2 u_{2}-\frac{1588}{33}\right) u_{1} x \\
\\
\quad-\frac{969}{22} u_{2}+\frac{95}{11}
\end{aligned}
\end{aligned}
$$

Chapter 3

Fast multiplication using the FFT

We will use the Fast Fourier Transform (FFT) to efficiently multiply polynomials in $K_{p}[x]=\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{t}\right][x]$. In Sections 3.1 and 3.2 we describe the FFT and the inverse FFT. In Section 3.4 we explain how they can be used to speed up the multiplication process.

3.1 The Fast Fourier Transform (FFT)

Let $a(x)=\sum_{i=0}^{n-1} a_{i} x^{i} \in R[x]$ where R is a ring and let N be the smallest power of 2 greater than or equal to n. The idea of the FFT is to evaluate $a(x)$ at N points using $\mathcal{O}(N \log N)$ arithmetic operations in R. As a comparison, the cost of these N evaluations using the classical Horner's method requires $\mathcal{O}\left(N^{2}\right)$ multiplications and $\mathcal{O}\left(N^{2}\right)$ additions in R. To explain the FFT algorithm, we first need some definitions and lemmas.

Definition 3.1. Let F be a field, $N \in \mathbb{N}$, and $\omega \in F$. We say that ω is an \mathbf{N}-th root of unity if $\omega^{N}=1$. Moreover, we say that ω is a primitive N-th root of unity if $\omega^{N}=1$ and $\omega^{k} \neq 1$ for $0<k<N$. The set of N points $\left\{1, \omega, \omega^{2}, \ldots, \omega^{N-1}\right\}$ are called Fourier points.

We remark that if $\omega \in F$ is a primitive N-th root of unity, then $\omega^{-1}=\omega^{N-1} \in F$, since $\omega^{-1}=\omega^{N-1}$.

Lemma 3.2. Let ω be a primitive N-th root of unity in F where N is even. Then the N Fourier points $\left\{1, \omega, \omega^{2}, \ldots, \omega^{N-1}\right\}$ satisfy the symmetry condition $\omega^{N / 2+i}=-\omega^{i}$. Furthermore, ω^{2} is a primitive $(N / 2)^{\text {th }}$ root of unity.

Proof. See Geddes et al. [11, Lemmas 4.2 \& 4.3, pp. 125-126].
Lemma 3.2 implies that if $N=2^{k}$ for some positive integer k, then the Fourier points recursively satisfy the symmetry condition; that is, the symmetry condition holds for the set of N points $\left\{1, \omega, \omega^{2}, \ldots, \omega^{N-1}\right\}$, the set of $N / 2$ points $\left\{1, \omega^{2}, \ldots, \omega^{N-2}\right\}$, and so on.

Definition 3.3. We say that a commutative ring R over a field F supports the FFT for $N=2^{k}$ if F has a primitive N-th root of unity.

Definition 3.4. Let $a(x) \in R[x]$ where R is a ring (over a field F) that supports the FFT for N where $N=2^{k} \geq \operatorname{deg}(a)$ for some integer k. Furthermore let ω be a primitive N-th root of unity in F. If a_{i} denotes the coefficient of x^{i} in $a(x)$, then the mapping $T_{\omega}^{N}: R^{N} \mapsto R^{N}$ given by

$$
T_{\omega}^{N}\left(a_{0}, a_{1}, \ldots, a_{N-1}\right)=\left(a(1), a(\omega), \ldots, a\left(\omega^{N-1}\right)\right)
$$

is called the discrete Fourier transform (DFT).
The Fast Fourier Transform is an efficient algorithm that computes the DFT by utilizing the fact that the primitive N-th root of unity satisfies the recursive symmetry condition as follows. Let R be a ring over a field F and let $a(x) \in R[x]$ have degree less than N where $N=2^{k}$. Moreover, let $\omega \in F$ be a primitive N-th root of unity $\in F$. Observe that we can express $a(x)$ as

$$
\begin{equation*}
a(x)=b\left(x^{2}\right)+x c\left(x^{2}\right) \tag{3.1}
\end{equation*}
$$

where $b(y)=\sum_{i=0}^{N / 2-1} a_{2 i} y^{i}$ and $c(y)=\sum_{i=0}^{N / 2-1} a_{2 i+1} y^{i}$. Since $\omega_{N / 2+i}=-\omega_{i}$, we have

$$
\omega_{N / 2+i}^{2}=\omega_{i}^{2} \text { for } 0 \leq i \leq N / 2-1
$$

Hence by evaluating $b(y)$ and $c(y)$ at $N / 2$ points $\omega_{0}^{2}, \omega_{1}^{2}, \ldots, \omega_{N / 2-1}^{2}$, we can evaluate $a(x)$ at the N points $\omega_{0}, \omega_{1}, \ldots, \omega_{N}$, saving approximately half the work.

Algorithm 3.1 returns the DFT of $a(x) \in R[x]$ using the FFT, where R is a commutative ring over a field F that supports the FFT for $N=2^{k}>\operatorname{deg}_{x}(a)$.

Algorithm 3.1: FFT $(a(x), R, N, \omega)$
Input: $a(x)=\sum_{i=0}^{n} a_{i} x^{i} \in R[x]$ where R is a commutative ring over a field F,
N : integer satisfying $n<N=2^{k}$, ω : a primitive N-th root of unity in F.
Output: the Fourier transform of $a(x):\left[a\left(\omega^{0}\right), a\left(\omega^{1}\right), \ldots, a\left(\omega^{N-1}\right)\right] \in R^{N}$.
if $N=1$ then return $\left[a_{0}\right]$; end if
$A \leftarrow$ array of length $N ; \quad W \leftarrow$ array of length $N / 2$;
$b(x) \leftarrow \sum_{i=0}^{N / 2-1} a_{2 i} \cdot x^{i} ; \quad c(x) \leftarrow \sum_{i=0}^{N / 2-1} a_{2 i+1} \cdot x^{i} ;$
$W[0] \leftarrow 1 ;$
for $i=1$ to $N / 2-1$ do $W[i] \leftarrow W[i-1] \cdot \omega$; end for $\left\{\right.$ note: $\left.W[i]=\omega^{i}\right\}$
$B \leftarrow \mathbf{F F T}(b(x), N / 2, W[2]) ;$
$C \leftarrow \mathbf{F F T}(c(x), N / 2, W[2]) ;$
for $i=0$ to $N / 2-1$ do
$T \leftarrow W[i] \cdot C[i] ;$
10: $\quad A[i] \leftarrow B[i]+T ; \quad$ note: $B[i], C[i] \in R\}$
11: $\quad A[N / 2+i] \leftarrow B[i]-T$;
12: end for
13: return A;

Lemma 3.5. Algorithm $\boldsymbol{F F T}$ returns the Fourier transform of $a(x)$.
Proof. Lines 6 and 7 of Algorithm FFT outputs

$$
B=\left[b(1), b\left(\omega^{2}\right), b\left(\omega^{4}\right), \ldots, b\left(\omega^{N-2}\right)\right] \text { and } C=\left[c(1), c\left(\omega^{2}\right), c\left(\omega^{4}\right), \ldots, c\left(\omega^{N-2}\right)\right] .
$$

Further, by Eq. (3.1) and Lemma 3.2,

$$
A[i]=B[i]+W[i] \cdot C[i]=b\left(\omega^{2 i}\right)+\omega^{i} \cdot c\left(\omega^{2 i}\right)=a\left(\omega^{i}\right) \text { for } 0 \leq i<N / 2 \text { and }
$$

$$
\begin{aligned}
A[N / 2+i] & =B[i]-W[i] \cdot C[i] \\
& =b\left(\omega^{2 i}\right)+\left(-\omega^{i}\right) \cdot c\left(\omega^{2 i}\right) \\
& =b\left(\omega^{N+2 i}\right)+\omega^{N / 2+i} \cdot c\left(\omega^{N+2 i}\right) \\
& =b\left(\omega^{2(N / 2+i)}\right)+\omega^{N / 2+i} \cdot c\left(\omega^{2(N / 2+i)}\right) \\
& =a\left(\omega^{N / 2+i}\right) \quad \text { for } 0 \leq i<N / 2 .
\end{aligned}
$$

In other words, $A[i]=a\left(\omega^{i}\right)$ for $i=0, \ldots, N-1$, as required.
In our application, the ring R is equal to $\mathbb{F}_{p}\left[u_{1}, \ldots, u_{t}\right] /\left\langle M_{1}, \ldots, M_{t}\right\rangle$, and $D=$ $\prod_{i=1}^{t} \operatorname{deg}\left(M_{i}\right)$. Thus we analyze the complexity of Algorithm FFT for $R=\mathbb{F}_{p}\left[u_{1}, \ldots, u_{t}\right] /\left\langle M_{1}, \ldots, M_{t}\right\rangle$.

- Line 5: Computing all the required powers of ω^{i} uses $\frac{N}{2}-1$ multiplications in \mathbb{F}_{p}.
- Lines 8-12: $C[i] \in R$, so it has at most $D=\prod_{i=1}^{t} \operatorname{deg}\left(M_{i}\right)$ terms. Hence multiplying $W[i] \in \mathbb{F}_{p}$ by $C[i]$ requires at most D multiplications in \mathbb{F}_{p}. Thus this for-loop requires at most

$$
\sum_{i=0}^{N / 2-1} D=\frac{N D}{2} \text { multiplications in } \mathbb{F}_{p}
$$

Hence if $T(N)$ denotes the number of multiplications (in \mathbb{F}_{p}) in executing Algorithm FFT using the primitive N-th root of unity ω, then $T(N)$ satisfies the recursion

$$
\left\{\begin{array}{l}
T(1)=0 \tag{3.2}\\
T(N)=\left(\frac{N}{2}-1\right)+2 T\left(\frac{N}{2}\right)+\frac{N D}{2}, \quad N \geq 1
\end{array}\right.
$$

Solving (3.2), we obtain

$$
T(N)=\frac{N}{2}(1+D)\left(\log _{2} N\right)+1 \in \mathcal{O}(N D \log N)
$$

3.2 Inverse FFT

Definition 3.6. The inverse discrete Fourier transform (IDFT) for the Fourier points $\left\{1, \omega, \omega^{2}, \ldots, \omega^{N-1}\right\}$ is the mapping

$$
S_{\omega}^{N}\left(q_{0}, q_{1}, \ldots, q_{N-1}\right) \mapsto\left(\tilde{q}_{0}, \tilde{q}_{1}, \ldots, \tilde{q}_{N-1}\right) \text { where } \tilde{q}_{i}=N^{-1} \sum_{k=0}^{N-1} q_{k} \cdot\left(\omega^{-j}\right)^{k}
$$

One can show that DFT and IDFT are inverses of each other, and that IDFT is also a Fourier transform (Geddes et al. [11, Theorem 4.2, pp. 130-132]). In fact, if $T_{\omega}^{N}\left(a_{0}, a_{1}, \ldots, a_{N-1}\right)=\left(\hat{a}_{0}, \hat{a}_{1}, \ldots, \hat{a}_{N-1}\right)$ is a DFT then

$$
S_{\omega}^{N}\left(\hat{a}_{0}, \hat{a}_{1}, \ldots, \hat{a}_{N-1}\right)=N^{-1} T_{\omega}^{N}\left(\hat{a}_{0}, \hat{a}_{1}, \ldots, \hat{a}_{N-1}\right)=\left(a_{0}, a_{1}, \ldots, a_{N-1}\right) .
$$

3.3 Choosing the right prime

In our application, we are interested in finding a primitive N-th root of unity in \mathbb{F}_{p}, where p is a prime. As such, we can only use p in which there exists a primitive N-th root of unity in \mathbb{F}_{p}. We call such primes Fourier primes. The following lemma tells us how to find a Fourier prime.

Lemma 3.7. Let p be a prime. \mathbb{F}_{p} has a primitive N-th root of unity if and only if N divides $p-1$.

Proof. See Geddes et al. [11, Theorem 4.3, p. 133].
In our Maple implementation, we choose p to be between 2^{30} and $2^{31.5}$ so that p is large but all multiplications can be performed using signed integers on a 64 -bit machine without causing overflow. To find a Fourier prime of this magnitude, we will first find the largest integer $M<2^{31.5}$ for which N divides $M-1$. If M is a prime, we have found a Fourier prime by Lemma 3.7. Otherwise, we subtract N from M as many times as necessary, until M is prime.

3.4 Fast multiplication using the FFT

The following lemma explains how to utilize the FFT to speed up the multiplication of polynomials.

Lemma 3.8. Let f and g be polynomials in $R[x]$ where $\operatorname{deg}(f)+\operatorname{deg}(g)<N=2^{k}$ and R is a ring over a field F that supports the FFT for N. Let us write f and g as $f=$ $\sum_{i=0}^{N-1} f_{i} x^{i}$ and $g=\sum_{i=0}^{N-1} g_{i} x^{i}$ and define $\boldsymbol{f}=\left(f_{0}, \ldots, f_{N-1}\right)$ and $\boldsymbol{g}=\left(g_{0}, \ldots, g_{N-1}\right)$. If ω is the primitive N-th root of unity in F, then

$$
T_{\omega}^{N}(\boldsymbol{f} \cdot \boldsymbol{g})=T_{\omega}^{N}(\boldsymbol{f}) \cdot T_{\omega}^{N}(\boldsymbol{g}) \in R^{N}
$$

where \cdot denotes component-wise multiplication.
Proof. See von zur Gathen and Gerhard [18, Lemma 8.11, p. 228-229].
In light of Lemma 3.8 we can use the FFT for multiplying f and g over $K_{p}=$ $\mathbb{F}_{p}\left[u_{1}, \ldots, u_{t}\right] /\left\langle M_{1}, \ldots, M_{t}\right\rangle$ as follows. First compute the Fourier transforms $T_{\omega}^{N}(\mathbf{f})$ and $T_{\omega}^{N}(\mathbf{g})$ using the FFT, then apply component-wise multiplication of the Fourier transforms (that is, perform N multiplications in K_{p}), and finally apply the inverse Fourier transform. Algorithm FFTMult uses the FFT to multiply polynomials in $K_{p}[x]=\mathbb{F}_{p}\left[u_{1}, \ldots, u_{t}\right] /\left\langle M_{1}, \ldots, M_{t}\right\rangle[x]$.

We now present the fast FFT polynomial multiplication algorithm.
Algorithm 3.2: FFTMult $\left(f(x), g(x), K_{p}\right)$
Input: $f(x), g(x) \in K_{p}[x]=\mathbb{F}_{p}\left[u_{1}, \ldots, u_{t}\right] /\left\langle M_{1}, \ldots, M_{t}\right\rangle[x], p$ a good Fourier prime.
Output: $h(x)=f(x) \cdot g(x) \in K_{p}[x]$ via the FFT.
1: $N \leftarrow$ the smallest power of 2 greater than $\left(\operatorname{deg}_{x}(f)+\operatorname{deg}_{x}(g)\right)$;
2: $\omega \leftarrow$ primitive N-th root of unity in \mathbb{F}_{p};
$F \leftarrow \mathbf{F F T}\left(f(x), K_{p}, N, \omega\right) ;\left\{F \in K_{p}^{N}\right\}$
$G \leftarrow \mathbf{F F T}\left(g(x), K_{p}, N, \omega\right) ;\left\{G \in K_{p}^{N}\right\}$
for $i=0$ to $N-1$ do
$H[i]=F[i] \cdot G[i] ;\left\{\right.$ component-wise multiplication where $\left.F[i], G[i] \in K_{p}\right\}$
end for
$h \leftarrow N^{-1} \cdot \mathbf{F F T}\left(\sum_{i=0}^{N-1} H[i] \cdot x^{i}, K_{p}, N, \omega^{-1}\right) ;\{$ inverse FFT $\}$
9: $h(x) \leftarrow \sum_{i=0}^{N-1} h[i] \cdot x^{i} ;$
10: return $h(x)$;

We analyze the cost of Algorithm FFTMult where we assume $D=\prod_{i=1}^{t} \operatorname{deg}\left(M_{i}\right)$.

- Algorithm FFT is called three times in Algorithm FFTMult and one execution of Algorithm FFT requires $\frac{N}{2}(1+D)(\log N)+1$ multiplications in \mathbb{F}_{p} (Section 3.1). Thus the number of multiplications in \mathbb{F}_{p} required in performing
three FFTs is

$$
3\left(\frac{N}{2}(1+D)\left(\log _{2} N\right)+1\right) \sim \frac{3}{2} N D \log _{2} N \in \mathcal{O}(N D \log N)
$$

- Lines 5 to 7 : Since $F[i], G[i] \in K_{p}$, this for-loop requires N multiplications in K_{p}. An arithmetic operation in K_{p} can be done using $\mathcal{O}\left(D^{2}\right)$ arithmetic operations in \mathbb{F}_{p} (von zur Gathen and Gerhard [18, Corollary 4.6, p. 72]), so this for-loop requires $\mathcal{O}\left(N D^{2}\right)$ multiplications in \mathbb{F}_{p}.
- Line 8: since $N^{-1} \in \mathbb{F}_{p}$, we perform at most $N D$ multiplications in \mathbb{F}_{p}.

In total, Algorithm FFTMult uses

$$
\begin{aligned}
& O(N D \log N)+\mathcal{O}\left(N D^{2}\right)+\mathcal{O}(N D) \\
& \subseteq \mathcal{O}\left(N D \log N+N D^{2}\right) \text { multiplications in } \mathbb{F}_{p}
\end{aligned}
$$

If $n=\max \{\operatorname{deg}(f), \operatorname{deg}(g)\}$, then $N<4 n \in \mathcal{O}(n)$. So Algorithm FFTMult requires $\mathcal{O}\left(n D \log n+n D^{2}\right)$ multiplications in \mathbb{F}_{p}.

In comparison, classical multiplication of f and g requires $\mathcal{O}\left(n^{2} D^{2}\right)$ multiplications in \mathbb{F}_{p}.

Chapter 4

Polynomial Representation Simplification

Multiplying polynomials over $K_{p}=\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{t}\right]$ is inefficient even with the use of the FFT because the recden data structure becomes more "complicated" with increasing number of variables in the polynomial ring. Consider the following example.

Example 4.1. Let $f=x+a+b+c+d \in \mathbb{F}_{101}[a, b, c, d] /\left\langle a^{2}-2, b^{2}-3, c^{2}-5, d^{2}-7\right\rangle[x]$. Let us build the recden data structure for f in Maple.

```
>f:=rpoly(a+b+c+d+x, [x,a,b,c,d], [a^2-2,b^2-3, c^2-5,d^2-7],101);
    f:= (a+b+c+d+x) mod \langle\mp@subsup{a}{}{2}+99, b}\mp@subsup{b}{}{2}+98,\mp@subsup{c}{}{2}+96,\mp@subsup{d}{}{2}+94,101
> lprint(f);
    POLYNOMIAL([101, [x, a, b, c, d], [[[[[99]]], 0, [[[1]]]],
[[[98]], 0, [[1]]], [[96], 0, [1]], [94, 0, 1]]],[[[[[0, 1], [1]],
[[1]]], [[[1]]]], [[[[1]]]]])
```

Note the high levels of lists in the recden representation of f. In general, a polynomial with t variables has at most t levels of lists. Thus the overhead cost of computing over a multiple extension is high. In particular, if the degree of the first minimal polynomial M_{1} is relatively low (in particular if $\operatorname{deg}\left(M_{1}\right)=2$) then the cost of performing arithmetic in \mathbb{F}_{p} is overwhelmed by the cost of data structure operations (see Table 8.3).

We can avoid this problem by computing $\bar{\gamma}:=\gamma \bmod p$ satisfying $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right) \cong$ $\mathbb{Q}(\gamma)$ (see Chapters 5 and 6). Once $\bar{\gamma}$ is found, we can represent f and g as bivariate polynomials in $\mathbb{F}_{p}[\bar{\gamma}] \cong \mathbb{F}_{p}[z] /\left\langle\Phi_{p}\left(m_{\gamma}(z)\right)\right\rangle[x]$, multiply them over this ring, then convert the product back to a polynomial in K_{p}. This method reduces the overhead and allows for fast arithmetic in $\mathbb{F}_{p}[\bar{\gamma}]$, but introduces extra costs associated with the conversions between the rings, which we show in Chapter 5 to be $\mathcal{O}\left(D^{3}\right)$ arithmetic operations in \mathbb{F}_{p}, where $D=\left[\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right): \mathbb{Q}\right]$.

In Section 4.1, we present a linear algebra method for converting a polynomial represented over a multiple extension field of characteristic 0 to the equivalent polynomial over a simple extension field, and vice versa. This method relies on the use of change-of-basis (COB) matrices. In Section 4.2 we modify this method to apply to convert polynomials from $\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{t}\right][x]$ to $\mathbb{F}_{p}[\bar{\gamma}][x]$, and vice versa.

4.1 Change-of-basis matrix (in characteristic 0)

In what follows, let $K=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ and let γ be a primitive element for K. Let us first find the bases for K and $\mathbb{Q}(\gamma)$. For $i=1, \ldots, t$, let $d_{i}=\left[\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i}\right)\right.$: $\left.\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)\right]$ and $D=[\mathbb{Q}(\gamma): \mathbb{Q}]$. By application of Lemma 1.12,

$$
D=[\mathbb{Q}(\gamma): \mathbb{Q}]=\left[\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t-1}, \alpha_{t}\right): \mathbb{Q}\right]=\prod_{i=1}^{t} d_{i} .
$$

Moreover, Theorem 1.7 implies that a basis for $\mathbb{Q}(\gamma)$ is

$$
B_{\gamma}=\left\{\gamma^{0}, \gamma^{1}, \ldots, \gamma^{D-1}\right\}
$$

and a basis for $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ is

$$
B_{\alpha}=\left\{\alpha_{1}^{j_{1}} \alpha_{2}^{j_{2}} \ldots \alpha_{t}^{j_{t}}, 0 \leq j_{i} \leq d_{i}-1,1 \leq i \leq t\right\}
$$

Using the bases B_{γ} and B_{α}, we can build a change-of-basis matrix C that converts any element in $\mathbb{Q}(\gamma)$ to an element in $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ (and naturally C^{-1} would convert an element in $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ to an element in $\left.\mathbb{Q}(\gamma)\right)$.

Unfortunately, the recden data structure is not suitable for constructing the change-of-basis matrix, as the following example illustrates.

Example 4.2. Let the field be $\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right)$ with $\alpha_{1}=\sqrt{2}$ and $\alpha_{2}=\sqrt[3]{3}$. Then one can show that $\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right) \cong \mathbb{Q}(\gamma)$ where $\gamma=\alpha_{1}+\alpha_{2}=\sqrt{2}+\sqrt[3]{3}$. In recden with $\alpha_{1}>\alpha_{2}$,

$$
\begin{aligned}
& \gamma^{0}=\left(\alpha_{1}+\alpha_{2}\right)^{0}=[[1]], \\
& \gamma^{1}=\left(\alpha_{1}+\alpha_{2}\right)^{1}=[[0,1],[1]], \\
& \gamma^{2}=\left(\alpha_{1}+\alpha_{2}\right)^{2}=2+\alpha_{2}^{2}+2 \alpha_{1} \alpha_{2}=[[2,0,1],[0,2]], \text { and } \\
& \gamma^{3}=\left(\alpha_{1}+\alpha_{2}\right)^{3}=3+6 \alpha_{2}+\left(3 \alpha_{2}^{2}+2\right) \alpha_{1}=[[3,6],[2,0,3]] .
\end{aligned}
$$

Because not all zero coefficients are stored in the recden data structure, the lists of γ^{i} are of different lengths. For building the change-of-basis matrix, it would be convenient to use a data structure in which each element in the polynomial ring will be of equal length. To that end, we introduce the following data structure, which is simply a dense one-dimensional array of size D.

Definition 4.3. Let R be a ring and let $f \in R\left[u_{1}, \ldots, u_{t}\right] /\left\langle g_{1}\left(u_{1}\right), \ldots, g_{t}\left(u_{t}\right)\right\rangle$. The completely dense representation (CDR) of f is the list of coefficients of all monomial basis elements in $R\left[u_{1}, \ldots, u_{t}\right] /\left\langle g_{1}, \ldots, g_{t}\right\rangle$ in lexicographical ordering with $u_{t}>\ldots>u_{1}$.

Example 4.4. Let $R=\mathbb{Q}[u, v] /\left\langle u^{3}-2, v^{2}+7\right\rangle$. Then every element in R can be written as

$$
c_{0}+c_{1} u+c_{2} u^{2}+c_{3} v+c_{4} u v+c_{5} u^{2} v .
$$

Moreover, the CDR with $v>u$ has the form: $\left[c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right]$.
Unlike the recden data structure, the completely dense data structure is an array of depth 1 and every polynomial in a ring in this representation will be of equal length.

In what follows, we let ϕ denote the isomorphism from $K=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ to $\mathbb{Q}(\gamma)$, and naturally ϕ^{-1} denotes the isomorphism from $\mathbb{Q}(\gamma)$ to $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right)$.

Let us use the CDR to construct a change-of-basis matrix from $B_{\gamma}=\left\{\gamma^{0}, \gamma^{1}, \ldots, \gamma^{D-1}\right\}$ to $B_{\alpha}=\left\{\alpha_{1}^{j_{1}} \alpha_{2}^{j_{2}} \cdots \alpha_{t}^{j_{t}}, j_{i}=0,1, \ldots, d_{i}-1, i=1, \ldots, t\right\}$, which is the change-of-basis matrix for ϕ^{-1}. We show in Chapter 5 that we can find a primitive element γ of K of the form $\gamma=c_{1} \alpha_{1}+c_{2} \alpha_{2}+\cdots+c_{t-1} \alpha_{t-1}+\alpha_{t}$ where $c_{i} \in \mathbb{Z}$. Consider the following $D \times D$ matrix

$$
C=\left[\begin{array}{llll}
\mathbf{U}_{0} \mid & \mathbf{U}_{1} \mid & \ldots & \mathbf{U}_{D-1}
\end{array}\right]
$$

where each \mathbf{U}_{i} is the CDR (as a column vector) of

$$
\gamma^{i}=\left(c_{1} \alpha_{1}+\ldots+c_{t-1} \alpha_{t-1}+\alpha_{t}\right)^{i} \in \mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right) \cong \mathbb{Q}\left[u_{1}, \ldots, u_{t}\right] /\left\langle m_{1}, \ldots, m_{t}\right\rangle .
$$

We claim that C is a change-of-basis matrix (COB) for ϕ^{-1} (i.e. from B_{γ} to B_{α}). To verify this, we first prove the following lemma.

Lemma 4.5. The columns of C are linearly independent over K.
Proof. Suppose towards a contradiction that the columns of C are linearly dependent. Then

$$
\begin{equation*}
\mathbf{U}_{i}=\sum_{j=0, j \neq i}^{D-1} k_{j} \cdot \mathbf{U}_{j} \quad \text { where each } k_{j} \in \mathbb{Q} \tag{4.1}
\end{equation*}
$$

But since \mathbf{U}_{i} is the CDR of γ^{i} for $1 \leq i \leq D-1$, (4.1) is equivalent to stating that

$$
\gamma^{i}=\sum_{j=0, j \neq i}^{D-1} k_{j} \cdot \gamma^{j}
$$

which is impossible since $\left\{\gamma^{0}, \gamma^{1}, \ldots, \gamma^{D-1}\right\}$ is a basis of $K(\gamma)$. Thus the columns of C must be linearly independent over \mathbb{Q}.

Now define \mathbf{G}_{i} to be the CDR (as a column vector) of γ^{i} for $1 \leq i \leq D-1$ written as a linear combination of the elements in $B_{\gamma}=\left\{1, \gamma, \gamma^{2}, \ldots, \gamma^{D-1}\right\}$. That is,

$$
\mathbf{G}_{i}=\left[\begin{array}{llllll}
0 & \cdots & 0 & 1 & \cdots & 0 \tag{4.2}
\end{array}\right]^{T}
$$

where the only 1 is in the $(i+1)$-th row of \mathbf{G}_{i}. Note that

$$
C \cdot \mathbf{G}_{i}=(i+1) \text {-th column of } C=\mathbf{U}_{i} .
$$

Since \mathbf{U}_{i} by definition is the CDR of γ^{i} expressed as a linear combination of the elements in B_{α}, C must be the COB matrix for ϕ. Moreover by Lemma 4.5 C is invertible, so C^{-1} must be the COB matrix for ϕ^{-1}.

Example 4.6. Let $K=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \cong \mathbb{Q}[u, v, w] /\left\langle u^{2}-21, v^{2}-13, w^{2}-5\right\rangle$. One can show that $\gamma=\alpha_{1}+\alpha_{2}+\alpha_{3}$ is a primitive element for K (Chapter 5).

One can show that $K \cong \mathbb{Q}(\gamma)$ and $D=[\mathbb{Q}(\gamma): \mathbb{Q}]=8$. Since

$$
\begin{aligned}
& \gamma^{0}=1, \\
& \gamma^{1}=\alpha_{1}+\alpha_{2}+\alpha_{3}, \\
& \gamma^{2}=\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)^{2} \equiv\left(2 \alpha_{2}+2 \alpha_{3}\right) \alpha_{1}+2 \alpha_{3} \alpha_{2}+39, \\
& \gamma^{3}=\left(6 \alpha_{3} \alpha_{2}+75\right) \alpha_{1}+91 \alpha_{2}+107 \alpha_{3}, \\
& \gamma^{4}=\left(196 \alpha_{2}+260 \alpha_{3}\right) \alpha_{1}+324 \alpha_{3} \alpha_{2}+3293, \\
& \gamma^{5}=\left(780 \alpha_{3} \alpha_{2}+7141\right) \alpha_{1}+9029 \alpha_{2}+12965 \alpha_{3}, \\
& \gamma^{6}=\left(20070 \alpha_{2}+30246 \alpha_{3}\right) \alpha_{1}+38374 \alpha_{3} \alpha_{2}+332163, \\
& \gamma^{7}=\left(88690 \alpha_{3} \alpha_{2}+744303\right) \alpha_{1}+945503 \alpha_{2}+1466191 \alpha_{3},
\end{aligned}
$$

the basis of $\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ in lexicographical order with $\alpha_{3}<\alpha_{2}<\alpha_{1}$ is $\left\{1, \alpha_{3}, \alpha_{2}, \alpha_{2} \alpha_{3}, \alpha_{1}, \alpha_{1} \alpha_{3}, \alpha_{1} \alpha_{2}, \alpha_{1} \alpha_{2} \alpha_{3}\right\}$. Hence the CDR's of γ^{i} (denoted by \mathbf{U}_{i}) for $0 \leq i \leq 7$ are:

$$
\begin{array}{ll}
\mathbf{U}_{0}=[1,0,0,0,0,0,0,0,0]^{T}, & \mathbf{U}_{1}=[0,1,1,0,1,0,0,0]^{T}, \\
\mathbf{U}_{2}=[39,0,0,2,0,2,2,0]^{T}, & \mathbf{U}_{3}=[0,107,91,0,75,0,0,6]^{T}, \\
\mathbf{U}_{4}=[3293,0,0,324,0,260,196,0]^{T}, & \mathbf{U}_{5}=[0,12965,9029,0,7141,0,0,780]^{T}, \\
\mathbf{U}_{6}=[332163,0,0,38374,0,30246,20070,0]^{T}, & \\
\mathbf{U}_{7}=[0,1466191,945503,0,744303,0,0,88690]^{T}, &
\end{array}
$$

so

$$
C=\left[\mathbf{U}_{0}\left|\mathbf{U}_{1}\right| \mathbf{U}_{2} \mid \mathbf{U}_{3}\right]=\left[\begin{array}{cccccccc}
1 & 0 & 39 & 0 & 3293 & 0 & 332163 & 0 \tag{4.3}\\
0 & 1 & 0 & 107 & 0 & 12965 & 0 & 1466191 \\
0 & 1 & 0 & 91 & 0 & 9029 & 0 & 945503 \\
0 & 0 & 2 & 0 & 324 & 0 & 38374 & 0 \\
0 & 1 & 0 & 75 & 0 & 7141 & 0 & 744303 \\
0 & 0 & 2 & 0 & 260 & 0 & 30246 & 0 \\
0 & 0 & 2 & 0 & 196 & 0 & 20070 & 0 \\
0 & 0 & 0 & 6 & 0 & 780 & 0 & 88690
\end{array}\right]
$$

is the change-of-basis matrix for ϕ. It follows that the change-of-basis matrix for ϕ^{-1}
is

$$
C^{-1}=\left[\begin{array}{cccccccc}
1 & 0 & 0 & \frac{24909}{2048} & 0 & -\frac{16445}{1024} & -\frac{31955}{2048} & 0 \tag{4.4}\\
0 & \frac{1038997}{514048} & \frac{1009739}{257024} & 0 & -\frac{2544427}{514048} & 0 & 0 & -\frac{33891}{1004} \\
0 & 0 & 0 & -\frac{5547}{2048} & 0 & \frac{3979}{1024} & -\frac{1387}{2048} & 0 \\
0 & -\frac{82115}{514048} & -\frac{181805}{257024} & 0 & \frac{445725}{514048} & 0 & 0 & \frac{5833}{2008} \\
0 & 0 & 0 & \frac{159}{2048} & 0 & -\frac{143}{1024} & \frac{127}{2048} & 0 \\
0 & \frac{1655}{514048} & \frac{5833}{257024} & 0 & -\frac{13321}{514048} & 0 & 0 & -\frac{39}{502} \\
0 & 0 & 0 & -\frac{1}{2048} & 0 & \frac{1}{1024} & -\frac{1}{2048} & 0 \\
0 & -\frac{9}{514048} & -\frac{39}{257024} & 0 & \frac{87}{514048} & 0 & 0 & \frac{1}{2008}
\end{array}\right]
$$

Note the expression swell that occurs when computing with rationals. We control this swell by working modulo a series of primes p_{1}, \ldots, p_{k}.

4.2 Change-of-basis matrix modulo p

We now discuss the modifications necessary for applying the change-of-basis matrix method for converting from the finite ring $\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{t}\right]$ to $\mathbb{F}_{p}[\bar{\gamma}]$, and vice versa. Let C be the change-of-basis matrix from $\mathbb{Q}(\alpha, \beta)$ to $\mathbb{Q}(\gamma)$ and let p be a good prime (recall that if p is a good prime then all the minimal polynomials of the extension exist $\bmod p)$, so that C exists. Observe that C is non-invertible in \mathbb{F}_{p} if and only if $\operatorname{det}(C) \equiv 0 \bmod p$. Let us call good primes p that satisfy $\operatorname{det}(C) \equiv 0 \bmod p$ unlucky.

Example 4.7. The determinant of C over \mathbb{Q} in Example 4.6 is -12 . Since the prime divisors of -12 are 2 and 3 , the only unlucky primes in this case are 2 and 3 .

As mentioned in Chapter 3, we choose p to be a random Fourier prime between 2^{30} and $2^{31.5}$. We would like to bound the probability of choosing an unlucky prime in this range. To that end, we first state some lemmas.

Lemma 4.8. (Hadamard's inequality) Let $A \in G L_{n}(\mathbb{R})$ and let $a_{i j}$ denote the entry of A in i-th row and j-th column. Then

$$
|\operatorname{det}(A)| \leq \prod_{i=1}^{n} \sqrt{\sum_{j=1}^{n} a_{i j}^{2}}
$$

Proof. See Garling [10, Theorem 14.1.1, pp. 233-234].
Definition 4.9. Let R be a ring and $f(x) \in R[x]$ where $f(x)=\sum_{i=0}^{n} f_{i} x^{i}$. The max norm of f, denoted by $\|f\|$ is

$$
\|f\|=\max \left\{\left|f_{0}\right|,\left|f_{1}\right|, \ldots,\left|f_{n}\right|\right\}
$$

Lemma 4.10. Let $f(x), m(x) \in \mathbb{Z}[x]$, where $m(x)$ is monic and $\operatorname{deg}_{x}(m)=d$. Further let $\operatorname{deg}(f) \geq d$ and $\delta=\operatorname{deg}(f)-d+1$. If $r(x)=f(x) \bmod \langle m(x)\rangle$, then

$$
\|r\| \leq(1+\|m\|)^{\delta} \cdot\|f\|
$$

Proof. See Chen and Monagan [6].
Applying Hadamard's inequality and Lemma 4.10, we provide a bound on the number of digits (in base B) of the determinant of change-of-basis matrix when the quotient ring is $\mathbb{Z}[x, y] /\left\langle m_{1}, m_{2}\right\rangle$ where $m_{1}(x) \in \mathbb{Z}[x]$ and $m_{2}(y) \in \mathbb{Z}[x] /\left\langle m_{1}\right\rangle[y]$.

Lemma 4.11. Let $m_{1}(x) \in \mathbb{Z}[x]$ be monic and $m_{2}(y) \in \mathbb{Z}[x] /\left\langle m_{1}\right\rangle[y]$ with $\operatorname{deg}_{x}\left(m_{1}\right)=$ d_{1} and $\operatorname{deg}_{y}\left(m_{2}\right)=d_{2}$. Furthermore, let $\left\|m_{1}\right\|,\left\|m_{2}\right\|<M, D=d_{1} d_{2}$ and

$$
r_{i} \equiv(c x+y)^{i} \quad \bmod \left\langle m_{1}, m_{2}\right\rangle \quad \text { for } c \in \mathbb{Z} \quad \text { and } 2 \leq i \leq D-1
$$

If C is a $D \times D$ matrix whose i-th column consists of the coefficients of $(c x+y)^{i-1} \bmod \left\langle m_{1}, m_{2}\right\rangle$ and $\tilde{c}=\max \{|c|, 1\}$, then the number of digits (in base B) of $\operatorname{det}(C)$ is

$$
\begin{align*}
\log _{B}(|\operatorname{det}(C)|) & \leq D \log _{B}(D)+\log _{B}(D \cdot \tilde{c})+\left(\frac{(D-1)(D-2)}{2}\right)\left(\log _{B}(\tilde{c}+1)+d_{1} \log _{B}(M)\right) \\
& \in \mathcal{O}\left(D^{2}\left(\log _{B}(\tilde{c})+d_{1} \log _{B}(M)\right)\right) \tag{4.5}
\end{align*}
$$

Proof. See Appendix A.

One can also prove a more general form of Lemma 4.11 for extensions of more than two steps.

Lemma 4.12. Let $m_{1}\left(x_{1}\right) \in \mathbb{Z}\left[x_{1}\right]$ be a monic polynomial of degree d_{1}, and

$$
m_{k}\left(x_{k}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{k-1}\right] /\left\langle m_{1}\left(x_{1}\right), \ldots, m_{k-1}\left(x_{k-1}\right)\right\rangle\left[x_{k}\right]
$$

be a monic polynomial of degree d_{k} for $k=2, \ldots, t$ and $\left\{\left\|m_{1}\right\|,\left\|m_{2}\right\|, \ldots,\left\|m_{t}\right\|\right\}<$ M. Further, let $D=\prod_{i=1}^{t} d_{i}$ and let C be a $D \times D$ matrix whose i-th column consists of the coefficients from

$$
\left(c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{t-1} x^{t-1}+x_{t}\right)^{i-1} \in \mathbb{Z}\left[x_{1}, \ldots, x_{t}\right] /\left\langle m_{1}, \ldots, m_{t}\right\rangle, c_{i} \in \mathbb{Z}
$$

If

$$
\begin{aligned}
& \tilde{c}=\max \left\{\left|c_{1}\right|,\left|c_{2}\right|, \ldots,\left|c_{t-1}\right|, 1\right\}, \\
& \tilde{s}=\max \left\{\left|c_{1}\right|, 1\right\}+\max \left\{\left|c_{2}\right|, 1\right\}+\cdots+\max \left\{\left|c_{t-1}\right|, 1\right\}, \text { and } \\
& \tilde{d}=d_{1}+d_{2}+\cdots+d_{t-1}+(t-2)
\end{aligned}
$$

then the number of digits (in base B) of $\operatorname{det}(C)$ is

$$
\begin{aligned}
\log _{B}(\operatorname{det}(C)) & \leq D \log _{B}(D \tilde{c})+\left(\frac{(D-1)(D-2)}{2}\right)\left(\log _{B}(\tilde{s}+1)+\tilde{d} \log _{B}(M)\right) \\
& \in \mathcal{O}\left(D^{2}\left[\log _{B}(\tilde{s})+\tilde{d} \log _{B}(M)\right]\right)
\end{aligned}
$$

Proof. See Appendix A.
Example 4.13. Let

$$
\begin{aligned}
& m_{1}\left(x_{1}\right)=x_{1}^{2}-2 \in \mathbb{Q}\left[x_{1}\right], \\
& m_{2}\left(x_{2}\right)=x_{2}^{2}+3 \in \mathbb{Q}\left[x_{1}\right] /\left\langle m_{1}\right\rangle\left[x_{2}\right], \\
& m_{3}\left(x_{3}\right)=x_{3}^{2}-x_{1}-4 \in \mathbb{Q}\left[x_{1}, x_{2}\right] /\left\langle m_{1}, m_{2}\right\rangle\left[x_{3}\right], \text { and } \\
& m_{4}\left(x_{4}\right)=x_{4}^{2}+x_{1} x_{2}-2 \in \mathbb{Q}\left[x_{1}, x_{2}, x_{3}\right] /\left\langle m_{1}, m_{2}, m_{3}\right\rangle\left[x_{4}\right] .
\end{aligned}
$$

Since all coefficients of m_{i} 's are integers, we can apply Lemma 4.12. One can show

$$
c_{1} \cdot x_{1}+c_{2} \cdot x_{2}+c_{3} \cdot x_{3}+c_{4} \cdot x+4=26 \cdot x_{1}+330 \cdot x_{2}+905 \cdot x_{3}+x_{4}
$$

is a primitive element (modulo p) for $\mathbb{Q}\left[x_{1}, x_{2}, x_{3}, x_{4}\right] /\left\langle m_{1}, m_{2}, m_{3}, m_{4}\right\rangle$. Thus we have

$$
\begin{aligned}
& D=\prod_{i=1}^{4} \operatorname{deg}_{x_{i}}\left(m_{i}\right)=2^{4}=16 \\
& \tilde{c}=\max \left\{\left|c_{1}\right|,\left|c_{2}\right|,\left|c_{3}\right|,\left|c_{4}\right|, 1\right\}=\max \{26,330,905,1,1\}=905, \\
& \tilde{s}=\max \left\{\left|c_{1}\right|, 1\right\}+\max \left\{\left|c_{2}\right|, 1\right\}+\max \left\{\left|c_{3}\right|, 1\right\}=26+330+905=1261, \\
& \tilde{d}=\sum_{i=1}^{3} \operatorname{deg}_{x_{i}}\left(m_{i}\right)+(t-2)=2+2+2+(4-2)=8, \\
& M=\max \left\{\left\|m_{1}\right\|,\left\|m_{2}\right\|,\left\|m_{3}\right\|,\left\|m_{4}\right\|\right\}+1=5
\end{aligned}
$$

Hence the length of digits of $\operatorname{det}(C)$ in base $B=2^{31}$ must be at most

$$
D \log _{B}(D \tilde{c})+\left(\frac{(D-1)(D-2)}{2}\right)\left(\log _{B}(\tilde{s}+1)+\tilde{d} \log _{B}(M)\right)<105
$$

In fact, if we compute $\operatorname{det}(C)$ we find that $\operatorname{det}(C)$ is between 38 digits and 39 digits long in base 2^{31}.

To execute the FFT, we pick p to be a Fourier prime. We would like to determine the probability that a randomly chosen Fourier prime between 2^{30} and $2^{31.5}$ is unlucky.

Let p be a Fourier prime of the form $k \cdot 2^{r}+1$, where $p-1$ is divisible by 2^{R} for some given $R \in \mathbb{Z}^{+}$. Further suppose that $2^{30}<p<2^{31.5}$ and C is a $D \times D$ change-of-basis matrix with integer entries. Table 4.1 lists the number of primes between 2^{30} and $2^{31.5}$ for which $p-1$ is divisible by $2^{R}, 1 \leq R \leq 28$.

R	1	2	3	4	5	6	7
$n(R)$	91744290	45872521	22936042	11468644	5734170	2867571	1433414
$k(R)$	0	0.999988	2.000002	2.999924	3.999962	4.999717	6.000091
R	8	9	10	11	12	13	14
$n(R)$	716387	358119	178951	89409	44749	22377	11181
$k(R)$	7.00074	8.00104	9.00191	10.00298	11.00155	12.00139	13.00235
R	15	16	17	18	19	20	21
$n(R)$	5581	2773	1377	698	363	178	88
$k(R)$	14.0048	15.0139	16.0238	17.0040	17.9473	18.9754	19.9917
R	22	23	24	25	26	27	28
$n(R)$	45	21	14	9	5	2	0
$k(R)$	20.9593	22.0588	22.6438	23.2812	24.1292	25.4511	-

Table 4.1: $n(R)$ denotes the number of primes between 2^{30} and $2^{31.5}$ of the form $c \cdot 2^{R}+1$, and $k(R)$ satisfies the equation $91744290 /\left(2^{k(R)}\right)=n(R)$, where 91744290 is the number of Fourier primes between 2^{30} and $2^{31.5}$.

One can see by inspection that $k(R)<R-0.98$ for $1 \leq R \leq 27$. Hence
$\frac{91744290}{2^{R-0.98}}<\frac{91744290}{2^{k(R)}}=\#$ of Fourier primes in $\left(2^{30}, 2^{31.5}\right)$ of form $k \cdot 2^{r}+1, r \geq R$.

Let $\tilde{c}, \tilde{s}, \tilde{d}$, and M be as defined in Lemma 4.12. Then by that lemma, there are at most $D \log _{2^{31}}(D \tilde{c})+\left(\frac{(D-1)(D-2)}{2}\right)\left(\log _{2^{31}}(\tilde{s}+1)+\tilde{d} \log _{2^{31}}(M)\right)$ unlucky primes between 2^{30} and $2^{31.5}$. It may be the case that all of these are Fourier primes. Hence we arrive at the following remark.

Remark 4.14. The probability that a randomly chosen prime between 2^{30} and $2^{31.5}$ of the form $k \cdot 2^{r}-1$ for $r \geq R$ is unlucky is at most

$$
\frac{D \log _{2^{31}}(D \tilde{c})+\left(\frac{(D-1)(D-2)}{2}\right)\left[\log _{2^{31}}(\tilde{s}+1)+\tilde{d} \log _{2^{31}}(M)\right]}{91744290 /\left(2^{R-0.98}\right)},
$$

where $\tilde{c}, \tilde{s}, \tilde{d}$, and M are as defined in Lemma 4.11.
The probability given in Remark 4.14 is a very conservative since it is derived from the assumption that $|\operatorname{det}(C)|$ can be factorized into a product of primes which are each between 2^{30} and $2^{31.5}$. This probability equals 1 if $|\operatorname{det}(C)|$ factors into all the Fourier primes between 2^{30} and $2^{31.5}$ of the form $k \cdot 2^{r}+1$ for all $r \geq R$, which is highly unlikely. However, in the unlikely event that not enough lucky Fourier primes can be found, it may be necessary to use 63 -bit primes on a 64 -bit computer.

Example 4.15. Suppose we wish to multiply $f(x)$ and $g(x)$ in $\mathbb{Z}\left[x_{1}, \ldots, x_{4}\right] /\left\langle m_{1}, \ldots, m_{4}\right\rangle[x]$ where the m_{i} 's are as in Example 4.13 and $\operatorname{deg}_{x}(f)+$ $\operatorname{deg}_{x}(g)=500$. Since $2^{8}<500<2^{9}, R=9$. Furthermore, recall from Example 4.13 that at most 105 Fourier primes may be unlucky in this case. Therefore, if we randomly pick a random Fourier prime p between 2^{30} and $2^{31.5}$ such that $p-1$ is divisible by 2^{R}, the probability that p is unlucky is at most

$$
\frac{105}{91744290 / 2^{9-0.98}}<0.00029708 .
$$

Chapter 5

Finding a primitive element (characteristic 0)

Let $K=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right) \cong \mathbb{Q}\left[u_{1}, \ldots, u_{t}\right] /\left\langle m_{1}, \ldots, m_{t}\right\rangle$. If the number of extensions t is large, it is expensive to perform multiplication over K due to the overhead of the recden representation and a large number of polynomial divisions required. One can avoid this problem by computing a primitive element γ for K / \mathbb{Q}. After γ is found, one can express a polynomial in $K[x]$ as a polynomial in $\mathbb{Q}(\gamma)[x]=\mathbb{Q}[z] /\left\langle m_{\gamma}(z)\right\rangle[x]$, a bivariate polynomial in x and z. The recden representation of this new polynomial is a nested list of depth 2 , which requires less overhead and possibly offers faster arithmetic operations than the nested list of depth $(t+1)$ required to represent the polynomial in $K[x]=\mathbb{Q}\left[u_{1}, \ldots, u_{t}\right] /\left\langle m_{1}, \ldots, m_{t}\right\rangle[x]$.

In this chapter, we present two approaches for finding a primitive element of a field of characteristic 0: a linear algebra approach and a resultant approach. We discuss these methods for fields given as a two-step extension, then generalize to fields given as a tower of more than two extensions.

5.1 Finding a primitive element of $K(\alpha, \beta)$

In what follows, let K be a field of characteristic 0 . In order to explain how to compute a primitive element of $K(\alpha, \beta)$, we must state some lemmas.

Lemma 5.1. (Trager [17]) Let α be algebraic over \mathbb{Q} with minimal polynomial $m_{\alpha}(y) \in$ $K[y]$ and let $f(x) \in K[x]$ be square-free. Then there exists $c \in K$ such that $\operatorname{norm}_{[K(\alpha)[x] / K[x]]}(f(x-c \alpha))$ is square-free.

Proof. Let the roots of $f(x)$ over some splitting field be $\beta_{1}, \ldots, \beta_{n}$ and let the roots of $m_{\alpha}(y)$ over a splitting field be $\alpha=\alpha_{1}, \ldots, \alpha_{d}$. Since f is square-free, the β_{i} 's are distinct and the α_{i}^{\prime} 's are distinct as well since α is separable over K. Suppose that

$$
N(x):=\operatorname{norm}(f(x-c \alpha))=\prod_{j=1}^{d} f\left(x-c \alpha_{j}\right)
$$

If $c=0$ then $N(x)$ is clearly not square-free, since we can assume that $d>1$. If $c \neq 0$, the roots of $f\left(x-c \alpha_{j}\right)$ for a fixed j are $\left\{\beta_{i}+c \alpha_{j}, i=1, \ldots, n\right\} . N(x)$ has a multiple root if and only if

$$
\beta_{r}+c \alpha_{u}=\beta_{s}+c \alpha_{t}, \text { where } r, s \in\{1, \ldots, n\}, t, u \in\{1, \ldots, d\}, \text { and } t \neq u
$$

Thus $N(x)$ has a multiple root if and only if c belongs to

$$
\begin{align*}
S & =\{0\} \cup\left\{\frac{\beta_{r}-\beta_{s}}{\alpha_{t}-\alpha_{u}}: r, s \in\{1, \ldots, n\}, t, u \in\{1, \ldots, d\}, t \neq u\right\} \\
& =\left\{\frac{\beta_{r}-\beta_{s}}{\alpha_{t}-\alpha_{u}}: r, s \in\{1, \ldots, n\}, t, u \in\{1, \ldots, d\}, t \neq u\right\} \tag{5.1}
\end{align*}
$$

Since $|S|$ is finite and K has characteristic $0, K \backslash S$ is non-empty. So there exists $c \in K \backslash S$ for which $N(x)$ is square-free.

Example 5.2. Let $m_{\alpha}(y)=y^{2}-2 \in \mathbb{Q}[y]$ and $f(x)=x^{2}+3 \in \mathbb{Q}[x]$. The roots of $f(x)$ over a splitting field are: $\left\{\beta_{1}, \beta_{2}\right\}=\{\sqrt{3} i,-\sqrt{3} i\}$, and the roots of $m_{\alpha}(y)$ are $\left\{\alpha_{1}, \alpha_{2}\right\}=\{\sqrt{2},-\sqrt{2}\}$. The set S as defined by (5.1) is:

$$
S=\left\{0, \frac{\sqrt{3} i-(-\sqrt{3} i)}{\sqrt{2}-(-\sqrt{2})}, \frac{-\sqrt{3} i-(\sqrt{3} i)}{\sqrt{2}-(-\sqrt{2})}\right\}=\left\{0, \frac{1}{2} \sqrt{6} i,-\frac{1}{2} \sqrt{6} i\right\} .
$$

By the proof of Lemma 5.1, $g(x)=\operatorname{norm}(f(x-c \alpha))$ is square-free if and only if $c \notin S$. Since $S \cap \mathbb{Q}=\{0\}$, $\operatorname{norm}(f(x-c \alpha))$ is square-free for every $c \in \mathbb{Q} \backslash\{0\}$.

Alternatively, one can compute the elements in S as follows. By Theorem 1.25,

$$
\begin{aligned}
g(x)=\operatorname{norm}(f(x-c \alpha)) & =\operatorname{res}_{y}\left(f(x-c y), y^{2}-2\right) \\
& =x^{4}-4 c^{2} x^{2}+6 x^{2}+9+12 c^{2}+4 c^{4}
\end{aligned}
$$

Since $g(x)$ is square-free if and only if $\operatorname{res}_{x}\left(g(x), g^{\prime}(x)\right) \neq 0$ by Remark 1.23 , and the roots of

$$
\operatorname{res}_{x}\left(g(x), g^{\prime}(x)\right)=147456\left(3+2 c^{2}\right)^{2} c^{4}
$$

belong to $\hat{S}=\left\{0, \frac{1}{2} \sqrt{6} i,-\frac{1}{2} \sqrt{6} i\right\}$, any element $c \in \hat{S}$ yields a non-square-free $\operatorname{norm}(f(x-c \alpha))$. As expected, $S=\hat{S}$.

The following lemma provides an upper bound on the number of $c \in K$ that yields a non-square-free $\operatorname{norm}(f(x-c \alpha))$.

Lemma 5.3. Let $m_{\alpha}(y)$ and $f(x)$ be defined as in Lemma 5.1. Furthermore let $d=\operatorname{deg}_{y}\left(m_{\alpha}\right)$ and $n=\operatorname{deg}_{x}(f)$. Then

$$
|S| \leq \frac{n(n-1) \cdot d(d-1)}{2}+1
$$

where S is defined in (5.1).
Proof. There are at most $2\binom{n}{2}$ (non-zero) distinct possibilities for the numerator $\beta_{r}-\beta_{s}$, and at most $\binom{d}{2}$ distinct possibilities (up to sign) for the denominator, $\alpha_{t}-\alpha_{u}$. Also, $0 \in S$ since the two elements in the numerator can be the same. Hence

$$
|S| \leq\left(2\binom{n}{2}\right) \cdot\binom{d}{2}+1=\frac{n(n-1) \cdot d(d-1)}{2}+1
$$

We now state a generalization of Lemma 5.1, which is the basis of Trager's algorithm for factoring polynomials in $\mathbb{Q}(\alpha)[x]$.

Theorem 5.4. (Trager [17]) Let $m_{\alpha}(y) \in K[y]$ be the minimal polynomial for α and $f(x, \alpha) \in K(\alpha)[x]$ be square-free. Then there exists $c \in K$ for which $\operatorname{norm}(f(x-c \alpha))$ is square-free.

Proof. Let $\alpha=\alpha_{1}, \ldots, \alpha_{d}$ be the roots of $m_{\alpha}(y)$ over a splitting field and $\beta_{1}, \ldots, \beta_{n}$ be the (distinct) roots of $f(x, \alpha)$ over a splitting field. Let us write norm $(f(x, \alpha))$ as

$$
\operatorname{norm}(f(x, \alpha))=\prod_{i} g_{i}(x)^{j_{i}} \in K[x]
$$

where each $g_{i}(x)$ is square-free. Since $f(x, \alpha)$ is square-free and divides norm $(f(x, \alpha))$, it must divide the square-free polynomial

$$
g(x):=\prod_{i} g_{i}(x) \in K[x] .
$$

By applying the proof of Lemma 5.1, there exists $c \in K$ for which norm $(g(x-c \alpha))$ is square-free. Since the roots of $\operatorname{norm}(f(x-c \alpha))=\prod_{i=1}^{d} f\left(x-c \alpha_{i}\right)$ belong to

$$
R:=\left\{\beta_{j}+c \alpha_{i} \mid i \in\{1, \ldots, d\}, j \in\{1, \ldots, n\}\right\}
$$

and f divides $g, \beta_{1}, \ldots, \beta_{n}$ must be roots of g. That is, every element in R must be a root of $\operatorname{norm}(g(x-c \alpha))=\prod_{i=1}^{d} g\left(x-c \alpha_{i}\right)$. Hence $\operatorname{norm}(f(x-c \alpha))$ divides $\operatorname{norm}(g(x-c \alpha))$, so if $\operatorname{norm}(g(x-c \alpha))$ is square-free then $\operatorname{norm}(f(x-c \alpha))$ must be square-free as well.

Lemma 5.5. Let $m_{\alpha}(y) \in K[y]$ be the minimal polynomial for α and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}$ be the roots of $m_{\alpha}(y) \in K[y]$ over a splitting field. Furthermore let $\beta_{1}(\alpha), \beta_{2}(\alpha), \ldots$, $\beta_{n}(\alpha)$ be the roots of $f(x, \alpha) \in K(\alpha)[x]$ over a splitting field. The number of elements $c \in K$ for which $\operatorname{norm}(f(x-c \alpha))$ is not square-free is at most

$$
\frac{n^{2} d(d-1)}{2}
$$

Proof. Let

$$
N(x)=\operatorname{norm}(f(x-c \alpha))=\prod_{i=1}^{d} f\left(x-c \alpha_{i}, \alpha_{i}\right),
$$

and let $\left\{\beta_{i}\left(\alpha_{j}\right), 1 \leq i \leq n\right\}$ be the roots of $f\left(x, \alpha_{j}\right)$ for $1 \leq j \leq d$. Since the roots of $f\left(x-c \alpha_{j}, \alpha_{j}\right)$ are $\left\{\beta_{i}\left(\alpha_{j}\right)+c \alpha_{j}, 1 \leq i \leq n\right\}, N(x)$ has a square-free norm if and only if $\beta_{r}\left(\alpha_{u}\right)+c \alpha_{u}=\beta_{s}\left(\alpha_{t}\right)+c \alpha_{t}$ for some $r, s \in\{1, \ldots, n\}$ and $t, u \in\{1, \ldots, d\}$ where $t \neq u$. That is, $N(x)$ has a multiple root if and only if c belongs to

$$
S=\left\{\frac{\beta_{r}\left(\alpha_{u}\right)-\beta_{s}\left(\alpha_{t}\right)}{\alpha_{t}-\alpha_{u}}: r, s \in\{1, \ldots, n\}, t, u \in\{1, \ldots, d\}, t \neq u\right\}
$$

There are $\binom{d}{2}$ distinct choices for the denominator. For fixed α_{t} and α_{u}, there are n choices for $\beta_{r}\left(\alpha_{u}\right)$, as we must choose from $\left\{\beta_{1}\left(\alpha_{u}\right), \beta_{1}\left(\alpha_{u}\right), \ldots, \beta_{n}\left(\alpha_{u}\right)\right\}$. Moreover, there are n choices for $\beta_{s}\left(\alpha_{t}\right)$, since we must choose from $\left\{\beta_{1}\left(\alpha_{t}\right), \beta_{2}\left(\alpha_{t}\right), \ldots, \beta_{n}\left(\alpha_{t}\right)\right\}$. Thus there are at most n^{2} distinct possibilities for the numerator $\beta_{r}\left(\alpha_{u}\right)-\beta_{s}\left(\alpha_{t}\right)$. In summary,

$$
|S| \leq n^{2} \cdot\binom{d}{2}=\frac{n^{2} d(d-1)}{2}
$$

Example 5.6. Let α be algebraic over \mathbb{Q} with minimal polynomial $m_{\alpha}(y)=y^{2}-$ $2 \in \mathbb{Q}[y]$ and let $f(x, \alpha)=x^{2}-\alpha+1 \in \mathbb{Q}(\alpha)[x]$. Then $n=\operatorname{deg}_{y}\left(m_{\alpha}\right)=2$ and $d=\operatorname{deg}_{x}(f)=2$. By Lemma 5.5, the number of $c \in K$ for which $\operatorname{norm}(f(x-c \alpha))$ is not square-free is at most

$$
\frac{n^{2} d(d-1)}{2}=\frac{2^{2} \cdot 2 \cdot 1}{2}=4 .
$$

We verify this by explicitly computing the elements in \mathbb{Q} for which norm $(f(x-c \alpha))$ is not square-free. The roots of $m_{\alpha}(y)$ are $\left\{\alpha=\alpha_{1}, \alpha_{2}\right\}=\{\sqrt{2},-\sqrt{2}\}$, the roots of $f(x, \alpha)=f\left(x, \alpha_{1}\right)$ are

$$
\left\{\beta_{1}\left(\alpha_{1}\right), \beta_{2}\left(\alpha_{1}\right)\right\}=\{\sqrt{-1+\sqrt{2}},-\sqrt{-1+\sqrt{2}}\}
$$

and the roots of $f\left(x, \alpha_{2}\right)$ are

$$
\left\{\beta_{1}\left(\alpha_{2}\right), \beta_{2}\left(\alpha_{2}\right)\right\}=\{i \sqrt{1+\sqrt{2}},-i \sqrt{1+\sqrt{2}}\}
$$

By the proof of Lemma 5.5, $f(x-c \alpha)$ has a multiple root if and only if c belongs to

$$
\begin{aligned}
S & =\left\{\frac{\beta_{1}\left(\alpha_{1}\right)-\beta_{2}\left(\alpha_{2}\right)}{\alpha_{2}-\alpha_{1}}, \frac{\beta_{2}\left(\alpha_{1}\right)-\beta_{1}\left(\alpha_{2}\right)}{\alpha_{2}-\alpha_{1}}, \frac{\beta_{1}\left(\alpha_{1}\right)-\beta_{1}\left(\alpha_{2}\right)}{\alpha_{2}-\alpha_{1}}, \frac{\beta_{2}\left(\alpha_{1}\right)-\beta_{2}\left(\alpha_{2}\right)}{\alpha_{2}-\alpha_{1}}\right\} \\
& =\left\{ \pm \frac{\sqrt{-1+\sqrt{2}}+i \sqrt{1+\sqrt{2}}}{-2 \sqrt{2}}, \quad \pm \frac{\sqrt{-1+\sqrt{2}}-i \sqrt{1+\sqrt{2}}}{-2 \sqrt{2}}\right\} .
\end{aligned}
$$

Observe that $|S|=4$ as expected, and $S \cap \mathbb{Q}=\varnothing$, so every $c \in \mathbb{Q}$ yields a square-free $\operatorname{norm}(f(x-c \alpha))$.

Alternatively, by Theorem 1.25,
$g(x)=\operatorname{norm}(f(x-c \alpha))=\operatorname{res}_{y}\left(f(x-c y), y^{2}-2\right)=x^{4}+2 x^{2}-4 x^{2} c^{2}-1+4 c^{2}+4 c^{4}-8 x c$
is square-free if and only if $\operatorname{res}_{x}\left(g(x), g^{\prime}(x)\right) \neq 0$. Since

$$
r(c)=\operatorname{res}_{x}\left(g(x), g^{\prime}(x)\right)=-1024\left(1+4 c^{2}+8 c^{4}\right)^{2}
$$

$r(c)$ has at most four distinct roots in K. With some algebra, one can show that the elements in S are exactly the roots of $r(c)$.

In practice, we will choose c from $\mathbb{Z}_{\geq 0}$ for simplicity. Rather than explicitly determining S and choosing c from $\mathbb{Z}_{\geq 0} \backslash S$ which can be computationally expensive, Trager's algorithm ([17]) counts up by one starting from $c=0$ until he find a squarefree $\operatorname{norm}(f(x-c \alpha))$.

Let us return to the problem of finding γ, algebraic over K, such that $K(\gamma) \cong$ $K(\alpha, \beta)$. To that end, the following lemma and theorem will prove useful.

Lemma 5.7. (Trager [17]) Let $m_{\alpha}(y) \in K[y]$ be the minimal polynomial for α and let β be a root of square-free $g(x, \alpha) \in K(\alpha)[x]$. If $\operatorname{norm}(g(x, \alpha))$ is square-free then

$$
\operatorname{gcd}\left(m_{\alpha}(y), g(\beta, y)\right)=y-\alpha \in K(\beta)[y] .
$$

Proof. We wish to show that α is the only common root of $g(\beta, y)$ and $m_{\alpha}(y)$. Let $\alpha_{1}=\alpha, \alpha_{2}, \ldots, \alpha_{d}$ be the roots of $m_{\alpha}(y)$ over a splitting field and suppose that $g\left(\beta, \alpha_{j}\right)=0$ for some $\alpha_{j} \neq \alpha_{1}$. But this implies that β is a multiple root of $\prod_{i=1}^{d} g\left(x, \alpha_{i}\right)=\operatorname{norm}(g(x, \alpha))$, which contradicts the assumption that norm $(g(x, \alpha))$ is square-free. Thus the only common root of $g(\beta, y)$ and $m_{\alpha}(y)$ must be α. This proves that $\operatorname{gcd}\left(g(\beta, y), m_{\alpha}(y)\right)=y-\alpha$.

Theorem 5.8. (Trager [17]) Let $m_{\alpha}(y) \in K[y]$ and $m_{\beta}(x, \alpha) \in K(\alpha)[x]$ be the minimal polynomials for α over K and β over $K(\alpha)$, respectively. If $\operatorname{norm}\left(m_{\beta}(x, \alpha)\right)$ is square-free then

$$
K(\alpha, \beta)=K(\beta)
$$

Proof. Note that $K(\beta) \subseteq K(\alpha, \beta)$. Therefore it is sufficient to show that $\alpha \in K(\beta)$. By Lemma 5.7,

$$
\begin{equation*}
\operatorname{gcd}\left(m_{\alpha}(y), m_{\beta}(\beta, y)\right)=y-\alpha . \tag{5.2}
\end{equation*}
$$

Since $m_{\alpha}(x)$ and $m_{\beta}(\beta, y)$ are polynomials over $K(\beta)$, their gcd must also be over $K(\beta)$; that is, $\alpha \in K(\beta)$. That is, the solution to (5.2) is the normal representation of α in $K(\beta)$.

In what follows, we let $m_{\alpha}(y) \in K[y]$ be the minimal polynomial for α and $m_{\beta}(x, \alpha) \in K(\alpha)[x]$ be the minimal polynomial for β. Further, we let $g(x, \alpha)=$ $m_{\beta}(x-c \alpha, \alpha)$ where $c \in K$ is chosen so that $\operatorname{norm}(g(x, \alpha))$ is square-free. Then we can show the following.

Theorem 5.9. If $f(x, \alpha)$ is an irreducible polynomial over $K(\alpha)$ then

$$
\operatorname{norm}(f(x, \alpha))=h(x)^{k}
$$

where $h(x)$ is an irreducible polynomial over K and $k \in \mathbb{Z}^{+}$.
Proof. See Trager [17].
Observe that since $m_{\beta}(x, \alpha)$ is irreducible over $K(\alpha)$, the polynomial $g(x, \alpha)$ must also be irreducible over $K(\alpha)$ by Theorem 5.9. Furthermore, $\gamma:=\beta+c \alpha$ is a root of g, so we can apply Theorem 5.8 with $m_{\alpha}(y)$ and $g(x, \alpha)$ to conclude that $K(\alpha, \gamma)=$ $K(\gamma)$. But since $K(\alpha, \gamma)=K(\alpha, \beta+c \alpha)=K(\alpha, \beta)$, we have

$$
K(\alpha, \beta)=K(\gamma)
$$

That is, γ is a primitive element of $K(\alpha, \beta)$.
Remark 5.10. γ is a root of the irreducible monic polynomial $N(x)=\operatorname{norm}\left(m_{\beta}(x-c \alpha, \alpha)\right) \in K[x]$, so $N(x)$ must be the minimal polynomial for γ over K.

We now discuss two methods of finding a primitive element γ of $K(\alpha, \beta)$, namely a linear algebra approach, and a resultant approach.

5.2 Finding a primitive element using linear algebra

As previously mentioned, to find a primitive element $\gamma=\beta+c \alpha$ of $K(\alpha, \beta)$, we count up by one starting from $c=0$ until we find a c which yields a square-free $\operatorname{norm}\left(m_{\beta}(x-c \alpha)\right)$. To test if a chosen $\beta+c \alpha$ yields a primitive element of $K(\alpha, \beta)$, one can find the change-of-basis matrix from $K(\alpha, \beta)$ to $K(\gamma)$ (or from $K(\gamma)$ to $K(\alpha, \beta)$) and test that it is invertible (Chapter 4). We illustrate this with an example.

Example 5.11. Let us find a primitive element γ of $\mathbb{Q}(\alpha, \beta) \cong \mathbb{Q}[y, x] /\left\langle m_{\alpha}(y), m_{\beta}(x)\right\rangle$ where $m_{\alpha}(y)=y^{2}-5 \in \mathbb{Q}[y]$ and $m_{\beta}(x)=x^{2}-2 \in \mathbb{Q}[x]$. Let $c=0$. Then $\gamma=\beta+0 \cdot \alpha=\beta$. A basis for $\mathbb{Q}(\gamma)$ is $B_{\gamma}=\left\{1, \gamma, \gamma^{2}, \gamma^{3}\right\}$ and a basis for $\mathbb{Q}(\alpha, \beta)$ is $B_{\alpha}=\{1, \alpha, \beta, \alpha \beta\}$. Note that

$$
\gamma^{0}=1, \quad \gamma^{1}=\beta, \quad \gamma^{2}=\beta^{2}=2, \quad \text { and } \gamma^{3}=\beta^{3}=\beta \cdot \beta^{2}=2 \beta
$$

Hence the change-of-basis matrix from B_{γ} to B_{α} is

$$
C=\begin{aligned}
& \\
& 1 \\
& \alpha \\
& \beta \\
& \alpha \beta
\end{aligned}\left(\begin{array}{cccc}
1 & \gamma & \gamma^{2} & \gamma^{3} \\
1 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Clearly C is not invertible, so $\beta+0 \cdot \alpha$ is not a primitive element for $\mathbb{Q}(\alpha, \beta)$. Thus we let $c=1$. Then the change-of-basis matrix from B_{γ} to B_{α} is

$$
C=\begin{align*}
& \tag{5.3}\\
& 1 \\
& \alpha \\
& \beta \\
& \alpha \beta
\end{align*}\left(\begin{array}{cccc}
1 & \gamma & \gamma^{2} & \gamma^{3} \\
1 & 0 & 7 & 0 \\
0 & 1 & 0 & 11 \\
0 & 0 & 0 & 17 \\
0 & 1 & 2 & 0
\end{array}\right) .
$$

One can verify that C is invertible. Thus $\gamma=\beta+1 \cdot \alpha$ is a primitive element of $\mathbb{Q}(\alpha, \beta)$.

To express a polynomial in $\mathbb{Q}(\gamma)[x]$ as a recden polynomial, one must compute $m_{\gamma}(z) \in \mathbb{Q}[z]$, the minimal polynomial for γ. We explain an efficient method for this.

Lemma 5.12. Let $K(\gamma)$ be an extension field and $D=[K(\gamma): K]$. If $\gamma^{D}=a_{0}+a_{1} \gamma+\cdots+a_{D-1} \gamma^{D-1} \in K(\gamma)$, then $m_{\gamma}(z)$, the minimal polynomial for γ, is

$$
m_{\gamma}(z)=-a_{0}-a_{1} z+\cdots-a_{D-1} z^{D-1}+z^{D}
$$

Proof. Let

$$
m_{\gamma}(z)=m_{0}+m_{1} z+m_{2} z^{2}+\cdots+m_{D-1} z^{D-1}+z^{D} \in K[z] .
$$

By definition, $m_{\gamma}(\gamma)=m_{0}+m_{1} \gamma+m_{2} \gamma^{2}+\cdots+\gamma^{D}=0$. Rearranging, we get

$$
-\gamma^{D}=m_{0}+m_{1} \gamma+m_{2} \gamma^{2}+\cdots+m_{D-1} \gamma^{D-1}
$$

On the other hand, by Theorem 1.7 we have

$$
-\gamma^{D}=a_{0}+a_{1} \gamma+\cdots+a_{D-1} \gamma^{D-1} \in K(\gamma), a_{0}, \ldots, a_{d-1} \in K
$$

So

$$
-\left(a_{0}+a_{1} \gamma+\cdots+a_{D-1} \gamma^{D-1}\right)=m_{0}+m_{1} \gamma+m_{2} \gamma^{2}+\cdots+m_{D-1} \gamma^{D-1}
$$

Since $\left\{1, \gamma^{1}, \ldots, \gamma^{D-1}\right\}$ is a basis for $K(\gamma)$, we must have $m_{i}=-a_{i}$ for $0 \leq i \leq D-1$. That is, $m_{\gamma}(z)=-a_{0}-a_{1} z-\cdots-a_{D-1} z^{D-1}+z^{D}$, as required.

Lemma 5.12 implies that one can compute $m_{\gamma}(z)$ by finding γ^{D} expressed as a linear combination of the γ^{i} 's, $0 \leq i \leq D-1$. Observe that when we computed the change-of-basis matrix C, we have already computed γ^{D-1} in terms of the elements in B_{α}. Thus at this stage, $m_{\gamma}(z)$ can be found via a single multiplication $\gamma^{D-1} \cdot \gamma=\gamma^{D}$ and a single matrix-vector multiplication of C^{-1} by the CDR of γ^{D} to obtain $m_{\gamma}(z)$.

Example 5.13. Continuing from Example 5.11, let us find $m_{\gamma}(z) \in \mathbb{Q}[z]$. Since $D=[\mathbb{Q}(\gamma): \mathbb{Q}]=[\mathbb{Q}(\alpha, \beta): \mathbb{Q}]=4$ and $\gamma^{3}=11 \alpha+17 \beta$, we have

$$
\gamma^{4}=\gamma \cdot \gamma^{3}=(\alpha+\beta)(11 \alpha+17 \beta)=89+28 \alpha \beta
$$

To represent $\gamma^{4}=89+28 \alpha \beta$ as an element in $\mathbb{Q}(\gamma)$, we multiply C^{-1} (the change-ofbasis matrix from B_{α} to B_{γ}) by the CDR of γ^{4}, which is $[89,0,0,28]^{T}$, and C is given
by (5.3):

$$
C^{-1} \cdot\left[\begin{array}{c}
89 \\
0 \\
0 \\
28
\end{array}\right]=\left[\begin{array}{cccc}
1 & \frac{7}{2} & -\frac{77}{34} & -\frac{7}{2} \\
0 & 1 & -\frac{11}{17} & 0 \\
0 & -\frac{1}{2} & \frac{11}{34} & \frac{1}{2} \\
0 & 0 & \frac{1}{17} & 0
\end{array}\right] \cdot\left[\begin{array}{c}
89 \\
0 \\
0 \\
28
\end{array}\right]=\left[\begin{array}{c}
-9 \\
0 \\
14 \\
0
\end{array}\right]
$$

Hence $m_{\gamma}(z)=-9+14 z^{2}+z^{4}$.

5.3 Finding a primitive element using resultants

A second method for determining a primitive element and its minimal polynomial of $K(\alpha, \beta)$ is by using resultants and gcds. This method is based on the fact that norms can be computed using resultants (Theorem 1.25). We illustrate this method with an example.

Example 5.14. Let us find a primitive element $\gamma=\beta+c \alpha$ of $\mathbb{Q}(\alpha, \beta)$ where $m_{\alpha}(x)=$ $x^{2}-5 \in \mathbb{Q}[x]$ and $m_{\beta}(x)=x^{2}-2 \in \mathbb{Q}[x]$. These polynomials are the same as in Example 5.11. When $c=0$, we have

$$
\operatorname{norm}\left(m_{\beta}(x-c \alpha, \alpha)\right)=\operatorname{norm}\left(m_{\beta}(x-0 \cdot \alpha, \alpha)\right)=\operatorname{res}_{y}\left(m_{\beta}(x, y), m_{\alpha}(y)\right)=\left(x^{2}-2\right)^{2} .
$$

This polynomial is not square-free, so we recompute the norm of $m_{\beta}(x-c \alpha, \alpha)$ for $c=1$:

$$
N(x)=\operatorname{norm}\left(m_{\beta}(x-\alpha, \alpha)\right)=\operatorname{res}_{y}\left((x-y)^{2}-2, y^{2}-5\right)=x^{4}-14 x^{2}+9
$$

$N(x)$ is square-free, so $\gamma=\beta+1 \cdot \alpha$ is a primitive element of $\mathbb{Q}(\alpha, \beta)$ whose minimal polynomial over \mathbb{Q} is $N(x)$. This result is consistent with that obtained using the linear algebra method in Example 5.11.

5.3.1 Finding $\alpha(\gamma)$ and $\beta(\gamma)$

Suppose that we have found a primitive element $\gamma=\beta+c \alpha$ satisfying $K(\alpha, \beta)=$ $K(\gamma)$. To convert $f \in K(\alpha, \beta)[x]$ to a polynomial in $K(\gamma)[x]$, we need to substitute
the $\alpha \mathrm{s}$ and $\beta \mathrm{s}$ in f with their normal representations $\alpha(\gamma), \beta(\gamma) \in K(\gamma)$, respectively. In the linear algebra approach, we can do this by inverting the change-of-basis matrix C and performing a series of matrix-vector multiplications.

In this section,we explain a different method for computing $\alpha(\gamma)$ and $\beta(\gamma)$, which requires computing a gcd, and avoids computing the change-of-basis matrix. By the proof of Theorem 5.8, the solution to the linear equation

$$
\operatorname{gcd}\left(m_{\beta}(\gamma-c y, y), m_{\alpha}(y)\right)=0
$$

is equal to $\alpha(\gamma)$. Furthermore, since $\gamma=\beta+c \alpha=\beta+c \alpha(\gamma), \beta(\gamma)$ can be found by a simple formula:

$$
\beta(\gamma)=\gamma-c \alpha(\gamma)
$$

We illustrate this with an example.
Example 5.15. Continuing with Example 5.14, let us find $\alpha(\gamma), \beta(\gamma) \in \mathbb{Q}(\gamma)$. We have

$$
\begin{align*}
\operatorname{gcd}\left(m_{\beta}(\gamma-y, y), m_{\alpha}(y)\right) & =\operatorname{gcd}\left((\gamma-y)^{4}-y^{2}(\gamma-y)^{2}-2, y^{4}-2\right) \\
& =y+\frac{16949}{4628} \gamma+\frac{5883}{4628} \gamma^{5}+\frac{925}{9256} \gamma^{9}-\frac{87}{37024} \gamma^{13} . \tag{5.4}
\end{align*}
$$

Hence

$$
\begin{aligned}
& \alpha(\gamma)=-\frac{16949}{4628} \gamma-\frac{5883}{4628} \gamma^{5}-\frac{925}{9256} \gamma^{9}+\frac{87}{37024} \gamma^{13} \text { and } \\
& \beta(\gamma)=\gamma-1 \cdot \alpha(\gamma)=\frac{-87}{37024} \gamma^{13}+\frac{925}{9256} \gamma^{9}+\frac{5883}{4628} \gamma^{5}+\frac{21577}{4628} \gamma .
\end{aligned}
$$

Notice the expression swell that occurs from computing with rationals. We will eliminate this swell by working modulo a prime (Chapter 6).

5.4 Algorithms

We present the algorithms for finding a primitive element of $K(\alpha, \beta)$ using resultants and gcds. Algorithm sqfr_norm finds $c \in \mathbb{Z}$ for which $\operatorname{norm}\left(m_{\alpha}(x-c \alpha, \alpha)\right)$ is square-free, and Algorithm prim_elt returns the minimal polynomial for the primitive element γ of $K(\alpha, \beta)$ and the normal representations $\alpha(\gamma), \beta(\gamma) \in K(\gamma)$.

```
Algorithm 5.1: sqfr_norm \(\left(m_{\beta}(x, \alpha), m_{\alpha}(y)\right)\)
Input: \(m_{\beta}(x, \alpha) \in K(\alpha)[x]\), and \(m_{\alpha}(y) \in K[y]\), the minimal polynomials for \(\beta\) over
    \(K(\alpha)\) and \(\alpha\) over \(K\) respectively, where \(K\) is a field of characteristic 0 .
Output: \(c \in \mathbb{Z}, g(x, \alpha)=m_{\beta}(x-c \alpha) \in K(\alpha)[x]\), and square-free \(N(x)=\)
    \(\operatorname{norm}(g(x, \alpha)) \in K[x]\).
    \(c \leftarrow 0 ; g(x, \alpha) \leftarrow m_{\beta}(x, \alpha) ;\)
    while true do
    \(g(x, \alpha) \leftarrow g(x-c \cdot \alpha, \alpha) ;\)
    \(N(x) \leftarrow \operatorname{res}_{y}\left(g(x, y), m_{\alpha}(y)\right) ;\{N(x) \in K[x]\}\)
    if \(\operatorname{deg}\left(\operatorname{gcd}\left(N(x), N^{\prime}(x)\right)\right)=0\) then
        return \(c, g(x, \alpha), N(x) ;\{N(x)\) is the minimal polynomial for \(\beta+c \alpha\) by Rem.
        \(5.10\}\)
        else
        \(c \leftarrow c+1 ;\)
        end if
    end while
```

Algorithm 5.2: prim_elt $\left(m_{\beta}(x, \alpha), m_{\alpha}(y)\right)$
Input: $m_{\beta}(x, \alpha) \in K(\alpha)[x]$, and $m_{\alpha}(y) \in K[y]$, minimal polynomials for β over
$K(\alpha)$ and α over K respectively, where K is a field of characteristic 0 .
Output: $c \in \mathbb{Z}, N(x) \in K[x]$, minimal polynomial for γ where $K(\alpha, \beta)=$
$K(\gamma)$, and $A(\gamma) \in K(\gamma), B(\gamma) \in K(\gamma)$, the normal representations of α and β,
respectively.
1: $c, g(x, \alpha), N(x) \leftarrow$ sqfr_norm $\left(m_{\beta}(x, \alpha), m_{\alpha}(y)\right) ;$
$h(\gamma, y) \leftarrow$ the monic $\operatorname{gcd}\left(g(\gamma, y), m_{\alpha}(y)\right) \in K(\gamma)[y]$ where $N(\gamma)=0$;
$\{h(y)=y+a(\gamma)$ by Lemma 5.7 $\}$
3: $A(\gamma) \leftarrow-a(\gamma) ; \quad B(\gamma) \leftarrow \gamma-c \cdot A(\gamma) ;$
return $c, N(x), A(\gamma), B(\gamma)$;

5.5 Towers with more than two steps

We now generalize the resultant approach to apply to fields given as a tower of more than two extensions $(t>2)$. To find a primitive element γ of such fields, one can find a primitive element of two extensions at a time repeatedly as follows:

$$
\begin{align*}
& K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right)=K\left(\alpha_{1}, \ldots, \alpha_{t-3}, \alpha_{t-2}\right)\left(\alpha_{t-1}, \alpha_{t}\right) \\
& \cong K\left(\alpha_{1}, \ldots, \alpha_{t-3}, \alpha_{t-2}\right)\left(\gamma_{t-1}\right) \\
&=K\left(\alpha_{1}, \ldots \alpha_{t-3}\right)\left(\alpha_{t-2}, \gamma_{t-1}\right) \\
& \cong K\left(\alpha_{1}, \ldots, \alpha_{t-3}\right)\left(\gamma_{t-2}\right) \tag{5.5}\\
& \vdots \\
& \cong K\left(\alpha_{1}, \gamma_{2}\right) \\
& \cong K(\gamma) .
\end{align*}
$$

Remark 5.16. One can alternatively collapse the extensions "bottom-up" as follows:

$$
K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right) \cong K\left(\gamma_{1}, \alpha_{3}, \ldots, \alpha_{t}\right) \cong K\left(\gamma_{2}, \alpha_{4}, \ldots, \alpha_{t}\right) \cdots \cong K\left(\gamma_{t-2}, \alpha_{t}\right) \cong K(\gamma)
$$

The complexity of this method is comparable to the "top-down" method we proposed above.

To find the normal representations of all the α_{i} 's in $K(\gamma)$, one needs to perform extra computations than in the two extension case. We illustrate this for the case $t=3$.

Example 5.17. Let us find a primitive element of $\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \cong \mathbb{Q}[z, y, x] /\left\langle m_{1}, m_{2}, m_{3}\right\rangle$ where

$$
\begin{aligned}
& m_{1}(z)=z^{2}-2 \in \mathbb{Q}[z], \\
& m_{2}(y)=y^{2}-\alpha_{1} y+11 \in \mathbb{Q}\left(\alpha_{1}\right)[y], \quad \text { and } \\
& m_{3}(x)=x^{2}+2 \alpha_{1} \alpha_{2}-3 \in \mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right)[x] .
\end{aligned}
$$

Let us find γ_{1}, algebraic over $K_{1}:=\mathbb{Q}\left(\alpha_{1}\right)$ such that $K_{1}\left(\alpha_{2}, \alpha_{3}\right)=K_{1}\left(\gamma_{1}\right)$. If $c=0$, then $m_{3}\left(x-c \alpha_{2}, \alpha_{2}\right)$ is:

$$
\begin{align*}
N_{1}\left(x, \alpha_{1}\right):=\operatorname{norm}\left(m_{3}\left(x, \alpha_{2}\right)\right) & =\operatorname{res}_{y}\left(m_{3}(x, y), m_{2}(y)\right) \\
& =\operatorname{res}_{y}\left(x^{2}+2 \alpha_{1} y-3, y^{2}-y \alpha_{1}+11\right) \tag{5.6}\\
& =x^{4}-2 x^{2}+85 \in K_{1}[x] .
\end{align*}
$$

Since $N_{1}\left(x, \alpha_{1}\right)$ is square-free, we conclude that $\gamma_{1}=\alpha_{2}+0 \cdot \alpha_{3}$ satisfies $K_{1}\left(\alpha_{2}, \alpha_{3}\right)=$ $K_{1}\left(\gamma_{1}\right)$ and $N_{1}\left(x, \alpha_{1}\right) \in K_{1}[x]=\mathbb{Q}\left(\alpha_{1}\right)[x]$ is the minimal polynomial for γ_{1}. Since

$$
\operatorname{gcd}\left(m_{3}\left(\gamma_{1}, y\right), m_{2}(y)\right)=y-\frac{3}{4} \alpha_{1}+\frac{1}{4} \alpha_{1} \gamma_{1}^{2}
$$

we conclude that the normal representations of α_{2} and α_{3} in $K_{1}\left(\gamma_{1}\right)$ are

$$
\alpha_{2}\left(\gamma_{1}\right)=\frac{3}{4} \alpha_{1}-\frac{1}{4} \alpha_{1} \gamma_{1}^{2} \in K_{1}\left(\gamma_{1}\right), \text { and } \alpha_{3}\left(\gamma_{1}\right)=\gamma_{1}-0 \cdot \alpha_{2}=\gamma_{1} \in K_{1}\left(\gamma_{1}\right)
$$

Now we find γ, algebraic over \mathbb{Q}, such that $\mathbb{Q}(\gamma)=\mathbb{Q}\left(\alpha_{1}, \gamma_{1}\right)$. Note that

$$
\operatorname{norm}\left(N_{1}\left(x, \alpha_{1}\right)\right)=\operatorname{res}_{y}\left(N_{1}(x), m_{1}(y)\right)=\operatorname{res}_{y}\left(x^{4}-2 x^{2}+85, y^{2}-2\right)=\left(x^{4}-2 x^{2}+85\right)^{2}
$$

is not square-free. Thus we try $c=1$. The norm of $N\left(x-\alpha_{1}, \alpha_{1}\right)$ is

$$
\begin{aligned}
N(x):=\operatorname{norm}\left(N_{1}\left(x-\alpha_{1}, \alpha_{1}\right)\right) & =\operatorname{res}_{y}\left((x-y)^{4}-2(x-y)^{2}+85, y^{2}-2\right) \\
& =x^{8}-12 x^{6}+206 x^{4}+1668 x^{2}+7225 \in \mathbb{Q}[x] .
\end{aligned}
$$

$N(x)$ is square-free. Hence

$$
\mathbb{Q}(\gamma) \cong \mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \text { where } \gamma=\gamma_{1}+\alpha_{1}=\alpha_{1}+\left(\alpha_{2}+0 \cdot \alpha_{3}\right),
$$

and the minimal polynomial for γ over \mathbb{Q} is $N(x)$. Let us now find the normal representations of α_{2} and α_{1} in $\mathbb{Q}(\gamma)$. Since

$$
\operatorname{gcd}\left(N(\gamma-y, y), m_{1}(y)\right)=y-\frac{1}{25840}\left(\gamma+2959 \gamma^{3}-193 \gamma^{5}+9 \gamma^{7}\right)
$$

we have

$$
\begin{aligned}
& \alpha_{1}(\gamma)=\frac{1}{25840}\left(\gamma+2959 \gamma^{3}-193 \gamma^{5}+9 \gamma^{7}\right) \text { and } \\
& \gamma_{1}(\gamma)=\gamma-1 \cdot \alpha_{1}(\gamma)=\frac{1}{25840}\left(-9 \gamma^{7}+22983 \gamma-2959 \gamma^{3}+193 \gamma^{5}\right) .
\end{aligned}
$$

Finally, recall that $\alpha_{3}\left(\gamma_{1}\right)=\gamma_{1}-0 \cdot \alpha_{2}=\gamma_{1}$. So

$$
\alpha_{3}(\gamma)=\gamma_{1}(\gamma)=\frac{1}{25840}\left(-9 \gamma^{7}+22983 \gamma-2959 \gamma^{3}+193 \gamma^{5}\right)
$$

Moreover, recall that $\alpha_{2}\left(\gamma_{1}\right)=\frac{3}{4} \alpha_{1}-\frac{1}{4} \alpha_{1} \cdot \gamma_{1}^{2}$. Thus

$$
\begin{aligned}
\alpha_{2}(\gamma)= & \frac{3}{4} \alpha_{1}(\gamma)-\frac{1}{4} \alpha_{1}(\gamma) \cdot \gamma_{1}(\gamma)^{2} \\
= & \frac{3}{4}\left(\frac{1}{25840}\left(\gamma+2959 \gamma^{3}-193 \gamma^{5}+9 \gamma^{7}\right)\right)-\frac{1}{4}\left(\frac{1}{25840}\left(\gamma+2959 \gamma^{3}-193 \gamma^{5}+9 \gamma^{7}\right)\right) . \\
& \left(\frac{1}{25840}\left(-9 \gamma^{7}+22983 \gamma-2959 \gamma^{3}+193 \gamma^{5}\right)\right)^{2} \bmod \langle N(\gamma)\rangle \\
= & \frac{-1}{981920}\left(111909 \gamma^{3}-9151 \gamma^{5}+815 \gamma^{7}+1736191 \gamma\right) .
\end{aligned}
$$

In general, if the field is a t-step extension where t is greater than 2 , and we execute Algorithm prim_elt $(t-1)$ times to compute a primitive element γ of the field, we obtain the normal representations

$$
\begin{gathered}
\alpha_{1}(\gamma), \alpha_{2}\left(\gamma_{1}\right), \alpha_{3}\left(\gamma_{1}\right), \ldots, \alpha_{t-2}\left(\gamma_{t-2}\right), \alpha_{t-1}\left(\gamma_{t-1}\right), \alpha_{t}\left(\gamma_{t-1}\right) \text { and } \\
\gamma, \gamma_{1}(\gamma), \gamma_{2}\left(\gamma_{1}\right), \ldots, \gamma_{t-1}\left(\gamma_{t-2}\right),
\end{gathered}
$$

where γ_{i} 's are as in (5.5). Thus we must convert $\alpha_{2}\left(\gamma_{1}\right), \ldots, \alpha_{t}\left(\gamma_{t-1}\right)$ to $\alpha_{2}(\gamma), \ldots, \alpha_{t}(\gamma) \in K(\gamma)$. Note that for a fixed $j \in\{2, \ldots, t\}$,

$$
\alpha_{j}\left(\gamma_{j-1}\right) \in K\left(\alpha_{1}, \ldots, \alpha_{j-2}, \gamma_{j-1}\right)
$$

Hence for each $\alpha_{j}\left(\gamma_{j-1}\right)$, we must make the substitutions

$$
\alpha_{i} \leftarrow \alpha_{i}(\gamma), 1 \leq i \leq j-2 \text { and } \gamma_{j-1} \leftarrow \gamma_{j-1}(\gamma)
$$

Chapter 6

Finding a primitive element (characteristic p)

In what follows, we let $K=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{r}\right) \cong \mathbb{Q}\left[u_{1}, \ldots, u_{r}\right] /\left\langle m_{\alpha_{1}}, \ldots, m_{\alpha_{r}}\right\rangle$ where $m_{\alpha_{i}}\left(u_{i}\right) \in \mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)\left[u_{i}\right]$ is the minimal polynomial of α_{i} over $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$ for $2 \leq i \leq r$ and $m_{\alpha_{1}}\left(u_{1}\right) \in \mathbb{Q}\left[u_{1}\right]$ is the minimal polynomial for α_{1} over \mathbb{Q}.

Consider

$$
K(\alpha, \beta) \cong K[y, x] /\left\langle m_{1}, m_{2}\right\rangle
$$

where $m_{1}=m_{1}(y) \in K[y]$ and $m_{2}=m_{2}(x) \in K(\alpha)[x]$ are the minimal polynomials of α over K and β over $K(\alpha)$ respectively. Furthermore, let $f, g \in K(\alpha, \beta)[x]$ be the polynomials we wish to multiply. As we have seen in Example 5.13, performing arithmetic in \mathbb{Q} leads to a blow-up of coefficients. To control the growth, we work modulo primes.

Rather than working over $K(\alpha, \beta)$, we will work over the finite quotient ring

$$
K_{p}[\bar{\alpha}, \bar{\beta}] \cong K_{p}[y, x] /\left\langle M_{1}, M_{2}\right\rangle,
$$

where p is a non-bad prime (so that $\Phi_{p}(f), \Phi_{p}(g), \Phi_{p}\left(\alpha_{1}\right), \ldots, \Phi_{p}\left(\alpha_{r}\right), \Phi_{p}(\alpha), \Phi_{p}(\beta)$ are all defined), $\bar{\alpha}:=\Phi_{p}(\alpha), \bar{\beta}:=\Phi_{p}(\beta), M_{1}:=M_{1}(y)=\Phi_{p}\left(m_{1}\right) \in K_{p}[y]$, and $M_{2}:=M_{2}(x, \bar{\alpha})=\Phi_{p}\left(m_{2}\right) \in K_{p}[\bar{\alpha}][x]$. For many primes this ring is not a field, so the theorems mentioned in Chapter 5 may not apply. Nevertheless, we can implement modifications to Algorithm prim_elt (and Algorithm sqfr_norm) so that it takes
as input the ring $K_{p}[\bar{\alpha}, \bar{\beta}]$ and returns

$$
\Phi_{p}\left(m_{\gamma}(x)\right), \bar{\alpha}(\bar{\gamma})=\Phi_{p}(\alpha(\gamma)) \text { and } \bar{\beta}(\bar{\gamma})=\Phi_{p}(\beta(\gamma)),
$$

where γ is a primitive element of $K(\alpha, \beta), \bar{\gamma}=\Phi_{p}(\gamma)$, and $\alpha(\gamma), \beta(\gamma)$ are normal representations of α and β respectively in $K(\gamma)$. In this chapter, we examine the modifications that are necessary for the algorithms to work modulo p.

6.1 Modifications to Algorithm sqfr_norm

In what follows, let p be a non-bad prime and denote by K_{p} the ring

$$
K_{p}=\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{r}\right] \cong \mathbb{F}_{p}\left[u_{1}, \ldots, u_{r}\right] /\left\langle\Phi_{p}\left(m_{\alpha_{1}}\right), \ldots, \Phi_{p}\left(m_{\alpha_{r}}\right)\right\rangle
$$

We first describe modifications necessary for Algorithm sqfr_norm to run modulo p, specifically when the input ring is $K_{p}[\bar{\alpha}, \bar{\beta}] \cong K_{p}[y, x] /\left\langle M_{1}, M_{2}\right\rangle$. Recall that Algorithm sqfr_norm finds $c \in \mathbb{Z}$ such that $\operatorname{res}_{y}\left(m_{2}(x-c y, y), m_{1}(y)\right) \in K[x]$ is square-free. In this section, we show the algorithm may fail over $K_{p}[\bar{\alpha}, \bar{\beta}]$ if:
(i) division by a zero divisor is encountered,
(ii) $M_{1}(y)=\Phi_{p}\left(m_{1}(y)\right)$ or $M_{2}(x, \bar{\alpha})=\Phi_{p}\left(m_{2}(x, \alpha)\right)$ is not square-free over K_{p} or $K_{p}[\bar{\alpha}]$ respectively, or
(iii) p is not large enough for a suitable c to be found.

We now discuss how to handle each case.

6.1.1 Handling zero divisors

Executing Algorithm sqfr_norm modulo p may fail if a zero divisor is encountered while computing the resultant (Line 4) using evaluation and interpolation (Section 7.2) or the gcd (Line 5) using the Euclidean algorithm. Normally, division by a zero divisor is encountered only for certain values of c, in which case we can simply choose a different c and re-enter the while-loop. However, there may exist a prime p in which every $c \in \mathbb{F}_{p}$ results in a division by a zero divisor. In Section 7.1 we provide an example of such a case, and explain how to handle it.

6.1.2 Handling non-square-free M_{1} or M_{2}

Certainly m_{1} may be square-free over K, but not over K_{p}. For example, if $K=\mathbb{Q}$ and $K_{p}=\mathbb{F}_{5}$, then $m_{1}=x^{2}-5 \in \mathbb{Q}[x]$ is square-free over K but $M_{1}=\Phi_{p}\left(m_{1}\right)=x^{2}$ is not square-free over K_{p}. We insist that M_{1} and M_{2} must be square-free over K_{p} and $K_{p}[\bar{\alpha}]$ respectively. To see why this condition is required, we refer to the following lemma.

Lemma 6.1. Let p be a non-bad prime, $\operatorname{deg}_{y}\left(m_{1}\right)>1$, and $\operatorname{deg}_{x}\left(m_{2}\right)>1$. If either $M_{1}(y)=\Phi_{p}\left(m_{1}\right) \in K_{p}[y]$ or $M_{2}(x)=\Phi_{p}\left(m_{2}\right) \in K_{p}[\bar{\alpha}][x]$ is not square-free over K_{p} and $K_{p}[\bar{\alpha}]$ respectively, then there does not exist $c \in \mathbb{F}_{p}$ for which $N_{p}(x)=\operatorname{res}_{y}\left(M_{2}(x-\right.$ $\left.c y, y), M_{1}(y)\right)$ is square-free over K_{p}.
Proof. Let $d_{1}=\operatorname{deg}_{y}\left(m_{1}\right)$ and $d_{2}=\operatorname{deg}_{x}\left(m_{2}\right)$. Because m_{1} and m_{2} are monic in y and x respectively, it follows that $\operatorname{deg}_{y}\left(M_{1}\right)=d_{1}>1$ and $\operatorname{deg}_{x}\left(M_{2}\right)=d_{2}>1$.

Let $\alpha_{1}, \ldots, \alpha_{d_{1}}$ be the roots of $m_{1}(x) \in K[x]$ over a splitting field and suppose that $M_{1}(x)$ is not square-free. Then we must have

$$
\alpha_{k}=\alpha_{r} \text { where } 1 \leq k<r \leq d_{1} .
$$

If $k=\operatorname{deg}_{y}\left(M_{2}(x-c y, y)\right)$, then by Theorem 1.19 (i) and Theorem 6.2,

$$
\begin{aligned}
N_{p}(x) & =\operatorname{res}_{y}\left(M_{2}(x-c y, y), M_{1}(y)\right) \\
& =(-1)^{d_{2} d_{1}} \cdot \operatorname{res}_{y}\left(M_{1}(y), M_{2}(x-c y, y)\right) \\
& =(-1)^{d_{2} d_{1}} \cdot \operatorname{res}_{y}\left(\Phi_{p}\left(m_{1}(y)\right), \Phi_{p}\left(m_{2}(x-c y, y)\right)\right) \\
& =\frac{(-1)^{d_{2} d_{1}}}{\operatorname{lcoeff}_{y}\left(m_{1}\right)^{d_{2}-k}} \cdot \Phi_{p}\left(\operatorname{res}_{y}\left(m_{1}(y), m_{2}(x-c y, y)\right)\right) \\
& =\frac{(-1)^{d_{2} d_{1}}}{1^{d_{2}-k}} \cdot \Phi_{p}\left((-1)^{d_{2} d_{1}} \operatorname{res}_{y}\left(m_{2}(x-c y, y), m_{1}(y)\right)\right) \\
& =\frac{(-1)^{2 d_{2} d_{1}}}{1} \cdot \Phi_{p}\left(\operatorname{norm}\left(m_{2}(x-c \alpha)\right)\right) \\
& =1 \cdot \prod_{i=1}^{d_{1}}\left(\Phi_{p}\left(m_{2}\left(x-c \alpha_{i}\right)\right)\right) \\
& =\left(\Phi_{p}\left(m_{2}\left(x-c \alpha_{k}\right)\right)\right)^{2} \cdot \Phi_{p}\left(\prod_{\substack{i=1 \\
i \notin\{k, r\}}}^{d_{1}} m_{2}\left(x-c \alpha_{i}\right)\right) .
\end{aligned}
$$

Since $\operatorname{deg}_{x}\left(\Phi_{p}\left(m_{2}\left(x-c \alpha_{k}\right)\right)\right)=\operatorname{deg}_{x}\left(m_{2}(x)\right)>1, N_{p}$ cannot be square-free for $c \in \mathbb{F}_{p}$.
Now let $\beta_{1}, \ldots, \beta_{d_{2}}$ be the roots of m_{2} over a splitting field and suppose that M_{2} is not square-free over $K_{p}[\bar{\alpha}]$. Then $\Phi_{p}\left(\beta_{k}\right)=\Phi_{p}\left(\beta_{r}\right)$ for some $1 \leq k<r \leq d_{2}$. Using the result above,

$$
N_{p}(x)=\operatorname{res}_{y}\left(M_{2}(x-c y, y), M_{1}(y)\right)=\prod_{i=1}^{d_{1}}\left(\Phi_{p}\left(m_{2}\left(x-c \alpha_{i}\right)\right)\right)=\prod_{i=1}^{d_{1}}\left(M_{2}\left(x-c \cdot \Phi_{p}\left(\alpha_{i}\right)\right)\right) .
$$

Thus for each $i=1, \ldots, d_{1},\left\{\Phi_{p}\left(\beta_{j}\right)-c \cdot \Phi_{p}\left(\alpha_{i}\right), j=1, \ldots, d_{2}\right\}$ are roots of $N_{p}(x)$. But since $\Phi_{p}\left(\beta_{k}\right)=\Phi_{p}\left(\beta_{r}\right)$, there are repeated roots in this set. Hence $N_{p}(x)$ cannot be square-free over K_{p} regardless of the value of $c \in \mathbb{F}_{p}$.

Lemma 6.1 implies that if M_{1} or M_{2} is not square-free over K_{p} and $K_{p}[\bar{\alpha}]$ respectively, then Algorithm sqfr_norm will fail for all $c \in \mathbb{F}_{p}$. Recall that we call a prime in which M_{2} or M_{1} is not square-free a fail prime (Chapter 2).

To prevent the algorithm from running for many choices of c which yields a non-square-free N_{p}, or worse, running for all choices of $c \in \mathbb{F}_{p}$ before returning $F A I L$, we modify Algorithm sqfr_norm to return $F A I L$ if three choices of $c \in \mathbb{F}_{p}$ do not give a square-free $N_{p}(x)$.

6.1.3 Choosing a "large enough" p

Suppose now that p is a good, non-fail prime (so that M_{1} and M_{2} are square-free) and let

$$
N_{p}(x)=\operatorname{res}_{y}\left(M_{2}(x-c y, y), M_{1}(y)\right)
$$

Observe that, by Remark $1.23, N_{p}$ is not square-free if c is a root of

$$
r(x):=\operatorname{res}_{x}\left(N_{p}, N_{p}^{\prime}\right) \in K_{p}[x] .
$$

If p is less than the number of distinct roots of r, then every choice of $c \in \mathbb{F}_{p}$ may yield a non-square-free N_{p}. Thus must choose p to be larger than the number of distinct roots of $r(x)$ that belong to \mathbb{F}_{p}. For this, we need to find an upper bound on the number of such roots of $r(x)$. The following theorem and lemma are helpful for this purpose.

Theorem 6.2. Let R and \tilde{R} be commutative rings and let $f, g \in R[x]$ with nonzero degrees m and n respectively. Furthermore let $\phi: R \rightarrow \tilde{R}$ be a homomorphism. If $\operatorname{deg}(\phi(f))=m$ and $\operatorname{deg}(\phi(g))=k, 0 \leq k \leq n$, then

$$
\phi(\operatorname{res}(f, g))=\phi(\operatorname{lcoeff}(f))^{n-k} \operatorname{res}(\phi(f), \phi(g))
$$

Proof. See Geddes et al. [11, Theorem 9.2, p. 408].
Lemma 6.3. Let $A(x) \in K_{p}[x]$ where $K_{p}=\mathbb{F}_{p}$ or $\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{r}\right]$ and
$M_{i} \in \mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{i-1}\right]\left[u_{i}\right]$ for $2 \leq i \leq r$ and $M_{1} \in \mathbb{F}_{p}\left[u_{1}\right]$. If $\operatorname{deg}_{x}(A)=d \geq 0$, then the number of roots of A belonging to \mathbb{F}_{p} is at most d.

Proof. Suppose that $A(x) \in \mathbb{F}_{p}[x]$. We show that $A(x)$ has at most d roots in \mathbb{F}_{p} using induction on $d=\operatorname{deg}_{x}(A)$. If $\operatorname{deg}_{x}(A)=0$ then there are no roots and we are done. Suppose now that $\operatorname{deg}_{x}(A)=d+1$ and that the statement holds for A of degree d. If $\rho_{1} \in \mathbb{F}_{p}$ is a root of A, then $A(x)=\left(x-\rho_{1}\right) \cdot B(x)$ where $B(x) \in \mathbb{F}_{p}[x]$. If $\operatorname{deg}_{x}(A)=1$, then $\operatorname{deg}_{x}(B)=0$ so we are done. Otherwise, let ρ_{2} be a root of A, not equal to ρ_{1}. Then $f\left(\rho_{2}\right)=\left(\rho_{2}-\rho_{1}\right) \cdot g\left(\rho_{2}\right)=0$. Since $\rho_{2}-\rho_{1} \neq 0$ and \mathbb{F}_{p} is a field, we have $B\left(\rho_{2}\right)=0$. By induction hypothesis, B has at most d roots. Thus A has at most $d+1$ roots. This proves that $A(x)$ of degree d can have at most d roots in \mathbb{F}_{p}.

Now suppose that $A(x) \in K_{p}[x]$ where $K_{p}=\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{r}\right] \cong$ $\mathbb{F}_{p}\left[u_{1}, \ldots, u_{r}\right] /\left\langle M_{1}, \ldots, M_{r}\right\rangle$ and $d_{i}=\operatorname{deg}_{u_{i}}\left(M_{i}\right), 1 \leq i \leq r$. Let

$$
c_{i}\left(h_{1}, h_{2}, \ldots, h_{r}\right)=\operatorname{coeff}\left(x^{i} u_{1}^{h_{1}} u_{2}^{h_{2}} \cdots u_{r}^{h_{r}}, A\right) \in \mathbb{F}_{p}, 0 \leq h_{j} \leq d_{j}, 1 \leq j \leq r .
$$

If $A(\sigma)=0$ for some $\sigma \in \mathbb{F}_{p}$, then σ must also be a root of all of the following $d_{1} d_{2} \cdots d_{r}$ polynomials

$$
\begin{align*}
& \sum_{i=0}^{d} c_{i}(0,0, \ldots, 0) \cdot x^{i} \in \mathbb{F}_{p}[x] \\
& \sum_{i=0}^{d} c_{i}(0,0, \ldots, 1) \cdot x^{i} \in \mathbb{F}_{p}[x] \tag{6.1}\\
& \quad \vdots \\
& \sum_{i=0}^{d} c_{i}\left(d_{1}-1, d_{2}-1, \ldots, d_{r}-1\right) \cdot x^{i} \in \mathbb{F}_{p}[x]
\end{align*}
$$

at least one of which is non-zero since $A(x)$ is non-zero. By the proof above, each polynomial in (6.1) can have at most d roots in \mathbb{F}_{p}. It may be the case that all the polynomials in (6.1) have the same d roots in \mathbb{F}_{p}. Thus there can be at most d roots of $A(x)$ in \mathbb{F}_{p}.

By Lemma 6.3, the number of roots of $r(x)=\operatorname{res}_{x}\left(N_{p}, N_{p}^{\prime}\right)$ belonging to \mathbb{F}_{p} is at most the degree of $r(x)$. We now determine an upper bound on degree of $r(x)$. Let $M_{2}(x-c y, y)=\Phi_{p}\left(m_{2}(x-c y, y)\right)$. By Theorem 6.2,

$$
\begin{equation*}
\Phi_{p}\left(\operatorname{res}_{y}\left(m_{2}(x-c y, y), m_{1}(y)\right)\right)=\Phi_{p}(N(x))=N_{p}(x)=\operatorname{res}_{y}\left(M_{2}(x-c y, y), M_{1}(y)\right) . \tag{6.2}
\end{equation*}
$$

Because $N(x)$ is a minimal polynomial by Remark 5.10, $N(x)$ must be monic. Hence we must have

$$
\begin{equation*}
\operatorname{deg}_{x}(N)=\operatorname{deg}_{x}\left(N_{p}\right) \tag{6.3}
\end{equation*}
$$

Moreover, by Theorems 1.19 (i) and 6.2,

$$
\begin{align*}
\Phi_{p}\left(\operatorname{res}_{x}\left(N, N^{\prime}\right)\right) & =\Phi_{p}\left(\operatorname{res}_{x}\left(N^{\prime}, N\right)\right) \\
& =\operatorname{res}_{x}\left(\Phi_{p}\left(N^{\prime}\right), \Phi_{p}(N)\right) \\
& =\operatorname{res}_{x}\left(N_{p}^{\prime}, N_{p}\right) \tag{6.4}\\
& =(-1)^{m n} \operatorname{res}_{x}\left(N_{p}, N_{p}^{\prime}\right) \\
& =(-1)^{m n} r(x),
\end{align*}
$$

where $m=\operatorname{deg}_{x}\left(N_{p}\right)$ and $n=\operatorname{deg}_{x}\left(N_{p}^{\prime}\right)$. Let $d_{p}=\operatorname{deg}_{x}(r)$ and $d_{r}=\operatorname{deg}_{x}\left(\operatorname{res}_{x}\left(N, N^{\prime}\right)\right)$. By Lemma 5.5 and (6.4), we must have $d_{p} \leq d_{r}$ and $d_{r} \leq d_{2}^{2} d_{1}\left(d_{1}-1\right) / 2$. That is, there can be at most $d_{2}^{2} d_{1}\left(d_{1}-1\right) / 2$ distinct roots of $r(x)$ that belong to \mathbb{F}_{p}. Thus we require $p \geq d_{2}^{2} d_{1}\left(d_{1}-1\right) / 2$ to guarantee that a square-free $N_{p}(x)$ exists. In fact, we will choose p so that

$$
\begin{equation*}
p \geq 2\left(\frac{d_{2}^{2} d_{1}\left(d_{1}-1\right)}{2}\right)=d_{2}^{2} d_{1}\left(d_{1}-1\right) \tag{6.5}
\end{equation*}
$$

so that the probability of randomly choosing $c \in \mathbb{F}_{p}$ for which $N_{p}(x)$ is square-free will be at least $1 / 2$. However, in theory the first $\left\lfloor d_{2}^{2} d_{1}\left(d_{1}-1\right) / 2\right\rfloor$ consecutive choices for $c \in \mathbb{F}_{p}$ may yield a non-square-free $N_{p}(x)$. If this happens, the while-loop in Algorithm sqfr_norm would have to run $\left\lfloor d_{2}^{2} d_{1}\left(d_{1}-1\right) / 2\right\rfloor+1$ times, which is inefficient. For this reason, we also modify the algorithm to choose c at random from \mathbb{F}_{p}, rather than starting from 0 then counting up by 1 .

6.1.4 Proof of correctness

We now show that if Algorithm sqfr_norm is modified as discussed above and terminates successfully, then its output, a square-free $N_{p}(x)$, satisfies

$$
N_{p}(x)=\Phi_{p}(N(x))=\operatorname{res}_{y}\left(m_{2}(x-c y, y), m_{1}(y)\right) \bmod p
$$

where $N(x)$ is square-free over K.
To show this, observe that by (6.2), if $N_{p}(x)$ is square-free over K_{p} for some $c \in \mathbb{F}_{p}$, then $N(x)$ must be square-free over K for this c as well. Hence a square-free $N_{p}(x)$ will always be equal to $N(x) \bmod p$, where $N(x)$ is the minimal polynomial for some primitive element of $K(\alpha, \beta)$.

6.1.5 Modified algorithm of sqfr_norm and its complexity

We present the modified Algorithm sqfr_norm and its time complexity.
Suppose that $d_{1}=\operatorname{deg}_{y}\left(M_{1}(y)\right)$ and $d_{2}=\operatorname{deg}_{x}\left(M_{2}(x)\right)$. We analyze the cost of Algorithm sqfr_norm_p for $K_{p}=\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{r}\right]$.

- Line 7: To find the expanded form of $M_{2}(x-c \bar{\alpha}, \alpha)$, we pre-compute $C=-c \bar{\alpha}$ then apply the substitution $x \leftarrow x+C$ from the rightmost x to the leftmost x in the Horner form of $M_{2}(x, \bar{\alpha})$:

$$
M_{2}(x, \bar{\alpha})=a_{0}(\bar{\alpha})+x\left(a_{1}(\bar{\alpha})+x\left(a_{2}(\bar{\alpha})+\cdots+x\left(a_{d_{2}-1}(\bar{\alpha})+x\right) \cdots\right)\right)
$$

When substituting the k-th rightmost x for $x+C$ (for $1 \leq k \leq d_{2}$), we are required to compute the expanded form of

$$
a_{d_{2}-k}(\bar{\alpha})+(x+C) \cdot r(x, \bar{\alpha})=a_{d_{2}-k}(\bar{\alpha})+x \cdot r(x, \bar{\alpha})+C \cdot r(x, \bar{\alpha}),
$$

where $r(x, \bar{\alpha})$ is a polynomial in $K_{p}[\bar{\alpha}][x]$ whose degree in x is $k-1$. Multiplying x by $r(x, \bar{\alpha})$ is equivalent to shifting the degrees of x in $r(x, \bar{\alpha})$ by +1 , so no arithmetic operation is required for this step. On the other hand, multiplying $C=-c \bar{\alpha}$ by $r(x, \bar{\alpha})$ requires $\operatorname{deg}_{x}(r)$ multiplications in $K_{p}[\bar{\alpha}]$, or

Algorithm 6.1: sqfr_norm_p($\left.M_{2}(x, \bar{\alpha}), M_{1}(y), K_{p}\right)$
Input: $M_{2}(x, \bar{\alpha})=\Phi_{p}\left(m_{2}(x, \alpha)\right) \in K_{p}[\bar{\alpha}][x]$ and $\left.M_{1}(y)=\Phi_{p}\left(m_{1}(y)\right)\right) \in K_{p}[y]$ where $m_{2}(x, \alpha)$ and $m_{1}(y)$ are minimal polynomials for β over $K(\alpha)$ and α over K respectively where $K=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ and $K_{p}=\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{r}\right]$ for a good prime p satisfying $p>\left(\operatorname{deg}_{x}\left(M_{2}\right)^{2} \cdot \operatorname{deg}_{y}\left(M_{1}\right) \cdot\left(\operatorname{deg}_{y}\left(M_{1}\right)-1\right)\right)$.
Output: $c \in \mathbb{F}_{p}, g(x, \bar{\alpha})=M_{2}(x-c \bar{\alpha}) \in K_{p}[\bar{\alpha}][x]$, and square-free
$N_{p}(x)=\operatorname{res}_{y}\left(g(x, y), M_{1}(y)\right) \in K_{p}[x]$, or $F A I L$.
$c \leftarrow 0 ; S \leftarrow\{0\} ; i \leftarrow 1 ; g(x, \bar{\alpha}) \leftarrow M_{2}(x, \bar{\alpha}) ;$
if $\operatorname{deg}_{1}(g)=0$ then
$\left\{\operatorname{norm}(g(x, \bar{\alpha}))=M_{2}(x, \bar{\alpha})\right.$ is known to be not square-free by Lemma 1.20\}
$c \leftarrow$ random integer in $\mathbb{F}_{p} \backslash S ; S \leftarrow S \cup\{c\} ;$
end if
while true do
$g(x, \bar{\alpha}) \leftarrow M_{2}(x-c \bar{\alpha}, \bar{\alpha}) ;$
$N_{p}(x) \leftarrow \operatorname{res}_{y}\left(g(x, y), M_{1}(y)\right) ;$
\{compute $N_{p}(x)$ using evaluation homomorphism \& interpolation (Section 7.1)\}
$\left\{N_{p}(x)\right.$ returns $F A I L$ if a zero divisor is encountered $\}$
if $N_{p}(x) \neq F A I L$ then
$T(x) \leftarrow \operatorname{gcd}\left(N_{p}(x), N_{p}^{\prime}(x)\right) ;$ compute $T(x)$ using the Euclidean algorithm over K_{p}; if the Euclidean algorithm encounters a division by a zero divisor, it returns $F A I L\}$
if $\left\{T(x) \neq F A I L\right.$ and $\left.\operatorname{deg}_{x}(T)=0\right\}$ then
\{No division by a zero divisor is encountered during the computation of $T(x)$, and $N_{p}(x)$ is square-free over $\left.K_{p}\right\}$
return $c, g(x, \bar{\alpha}), N_{p}(x)$;
end if
else if $N_{p}(x)$ is not square-free for three values of c then
return FAIL;
end if
$c \leftarrow \operatorname{random}$ element in $\mathbb{F}_{p} \backslash S ; S \leftarrow S \cup\{c\} ; i \leftarrow i+1 ;$
end while
$\left(\operatorname{deg}_{x}(r) \cdot\left(\operatorname{deg}(\alpha)^{2}\right)=k \cdot d_{1}^{2}\right.$ multiplications in K_{p}. Hence the total number of multiplications required (in K_{p}) for expanding out $M(x-c \bar{\alpha}, \bar{\alpha})$ is

$$
\sum_{k=1}^{d_{2}} k \cdot d_{1}^{2}=\frac{d_{2}\left(d_{2}+1\right)}{2} d_{1}^{2} \subseteq \mathcal{O}\left(d_{1}^{2} d_{2}^{2}\right)
$$

- Line 8: In Section 7.1 we discuss an efficient method for computing multivariate resultants (based on evaluation and interpolation of the variable x), and show that it requires

$$
\mathcal{O}\left(d_{1}^{3} d_{2}+d_{1}^{2} d_{2}^{2}\right) \text { arithmetic operations in } K_{p}
$$

- Line 12: $\operatorname{By}(6.3), \operatorname{deg}_{x}\left(N_{p}\right)=d_{1} d_{2}$. One can attempt to find the gcd of $N_{p}(x)$ and $N_{p}^{\prime}(x)$ via the Euclidean algorithm, which requires

$$
\mathcal{O}\left(\left(d_{1} d_{2}\right)\left(d_{1} d_{2}-1\right)\right) \subseteq \mathcal{O}\left(d_{1}^{2} d_{2}^{2}\right) \text { arithmetic operations over } K_{p}
$$

Since the while-loop in the algorithm will be executed at most three times, the number of arithmetic operations in K_{p} in executing Algorithm sqfr_norm_p is

$$
\mathcal{O}\left(d_{1}^{3} d_{2}+d_{1}^{2} d_{2}^{2}\right)+\mathcal{O}\left(d_{1}^{2} d_{2}^{2}\right)+O\left(d_{1}^{2} d_{2}^{2}\right) \subseteq O\left(d_{1}^{3} d_{2}+d_{1}^{2} d_{2}^{2}\right)
$$

We remark that, because of the asymmetry in the cost, if $d_{1} \leq d_{2}$ then this cost can be simplified to

$$
\mathcal{O}\left(d_{1}^{2} d_{2}^{2}+d_{1}^{2} d_{2}^{2}\right) \subseteq \mathcal{O}\left(d_{1}^{2} d_{2}^{2}\right)
$$

Thus in the special case where $m_{2}(x)$ has no dependence on α (i.e. $m_{2}(x) \in K_{p}[x]$) and $\operatorname{deg}_{y}\left(m_{1}\right)>\operatorname{deg}_{y}\left(m_{2}\right)$, switching the variable ordering allows the resultant to be computed in $\mathcal{O}\left(d_{1}^{2} d_{2}^{2}\right)$, rather than in $\mathcal{O}\left(d_{1}^{3} d_{2}\right)$.

6.2 Modifications to Algorithm prim_elt

We now discuss modifications we must implement to Algorithm prim_elt so that it takes inputs $M_{1}(y) \in K_{p}[y]$ and $M_{2}(x, \bar{\alpha}) \in K_{p}[\bar{\alpha}][x]$ and, if it does not return $F A I L$, then it successfully outputs

$$
\Phi_{p}\left(m_{\gamma}(x)\right), \quad \bar{\alpha}(\bar{\gamma}), \quad \text { and } \quad \bar{\beta}(\bar{\gamma}),
$$

where $\bar{\alpha}(\bar{\gamma})=\Phi_{p}(\alpha(\gamma))$ and $\bar{\beta}(\bar{\gamma})=\Phi_{p}(\beta(\gamma))$.

6.2.1 Handling zero divisors

In Section 7.2 we introduce a method for computing a gcd required in Line 5 of Algorithm prim_elt for which no inversion of zero divisors is encountered. However, the gcd found using this method may not be monic. Since Algorithm prim_elt requires the monic gcd, Algorithm prim_elt may still fail over K_{p} if a zero divisor is encountered while trying to make the gcd monic. If this is the case, we will choose a new prime p and restart the algorithm. Experimentally, we have found that such failure is rare.

6.2.2 Proof of correctness

Let $m_{\gamma}(x) \in K[x]$ is the minimal polynomial for a primitive element γ satisfying $K(\alpha, \beta)=K(\gamma)$. We have already shown that Algorithm sqfr_norm_p either returns $F A I L$ or correctly returns $\Phi_{p}\left(m_{\gamma}(x)\right)$. Thus here we show that if Algorithm prim_elt over K_{p} successfully terminates for input polynomials M_{1} and M_{2}, then it outputs $\bar{\alpha}(\bar{\gamma})$ and $\bar{\beta}(\bar{\gamma})$.

Suppose that Algorithm prim_elt successfully terminates and let

$$
G(x, y):=M_{2}(x-c y, y) \text { and } g(x, y):=m_{2}(x-c y, y)
$$

where $c \in \mathbb{F}_{p}$ is chosen so that $N_{p}(x)=\operatorname{res}_{y}\left(G(x, y), M_{1}(y)\right)$ is square-free over K_{p}. We know by Theorem 5.8 that $\operatorname{deg}\left(\operatorname{gcd}\left(g(\gamma, y), m_{1}(y)\right)=1\right.$. However, it could be that $\operatorname{deg}\left(\operatorname{gcd}\left(\Phi_{p}(g(\gamma, y)), \Phi_{p}\left(m_{1}(y)\right)\right)>1\right.$. If $\operatorname{deg}\left(\operatorname{gcd}\left(\Phi_{p}(g(\gamma, y)), \Phi_{p}\left(m_{1}(y)\right)\right) \leq\right.$ $\operatorname{deg}\left(\operatorname{gcd}\left(g(\gamma, y), m_{1}(y)\right)\right.$ and the gcds are monic, then one can show that
$\Phi_{p}\left(\operatorname{gcd}\left(g(\gamma, y), m_{1}(y)\right)\right)=\operatorname{gcd}\left(G(\gamma, y), M_{1}(y)\right)($ Geddes et al. [11, Lemma 7.3, p.300]). Hence after we compute $\operatorname{gcd}\left(\Phi_{p}(g(\gamma, y)), \Phi_{p}\left(m_{1}(y)\right)\right.$ in the modified algorithm, we check that its degree is one. If it is not, then it returns FAIL.

Moreover, by Theorem 5.8

$$
\begin{equation*}
\operatorname{gcd}\left(g(\gamma, y), m_{1}(y)\right)=y-\alpha(\gamma) \in K(\gamma)[y] \cong K[x] /\left\langle m_{\gamma}(x)\right\rangle[y] \tag{6.6}
\end{equation*}
$$

where $\alpha(\gamma)$ is the normal representation of α in $K(\gamma)$. Thus the solution to

$$
\operatorname{gcd}\left(G(\gamma, y), M_{1}(y)\right)=\Phi_{p}(y-\alpha(\gamma))=y-\Phi_{p}(\alpha(\gamma))=y-\bar{\alpha}(\bar{\gamma})
$$

CHAPTER 6. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC P) 63
is $\bar{\alpha}(\bar{\gamma})=\Phi_{p}(\alpha(\gamma))$, as required.
Furthermore, recall that $\beta(\gamma)$ can be found by the formula $\beta(\gamma)=\gamma-c \cdot \alpha(\gamma)$. Thus $\bar{\beta}(\bar{\gamma})=\Phi_{p}(\beta(\gamma))$ can be computed in an analogous way:

$$
\bar{\gamma}-c \cdot \bar{\alpha}(\bar{\gamma})=\Phi_{p}(\gamma-c \cdot \alpha(\gamma))=\bar{\beta}(\bar{\gamma}) .
$$

In summary, if Algorithm prim_elt, is executed over K_{p} successfully, then it returns $\Phi_{p}\left(m_{\gamma}(x)\right), \Phi_{p}(\alpha(\gamma))=\bar{\alpha}(\bar{\gamma})$ and $\Phi_{p}(\beta(\gamma))=\bar{\beta}(\bar{\gamma})$.

Example 6.4. Let $m_{1}(y)$ and $m_{2}(x, \alpha)$ be as in Examples 5.14 and 5.15:

$$
m_{1}(y)=y^{4}-2 \in \mathbb{Q}[y] \text { and } m_{2}(x, \alpha)=x^{4}-\alpha^{2} x^{2}-2 \in \mathbb{Q}(\alpha)[x]
$$

We wish to find $c \in \mathbb{Z}$ for which $\mathbb{Q}(\beta+c \alpha) \cong \mathbb{Q}(\alpha, \beta)$. By (6.5), we choose the prime p to be greater than

$$
\frac{\operatorname{deg}_{x}\left(m_{2}\right)^{2} \cdot \operatorname{deg}_{y}\left(m_{1}\right) \cdot\left(\operatorname{deg}_{y}\left(m_{1}\right)-1\right)}{2}=\frac{4^{2} \cdot 4 \cdot(4-1)}{2}=96
$$

so that there exists $c \in \mathbb{F}_{p}$ for which $\bar{\alpha}+c \bar{\beta}$ is a primitive element modulo p of $\mathbb{Q}(\alpha, \beta)$ with probability greater than $1 / 2$. Let $p=113$. Then

$$
\begin{aligned}
& M_{1}(y):=\Phi_{p}\left(m_{1}(y)\right)=(y-47)(y+27)(y+47)(y-27) \text { and } \\
& M_{2}(x, \bar{\alpha}):=\Phi_{p}\left(m_{2}(x, \alpha)\right)=x^{4}-\bar{\alpha}^{2} x^{2}-2, \text { where } \bar{\alpha} \text { is a root of } M_{1}(y) .
\end{aligned}
$$

One can check that $M_{1}(y)$ and $M_{2}(x, \bar{\alpha})$ are square-free over K_{p} and $K_{p}[\bar{\alpha}]$ respectively.

We let $c=0$ and compute the resultant of $M_{2}(x-c y, y)$ and $M_{1}(y)$:

$$
\begin{align*}
\operatorname{res}_{y}\left(M_{2}(x, y), M_{1}(y)\right) & =\operatorname{res}_{y}\left(x^{4}-y^{2} x^{2}-2, y^{4}-2\right) \tag{6.7}\\
& =\left(x^{8}-6 x^{4}+4\right)^{2} \in \mathbb{F}_{p}[x] .
\end{align*}
$$

Since (6.7) is not square-free, we choose a new, random c. We use $c=1$ so that we can compare the output with Example 5.14. Using this new c, the resultant is:

$$
\begin{aligned}
N_{p}(x)=\operatorname{res}_{y}\left(M_{2}(x-y, y), M_{1}(y)\right) & =\operatorname{res}_{y}\left((x-y)^{4}-y^{2}(x-y)^{2}-2, y^{4}-2\right) \\
& =x^{16}-44 x^{12}-16 x^{8}+13 x^{4}+16 \in \mathbb{F}_{p}[x] .
\end{aligned}
$$

One can check that $N_{p}(x)$ is square-free over \mathbb{F}_{p}. Thus $\bar{\gamma}:=\Phi_{p}(\gamma)=\bar{\beta}+c \cdot \bar{\alpha}=\bar{\beta}+\bar{\alpha}$ is a primitive element (modulo p) of $\mathbb{Q}(\alpha, \beta)$, and $N_{p}(x)$ is equal to $\Phi_{p}\left(m_{\gamma}(x)\right)$, where
$m_{\gamma}(x) \in \mathbb{Q}[x]$ is the minimal polynomial for γ over \mathbb{Q}. Indeed, one can verify this by comparing $N_{p}(x)$ with $m_{\gamma}(x)$ found in Example 5.14.

Now let us find $\bar{\alpha}(\bar{\gamma})$ and $\bar{\beta}(\bar{\gamma})$. In this example, we will do this using the Euclidean algorithm over $\mathbb{F}_{p}[\bar{\gamma}] \cong \mathbb{F}_{p}[x] /\left\langle\left\langle N_{p}(x)\right\rangle\right.$. No zero divisor is encountered during the computation and we obtain

$$
\operatorname{gcd}\left(M_{2}(\bar{\gamma}-y, y), M_{1}(y)\right)=y-45 \bar{\gamma}-24 \bar{\gamma}^{5}-36 \bar{\gamma}^{9}+5 \bar{\gamma}^{13} \in \mathbb{F}_{p}[\bar{\gamma}][y]
$$

Therefore,

$$
\begin{aligned}
& \bar{\alpha}(\bar{\gamma})=45 \bar{\gamma}+24 \bar{\gamma}^{5}+36 \bar{\gamma}^{9}-5 \bar{\gamma}^{13} \in \mathbb{F}_{p}[\bar{\gamma}] \text { and } \\
& \bar{\beta}(\bar{\gamma})=\bar{\gamma}-A(\bar{\gamma})=\bar{\gamma}-\left(45 \bar{\gamma}+24 \bar{\gamma}^{5}+36 \bar{\gamma}^{9}-5 \bar{\gamma}^{13}\right)=-44 \bar{\gamma}-24 \bar{\gamma}^{5}-36 \bar{\gamma}^{9}+5 \bar{\gamma}^{13} \in \mathbb{F}_{p}[\bar{\gamma}] .
\end{aligned}
$$

Again, one can verify that $\bar{\alpha}(\bar{\gamma})=\Phi_{p}(\alpha(\gamma))$ and $\bar{\beta}(\bar{\gamma})=\Phi_{p}(\beta(\gamma))$ where $\alpha(\gamma)$ and $\beta(\gamma)$ were computed in Example 5.15.

6.2.3 Modified algorithm of prim_elt and its complexity

We present the modified version of Algorithm prim_elt to work modulo p and its time complexity.

Let $d_{1}=\operatorname{deg}_{y}\left(M_{1}\right)$ and $d_{2}=\operatorname{deg}_{x}\left(M_{2}\right)$. We analyze the cost of Algorithm prim_elt_p.

- Line 1: we showed in Section 6.1.5 that Algorithm sqfr_norm_p requires

$$
\mathcal{O}\left(d_{1}^{3} d_{2}+d_{1}^{2} d_{2}^{2}\right) \text { arithmetic operations in } K_{p}
$$

- Line 5: We will use evaluation \& interpolation to find the gcd (Section 7.2). There, we show that this method requires

$$
\mathcal{O}\left(\left(d_{1} d_{2}\right)^{2}\right) \text { arithmetic operations in } K_{p} .
$$

- Line 13: Since $\operatorname{deg}_{x}\left(N_{p}\right)=d_{1} d_{2}$, in computing $B(\bar{\gamma})$ we perform at most one scalar multiplication and one subtraction in $K_{p}[x] /\left\langle N_{p}(x)\right\rangle$. Since $\operatorname{deg}_{x}\left(N_{p}\right)=$ $d_{1} d_{2}$, the cost of finding $A(\bar{\gamma})$ and $B(\bar{\gamma})$ is

$$
\mathcal{O}\left(d_{1} d_{2}\right) \text { arithmetic operations in } K_{p} .
$$

Algorithm 6.2: prim_elt_p($\left.M_{2}(x, \bar{\alpha}), M_{1}(y), K_{p}\right)$
Input: $M_{2}(x, \bar{\alpha})=\Phi_{p}\left(m_{2}(x, \alpha)\right) \in K_{p}[\bar{\alpha}][x]$ and $\left.M_{1}(y)=\Phi_{p}\left(m_{1}(y)\right)\right) \in K_{p}[y]$ where $m_{2}(x, \alpha)$ and $m_{1}(y)$ are minimal polynomials for β over $K(\alpha)$ and α over K respectively, where $K=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ and $K_{p}=\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{r}\right]$ for good prime p satisfying $p>\left(\operatorname{deg}_{x}\left(M_{2}\right)^{2} \cdot \operatorname{deg}_{y}\left(M_{1}\right) \cdot\left(\operatorname{deg}_{y}\left(M_{1}\right)-1\right)\right.$.
Output: $c \in \mathbb{F}_{p}$, square-free $N_{p}(x) \in K_{p}[x]$ satisfying $N(\bar{\gamma}=\bar{\beta}+c \bar{\alpha})=0$, and $A(\bar{\gamma}), B(\bar{\gamma})$, the normal representations of $\bar{\alpha}$ and $\bar{\beta}$ respectively in $K_{p}[\bar{\gamma}] \cong$ $K_{p}[x] /\left\langle N_{p}(x)\right\rangle$, or $F A I L$.
$c, g(x, \bar{\alpha}), N_{p}(x) \leftarrow \mathbf{s q f r} _$norm_p $\left(M_{2}(x, \bar{\alpha}), M_{1}(y), K_{p}, p\right) ;$
if Algorithm sqfr_norm_p outputs $F A I L$ then return $F A I L$;
end if
$h(\bar{\gamma}, y) \leftarrow \operatorname{monic} \operatorname{gcd}\left(g(\bar{\gamma}, y), M_{1}(y)\right) ;\left\{h\right.$ is computed over $K_{p}[\bar{\gamma}] \cong K_{p}[x] /\left\langle N_{p}(x)\right\rangle$ via evaluation \& interpolation (Section 7.2). Note: $\left.h(\bar{\gamma}, y)=y+a(\bar{\gamma}) \in K_{p}[\bar{\gamma}][y]\right\}$
6: if division by a zero divisor is encountered while computing $h(\bar{\gamma}, y)$ then return FAIL;
end if
if $\operatorname{deg}_{y}(h) \neq 1$ then
return $F A I L$;
end if
$A(\bar{\gamma}) \leftarrow-a(\bar{\gamma}) ;$
13: $B(\bar{\gamma}) \leftarrow \bar{\gamma}-c A(\bar{\gamma})$;
14: return $c, N_{p}(x), A(\bar{\gamma}), B(\bar{\gamma})$;

Thus in total, the cost of running Algorithm prim_elt_p is

$$
\mathcal{O}\left(\left(d_{1}^{3} d_{2}+d_{1}^{2} d_{2}^{2}\right)+\left(d_{1} d_{2}\right)^{2}+d_{1} d_{2}\right) \subseteq \mathcal{O}\left(d_{1}^{3} d_{2}+d_{1}^{2} d_{2}^{2}\right) \text { arithmetic operations in } K_{p} .
$$

As with Algorithm sqfr_norm_p, if $d_{1} \leq d_{2}$ then this cost simplifies to

$$
\mathcal{O}\left(d_{1}^{2} d_{2}^{2}+d_{1}^{2} d_{2}^{2}\right) \subseteq \mathcal{O}\left(d_{1}^{2} d_{2}^{2}\right) \text { arithmetic operations in } K_{p}
$$

6.3 Towers with more than two steps

Recall that to find a primitive element of a field towers with more than two steps of the form $K\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ where $m_{i}\left(u_{i}\right) \in K\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)\left[u_{i}\right]$ for $i=2, \ldots, t$, we find a primitive element of two successive towers at a time:

$$
\begin{aligned}
K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right)= & K\left(\alpha_{1}, \ldots, \alpha_{t-3}, \alpha_{t-2}\right)\left(\alpha_{t-1}, \alpha_{t}\right) \\
& =K\left(\alpha_{1}, \ldots, \alpha_{t-3}, \alpha_{t-2}\right)\left(\gamma_{t-1}\right) \\
& =K\left(\alpha_{1}, \ldots \alpha_{t-3}\right)\left(\alpha_{t-2}, \gamma_{t-1}\right) \\
& =K\left(\alpha_{1}, \ldots, \alpha_{t-3}\right)\left(\gamma_{t-2}\right) \\
& \vdots \\
& =K\left(\alpha_{1}, \gamma_{1}\right) \\
& =K(\gamma) .
\end{aligned}
$$

Let

$$
\begin{aligned}
& M_{i}=\Phi_{p}\left(m_{i}\right) \text { for } i=1, \ldots, t, \quad M_{\gamma_{i}}=\Phi_{p}\left(m_{\gamma_{i}}\right) \text { for } i=2, \ldots, t \\
& d_{i}=\operatorname{deg}_{x}\left(m_{i}\right) \text { for } i=1, \ldots, t, \quad \text { and } D=\prod_{i=1}^{t} d_{i} .
\end{aligned}
$$

For the algorithm to work, we need to choose p such that a set $\left\{c_{2}, \ldots, c_{t}\right\} \in \mathbb{F}_{p}^{t-1}$ exists for which we can find square-free

$$
\begin{aligned}
& M_{\gamma_{t}}(x)=\operatorname{res}_{y}\left(M_{t}\left(x-c_{t} y, y\right), M_{t-1}(y)\right) \text { and } \\
& M_{\gamma_{k}}(x)=\operatorname{res}_{y}\left(M_{\gamma_{k+1}}\left(x-c_{k} y, y\right), M_{k-1}(y)\right) \text { for } k=2, \ldots, t-1
\end{aligned}
$$

By Lemma 5.5 there are at most

$$
\frac{d_{t}^{2} \cdot d_{t-1}\left(d_{t-1}-1\right)}{2}<\frac{d_{t}^{2} \cdot d_{t-1}^{2}}{2}
$$

distinct $c_{t} \in \mathbb{F}_{p}$ for which $M_{\gamma_{t}}(x)=\operatorname{res}_{y}\left(M_{t-1}\left(x-c_{t} y, y\right), M_{t}(y)\right)$ is not square-free. Note that $\operatorname{deg}_{x}\left(M_{\gamma_{t}}\right)=d_{t-1} d_{t}$. Thus once we have found $M_{\gamma_{t}}$, there are at most

$$
\frac{\operatorname{deg}\left(M_{\gamma_{t}}\right)^{2} d_{t-2}\left(d_{t-2}-1\right)}{2}=\frac{\left(d_{t-1} d_{t}\right)^{2} d_{t-2}\left(d_{t-2}-1\right)}{2}<\frac{d_{t-2}^{2} d_{t-1}^{2} d_{t}^{2}}{2}
$$

distinct $c_{t-1} \in \mathbb{F}_{p}$ for which $\operatorname{res}_{y}\left(M_{\gamma_{t}}(x-c y, y), M_{t-2}(y)\right)$ is not square-free. In general, for $2 \leq i \leq t-1$, there are at most

$$
\frac{d_{i-1}^{2} d_{i}^{2} \cdots d_{t}^{2}}{2}
$$

distinct $c_{i} \in \mathbb{F}_{p}$ for which $\operatorname{res}_{y}\left(M_{\gamma_{i+1}}\left(x-c_{i} y, y\right), M_{i-1}(y)\right)$ is not square-free. By application of Lemma 5.5, if we choose p so that it satisfies

$$
\begin{equation*}
p>\max \left\{\frac{d_{t-1}^{2} d_{t}^{2}}{2}, \frac{d_{t-2}^{2} d_{t-1}^{2} d_{t}^{2}}{2}, \ldots, \frac{d_{1}^{2} d_{2}^{2} \cdots d_{t}^{2}}{2}\right\}=\frac{d_{1}^{2} d_{2}^{2} \cdots d_{t}^{2}}{2} \tag{6.8}
\end{equation*}
$$

then there must exist $\left\{c_{2}, \ldots, c_{t}\right\} \in \mathbb{F}_{p}^{t-1}$ such that every $\operatorname{res}_{y}\left(M_{\gamma_{i}}\left(x-c_{i} y, y\right), M_{i-1}(y)\right)$ (for $2 \leq i \leq t-2)$ and $\operatorname{res}_{y}\left(M_{t}\left(x-c_{t} y, y\right), M_{t-1}(y)\right)$ are square-free. In fact, if we choose p so that

$$
p>2\left(\frac{d_{1}^{2} d_{2}^{2} \cdots d_{t}^{2}}{2}\right)=d_{1}^{2} d_{2}^{2} \cdots d_{t}^{2}=D^{2}
$$

the probability that a random c_{i} gives a square-free resultant at the $(i-1)$-th step is at least $1 / 2$.

6.3.1 Finding the normal representations

As mentioned in Section 5.5, if the number of extensions t is greater than two, then executing Algorithm prim_elt_p does not directly give us the normal representations $\bar{\alpha}_{i}(\bar{\gamma})$. For example, if $t=3$ then running Algorithm prim_elt_p twice returns the normal representations

$$
\bar{\alpha}_{2}\left(\bar{\gamma}_{3}\right), \bar{\alpha}_{3}\left(\bar{\gamma}_{3}\right), \bar{\alpha}_{1}(\bar{\gamma}) \text { and } \bar{\gamma}_{3}(\bar{\gamma}),
$$

where $K_{p}\left[\bar{\alpha}_{1}, \bar{\alpha}_{2}, \bar{\alpha}_{3}\right]=K_{p}\left[\bar{\alpha}_{1}, \bar{\gamma}_{3}\right]$ and $K_{p}\left[\bar{\alpha}_{1}, \bar{\alpha}_{2}, \bar{\alpha}_{3}\right]=K_{p}[\bar{\gamma}]$. Thus at this point we must still determine $\bar{\alpha}_{2}(\bar{\gamma})$ and $\bar{\alpha}_{3}(\bar{\gamma})$. In this section, we explain in detail how to do so, and also analyze it complexity.

To find the normal representation $\bar{\alpha}_{2}(\bar{\gamma})$ from $\bar{\alpha}_{2}\left(\bar{\alpha}_{1}, \bar{\gamma}_{3}\right)$ we need to make the substitutions $\bar{\alpha}_{1} \mapsto \bar{\alpha}_{1}(\bar{\gamma})$ and $\bar{\gamma}_{3} \mapsto \bar{\gamma}_{3}(\bar{\gamma})$ to $\bar{\alpha}_{2}\left(\bar{\alpha}_{1}, \bar{\gamma}_{3}\right)$. Note that

$$
\begin{equation*}
\bar{\alpha}_{2}\left(\bar{\alpha}_{1}, \bar{\gamma}_{3}\right)=\sum_{j=0}^{d_{1}-1}\left(\sum_{i=0}^{d_{2} d_{3}-1} k_{i j} \bar{\gamma}_{3}^{i}\right) \bar{\alpha}_{1}^{j} \text {, where } k_{i j} \in \mathbb{F}_{p} . \tag{6.9}
\end{equation*}
$$

We first pre-compute $\bar{\alpha}_{1}(\bar{\gamma})^{j} \in \mathbb{F}_{p}[\bar{\gamma}]$ for $2 \leq j \leq d_{1}-1$ and $\bar{\gamma}_{3}(\bar{\gamma})^{i} \in \mathbb{F}_{p}[\bar{\gamma}]$ for $2 \leq i \leq d_{2} d_{3}-1$. If $D=d_{1} d_{2} d_{3}$, then computing all of the required powers of $\bar{\alpha}_{1}(\bar{\gamma})$ and $\bar{\gamma}_{3}(\bar{\gamma})$ requires $\mathcal{O}\left(d_{1} D^{2}\right)$ and $\mathcal{O}\left(d_{2} d_{3} D^{2}\right)$ arithmetic operations in \mathbb{F}_{p} respectively.

CHAPTER 6. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC P) 68

Now we make the substitutions

$$
\bar{\alpha}_{1}^{i} \mapsto \bar{\alpha}_{1}(\bar{\gamma})^{i} \text { for } 1 \leq i \leq d_{1}-1 \text { and } \bar{\gamma}_{3}^{j} \mapsto \bar{\gamma}_{3}(\bar{\gamma})^{j} \text { for } 1 \leq j \leq d_{2} d_{3}-1
$$

to (6.9). Making these substitutions in the inner summation of (6.9) for a fixed j requires $\mathcal{O}\left(d_{2} d_{3} D\right)$ multiplications in \mathbb{F}_{p} since $k_{i j} \in \mathbb{F}_{p}$. Therefore, the total cost of computing the inner summation for all i and j is

$$
\mathcal{O}\left(d_{1} \cdot\left(d_{2} d_{3} D\right)\right)=\mathcal{O}\left(D^{2}\right) \text { arithmetic operations in } \mathbb{F}_{p}
$$

Now for each j, the inner summation $\sum_{i=0}^{d_{2} d_{3}-1} k_{i j} \bar{\gamma}_{3}(\bar{\gamma})^{i}$ is a polynomial in $\mathbb{F}_{p}[\bar{\gamma}]$ of degree less than D. So the cost of computing the outer summation is equal to the cost of multiplying $\left(d_{1}-1\right)$ pairs of polynomials in $\mathbb{F}_{p}[\bar{\gamma}]$, which is

$$
\mathcal{O}\left(d_{1} D^{2}\right) \text { arithmetic operations in } \mathbb{F}_{p}
$$

Hence computing $\bar{\alpha}_{2}(\bar{\gamma})$ from $\bar{\alpha}_{2}\left(\bar{\alpha}_{1}, \bar{\gamma}_{3}\right)$ from (6.9) requires

$$
\mathcal{O}\left(d_{1} D^{2}\right)+\mathcal{O}\left(d_{2} d_{3} D^{2}\right)+\mathcal{O}\left(D^{2}\right)+\mathcal{O}\left(d_{1} D^{2}\right) \subseteq \mathcal{O}\left(D^{2}\left(d_{1}+d_{2} d_{3}\right)\right)
$$

arithmetic operations in \mathbb{F}_{p}.
To find $\bar{\alpha}_{3}(\bar{\gamma})$, we can simply solve the equation $\bar{\gamma}_{2}(\bar{\gamma})=\bar{\alpha}_{2}(\bar{\gamma})+c_{3} \bar{\alpha}_{3}(\bar{\gamma})$ for $\bar{\alpha}_{3}(\bar{\gamma})$ where $c_{3} \in \mathbb{F}_{p}$ is returned by Algorithm prim_elt_p. This requires at most D arithmetic operations in \mathbb{F}_{p}. In summary, the cost in \mathbb{F}_{p} of computing the normal representations $\bar{\alpha}_{2}(\bar{\gamma})$ and $\bar{\alpha}_{3}(\bar{\gamma})$ is

$$
\mathcal{O}\left(D^{2}\left(d_{1}+d_{2} d_{3}\right)+\mathcal{O}(D) \subseteq \mathcal{O}\left(D^{2}\left(d_{1}+d_{2} d_{3}\right)\right)\right.
$$

In general, one can show that the total number of arithmetic operations in \mathbb{F}_{p} required in finding $\bar{\alpha}_{k}(\bar{\gamma}), k=2, \ldots, t$, where t is the number of extensions, is

$$
\begin{aligned}
& \mathcal{O}\left(D^{2}\left(d_{2} \cdots d_{t}+d_{1}\right)\right)+\mathcal{O}\left(D^{2}\left(d_{3} \cdots d_{t}+d_{1} d_{2}\right)\right)+\cdots \\
& +\mathcal{O}\left(D^{2}\left(d_{t-1} d_{t}+d_{1} \cdots d_{t-2}\right)\right)+\mathcal{O}(D) \\
& \subseteq \mathcal{O}\left(D^{2}\left(d_{2} \cdots d_{t}+d_{3} \cdots d_{t}+\cdots+d_{t-1} d_{t}\right)+D^{2}\left(d_{1}+d_{1} d_{2}+\cdots+d_{1} \cdots d_{t-2}\right)\right)
\end{aligned}
$$

CHAPTER 6. FINDING A PRIMITIVE ELEMENT (CHARACTERISTIC P) 69

Observe that

$$
\begin{aligned}
d_{2} \cdots d_{t}+d_{3} \cdots d_{t}+\cdots+d_{t-1} d_{t} & =D\left(\frac{1}{d_{1}}+\frac{1}{d_{1} d_{2}}+\cdots+\frac{1}{d_{1} d_{2} \cdots d_{t-2}}\right) \\
& <D\left(\frac{d_{2} \cdots d_{t-2}+d_{3} \cdots d_{t-2}+\cdots+d_{t-3} d_{t-2}+2 d_{t-2}}{d_{1} d_{2} \cdots d_{t-2}}\right) \\
& <D\left(\frac{d_{2} \cdots d_{t-2}+d_{3} \cdots d_{t-2}+\cdots+3 d_{t-3} d_{t-2}}{d_{1} d_{2} \cdots d_{t-2}}\right) \\
& \vdots \\
& <D\left(\frac{(t-3) d_{2} \cdots d_{t-2}}{d_{1} d_{2} \cdots d_{t-2}}\right)=D\left(\frac{t-3}{d_{1}}\right) .
\end{aligned}
$$

Using a similar argument, it is easy to see that

$$
d_{1}+d_{1} d_{2}+\cdots+d_{1} \cdots d_{t-2}<D\left(\frac{t-3}{d_{t-1} d_{t-2}}\right)
$$

Therefore, the total number of arithmetic operations required in \mathbb{F}_{p} in finding $\bar{\alpha}_{k}(\bar{\gamma}), k=$ $2, \ldots, t$ can be simplified to

$$
\begin{equation*}
\mathcal{O}\left(D^{2} \cdot D\left(\frac{t-3}{d_{1}}\right)+D^{2} \cdot D\left(\frac{t-3}{d_{t-1} d_{t-2}}\right)\right) \subseteq \mathcal{O}\left(D^{3} t\left(\frac{1}{d_{1}}+\frac{1}{d_{t-1} d_{t-2}}\right)\right) . \tag{6.10}
\end{equation*}
$$

Note, in particular, that if $d_{1}=d_{2}=\cdots=d_{t}$, then $d_{i}=\sqrt[t]{D}$ for all i, so (6.10) becomes

$$
\mathcal{O}\left(D^{3} t\left(\frac{1}{\sqrt[t]{D}}+\frac{1}{\sqrt[t]{D^{2}}}\right)\right) \subseteq \mathcal{O}\left(\frac{D^{3} t}{\sqrt[t]{D}}\right)=\mathcal{O}\left(D^{3-1 / t} \cdot t\right)
$$

We now present a generalization of Algorithm prim_elt_p which outputs a primitive element γ modulo p of $\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right) \cong \mathbb{Q}\left[u_{1}, \ldots, u_{t}\right] /\left\langle m_{1}, \ldots, m_{t}\right\rangle$ for arbitrary finite t, together with the minimal polynomial (modulo p) of γ, and $\bar{\alpha}_{1}(\bar{\gamma}), \ldots$, $\bar{\alpha}_{t}(\bar{\gamma})$, the normal representations (modulo p) of $\alpha_{1}(\gamma), \ldots, \alpha_{t}(\gamma)$.

Let us analyze the cost of Algorithm prim_elt_multi. As before, we denote by d_{i} the degree of $m_{i}\left(u_{i}\right) \in \mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)\left[u_{i}\right]$ for $1 \leq i \leq t$, and let $D=\prod_{i=1}^{t} d_{i}$.

- Lines 3 to 13: When we execute this loop the first time, we perform $\mathcal{O}\left(d_{t} d_{t-1}^{3}+\right.$
$\left.d_{t}^{2} d_{t-1}^{2}\right)$ arithmetic operations over $\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{t-2}\right]$, which is equivalent to

$$
\begin{aligned}
& \mathcal{O}\left(\left(d_{t}^{2} d_{t-1}^{2}+d_{t} d_{t-1}^{3}\right) \cdot\left(d_{1} \cdots d_{t-2}\right)^{2}\right) \\
& \subseteq \mathcal{O}\left(\left[\left(d_{t}^{2} d_{t-1}^{2}\right) \cdot\left(d_{1} \cdots d_{t-2}\right)^{2}\right]+\left[\left(d_{t} d_{t-1}^{3}\right) \cdot\left(d_{1} \cdots d_{t-2}\right)^{2}\right]\right) \\
& \subseteq \mathcal{O}\left(\left[D^{2}\right]+\left[\left(d_{t} d_{t-1}^{3}\right) \cdot\left(d_{1} \cdots d_{t-2}\right)^{2}\right]\right) \\
& \subseteq \mathcal{O}\left(D^{2}+D^{2} d_{t-1}\right) \\
& \subseteq \mathcal{O}\left(D^{2} d_{t-1}\right) \text { arithmetic operations in } \mathbb{F}_{p} .
\end{aligned}
$$

In general, one can show that when executing the loop for the k-th time $(1 \leq$ $k \leq t-1)$ we perform $\mathcal{O}\left(D^{2}\left(d_{t-k}\right)\right)$ arithmetic operations in \mathbb{F}_{p}. Thus the total cost of executing the while-loop is

$$
\begin{equation*}
O\left(\sum_{k=1}^{t-1}\left(D^{2} d_{t-k}\right)\right) \subseteq \mathcal{O}\left(D^{2}\left(\sum_{i=1}^{t-1} d_{i}\right)\right) \text { arithmetic operations in } \mathbb{F}_{p} \tag{6.11}
\end{equation*}
$$

- Lines 14 to 17: this for-loop computes $\bar{\alpha}_{i}(\bar{\gamma}), 2 \leq i \leq t$ in \mathbb{F}_{p}. The analysis in Section 6.3 .1 shows that this requires

$$
\mathcal{O}\left(D^{3} t\left(\frac{1}{d_{1}}+\frac{1}{d_{t-1} d_{t-2}}\right)\right) \text { arithmetic operations in } \mathbb{F}_{p} .
$$

The cost of Algorithm prim_elt_p_multi is dominated by the computations above. Thus the total cost of running this algorithm on a t-step extension for t greater than three is

$$
\mathcal{O}\left(D^{2}\left(\sum_{i=1}^{t-1} d_{i}\right)\right)+\mathcal{O}\left(D^{3} t\left(\frac{1}{d_{1}}+\frac{1}{d_{t-1} d_{t-2}}\right)\right) \subseteq \mathcal{O}\left(D^{3} t\left(\frac{1}{d_{1}}+\frac{1}{d_{t-1} d_{t-2}}\right)\right)
$$

arithmetic operations in \mathbb{F}_{p}. Observe that unfortunately the cost of the algorithm is dominated by the cost of finding the normal representations $\bar{\alpha}_{i}$'s.

Algorithm 6.3: prim_elt_multi($\left.M_{1}\left(u_{1}\right), \ldots, M_{t}\left(u_{t}\right), K_{p}\right)$
Input: $M_{i}\left(u_{i}\right)=\Phi_{p}\left(m_{i}\left(u_{i}\right)\right), 1 \leq i \leq t$, where $m_{i}\left(u_{i}\right)$ is the minimal poly. for α_{i} over $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$ for $2 \leq i \leq t, m_{1}\left(u_{1}\right)$ is the minimal poly. for α_{1} over \mathbb{Q}, and p is a good prime satisfying $p>\prod_{i=1}^{t}\left(\operatorname{deg}_{u_{i}}\left(m_{i}\right)\right)^{2}$.
Output: $\bar{\gamma}$: a primitive element $(\bmod p)$ of $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right), N_{p}(y)=\Phi_{p}\left(m_{\gamma}(y)\right)$ where $m_{\gamma}(y)$ is the minimal polynomial for γ, and $A=\left[\bar{\alpha}_{1}(\bar{\gamma}), \ldots, \bar{\alpha}_{t}(\bar{\gamma})\right]$ where $\bar{\alpha}_{i}(\bar{\gamma})=$ $\Phi_{p}\left(\alpha_{i}(\gamma)\right)$, or FAIL.
$A \leftarrow$ empty list of length $t ; B \leftarrow$ empty list of length $t-2$;
$c \leftarrow$ empty list of length $t-1 ; \quad k \leftarrow t-1 ;$
while $k \geq 1$ do
if $k=t-1$ then $c[k], N_{p}(y), A[k], A[k+1] \leftarrow$ prim_elt_p $\left(M_{t}\left(x, \bar{\alpha}_{k}\right), M_{k}(y), \mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{k-1}\right], p\right) ;$
else
$c[k], N_{p}(y), A[k], B[k] \leftarrow$ prim_elt_p $\left(N\left(x, \bar{\alpha}_{k}\right), M_{k}(y), \mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{k-1}\right], p\right) ;$
end if
if (Algorithm prim_elt_p outputs $F A I L$) then return FAIL;
end if
$k \leftarrow k-1 ;$
end while
$\left\{\right.$ Note: $A=\left[\bar{\alpha}_{1}(\bar{\gamma}), \bar{\alpha}_{2}\left(\bar{\gamma}_{2}\right), \ldots, \bar{\alpha}_{t-2}\left(\bar{\gamma}_{t-2}\right), \bar{\alpha}_{t-1}\left(\bar{\gamma}_{t-1}\right), \bar{\alpha}_{t}\left(\bar{\gamma}_{t-1}\right)\right]$ and $B=$ $\left[\bar{\gamma}_{2}(\bar{\gamma}), \ldots, \bar{\gamma}_{t-1}\left(\bar{\gamma}_{t-2}\right)\right]$, where $\bar{\gamma}_{k}=\Phi_{p}\left(\gamma_{k}\right)$ and γ_{k} satisfies $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right)=$ $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{k-2}, \gamma_{k-1}\right)$ for $3 \leq k \leq t . \quad \bar{\gamma}=\Phi_{p}(\gamma)$ and γ is a primitive element of $\left.\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right).\right\}$
for $i=2$ to $t-2$ do

$$
\begin{aligned}
& A[i] \leftarrow \operatorname{subs}\left(\left\{\bar{\gamma}_{i}=B[i-1], \bar{\alpha}_{1}=A[1], \ldots, \bar{\alpha}_{i-1}=A[i-1]\right\}, A[i]\right) ; \\
& B[i] \leftarrow B[i-1]-c[i+1] \cdot A[i+1] ;\left\{\bar{\gamma}_{i+2}=\bar{\gamma}_{i+1}-c_{i} \bar{\alpha}_{i}\right\}
\end{aligned}
$$

end for
if $t>2$ then

$$
\begin{aligned}
& \qquad A[t-1] \leftarrow \operatorname{subs}\left(\left\{\bar{\gamma}_{t}=B[t-2], \bar{\alpha}_{1}=A[1], \ldots, \bar{\alpha}_{t-2}=A[t-2]\right\}, A[t-1]\right) ; \\
& \quad A[t] \leftarrow B[t-2]-c[t-1] \cdot A[t-1] ;\left\{\bar{\alpha}_{t} \leftarrow \bar{\gamma}_{t}-c_{t-1} \bar{\alpha}_{t-1}\right\} \\
& \text { end if } \\
& \bar{\gamma} \leftarrow c[1] \cdot \bar{\alpha}_{1}+c[2] \cdot \bar{\alpha}_{2}+\cdots+c[t-1] \cdot \bar{\alpha}_{t-1}+\bar{\alpha}_{t} ; \\
& \text { return } \bar{\gamma}, N_{p}(y), A ;
\end{aligned}
$$

Chapter 7

Algorithmic improvements

To improve the time complexity of Algorithm sqfr_norm_p and Algorithm prim_elt_p, we developed efficient methods for computing the resultant and gcd. In Algorithm sqfr_norm_p we must compute the resultant

$$
N_{p}(x)=\operatorname{res}_{y}\left(M_{2}(x-c y, y), M_{1}(y)\right) \in K_{p}[x] .
$$

Although one can compute $N_{p}(x)$ by computing the determinant of a Sylvester's matrix, it is more efficient to use the subresultant algorithm of Brown ([4], [5]). The subresultant algorithm computes $N_{p}(x)$ by modifying the Euclidean algorithm to use pseudo-division instead of ordinary polynomial division and by scaling the polynomials appearing in the Euclidean remainder sequence by elements of $K_{p}[x]$.

Suppose that $d_{1}=\operatorname{deg}_{y}\left(M_{1}\right), d_{2}=\operatorname{deg}_{x}(g)$ and $d_{y}=\operatorname{deg}_{y}(g)$. Since $d_{y}<d_{1}$, the subresultant algorithm performs $\mathcal{O}\left(d_{1} d_{y}\right) \subseteq \mathcal{O}\left(d_{1}^{2}\right)$ arithmetic operations in $K_{p}[x]$, which is the same as the cost of the Euclidean algorithm in $K_{p}[x]$. The polynomials appearing in the sequence belong to $K_{p}[x, y]$ and have degree $\left(d_{1} d_{2}\right) / 2$ in x on average. Hence if classical algorithms for multiplication and exact division in $K_{p}[x]$ are used, the algorithm performs $\mathcal{O}\left(\left(d_{1}^{2}\right)\left(d_{1} d_{2} / 2\right)^{2}\right) \in \mathcal{O}\left(d_{1}^{4} d_{2}^{2}\right)$ arithmetic operations in K_{p}.

To improve on this for multivariate polynomials, Collins [7] showed that one can compute their resultant using evaluation and interpolation. The idea (as applied to our application) is to evaluate x in $g(x, y)$ at points chosen from \mathbb{F}_{p}, use the subresultant algorithm on the univariate polynomials in $K_{p}[y]$, then interpolate in x to obtain the resultant $N_{p}(x) \in K_{p}[x]$. We show that this approach reduces the cost
to $O\left(d_{1}^{3} d_{2}+d_{1}^{2} d_{2}^{2}\right)$ arithmetic operations in K_{p}.
Recall that $N_{p}(x)$ is the minimal polynomial $(\bmod p)$ of degree $D=d_{1} d_{2}$ for a primitive element γ of $K(\alpha, \beta) \cong K[y, x] /\left\langle m_{1}, m_{2}\right\rangle$. As before, assume that $\bar{\gamma}=$ $\Phi_{p}(\gamma)$. To determine the normal representation $A(\bar{\gamma})=\Phi_{p}(\alpha(\gamma))$ by computing $\operatorname{gcd}\left(M_{2}(\bar{\gamma}-c y, y), M_{1}(y)\right)$ using classical quadratic algorithms for polynomial arithmetic in $K_{p}[\bar{\gamma}]$, we require $\mathcal{O}\left(d_{1}^{2} \cdot\left(d_{1}^{2} d_{2}^{2}\right)\right) \subseteq \mathcal{O}\left(d_{1}^{4} d_{2}^{2}\right)$ arithmetic operations in K_{p}. In Section 7.2 , we show that we can modify the subresultant algorithm to use evaluation and interpolation (for x) to simultaneously compute $\bar{\alpha}(\bar{\gamma})$ as well as $N_{p}(x)$ in $\mathcal{O}\left(d_{1}^{3} d_{2}+d_{1}^{2} d_{2}^{2}\right)$ arithmetic operations in K_{p}.

7.1 Resultant computation

We now explain how to use evaluation and interpolation to compute bivariate resultants.

7.1.1 Evaluation and interpolation

Let J be an integral domain, $R=J[x, y]$, and $\sigma \in J$. An evaluation homomorphism $\Phi_{x=\sigma}: J[x, y] \rightarrow J[y]$ is a homomorphism defined by

$$
\Phi_{x=\sigma}(f(x, y))=f(\sigma, y), f(x, y) \in R
$$

We say that σ is an evaluation point. We may alternatively write $f(x=\sigma, y)$ or $\left.f(x, y)\right|_{x=\sigma}$ to mean $\Phi_{x=\sigma}(f(x, y))$.

The "inverse" of evaluation homomorphism is interpolation, defined as follows: The Interpolation Problem (over a field):

Let K be a field. Given distinct evaluation points $\left\{\sigma_{0}, \ldots, \sigma_{n}\right\} \in K$ and the values $\left\{y_{0}, y_{1}, \ldots, y_{n}\right\} \subset K$, find a polynomial $f(x) \in K[x]$ satisfying

$$
f\left(\sigma_{i}\right)=y_{i}, \quad i=0, \ldots, n
$$

The following well-known theorem gives the condition for which there exists a (unique) $f(x)$:

Theorem 7.1. If the evaluation points $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{n}$ are distinct, there exists a unique polynomial $f(x) \in K[x]$ of degree at most n such that $f\left(\sigma_{i}\right)=y_{i}, i=0, \ldots, n$.

Proof. See Geddes et al. [11, Theorem 5.8, p. 185].
There are several algorithms for interpolating $f(x) \in K[x]$ of degree at most n. For example, the algorithms known as Newton interpolation and Lagrange interpolation both perform $O\left(n^{2}\right)$ arithmetic operations in K (von zur Gathen, Gerhard [18, p. 132]).

In our application, we wish to interpolate over $K_{p}=\mathbb{F}_{p}\left[u_{1}, \ldots, u_{r}\right] /\left\langle M_{1}, \ldots, M_{r}\right\rangle$. We can state the interpolation problem over K_{p} as follows.

The Interpolation Problem (over the ring K_{p}):

Let $K_{p}=\mathbb{F}_{p}\left[u_{1}, \ldots, u_{r}\right] /\left\langle M_{1}, \ldots, M_{r}\right\rangle$, where $M_{1} \in \mathbb{F}_{p}\left[u_{1}\right]$ and $M_{i} \in \mathbb{F}_{p}\left[u_{1}, \ldots, u_{i-1}\right] /\left\langle M_{1}, \ldots, M_{i-1}\right\rangle\left[u_{i}\right]$ for $2 \leq i \leq r$. Given evaluation points $\left\{\sigma_{0}, \ldots, \sigma_{n}\right\} \subset \mathbb{F}_{p}$ and the values $\left\{y_{0}, y_{1}, \ldots, y_{n}\right\} \subset K_{p}$, find a polynomial $f(x) \in K_{p}[x]$ satisfying

$$
f\left(\sigma_{i}\right)=y_{i}, \quad i=0, \ldots, n
$$

When working over K_{p} and one runs the Newton or Lagrange interpolation, one may encounter divisions by zero divisors. However, the following lemma says that if the evaluation points are chosen from \mathbb{F}_{p}, no zero divisors are encountered.

Lemma 7.2. (existence) If all the evaluation points belong to \mathbb{F}_{p} and are distinct, then Newton interpolation can be performed over $K_{p}=\mathbb{F}_{p}\left[u_{1}, \ldots, u_{r}\right] /\left\langle M_{1}, \ldots, M_{r}\right\rangle$, even if K_{p} has zero divisors.

Proof. We wish to find $f(x) \in K_{p}[x]$ satisfying $f\left(\sigma_{i}\right)=y_{i}$ for $i=1, \ldots, n$ where $\sigma_{i} \in$ \mathbb{F}_{p}. Let us write $f(x)$ as
$f(x)=a_{0}+a_{1}\left(x-\sigma_{1}\right)+a_{2}\left(x-\sigma_{1}\right)\left(x-\sigma_{2}\right)+\cdots+a_{n}\left(x-\sigma_{1}\right)\left(x-\sigma_{2}\right) \cdots\left(x-\sigma_{n}\right) \in K_{p}[x]$,
where $a_{0}, a_{1}, \ldots, a_{n} \in K_{p}$ are unknown. Substituting σ_{1} for x in $f(x)$, we obtain

$$
f\left(\sigma_{1}\right)=a_{0}=y_{1} \in K_{p} .
$$

Next, substituting σ_{2} for x in in $f(x)$ we obtain

$$
f\left(\sigma_{2}\right)=a_{0}+a_{1}\left(\sigma_{2}-\sigma_{1}\right)=y_{2} \Rightarrow a_{1}=\frac{y_{2}-a_{0}}{\sigma_{2}-\sigma_{1}}=\frac{y_{2}-y_{1}}{\sigma_{2}-\sigma_{1}} \in K_{p} .
$$

Since $\sigma_{2}-\sigma_{1} \in \mathbb{F}_{p} \backslash\{0\}, a_{1}$ is well-defined. Similarly, substituting σ_{3} for x in $f(x)$ gives

$$
\begin{equation*}
a_{2}=\frac{1}{\sigma_{3}-\sigma_{1}}\left(\frac{y_{3}-y_{2}}{\sigma_{3}-\sigma_{2}}-\frac{y_{2}-y_{1}}{\sigma_{2}-\sigma_{1}}\right) \in K_{p} . \tag{7.1}
\end{equation*}
$$

Again, every denominator in (7.1) is invertible, since it is a non-zero integer. Continuing in this manner, one can show that the only inverses that need to be computed in determining $a_{1}, a_{2}, \ldots, a_{n}$ are of the form $\sigma_{i}-\sigma_{j} \in \mathbb{F}_{p} \backslash\{0\}, 1 \leq i \neq j \leq n$. Thus if the evaluation points $\sigma_{1}, \ldots, \sigma_{n}$ belong to \mathbb{F}_{p} and are all distinct, then one can successfully find the polynomial $f(x) \in K_{p}[x]$ satisfying $f\left(\sigma_{i}\right)=y_{i}, i=0, \ldots, n$.

In fact, the interpolated $f(x) \in K_{p}[x]$ is unique, as the following lemma states.
Lemma 7.3. (uniqueness) Let $K_{p}=\mathbb{F}_{p}\left[u_{1}, \ldots, u_{r}\right] /\left\langle M_{1}, \ldots, M_{r}\right\rangle$. Given distinct points $\left\{\sigma_{0}, \ldots, \sigma_{n}\right\} \subset \mathbb{F}_{p}$ and corresponding values $\left\{y_{0}, \ldots, y_{n}\right\} \subset K_{p}$, there exists a unique polynomial $f(x) \in K_{p}[x]$ of degree $\leq n$ such that $f\left(\sigma_{i}\right)=y_{i}, i=0, \ldots, n$.

Proof. Let $\operatorname{deg}_{u_{i}}\left(M_{i}\right)=d_{i}$ for $1 \leq i \leq r$. Then $K_{p}=\mathbb{F}_{p}\left[u_{1}, \ldots, u_{r}\right] /\left\langle M_{1}, \ldots, M_{r}\right\rangle$ is a vector space of dimension $D=d_{1} d_{2} \ldots d_{r}$ over \mathbb{F}_{p} whose monomial basis is

$$
B=\left\{u_{1}^{h_{1}} u_{2}^{h_{2}} \cdots u_{r}^{h_{r}}: 0 \leq h_{j} \leq d_{j}-1, \quad 1 \leq j \leq r\right\} .
$$

Since $\left\{y_{0}, \ldots, y_{n}\right\} \subset K_{p}$, each y_{i} can be written as a linear combination of elements in B. Let $c_{i}\left(h_{1}, h_{2}, \ldots, h_{r}\right) \in \mathbb{F}_{p}$ denote the coefficient of $u_{1}^{h_{1}} u_{2}^{h_{2}} \cdots u_{r}^{h_{r}}$ in $y_{i}, i=0, \ldots, n$. Then interpolating the y_{i} 's is equivalent to interpolating the values

$$
c_{0}\left(h_{1}, h_{2}, \ldots, h_{r}\right), c_{1}\left(h_{1}, h_{2}, \ldots, h_{r}\right), \ldots, c_{n}\left(h_{1}, h_{2}, \ldots, h_{r}\right)
$$

with the corresponding evaluation points $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{n}$ for $0 \leq h_{j} \leq d_{j}-1,1 \leq j \leq r$ separately, which is an interpolation over the field \mathbb{F}_{p}. Since each of these interpolated polynomials is unique by Theorem 7.1, $f(x) \in K_{p}[x]$ must be unique as well.

7.1.2 Resultant computation using evaluation \& interpolation

To compute $N_{p}(x)=\operatorname{res}_{y}\left(M_{2}(x-c y, y), M_{1}(y)\right) \in K_{p}[x, y]$ using evaluation and interpolation, we first evaluate $g(x, y)$ at $x=\sigma_{i} \in \mathbb{F}_{p}$ to obtain a univariate polynomial $g\left(\sigma_{i}, y\right) \in K_{p}[y]$ for sufficiently many evaluation points σ_{i} 's. We then compute the resultants of the univariate $g\left(\sigma_{i}, y\right)$ and $M_{1}(y)$ and apply interpolation to recover the resultant of $g(x, y):=M_{2}(x-c y, y)$ and $M_{1}(y)$.

Let us determine an upper bound on the number of evaluation points needed. Let

$$
g(x, y)=\sum_{i=0}^{d_{y}} a_{i}(x) y^{i}, M_{1}(y)=\sum_{i=0}^{d_{1}} b_{i} y^{i}, \text { and } d_{2}=\operatorname{deg}_{x}(g) .
$$

Observe that $b_{d_{1}}=1, \operatorname{deg}_{y}(g)<d_{1}$ and $\operatorname{deg}_{x}\left(M_{1}\right)=0$. For reasons that will become apparent in the next section, we will compute $\operatorname{res}_{y}\left(M_{1}, g\right)$, rather than $\operatorname{res}_{y}\left(g, M_{1}\right)$. Since the two are equal up to a multiplication by (-1) and $\operatorname{res}_{y}\left(g, M_{1}\right)$ is monic, we may need to multiply $\operatorname{res}_{y}\left(M_{1}, g\right)$ by (-1) if necessary. The Sylvester matrix formed by $g(x, y)$ and $M_{1}(y), \operatorname{Syl}_{y}\left(M_{1}, g\right)$, is the $\left(d_{y}+d_{1}\right)$ by $\left(d_{y}+d_{1}\right)$ matrix of the following form

Observe that $a_{0}(x)$ contains the term with the largest degree of x in $\operatorname{Syl}_{y}\left(M_{1}, g\right)$, namely $x^{d_{2}}$. Thus $x^{d_{2}}$ appears in the last d_{1} rows of $\operatorname{Syl}_{y}\left(M_{1}, g\right)$. Since every element in the first d_{y} rows of $\operatorname{Syl}_{y}\left(M_{1}, g\right)$ has degree 0 in x and the determinant of a matrix is a sum (up to sign) of the products obtained by multiplying one element from every row of the matrix, we conclude that

$$
\operatorname{deg}_{x}\left(\operatorname{res}_{y}\left(g(x, y), M_{1}(y)\right)\right)=\operatorname{deg}_{x}\left(\operatorname{det}\left(\operatorname{Syl}_{y}\left(M_{1}, g\right)\right)\right)=d_{1} d_{2}
$$

That is, $d_{1} d_{2}+1$ distinct evaluation points must suffice to interpolate the resultant.
One may ask, are there any evaluation points from \mathbb{F}_{p} that cannot be used? In particular, it may not be obvious whether or not an evaluation point σ for which $a_{d_{y}}(\sigma)=0$ still satisfies $\left.\operatorname{det}\left(\operatorname{Syl}_{y}\left(M_{1}, g\right)\right)\right|_{x=\sigma}=\operatorname{det}\left(\operatorname{Syl}_{y}\left(\left.M_{1}\right|_{x=\sigma},\left.g\right|_{x=\sigma}\right)\right)$. Let $N_{p}(x)=$ $\operatorname{res}_{y}\left(M_{1}(y), g(x, y)\right)$. Since $\operatorname{lcoeff}_{y}\left(M_{1}\right)=1$, Theorem 6.2 implies that

$$
N_{p}(x=\sigma)=\left.\operatorname{res}_{y}\left(M_{1}(y), g(x, y)\right)\right|_{x=\sigma}=\operatorname{res}_{y}\left(M_{1}(y), g(x=\sigma, y)\right) \forall \sigma \in \mathbb{F}_{p}
$$

That is, every element from \mathbb{F}_{p} can be used as an evaluation point.
We have now reduced the problem of solving a bivariate resultant to that of solving the resultant of univariate polynomials $M_{1}(y)$ and $g(\sigma, y)$ over K_{p}. For this, we use an efficient algorithm involving computation of a polynomial remainder sequence.

7.1.3 Polynomial remainder sequences

To understand the definition of a polynomial remainder sequence, we first need to give some preliminary definitions and lemmas.

Theorem 7.4. Let J be an integral domain, $f(x), g(x) \in J[x] \backslash\{0\}$ and $m=\operatorname{deg}(f) \geq$ $n=\operatorname{deg}(g)$. Then there exist polynomials $q(x), r(x) \in J[x]$ such that

$$
\begin{equation*}
\operatorname{lcoeff}(g)^{m-n+1} \cdot f(x)=q(x) \cdot g(x)+r(x) \tag{7.2}
\end{equation*}
$$

where either $r(x)=0$ or $\operatorname{deg}(r)<\operatorname{deg}(g)$. We call $r(x)$ is the pseudo remainder of f and g, which we denote as $\operatorname{prem}(f, g)$.

Proof. See Winkler [21, Theorem 2.2.2, pp. 40-41].
Definition 7.5. Let U be a UFD. The polynomials $f(x), g(x) \in U[x]$ are said to be similar, written $f(x) \simeq g(x)$, if there exist $\alpha, \beta \in U \backslash\{0\}$ such that $\alpha \cdot f(x)=\beta \cdot g(x)$.

Lemma 7.6. Let U be $a \mathrm{UFD}$ and $f, g \in U[x] \backslash\{0\}$. If $\operatorname{deg}(f) \geq \operatorname{deg}(g)$ and $r \simeq$ $\operatorname{prem}(f, g)$, then $\operatorname{gcd}(f, g) \simeq \operatorname{gcd}(g, r)$.

Proof. See Winkler [21, Lemma 4.1.2, p. 83].

Definition 7.7. Let J be an integral domain and $f_{1}, f_{2}, \ldots, f_{n+1}$ be polynomials in $J[x], n \geq 2$. We say that $\left\{f_{1}, f_{2}, \ldots, f_{n+1}\right\}$ is a polynomial remainder sequence starting from f_{1} and f_{2}, denoted $\operatorname{PRS}_{x}\left(f_{1}, f_{2}\right)$, if and only if:

- $\operatorname{deg}\left(f_{1}\right) \geq \operatorname{deg}\left(f_{2}\right)$,
- $f_{i} \neq 0$ for $i=1, \ldots, k$ and $f_{n+1}=0$, and
- $f_{i} \simeq \operatorname{prem}\left(f_{i-2}, f_{i-1}\right)$ for $i=3, \ldots, n+1$.

Remark 7.8. If $f_{1}, f_{2} \in U[x]$ and $\left\{f_{1}, f_{2}, \ldots, f_{n}, 0\right\}$ is a PRS, then Lemma 7.6 implies that

$$
\operatorname{gcd}\left(f_{1}, f_{2}\right) \simeq \operatorname{gcd}\left(f_{2}, f_{3}\right) \simeq \ldots \simeq \operatorname{gcd}\left(f_{n-1}, f_{n}\right) \simeq \operatorname{gcd}\left(f_{n}, 0\right)=f_{n}
$$

That is, the gcd of two polynomials can be computed using their PRS.
A subresultant polynomial remainder sequence (sPRS) starting with $f_{1}(x)$ and f_{2}, denoted by $\operatorname{sPRS}_{x}\left(f_{1}, f_{2}\right)$, is a PRS whose last non-zero polynomial is equal to $\operatorname{res}_{x}\left(f_{1}, f_{2}\right)$. In this thesis, we will not provide the rather cumbersome definition of the subresultant PRS (for this one can refer to Brown [4]), but we do present the sPRS algorithm and its time complexity. Even though PRS's are defined for integral domains, Algorithm sr_prs (Algorithm 7.1) takes as input polynomials over any commutative ring. It returns $F A I L$ if a division by a zero divisor occurs.

We analyze the cost of Algorithm sr_prs assuming that $R=K_{p}, d_{1}=\operatorname{deg}_{x}\left(f_{1}\right)$, $d_{2}=\operatorname{deg}_{x}\left(f_{2}\right)$ and $d_{1} \geq d_{2} \geq 0$.

- Line 5: The asymptotic cost of computing all the pseudo-remainders in this algorithm is the same as that of the Euclidean algorithm, which is $\mathcal{O}\left(d_{1} d_{2}\right)$ arithmetic operations in K_{p} (von zur Gathen, Gerhard [18, Theorem 3.11, pp.5051]).
- Line 7: Since $h, g \in K_{p}$, we perform δ multiplications and one inversion in K_{p} when computing $1 /\left(g \cdot h^{\delta}\right)$. Moreover, we perform at most $\operatorname{deg}_{x}\left(f^{\prime}\right)$ multiplications in K_{p} in multiplying f^{\prime} by $1 /\left(g \cdot h^{\delta}\right)$. Since $\delta<d_{1}$ and $\operatorname{deg}_{x}\left(f^{\prime}\right)<d_{1}$, it requires

$$
\mathcal{O}\left(\delta+1+\operatorname{deg}_{x}\left(f^{\prime}\right)\right) \subseteq \mathcal{O}\left(d_{1}+d_{1}\right) \subseteq \mathcal{O}\left(d_{1}\right) \text { arithmetic operations in } K_{p}
$$

```
Algorithm 7.1: sr_prs \(\left(f_{1}, f_{2}, R\right)\)
Input: \(f_{1}, f_{2} \in R[x], R\) a commutative ring.
Output: \(r(x)=\operatorname{res}_{x}\left(f_{1}, f_{2}\right)\) and subresultant \(\operatorname{PRS}\left[f_{1}, f_{2}, \ldots, f_{n}\right]\) where \(f_{n+1}=0\), or
    FAIL.
    \(g \leftarrow 1 ; h \leftarrow 1 ; f^{\prime} \leftarrow f_{2} ; i \leftarrow 3 ; s \leftarrow 1 ;\)
    while \(f^{\prime} \neq 0\) and \(\operatorname{deg}\left(f^{\prime}\right)>0\) do
        \(\delta \leftarrow \operatorname{deg}\left(f_{i-2}\right)-\operatorname{deg}\left(f_{i-1}\right)\);
        \(s \leftarrow s \cdot(-1)^{\operatorname{deg}\left(f_{i-2}\right) \cdot \operatorname{deg}\left(f_{i-1}\right)}\);
        \(f^{\prime} \leftarrow \operatorname{prem}\left(f_{i-2}, f_{i-1}\right)\);
        if \(f^{\prime} \neq 0\) then
        \(f_{i} \leftarrow(-1)^{\delta+1} f^{\prime} /\left(g \cdot h^{\delta}\right) ;\)
        if \(f_{i}=F A I L\) then \(\left\{g \cdot h^{\delta}\right.\) is a zero divisor in \(\left.R\right\}\) return \(F A I L\); end if
        \(g \leftarrow \operatorname{lcoeff}\left(f_{i-1}\right)\);
        \(h \leftarrow h^{1-\delta} \cdot g^{\delta}\);
        if \(h=F A I L\) then \(\left\{\delta>1\right.\) and \(h^{\delta-1}\) is a zero divisor in \(\left.R\right\}\) return \(F A I L\);
        end if
        \(i \leftarrow i+1 ;\)
        end if
    end while
    \(r \leftarrow s \cdot\left(f_{i-1}\right)^{\operatorname{deg}\left(f_{i-2}\right)} \cdot h^{1-\operatorname{deg}\left(f_{i-2}\right)} ;\)
    if \(r=F A I L\) then
        \(\left\{\operatorname{deg}\left(f_{i-2}\right)>1\right.\) and \(h^{\operatorname{deg}\left(f_{i-2}\right)-1}\) is a zero divisor in \(\left.R\right\}\)
        return \(F A I L\);
    end if
    return \(r,\left[f_{1}, f_{2}, \ldots, f_{i-1}\right]\);
```

- Line 10: If $\delta=1$, no operations are necessary. If $\delta \neq 1$, in computing $h^{1-\delta}$ we perform $|1-\delta|-1$ multiplications and ≤ 1 inversion (if $\delta>1$), each in K_{p}. Moreover, we require δ additional multiplications in multiplying $h^{1-\delta}$ by g^{δ}. Hence this line requires

$$
\mathcal{O}((|1-\delta|-1)+1+\delta) \subseteq \mathcal{O}(\delta) \subseteq \mathcal{O}\left(d_{1}\right) \text { arithmetic operations in } K_{p}
$$

- Line 15: This line can be analyzed in a similar manner as in Line 10, and it requires

$$
\mathcal{O}\left(d_{1}\right) \text { arithmetic operations in } K_{p} .
$$

Since the while-loop is executed at most d_{2} times, we conclude that Algorithm sr_prs requires

$$
\mathcal{O}\left(d_{2}\left(d_{1}+d_{1}\right)+d_{1}\right) \subseteq \mathcal{O}\left(d_{1} d_{2}\right) \text { arithmetic operations in } K_{p}
$$

7.1.4 Failure cases of the algorithm

In our application, we wish to use Algorithm sr_prs to compute the resultant of $M_{2}(\sigma-c y, y)$ and $M_{1}(y)$ over K_{p}. However, in some cases the choice of the evaluation point $\sigma \in \mathbb{F}_{p}$ may lead to a division by a zero divisor. In other cases, the choice of p results in a division by a zero divisor for every $\sigma \in \mathbb{F}_{p}$. In either case, the algorithm will return $F A I L$. We illustrate these two types of failure by examples.

Example 7.9. Let $p=101$,

$$
\begin{aligned}
& M_{1}(z)=z^{2}+37 \in \mathbb{F}_{p}[z] \\
& M_{2}(y)=y^{3}+(46 z-8) y^{2}-30 y-1 \in \mathbb{F}_{p}[z] /\left\langle M_{1}(z)\right\rangle[y], \text { and } \\
& M_{3}(x)=x^{2}+(3 x+65+46 z) y^{2}+x^{2} y+3 \in \mathbb{F}_{p}[z, y] /\left\langle M_{1}(z), M_{2}(y)\right\rangle[x]
\end{aligned}
$$

We must find $\operatorname{res}_{y}\left(M_{3}(x-c y, y), M_{2}(y)\right)$. Suppose that we choose $c=0$. Let us find $\operatorname{res}_{y}\left(M_{3}(x-0 \cdot y, y), M_{2}(y)\right)$ using evaluation \& interpolation. Consider the evaluation point $\sigma=0$. Then $M_{3}(\sigma, y)=(65+46 z) y^{2}+3 \in \mathbb{F}_{p}[z] /\left\langle M_{1}(z)\right\rangle[y]$. We use Algorithm sr_prs to find $\operatorname{res}_{y}\left(M_{3}(\sigma, y), M_{2}(y)\right)$. Since $\operatorname{deg}_{y}\left(M_{2}\right)>\operatorname{deg}_{y}\left(M_{3}\right)$, we start the sequence with $f_{1}:=M_{2}$ and $f_{2}:=M_{3}$. After executing the while-loop the first time, we obtain $f_{3}=(17+40 z) y+(29-9 z)$. The second time in the while-loop, the algorithm computes

$$
f_{4}=(-1)^{2} \operatorname{prem}\left(f_{2}, f_{3}\right) /(g \cdot h)
$$

However, $g \cdot h \equiv 21 z-34 \bmod \left\langle M_{1}(z)\right\rangle=21(z+8) \bmod \left\langle M_{1}(z)\right\rangle$ is not invertible in $K_{p}=\mathbb{F}_{p}[z] /\left\langle M_{1}(z)\right\rangle$ since $(z+8)$ divides $M_{1}(z)=z^{2}+37$. One can check that Algorithm sr_prs also fails for the evaluation point $\sigma=24$ as it encounters a division by a zero divisor, but does not fail for all other evaluation points in \mathbb{F}_{p}.

Example 7.10. Let

$$
\begin{aligned}
& m_{1}(z)=z^{2}-2 \in \mathbb{Q}[z] \\
& m_{2}(y)=y^{4}-3 \in \mathbb{Q}[z] /\left\langle m_{1}\right\rangle[y], \text { and } \\
& m_{3}(x)=x^{2}+(z-11) y^{3}-2 \in \mathbb{Q}[y, z] /\left\langle m_{1}, m_{2}\right\rangle[x] .
\end{aligned}
$$

If $p=17$, then

$$
\begin{aligned}
& M_{1}(z)=z^{2}+15 \in \mathbb{F}_{p}[z] \\
& M_{2}(y)=y^{4}+14 \in \mathbb{F}_{p}[z] /\left\langle M_{1}\right\rangle[y], \text { and } \\
& M_{3}(x)=x^{2}+(z+6) y^{3}+15 \in \mathbb{F}_{p}[y, z] /\left\langle M_{1}, M_{2}\right\rangle[x] .
\end{aligned}
$$

Consider the evaluation point $\sigma \in \mathbb{F}_{p}$. We first find the resultant of $M_{3}(\sigma-c y, y)$ and $M_{2}(y)$ using Algorithm sr_prs. After executing the while-loop the first time, we obtain

$$
\begin{aligned}
f_{3}:= & \left(c^{4}+(2 z+12) \sigma c\right) y^{2}+\left(15 c^{3} \sigma+12+(16 z+11) \sigma^{2}+2 z\right) y \\
& +\left(\left(\sigma^{2}+15\right) c^{2}+5+15 z\right) .
\end{aligned}
$$

The second time in the loop the algorithm computes $f^{\prime}=\operatorname{prem}\left(M_{3}(\sigma, y), f_{3}(y)\right)$. Then a division of f^{\prime} by

$$
A(x):=\operatorname{lcoeff}_{y}\left(M_{3}(x-c y, y)\right)^{2}=z^{2}+12 z+2 \equiv 12 z+4=12(z+6)
$$

is required in Line 7. However, $(z+6)$ divides $M_{1}(z)=z^{2}+15=(z+6)(z+11)$, so it is a zero divisor in $\mathbb{F}_{p}[z] /\left\langle M_{1}\right\rangle$. Hence the algorithm returns $F A I L$. Since $A(x)$ does not have any dependence on σ, a division by a zero divisor will always be encountered regardless of the value of σ.

In such cases, a new prime must be chosen. In light of the fact that such a situation can occur, if three (random) evaluation points cause Algorithm sr_prs to output $F A I L$, then we return $F A I L$. A new prime must be chosen and the algorithm must be re-executed. This strategy avoids the case in which every evaluation point is tried before returning FAIL.

7.1.5 Modified resultant algorithm

We now present Algorithm res_modp that takes as input $g(x, y) \in K_{p}[x, y]$, $M_{1}(y) \in K_{p}[y]$ and K_{p}, and returns $\operatorname{res}_{y}\left(g, M_{1}\right)$ computed via evaluation \& interpolation and subresultant PRS's, or FAIL. We analyze the cost of Algorithm

```
Algorithm 7.2: res_modp \(\left(g(x, y), M_{1}(y), K_{p}\right)\)
Input: \(g(x, y) \in K_{p}[x, y], M_{1}(y) \in K_{p}[y]\), where \(\operatorname{deg}_{y}\left(M_{1}\right) \geq \operatorname{deg}_{y}(g)>0\) and \(K_{p}=\)
    \(\mathbb{F}_{p}\left[u_{1}, \ldots, u_{r}\right] /\left\langle N_{1}, \ldots, N_{r}\right\rangle\) or \(\mathbb{F}_{p}\) with \(p>\prod_{i=1}^{r} \operatorname{deg}_{u_{i}}\left(N_{i}\right)\).
```

Output: $N_{p}(x)=\operatorname{res}_{y}\left(g(x, y), M_{1}(y)\right) \in K_{p}[x]$, or $F A I L$.
$d_{1} \leftarrow \operatorname{deg}_{y}\left(M_{1}\right) ; d_{2} \leftarrow \operatorname{deg}_{x}(g) ; B \leftarrow d_{1} d_{2}+1 ;$
$C, R \leftarrow$ empty lists of length B each; $S \leftarrow\{0\} ; k \leftarrow 1$;
$\sigma \leftarrow 0 ;$
while $k \leq B$ do
$\hat{g}(y) \leftarrow g(\sigma, y) ;$
$c_{\sigma}, C \leftarrow \mathbf{s r} _\mathbf{p r s}\left(M_{1}(y), \hat{g}(y), K_{p}\right) ;\left\{c_{\sigma}=\operatorname{res}_{y}\left(M_{1}, \hat{g}\right), \quad C=\operatorname{sPRS}\left(M_{1}, \hat{g}\right)\right\}$
if Algorithm sr_prs does not return $F A I L$ then
\{Algorithm sr_prs returns $F A I L$ if a zero divisor is encountered
$C[k] \leftarrow \sigma ; \quad R[k] \leftarrow(-1)^{\operatorname{deg}_{y}(\hat{g}) \cdot d_{1}} \cdot c_{\sigma} ; \quad\left\{C[k] \in \mathbb{F}_{p}, \quad R[k]=\operatorname{res}_{y}\left(\hat{g}, M_{1}\right) \in K_{p}\right\}$
$k \leftarrow k+1 ;$
else if Algorithm sr_prs returned $F A I L$ for three σ 's then
return FAIL;
end if
$\sigma \leftarrow$ random element of $\mathbb{F}_{p} \backslash S ; \quad S \leftarrow S \cup\{\sigma\} ;$
end while
interpolate $N_{p}(x) \in K_{p}[x]$ from points $[C[1], \ldots, C[B]] \in \mathbb{F}_{p}^{B}$ and values $[R[1], \ldots, R[B]] \in K_{p}^{B} ;$
return $N_{p}(x)$;
res_modp for input polynomials $g(x, y) \in K_{p}[x, y]$ and $M_{1}(y) \in K_{p}[y]$ where $d_{1}=\operatorname{deg}_{y}\left(M_{1}\right), d_{2}=\operatorname{deg}_{x}(g)$, and $\operatorname{deg}_{y}(g)<d_{1}$.

- Line 5: Evaluating $g(x, y)$ at $x=\sigma \in \mathbb{F}_{p}$ using Horner's algorithm requires

$$
\mathcal{O}\left(d_{1} d_{2}\right) \text { scalar multiplications and additions in } K_{p}
$$

(von zur Gathen, Gerhard [18, Theorem 5.1, pp.100-101]).

- Line 6: Executing Algorithm sr_prs with $g(\sigma, y)$ and $M_{1}(y)$ as inputs requires $\mathcal{O}\left(\operatorname{deg}_{y}(g) \operatorname{deg}_{y}\left(M_{1}\right)\right) \subseteq \mathcal{O}\left(d_{1}^{2}\right)$ arithmetic operations in K_{p} (Section 7.1.3) .
- Line 16: We interpolate B images in K_{p} corresponding to distinct evaluation points from \mathbb{F}_{p} using Newton interpolation. Since $B=d_{1} d_{2}+1 \in \mathcal{O}\left(d_{1} d_{2}\right)$, at most $\mathcal{O}\left(d_{1}^{2} d_{2}^{2}\right)$ arithmetic operations in K_{p} are needed (von zur Gathen, Gerhard [18, p.132]). We remark here that because all the evaluation points are in \mathbb{F}_{p}, most of the arithmetic operations required in the interpolation are done in \mathbb{F}_{p}, not K_{p}. However, this does not change the overall complexity of Algorithm res_modp.

Since Algorithm res_modp will return $F A I L$ only if three failures were encountered while executing Algorithm sr_prs, the while-loop will be executed at most $\left(d_{1} d_{2}+1\right)+3 \in \mathcal{O}\left(d_{1} d_{2}\right)$ times.

In summary, Algorithm res_modp requires:

$$
\mathcal{O}\left(\left[\left(d_{1} d_{2}\right)\left(d_{1} d_{2}+d_{1}^{2}\right)\right]+d_{1}^{2} d_{2}^{2}\right) \in \mathcal{O}\left(d_{1}^{3} d_{2}+d_{1}^{2} d_{2}^{2}\right) \text { arithmetic operations in } K_{p}
$$

If $d_{1} \leq d_{2}$ then this cost simplifies to $\mathcal{O}\left(d_{1}^{2} d_{2}^{2}\right)$ arithmetic operations in K_{p}. Compared with the cost of the linear algebra method $\left(\mathcal{O}\left(d_{1}^{3} d_{2}^{3}\right)\right)$, this is an improvement.

7.2 gcd computation

Let $N_{p}(x)=\operatorname{res}_{y}\left(g(x, y), M_{1}(y)\right) \in K_{p}[x]$ be the minimal polynomial (modulo p) for $\bar{\gamma}$ and $g(x, y)=M_{2}(x-c y, y)$ be square-free. Lines 5 and 12 of Algorithm prim_elt_p (Algorithm 6.2) compute the monic gcd

$$
G=\operatorname{gcd}\left(g(\bar{\gamma}, y), M_{1}(y)\right)=y+c(\bar{\gamma}) \in K_{p}[\bar{\gamma}][y] \cong K_{p}[x] /\left\langle N_{p}(x)\right\rangle[y] .
$$

Let $d_{1}=\operatorname{deg}_{y}\left(M_{1}\right), d_{2}=\operatorname{deg}_{x}(g)$ and $d_{y}=\operatorname{deg}_{y}(g)$. Since $\operatorname{deg}_{x}\left(N_{p}\right)=d_{1} d_{2}$ and $d_{y}<$ d_{1}, computing G using the Euclidean algorithm requires $\mathcal{O}\left(d_{1} d_{y}\right)$ arithmetic operation in $K_{p}[\bar{\gamma}]$, or equivalently,

$$
\mathcal{O}\left(\left(d_{1} d_{y}\right) \cdot\left(\operatorname{deg}_{x}\left(N_{p}\right)\right)^{2}\right) \in \mathcal{O}\left(d_{1}^{2} \cdot\left(d_{1} d_{2}\right)^{2}\right)=\mathcal{O}\left(d_{1}^{4} d_{2}^{2}\right) \text { arithmetic operations in } K_{p}
$$

In this section, we show that this cost can be reduced by using the following idea.
Let

$$
\begin{aligned}
\operatorname{PRS}_{x} & =\operatorname{sPRS}_{y}\left(M_{1}(y), g(x, y)\right) \\
& =\left\{f_{1}(x, y)=M_{1}(y), f_{2}(x, y)=g(x, y), f_{3}(y), \ldots, f_{n-1}(x, y), f_{n}(x, y), 0\right\} \text { and } \\
\operatorname{PRS}_{\bar{\gamma}} & =\operatorname{sPRS}_{y}\left(M_{1}(y), g(\bar{\gamma}, y)\right) \\
& =\left\{h_{1}(\bar{\gamma}, y)=M_{1}(y), h_{2}(\bar{\gamma}, y)=g(\bar{\gamma}, y), h_{3}(y), \ldots, h_{m-1}(\bar{\gamma}, y), h_{m}(\bar{\gamma}, y), 0\right\} .
\end{aligned}
$$

By Remark 7.8 and Lemma 5.7,

$$
h_{m}(\bar{\gamma}, y)=a(\bar{\gamma}) y+b(\bar{\gamma}) \simeq G=\operatorname{gcd}\left(g(\bar{\gamma}, y), M_{1}(y)\right) .
$$

Moreover, we shall see in this section that $f_{n-1}(x=\bar{\gamma}, y)=h_{m}(\bar{\gamma}, y)$. Thus if we can determine $f_{n-1}(x, y)$, there is no need to compute $\operatorname{sPRS}_{\bar{\gamma}}$ (or any variant of the Euclidean algorithm) to determine G. Observe that the sPRS's of $g\left(\sigma_{i}, y\right)$ and $M_{1}(y), 1 \leq i \leq \operatorname{deg}_{x}\left(N_{p}\right)$, are known from having computed $\operatorname{res}_{y}\left(g(x, y), M_{1}(y)\right)$ using Algorithm res_modp. Thus we can compute $f_{n-1}(x, y)$ by interpolating the $f_{n-1}\left(\sigma_{i}, y\right)$'s appearing in these sequences. Making the substitution $x \mapsto \bar{\gamma}$ to the interpolated polynomial, then making it monic, (provided that the leading coefficient is not a zero divisor in K_{p}) we obtain G. We illustrate this idea with an example.

Example 7.11. Let $p=17$,

$$
g(x, y)=x^{2}+\left(8+15 y^{2}+3 y\right) x+\left(5+11 y^{2}+4 y\right), \quad \text { and } M_{1}(y)=y^{3}+9
$$

Algorithm res_modp computes $\operatorname{deg}_{x}(g) \operatorname{deg}_{y}\left(M_{1}\right)+1=7$ evaluation homomorphisms:

σ	$f_{2}(y)=g(\sigma, y)$	$f_{3}(y)=f_{n-1}(\sigma, y)$	$f_{4}(y)=f_{n}(\sigma, y)$	$f_{5}(y)=f_{n+1}(\sigma, y)$
0	$11 y^{2}+4 y+5$	$12 y+4$	1	0
1	$9 y^{2}+7 y+14$	$8 y+11$	2	0
2	$7 y^{2}+10 y+8$	$10 y+11$	7	0
3	$5 y^{2}+13 y+4$	$13 y+5$	3	0
4	$3 y^{2}+16 y+2$	$12 y+11$	2	0
5	$y^{2}+2 y+2$	$2 y+13$	6	0
6	$16 y^{2}+5 y+4$	$12 y+12$	1	0

To obtain $\operatorname{res}_{y}\left(g(x, y), M_{1}(y)\right)$, recall that we interpolate $f_{n}(\sigma, y)$ for $0 \leq \sigma \leq 6$:

$$
N_{p}(x):=\operatorname{res}_{y}\left(g(x, y), M_{1}(y)\right)=x^{6}+7 x^{5}+11 x^{4}+5 x^{3}+9 x^{2}+8 x+12
$$

Interpolating the next-to-last non-zero polynomials $f_{n-1}(\sigma, y)$ for $0 \leq \sigma \leq 6$ gives

$$
\left(2 x^{3}-3 x^{2}-3 x-5\right) y+\left(3 x^{3}-4 x^{2}+8 x+4\right)
$$

which, upon division by its leading coefficient of y in $\mathbb{F}_{p}[x] /\left\langle N_{p}(x)\right\rangle$ yields

$$
A(x, y)=y+\left(16 x^{5}+13 x^{4}+9 x^{3}+13 x^{2}+x+15\right)
$$

Indeed, one can verify that
$G=\operatorname{gcd}\left(g(\bar{\gamma}, y), M_{1}(y)\right)=A(x=\bar{\gamma}, y)=y+\left(16 \bar{\gamma}^{5}+13 \bar{\gamma}^{4}+9 \bar{\gamma}^{3}+13 \bar{\gamma}^{2}+\bar{\gamma}+15\right)$.
To prove the correctness of the method described above in computing G, we define subresultants and discuss properties of subresultants and subresultant PRS's.

7.2.1 Subresultants and properties of subresultant PRS's

Definition 7.12. Let R be a commutative ring and let $f_{1}(y), f_{2}(y) \in R[y] /\{0\}$ with $d_{1}=\operatorname{deg}\left(f_{1}\right)$ and $d_{2}=\operatorname{deg}\left(f_{2}\right)$. For $j=0, \ldots, \min \left\{d_{1}, d_{2}\right\}-1$, the \mathbf{j}-th subresultant of f_{1} and f_{2}, denoted by $\operatorname{sRes}_{j}\left(f_{1}, f_{2}\right)$, is

$$
\operatorname{sRes}_{j}\left(f_{1}, f_{2}\right)=\sum_{i=0}^{j} \operatorname{det}\left(\operatorname{Syl}_{y}\left(f_{1}, f_{2}\right)_{i, j}\right) y^{i}
$$

where $\operatorname{Syl}_{y}\left(f_{1}, f_{2}\right)_{i, j}$ is the matrix derived from the Sylvester matrix of f_{1} and f_{2} by deleting

- the last j rows of coefficients of f_{1},
- the last j rows of coefficients of f_{2}, and
- the last $2 j+1$ columns except the $\left(d_{1}+d_{2}-i-j\right)$ th.

Theorem 7.13. Let U be a UFD and $f_{1}, f_{2} \in U[y]$ with $\operatorname{deg}_{y}\left(f_{1}\right)>\operatorname{deg}_{y}\left(f_{2}\right)$. Further let $\operatorname{sPRS}_{y}\left(f_{1}, f_{2}\right)=\left\{f_{1}, f_{2}, \ldots, f_{n}, 0\right\}$ and $n_{i}=\operatorname{deg}_{y}\left(f_{i}\right)$ for $1 \leq i \leq n$. Then for $0 \leq j \leq \operatorname{deg}_{y}\left(f_{2}\right)-1$,

$$
\operatorname{sRes}_{j}\left(f_{1}, f_{2}\right)= \begin{cases}f_{i} & \text { if } j=n_{i-1}-1 \\ \tau_{i} f_{i} & \text { if } j=n_{i} \text { where } \tau_{i} \in U \\ 0 & \text { otherwise }\end{cases}
$$

Proof. See Brown and Traub [5].
Recall that we defined PRS_{x} and $\mathrm{PRS}_{\bar{\gamma}}$ as follows:
$\operatorname{PRS}_{x}=\operatorname{sPRS}_{y}\left(M_{1}(y), g(x, y)\right)=\left\{M_{1}(y), g(x, y), f_{3}(x, y), \ldots, f_{n-1}(x, y), f_{n}(x, y), 0\right\}$ and $\operatorname{PRS}_{\bar{\gamma}}=\operatorname{sPRS}_{y}\left(M_{1}(y), g(\bar{\gamma}, y)\right)=\left\{M_{1}(y), g(\bar{\gamma}, y), h_{3}(y), \ldots, h_{m-1}(\bar{\gamma}, y), h_{m}(\bar{\gamma}, y), 0\right\}$.

Since h_{m} is linear in y (Lemma 5.7), Theorem 7.13 implies that

$$
\operatorname{sRes}_{1}\left(M_{1}(y), g(\bar{\gamma}, y)\right)= \begin{cases}h_{m}, & \text { if } \operatorname{deg}\left(h_{m-1}\right)=2 \tag{7.3}\\ \tau \cdot h_{m} \text { for some } \tau \in K_{p}, & \text { if } \operatorname{deg}\left(h_{m-1}\right)>2\end{cases}
$$

Theorem 7.14. Let $\Phi: R \rightarrow R^{\prime}$ be a ring homomorphism and let Φ also denote the induced homomorphism $R[y] \rightarrow R^{\prime}[y]$. Further let $f, g \in R[y] \backslash\{0\}$ and $\operatorname{deg}(f)>$ $\operatorname{deg}(g)$. If $\operatorname{deg}(\Phi(f))=\operatorname{deg}(f)$ and $\delta=\operatorname{deg}(g)-\operatorname{deg}(\Phi(g))$, then for $0 \leq j<\operatorname{deg}(f)$,

$$
\Phi\left(\operatorname{sRes}_{j}(f, g)\right)=\Phi(\operatorname{lcoeff}(f))^{\delta} \cdot \operatorname{sRes}_{j}(\Phi(f), \Phi(g))
$$

Proof. See Mishra [14, Lemma 7.8.1, pp.263-265].
By Theorem 7.13, each f_{i} in PRS_{x} is similar to a subresultant of $M_{1}(y)$ and $g(x, y)$. Moreover, Theorem 7.14 implies that each f_{i} must be similar to some h_{j}. In particular, we know that

$$
f_{n}(x)=\operatorname{res}_{y}\left(M_{1}(y), g(x, y)\right)=\operatorname{sRes}_{0}\left(M_{1}(y), g(x, y)\right)=\Phi_{p}\left(m_{\gamma}(x)\right)
$$

a polynomial of degree 0 in y. Since $\left.\left(\Phi_{p}\left(m_{\gamma}(x)\right)\right)\right|_{x=\bar{\gamma}}=0$, we have $f_{n}(x=\bar{\gamma}, y)=$ $h_{m+1}(\bar{\gamma}, y)=0$. Furthermore, there must exist some f_{i} that is similar to
$\operatorname{sRes}_{1}\left(M_{1}(y), g(x, y)\right)$, a degree 1 polynomial. Since every PRS is a sequence of polynomials of decreasing degree and $\operatorname{deg}_{y}\left(f_{n}\right)=0$, the next-to-last non-zero polynomial f_{n-1} in PRS_{x} must be similar to $\operatorname{sRes}_{1}\left(M_{1}(y), g(x, y)\right)$. Combining this observation with (7.3) and Theorem 7.14, we obtain

$$
\begin{aligned}
\left.f_{n-1}\right|_{x=\bar{\gamma}} & \left.\simeq \sec _{1}\left(M_{1}(y), g(x, y)\right)\right|_{x=\bar{\gamma}} \\
& =\left.\operatorname{lcoeff}\left(M_{1}\right)^{\delta}\right|_{x=\bar{\gamma}} \cdot \operatorname{sRes}_{1}\left(\left.M_{1}\right|_{x=\bar{\gamma}},\left.g\right|_{x=\bar{\gamma}}\right) \\
& \simeq h_{m},
\end{aligned}
$$

where $\delta=\operatorname{deg}_{x}(g)-\operatorname{deg}_{x}\left(\Phi_{\bar{\gamma}}(g)\right)$. That is, the next-to-last polynomial $f_{n-1}(x, y)$ in $\operatorname{PRS}_{x}=\operatorname{sPRS}_{y}\left(g(x, y), M_{1}(y)\right)$ can be used to find $\operatorname{gcd}\left(g(\bar{\gamma}, y), M_{1}(y)\right)$ via the substitution $x \mapsto \bar{\gamma}$.

Example 7.15. Suppose that $K=\mathbb{Q}$ and $K_{p}=\mathbb{F}_{4133}$. Let

$$
\begin{aligned}
& g(x, \bar{\alpha})=M_{2}(x-\bar{\alpha}, \bar{\alpha})=m_{2}(x, \bar{\alpha}) \quad \bmod 4133=(x-\bar{\alpha})^{4}-\bar{\alpha}^{2}(x-\bar{\alpha})^{2}-2 \text { and } \\
& M_{1}(y)=m_{1}(y) \quad \bmod 4133=y^{4}-2 .
\end{aligned}
$$

We determined in Example 6.4 that a primitive element of $K(\alpha, \beta)$ is $\gamma=\alpha+\beta$ with

$$
\begin{gathered}
N_{p}(x)=m_{\gamma}(x) \quad \bmod p=x^{16}-44 x^{12}-468 x^{8}-1456 x^{4}+16, \text { and } \\
\operatorname{gcd}\left(g(\bar{\gamma}, y), M_{1}(y)\right)=y-951 \bar{\gamma}+588 \bar{\gamma}^{5}+982 \bar{\gamma}^{9}+980 \bar{\gamma}^{13}
\end{gathered}
$$

The $\operatorname{sPRS}_{y}\left(M_{1}(y), g(x, y)\right)$ over $K_{p}[x]$ is

$$
\begin{aligned}
f_{1}(x, y) & =M_{1}(y) \equiv y^{4}+4131, \\
f_{2}(x, y) & =g(x, y)=(x-y)^{4}-y^{2}(x-y)^{2}-2 \\
& \equiv 4131 x y^{3}+5 x^{2} y^{2}+4129 x^{3} y+x^{4}+4131, \\
f_{3}(x, y) & =17 x^{4} y^{2}+\left(4115 x^{5}+4129 x\right) y+5 x^{6}+4115 x^{2}, \\
f_{n-1}(x, y)=f_{4}(x, y) & =\left(4107 x^{9}+3993 x^{5}+4125 x\right) y+11 x^{10}+86 x^{6}+4097 x^{2}, \\
f_{n}(x, y)=f_{5}(x, y) & =x^{16}+16+4089 x^{12}+3665 x^{8}+2677 x^{4}, \\
f_{6}(x, y) & =0 .
\end{aligned}
$$

As expected, $f_{n}=N_{p}(x)$. The $\operatorname{sPRS}_{y}\left(M_{1}(y), g(\bar{\gamma}, y)\right)$ over $K_{p}[\bar{\gamma}] \cong K_{p}[x] /\left\langle N_{p}(x)\right\rangle$ is:

$$
\begin{align*}
h_{1}(\bar{\gamma}, y) & =y^{4}-2, \\
h_{2}(\bar{\gamma}, y) & =(\bar{\gamma}-y)^{4}-y^{2}(\bar{\gamma}-y)^{2}-2 \\
\equiv & \equiv 4131 \bar{\gamma} y^{3}+5 \bar{\gamma}^{2} y^{2}+4129 \bar{\gamma}^{3} y+\bar{\gamma}^{4}+4131, \\
h_{m-1}(\bar{\gamma}, y)= & h_{3}(\bar{\gamma}, y)=17 \bar{\gamma}^{4} y^{2}+\left(4115 \bar{\gamma}^{5}+4129 \bar{\gamma}\right) y+5 \bar{\gamma}^{6}+4115 \bar{\gamma}^{2} \\
h_{m}(\bar{\gamma}, y)= & h_{4}(\bar{\gamma}, y)=\left(4107 \bar{\gamma}^{9}+3993 \bar{\gamma}^{5}+4125 \bar{\gamma}\right) y+11 \bar{\gamma}^{10}+86 \bar{\gamma}^{6}+4097 \bar{\gamma}^{2}, \\
& h_{5}(\bar{\gamma}, y)=0 . \tag{7.4}
\end{align*}
$$

One can verify that $f_{i}(x=\bar{\gamma}, y)=h_{i}(\bar{\gamma}, y)$ for $i=1, \ldots, 5$. In particular,

$$
f_{n-1}(x=\bar{\gamma}, y)=h_{m}(\bar{\gamma}, y) \simeq \operatorname{gcd}\left(g(\bar{\gamma}, y), M_{1}(y)\right)
$$

To obtain the monic gcd, we invert $\operatorname{lcoeff}_{y}\left(f_{n-1}(\bar{\gamma}, y)\right)=-26 \bar{\gamma}^{9}-140 \bar{\gamma}^{5}-8 \bar{\gamma} \in K_{p}[\bar{\gamma}]$ using the Extended Euclidean algorithm and multiplying it by $f_{n-1}(\bar{\gamma}, y)$.

7.2.2 Unlucky evaluation points

We must determine how many evaluation points are sufficient to interpolate the next-to-last linear polynomials $f_{n-1}\left(\sigma_{i}, y\right)$'s in the subresultant PRS's obtained from Algorithm res_modp to determine $f_{n-1}(x, y)$. Since

$$
\operatorname{deg}_{x}\left(f_{n-1}\right)<\operatorname{deg}\left(N_{p}\right)=\operatorname{deg}_{y}\left(M_{1}\right) \cdot \operatorname{deg}_{x}(g),
$$

$\operatorname{deg}_{y}\left(M_{1}\right) \cdot \operatorname{deg}_{x}(g)$ images are sufficient to interpolate x in $f_{n-1}(x, y)$. Note that this is less than the number of images we computed in Algorithm res_modp for computing the resultant, which is $\operatorname{deg}_{y}\left(M_{1}\right) \cdot \operatorname{deg}_{x}(g)+1$. However, not every image can be used, as the following examples illustrate.

Example 7.16. Let $p=17, M_{1}(y)=y^{3}-2 y^{2}-1$ and $g(x, y)=x^{2}-5 x y^{2}-x+4$. Then $\operatorname{sPRS}_{y}\left(M_{1}(y), g(x, y)\right)$ is:

$$
\begin{aligned}
& f_{1}(x, y)=M_{1}(y)=y^{3}-2 y^{2}-1 \\
& f_{2}(x, y)=g(x, y)=x^{2}-5 x y^{2}-x+4 \\
& f_{n-1}(x, y)= f_{3}(x, y)=\left(5 x^{3}+12 x^{2}+3 x\right) y+7 x^{3}+2 x^{2}+11 x \\
& f_{n}(x, y)= f_{4}(x, y)=x^{6}+11 x^{5}+6 x^{4}+8 x^{3}+7 x^{2}+6 x+13 \\
& f_{5}(x, y)=0 .
\end{aligned}
$$

It is $f_{n-1}(x, y)$ that we wish to interpolate. However, $\operatorname{sPRS}_{y}\left(M_{1}(y), g(x=6, y)\right)$ is:

$$
\begin{aligned}
& \hat{f}_{1}(y)=M_{1}(y)=y^{3}+15 y^{2}+10 & =f_{1}(x=6, y), \\
\hat{f}_{m-1}(y)=\hat{f}_{2}(y)=4 y^{2} & & =f_{2}(x=6, y), \\
\hat{f}_{m}(y)=\hat{f}_{3}(y)=13 & & =f_{3}(x=6, y), \\
= & & =f_{4}(x=6, y) .
\end{aligned}
$$

Since lcoeff $\left.y_{y}\left(f_{3}\right)\right|_{x=6}=0$, the next-to-last non-zero polynomial \hat{f}_{m-1} is not equal to the desired $f_{n-1}(x=6, y)=1$, and it is not even linear in y. This evaluation point cannot be used.

Example 7.17. Let $p=17, M_{1}(y)=y^{4}+11 y^{2}+15$, and $g(x, y)=x^{3}+8 y x+15 y^{3}$. The $\operatorname{sPRS}_{y}\left(M_{1}(y), g(x, y)\right)$ computed over $\mathbb{F}_{17}[x]$ is:

$$
\begin{aligned}
f_{1}(x, y) & =M_{1}(y)=y^{4}+11 y^{2}+15, \\
f_{2}(x, y) & =g(x, y)=x^{3}+8 y x+15 y^{3}, \\
f_{3}(x, y) & =(10+16 x) y^{2}+2 x^{3} y+9 \\
f_{n-1}(x, y)=f_{4}(x, y) & =\left(15 x^{6}+11+2 x^{3}+11 x^{2}\right) y+13 x^{5}+12 x^{4}+16 x^{3}, \\
f_{n}(x, y)=f_{5}(x, y) & =x^{12}+8+7 x^{8}+5 x^{7}+12 x^{6}+2 x^{4}+11 x^{3}+4 x^{2}+5 x, \\
f_{6}(x, y) & =0 .
\end{aligned}
$$

It is $f_{n-1}(x, y)$ that we wish to interpolate. However, $\operatorname{sPRS}_{y}\left(M_{1}(y), g(x=10, y)\right)$ is:

$$
\begin{array}{rlr}
\hat{f}_{1}(y)=M_{1}(y)=y^{4}+15+11 y^{2} & =f_{1}(x=10, y), \\
\hat{f}_{2}(y)=15 y^{3}+12 y+14 & =f_{2}(x=10, y), \\
\hat{f}_{m-1}(y)=\hat{f}_{3}(y)=11 y+9 & & =f_{3}(x=10, y), \\
\hat{f}_{m}(y) \quad=\hat{f}_{4}(y)=11 & \neq f_{4}(x=10, y), \\
& \hat{f}_{5}(y)=0 & =f_{5}(x=10, y) .
\end{array}
$$

The next-to-last non-zero polynomial \hat{f}_{m-1} is linear, but it corresponds to f_{3} of degree 2 , since lcoeff $\left.y\left(f_{3}\right)\right|_{x=10}=0$. As such, we cannot use 10 as an evaluation point.

We say that an evaluation point σ is unlucky if a leading coefficient (in y) of any polynomial in $\operatorname{sPRS}_{y}\left(M_{1}(y), g(x, y)\right)$ vanishes with the substitution $x \mapsto \sigma$. By definition, an unlucky evaluation point causes an abnormal degree drop. Thus either the number of polynomials in $S_{\sigma}=\operatorname{sPRS}_{y}\left(M_{1}(y), g(\sigma, y)\right)$ will be smaller or will have a different degree sequence than that of $S_{x}=\operatorname{sPRS}_{y}\left(M_{1}(y), g(x, y)\right)$. For example, the
degree sequence of the non-zero polynomials of S_{x} may be $\{7,6,4,2,1,0\}$ and that of S_{σ} may be $\{7,6,4,1,0\}$ or $\{7,6,3,2,1,0\}$. The polynomials after the abnormal degree drop will not correspond to the polynomials in S_{x}, since each polynomial depends on the leading coefficient of the previous polynomial.

There is no way of determining the number of polynomials in $\operatorname{sPRS}_{y}\left(M_{1}(y), g(x, y)\right)$ without computing it. However, one can detect unlucky evaluation point by comparing the degree sequence of this sPRS with the degree sequences of the sPRS's computed so far. To explain, we need the following definition.

Definition 7.18. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$, where each a_{i} and b_{i} belong to \mathbb{Z}. We write $A \succ B$ if and only if

- $n>m$, or
- $a_{i}=b_{i}$ for $1 \leq i \leq k<n$ and $a_{k+1}>b_{k+1}$.

Based on the above definition, we can devise an unlucky evaluation point detection scheme as follows. A similar scheme has been used by Collins [8]. Let $\Delta_{\text {prev }}$ be the degree sequence of the non-zero polynomials in the sPRS obtained using the first evaluation point and let $\Delta_{\text {current }}$ be the degree sequence of the non-zero polynomials obtained using the second evaluation point. If

- $\Delta_{\text {current }} \prec \Delta_{\text {prev }}$, discard second sPRS (current evaluation point is unlucky).
- $\Delta_{\text {current }} \succ \Delta_{\text {prev }}$, discard first sPRS's (all previous evaluation points unlucky). Set $\Delta_{\text {prev }} \leftarrow \Delta_{\text {current }}$.
- $\Delta_{\text {current }}=\Delta_{\text {prev }}$, keep both sPRS's (current and previous evaluation points likely not unlucky).

We repeat this process with other evaluation points until we have the desired number of linear polynomials.

Example 7.19. Suppose that the degree sequence of $\operatorname{sPRS}_{y}\left(M_{1}(y), g\left(\sigma_{1}, y\right)\right)$ is

$$
\Delta_{1}=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\}=\{7,6,4,2,1,0\}
$$

and that of $\operatorname{sPRS}_{y}\left(M_{1}(y), g\left(\sigma_{2}, y\right)\right)$ is

$$
\Delta_{2}=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right\}=\{7,6,3,2,1,0\} .
$$

We have $\Delta_{1} \succ \Delta_{2}$ since $a_{1}=b_{1}, a_{2}=b_{2}$ and $a_{3}>b_{3}$. Hence σ_{1} is an unlucky evaluation point, so we discard the sequence $\operatorname{sPRS}_{y}\left(M_{1}(y), g\left(\sigma_{2}, y\right)\right)$.

Now suppose that the degree sequence of $\operatorname{sPRS}_{y}\left(M_{1}(y), g\left(\sigma_{3}, y\right)\right)$ is

$$
\Delta_{3}=\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}\right\}=\{7,6,5,4,2,1,0\}
$$

Since $\left|\Delta_{3}\right|>\left|\Delta_{1}\right|$, we conclude that $\Delta_{3} \succ \Delta_{1}$. Hence σ_{1} is an unlucky evaluation point. As such, we discard $\operatorname{sPRS}_{y}\left(M_{1}(y), g\left(\sigma_{1}, y\right)\right)$.

We remark that if the degrees of the non-zero polynomials in an sPRS decreases by one each time, then the number of polynomials in the sPRS is maximal and any abnormal degree drop will produce a shorter degree sequence, so we simply need to check the number of polynomials in the future sequences in such cases.

Unfortunately, all the $B=\operatorname{deg}_{y}\left(M_{1}\right) \cdot \operatorname{deg}_{x}(g)$ linear polynomials we found could be unlucky; for example, all of $\operatorname{sPRS}_{y}\left(g\left(\sigma_{i}, y\right), M_{1}(y)\right)$ for $i=1, \ldots, B$ found could have the degree sequence $\{7,6,3,2,1,0\}$, whereas that of $\operatorname{sPRS}_{y}\left(g(x, y), M_{1}(y)\right)$ is $\{7,6,4,2,1,0\}$. However, the following lemma shows that this happens rarely.

Lemma 7.20. Let $f_{1} \in K_{p}[y], f_{2} \in K_{p}[x, y]$ where $d_{1}=\operatorname{deg}_{y}\left(f_{1}\right)>\operatorname{deg}_{y}\left(f_{2}\right)$ and $d_{2}=\operatorname{deg}_{x}\left(f_{2}\right)$. If $\operatorname{sPRS}_{y}\left(f_{1}, f_{2}\right)=\left\{f_{1}, f_{2}, \ldots, f_{n}, 0\right\}$, then the number of unlucky evaluation points in \mathbb{F}_{p} is at most

$$
\frac{d_{1}\left(d_{1}-1\right) d_{2}}{2}
$$

Proof. Let $f_{1}(y)=\sum_{i=0}^{d_{1}} b_{i} y^{i}, f_{2}(x, y)=\sum_{i=0}^{d_{2}} a_{i}(x) y^{i}$ and $d_{y}=\operatorname{deg}_{y}\left(f_{2}\right)$. Then
$n \leq d_{y}$ and

For $k=3, \ldots, n, f_{k}$ is similar to a subresultant of f_{1} and f_{2} by Theorem 7.13, and

$$
\begin{equation*}
\operatorname{sRes}_{j}\left(f_{1}, f_{2}\right)=\sum_{i=0}^{j} \operatorname{det}\left(M\left(f_{1}, f_{2}\right)_{i, j}\right) \cdot y^{i} \tag{7.5}
\end{equation*}
$$

where $M\left(f_{1}, f_{2}\right)_{i, j}$ is obtained from $\operatorname{Syl}_{y}\left(f_{1}, f_{2}\right)$ by deleting the last j rows of coefficients of f_{1}, the last j rows of coefficients of f_{2}, and the last $2 j+1$ columns except the $\left(d_{1}+d_{y}-i-j\right)$-th, for $0 \leq i \leq j \leq d_{y}-1$. Hence for a fixed j and $0 \leq i \leq j$, $M\left(f_{1}, f_{2}\right)_{i, j}$ is a square matrix of dimension $d_{1}+d_{y}-2 j$. Observe from (7.5) that

$$
\operatorname{lcoeff}_{y}\left(\operatorname{sRes}_{j}\left(f_{1}, f_{2}\right)\right)=\operatorname{det}\left(M\left(f_{1}, f_{2}\right)_{j, j}\right) \in K_{p}[x]
$$

Thus an evaluation point σ is unlucky if $\Phi_{x=\sigma}\left(\operatorname{det}\left(M\left(f_{1}, f_{2}\right)_{j, j}\right)\right)=0$ for some $j=$ $1, \ldots, d_{y}-1$. Since $f_{2} \in K_{p}[x, y]$ and $f_{1} \in K_{p}[y]$, only the elements in the last $d_{y}-j$ rows of $M\left(f_{1}, f_{2}\right)_{j, j}$ have terms in them whose degree in x is non-zero (and at most d_{2}). Thus

$$
\operatorname{deg}_{x}\left(\operatorname{det}\left(M\left(f_{1}, f_{2}\right)_{j, j}\right)\right) \leq d_{2}\left(d_{y}-j\right)<d_{2}\left(d_{1}-j\right)
$$

Hence by Lemma 6.3, the number of roots in \mathbb{F}_{p} of $\operatorname{det}\left(M\left(f_{1}, f_{2}\right)_{j, j}\right)$ is at most $d_{2}\left(d_{1}-\right.$ 1). In total then, the number of unlucky evaluation points must be at most

$$
\sum_{j=1}^{d_{y}-1} \operatorname{deg}_{x}\left(M\left(f_{1}, f_{2}\right)_{j, j}\right)<\sum_{j=1}^{d_{1}-1} d_{2}\left(d_{1}-j\right)=\frac{d_{1}\left(d_{1}-1\right) d_{2}}{2} .
$$

Lemma 7.20 implies that since evaluation points are chosen from \mathbb{F}_{p} where p is large, the probability of choosing $B=d_{1} d_{2}$ evaluation points that are all unlucky that have the same degree sequence will be highly unlikely.

Another problem one may encounter in computing the gcd via evaluation and interpolation and sPRS's is that there may exist a prime p in which no linear polynomial appears in S_{σ} for any $\sigma \in \mathbb{F}_{p}$, as the following example illustrates.

Example 7.21. Let $m_{1}(y)=y^{3}-2 \in \mathbb{Q}[y]$ and $m_{2}(x, y)=x^{2}-y+101 y^{2}+103 \in$ $\mathbb{Q}[y] /\left\langle m_{1}\right\rangle[x]$. If $p=101$ then $M_{1}(y)=\Phi_{p}\left(m_{1}(y)\right)=y^{3}+99$ and $M_{2}(x, y)=\Phi_{p}\left(m_{2}\right)=$ $x^{2}+2$. Regardless of the value of the evaluation point $\sigma \in \mathbb{F}_{p}$ we have

$$
S_{\sigma}=\operatorname{sPRS}_{y}\left(M_{1}(y), g(\sigma, y)\right)=\left\{M_{1}(y)=y^{3}+99, \sigma^{2}+2,0\right\}
$$

Rather than trying all elements in \mathbb{F}_{p} as evaluation points before returning $F A I L$, we proceed as follows: if three evaluation points produce subresultant PRS's without a linear polynomial in y, then we return $F A I L$. In such cases, one must re-run the algorithm using a different prime. This strategy also prevents the rare case in which the first $d_{1}\left(d_{1}-1\right) d_{2} / 2$ evaluation points tried are unlucky, which would make algorithm computationally expensive. It also detects with high probability the case in which $N_{p}(x)=\operatorname{res}_{y}\left(g(x, y), M_{1}(y)\right)$ or $g(x, y)$ is not square-free, since a linear polynomial may not exist in $\operatorname{sPRS}_{y}\left(g(x, y), M_{1}(y)\right)$ if $N_{p}(x)$ is not square-free.

7.2.3 Modified resultant algorithm and complexity analysis

Algorithm res_modp2 is a modified version of Algorithm res_modp that takes as input $g(x, y) \in K_{p}[x, y]$ and $M_{1}(y) \in K_{p}[y]$ and returns $N_{p}(x)=\operatorname{res}_{y}\left(g(x, y), M_{1}(y)\right)$ $\in K_{p}[x]$ and $G(x, y) \in K_{p}[x, y]$ such that $G(\bar{\gamma}, y)=\operatorname{gcd}\left(g(\bar{\gamma}, y), M_{1}(y)\right)$ where $\bar{\gamma}$ is the root of $N_{p}(x)$, or FAIL.

Algorithm 7.3: res_modp2 $\left(g(x, y), M_{1}(y), K_{p}\right)$
Input: $g(x, y) \in K_{p}[x, y], M_{1}(y) \in K_{p}[y]$, where $\operatorname{deg}_{y}\left(M_{1}\right)>\operatorname{deg}_{y}(g)>0$ and $K_{p}=$ $\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{r}\right] \cong \mathbb{F}_{p}\left[u_{1}, \ldots, u_{r}\right] /\left\langle N_{1}, \ldots, N_{r}\right\rangle, p>\prod_{i=1}^{r} \operatorname{deg}_{u_{i}}\left(N_{i}\right)$.
Output: $N_{p}(x)=\operatorname{res}_{y}\left(g(x, y), M_{1}(y)\right) \in K_{p}[x]$ and $G(x, y) \in K_{p}[x, y]$ where
$G(\bar{\gamma}, y)=\operatorname{gcd}\left(g(\bar{\gamma}, y), M_{1}(y)\right)$ and $\bar{\gamma}$ is a root of N_{p}, or $F A I L$.
$d_{1} \leftarrow \operatorname{deg}_{y}\left(M_{1}\right) ; d_{2} \leftarrow \operatorname{deg}_{x}(g) ; B \leftarrow d_{1} d_{2}+1 ;$
$C, R, G \leftarrow$ empty lists of length B each; $S \leftarrow\{0\} ; k \leftarrow 1 ; \sigma \leftarrow 0 ; \Delta \leftarrow\{ \} ; c \leftarrow 0 ;$
while $k \leq B$ do
$\hat{g}(y) \leftarrow g(\sigma, y) ; \quad c_{\sigma}, C \leftarrow \mathbf{s r} _$prs $\left(M_{1}(y), \hat{g}(y), K_{p}\right) ;$
if Algorithm sr_prs does not return $F A I L$ then
$\Delta_{\text {current }} \leftarrow$ degree sequence of C;
if $\left(\Delta_{\text {current }} \succ \Delta_{\text {prev }}\right)$ then
$\Delta_{\text {prev }} \leftarrow \Delta_{\text {current }} ; \quad k \leftarrow 0 ;$ discard all previous evaluation points\}
else if $\left(\Delta_{\text {current }}=\Delta_{\text {prev }}\right)$ then
if (degree of the next-to-last element in C) $=1$ then

$$
\begin{array}{ll}
k \leftarrow k+1 ; & G[k] \leftarrow \text { next-to-last element of } C ;\left\{G[k] \in K_{p}[y]\right\} \\
C[k] \leftarrow \sigma ; & R[k] \leftarrow(-1)^{\operatorname{deg}_{y}(\hat{g}) \cdot d_{1}} \cdot c_{\sigma} ;\left\{C[k] \in \mathbb{F}_{p}, R[k]=\operatorname{res}_{y}\left(\hat{g}, M_{1}\right) \in K_{p}\right\}
\end{array}
$$

else
if (no linear polynomial found for three σ 's) then
return $F A I L ;\left\{\operatorname{res}_{y}\left(g, M_{1}\right)\right.$ highly likely not square-free $\}$
end if
end if
else
skip; $\left\{\Delta_{\text {current }} \prec \Delta_{\text {prev }}\right.$, so σ is unlucky $\}$
end if
else if Algorithm sr_prs returned $F A I L$ for three σ 's then
return FAIL;
end if
$\sigma \leftarrow$ random integer in $\mathbb{F}_{p} \backslash S ; \quad S \leftarrow S \cup\{\sigma\} ;$
end while
26: Interpolate $N_{p}(x) \in K_{p}[x]$ from $[C, R]$; Interpolate $f_{n-1}(x, y) \in K_{p}[x, y]$ from $[C, G]$;
27: $G(x, y) \leftarrow \operatorname{lcoeff}_{y}\left(f_{n-1}\right)^{-1} \cdot f_{n-1}(x, y)$; \{make $f_{n-1}(x, y)$ monic in $\left.y\right\}$
28: if $G=F A I L$ then return $F A I L$; \{division by zero divisor encountered $\}$ end if
29: return $N_{p}(x), G(x, y)$;

Let us analyze the time complexity of Algorithm res_modp2, where $d_{1}=$ $\operatorname{deg}_{y}\left(M_{1}\right)$ and $d_{2}=\operatorname{deg}_{x}(g)$. The only difference between Algorithm res_modp and Algorithm res_modp2 is that the latter also outputs $G(x, y)$. Thus the only extra cost associated with Algorithm res modp2 is an additional interpolation of x in $f_{n-1}(x, y)$ from $f_{n-1}\left(\sigma_{i}, y\right) \in K_{p}[y], i=1, \ldots, \operatorname{deg}_{x}\left(N_{p}\right)$ (Line 26), which requires

$$
\mathcal{O}\left(\left(\operatorname{deg}\left(N_{p}\right)+1\right)^{2}\right) \subseteq \mathcal{O}\left(d_{1}^{2} d_{2}^{2}\right) \text { arithmetic operations in } K_{p} .
$$

This is an improvement from computing $\operatorname{gcd}\left(g(\bar{\gamma}, y), M_{1}(y)\right) \in K_{p}[\bar{\gamma}]$ using, for example, the Euclidean algorithm, which would $\operatorname{cost} \mathcal{O}\left(d_{1}^{4} d_{2}^{2}\right)$ arithmetic operations in K_{p}. The while-loop in Algorithm res_modp2 may be executed more number of times than the while-loop in Algorithm res_modp because some evaluation points may be unlucky. However, the algorithm returns $F A I L$ if three unlucky evaluation points are encountered. Hence this extra cost is asymptotically negligible. Since we have shown that Algorithm res_modp requires $\mathcal{O}\left(d_{1}^{3} d_{2}+d_{1}^{2} d_{2}^{2}\right)$ arithmetic operations in K_{p} (Section 7.1.5), Algorithm res_modp2 requires

$$
\mathcal{O}\left(d_{1}^{3} d_{2}+d_{1}^{2} d_{2}^{2}\right)+\mathcal{O}\left(d_{1}^{2} d_{2}^{2}\right) \subseteq \mathcal{O}\left(d_{1}^{3} d_{2}+d_{1}^{2} d_{2}^{2}\right) \text { arithmetic operations in } K_{p}
$$

which is equivalent to $\mathcal{O}\left(d_{1}^{2} d_{2}^{2}\right)$ arithmetic operations in K_{p} if $d_{1} \leq d_{2}$. Attempting to compute a primitive element of $\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{t}\right] \cong \mathbb{F}_{p}\left[u_{1}, \ldots, u_{t}\right] /\left\langle M_{1}, \ldots, M_{t}\right\rangle$ for $t>2$ requires executing Algorithm res_modp2 $(t-1)$ times. If $D=\prod_{i=1}^{t} \operatorname{deg}\left(M_{i}\right)$, then by the analysis done on page 70, we conclude that the total number of arithmetic operations required in \mathbb{F}_{p} is

$$
\begin{cases}\mathcal{O}\left(t D^{2}\right) & \text { if } d_{i} \leq d_{j}, 1 \leq i<j \leq t, \\ \mathcal{O}\left(\left(\sum_{i=1}^{t-1} d_{i}\right) D^{2}\right) & \text { otherwise. }\end{cases}
$$

Remark 7.22. Theorem 7.14 and inspecting the structure of the Sylvester matrices $\operatorname{Syl}_{y}\left(M_{1}, g\right)_{i, 1}$ for $0 \leq i \leq 1$ imply that

$$
\operatorname{deg}_{x}\left(\operatorname{sRes}_{1}\left(M_{1}, g\right)\right) \leq\left(\operatorname{deg}_{x}(g)-1\right)\left(\operatorname{deg}_{x}\left(M_{1}\right)\right)
$$

That is, we only need $\left(\operatorname{deg}_{x}(g)-1\right)\left(\operatorname{deg}_{x}\left(M_{1}\right)\right)+1$ evaluation points to interpolate the gcd, rather than $\left(\operatorname{deg}_{x}(g)\right)\left(\operatorname{deg}_{x}\left(M_{1}\right)\right)+1$ evaluation points that we used in Algorithm
res_modp2. However, reducing the number of evaluation points does not change the overall complexity of Algorithm res_modp2. We also remark that we used $\left(\operatorname{deg}_{x}(g)-\right.$ 1) $\left(\operatorname{deg}_{x}\left(M_{1}\right)\right)+1$ evaluation points in our Maple implementation of this algorithm.

7.3 Complete algorithm and complexity

Algorithm AlgFFTMult uses the resultant-based primitive element finding algorithm (Algorithm prim_elt_multi), and FFT polynomial multiplication (Algorithm FFTMult) to compute the product of polynomials in $K_{p}[x]=\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{t}\right][x]$.

Let $\operatorname{deg}(f)=m \leq \operatorname{deg}(g)=n$ and $D=\prod_{i=1}^{t} \operatorname{deg}_{u_{i}}\left(M_{i}\right)$. We analyze the complexity of Algorithm AlgFFTMult.

- Line 2: The cost in \mathbb{F}_{p} of executing Algorithm prim_elt_multi is $\mathcal{O}\left(D^{3} t\left(\frac{1}{d_{1}}+\frac{1}{d_{t-2} d_{t-1}}\right)\right)($ see Chapter 6$)$.
- Line 5: To build the change-of-basis matrix C, we need to compute $\bar{\alpha}_{1}^{j_{1}} \cdots \bar{\alpha}_{t}^{j_{t}}$ for $1 \leq j_{i} \leq \operatorname{deg}_{u_{i}}\left(M_{i}\right)$ and $1 \leq i \leq t$. Because the normal representations of each $\bar{\alpha}_{i} \in \mathbb{F}_{p}[\bar{\gamma}] \cong \mathbb{F}_{p}[z] /\left\langle M_{\gamma}(z)\right\rangle$ are known from executing Algorithm prim_elt_multi, all the $\bar{\alpha}_{1}{ }^{j_{1}} \cdots \bar{\alpha}_{t}{ }^{j_{t}} \in \mathbb{F}_{p}[\bar{\gamma}]$ can be computed in at most D multiplication in $\mathbb{F}_{p}[\bar{\gamma}]$. Converting each of these elements from its recden representation to CDR does not require any arithmetic operations, as we merely need to "pad" the vector with zeros. Since the cost of one arithmetic operation in $\mathbb{F}_{p}[\bar{\gamma}]$ is equivalent to $\mathcal{O}\left(D^{2}\right)$ arithmetic operations in \mathbb{F}_{p}, the cost of computing C in \mathbb{F}_{p} is $\mathcal{O}\left(D \cdot D^{2}\right) \subseteq \mathcal{O}\left(D^{3}\right)$ arithmetic operations in \mathbb{F}_{p}.
- Lines 7-10 and 11-14: Each of these for-loops requires multiplying the matrix $C \in \mathbb{F}_{p}^{D} \times \mathbb{F}_{p}^{D}$ by a column vector $\left(\in \mathbb{F}_{p}^{D}\right)$ each time in the loop. Thus both for-loops require $\mathcal{O}\left(D^{2} n+D^{2} m\right) \subseteq \mathcal{O}\left(D^{2} n\right)$ multiplications in \mathbb{F}_{p}.
- Line 16: Algorithm FFTMult requires $\mathcal{O}\left(D n \log n+D^{2} n\right)$ arithmetic operations in $\mathbb{F}_{p}($ see Chapter 3$)$.
- Lines 18-21: For each i, we must substitute $\bar{\gamma}^{i}$ for $\left(c_{1} \bar{\alpha}_{1}+\cdots+\bar{\alpha}_{t}\right)^{i} \in K_{p}$. There are at most $m+n+1$ terms that contain $\bar{\gamma}^{i}$ in h. After each substitution,
one may need to perform a scalar multiplication with $\left(c_{1} \bar{\alpha}_{1}+\cdots+\bar{\alpha}_{t}\right)^{i} \in K_{p}$, which has at most D terms. Hence Line 19 requires $\mathcal{O}((m+n+1) D) \subseteq \mathcal{O}(D n)$ multiplications in \mathbb{F}_{p} per loop, and Line 20 requires of one multiplication in K_{p}, or $\mathcal{O}\left(D^{2}\right)$ arithmetic operations in \mathbb{F}_{p} per loop. In total, completing this for-loop requires $\mathcal{O}\left(\left(D n+D^{2}\right) D\right)=\mathcal{O}\left(D^{2} n+D^{3}\right)$ arithmetic operations in \mathbb{F}_{p}.

Thus the total number of arithmetic operations in \mathbb{F}_{p} required by Algorithm AlgFFTMult is

$$
\begin{aligned}
& \mathcal{O}\left(D^{3} t\left(\frac{1}{d_{1}}+\frac{1}{d_{t-2} d_{t-1}}\right)+D^{3}+D^{2} n+\left(D n \log n+D^{2} n\right)+\left(D^{2} n+D^{3}\right)\right) \\
& \subseteq \mathcal{O}\left(D^{3}+D^{2} n+D n \log n\right)
\end{aligned}
$$

Algorithm 7.4: AlgFFTMult $\left(f(x), g(x), K_{p}\right)$
Input: $f(x), g(x) \in K_{p}[x]=\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{t}\right][x] \cong \mathbb{F}_{p}\left[u_{1}, \ldots, u_{t}\right] /\left\langle M_{1}, \ldots, M_{t}\right\rangle[x]$ where p is a good Fourier prime greater than $\left(\prod_{i=1}^{t} \operatorname{deg}_{u_{i}}\left(M_{i}\right)\right)^{2}$.
Output: $h=f \cdot g \in K_{p}[x]$, or $F A I L$.
1: $m \leftarrow \operatorname{deg}_{x}(f) ; n \leftarrow \operatorname{deg}_{x}(g) ;$
2: $\bar{\gamma}, M_{\gamma}(z), A \leftarrow$ prim_elt_multi $\left(M_{1}, \ldots, M_{t}\right)$;
3: $\left\{\bar{\gamma}=c_{1} \bar{\alpha}_{1}+c_{2} \bar{\alpha}_{2}+\cdots+c_{t-1} \bar{\alpha}_{t-1}+\bar{\alpha}_{t}\right.$;
$M_{\gamma}(z)$: minimal polynomial for γ (modulo p) where γ is a primitive element for $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right)$;
$\left.A:\left[\bar{\alpha}_{1}(\bar{\gamma}), \bar{\alpha}_{2}(\bar{\gamma}), \ldots, \bar{\alpha}_{t}(\bar{\gamma})\right]\right\}$
4: if Algorithm prim_elt_multi outputs $F A I L$ then return $F A I L$; end if
5: Compute change-of-basis matrix C from
$B_{\alpha}=\left\{u_{1}^{d_{1}} \cdots u_{t}^{d_{t}}, 0 \leq d_{i} \leq \operatorname{deg}\left(M_{i}\right)-1,1 \leq i \leq t\right\}$ to $B_{\gamma}=\left\{z^{i}, 0 \leq i \leq D-1\right\}$ where $D=\prod_{i=1}^{t} \operatorname{deg}_{u_{i}}\left(M_{i}\right)$;
6: $F, G \leftarrow$ empty lists of length $(m+1)$ and $(n+1)$ respectively;
for $i=0 \ldots m$ do
$R \leftarrow \mathrm{CDR}$ of $\operatorname{coeff}\left(f, x^{i}\right)$ as a column vector; $F[i] \leftarrow$ recden rep. of $C \cdot r ;\left\{F[i]=\operatorname{coeff}\left(f, x^{i}\right) \in \mathbb{F}_{p}[z] /\left\langle M_{\gamma}(z)\right\rangle\right\}$
end for
for $i=0 \ldots n$ do
$R \leftarrow \mathrm{CDR}$ of $\operatorname{coeff}\left(g, x^{i}\right)$ as a column vector;
$G[i] \leftarrow$ recden rep. of $C \cdot r ;\left\{G[i]=\operatorname{coeff}\left(g, x^{i}\right) \in \mathbb{F}_{p}[z] /\left\langle M_{\gamma}(z)\right\rangle\right\}$
end for
$\left\{F\right.$ and G are recden reps of $f, g \in \mathbb{F}_{p}(\bar{\gamma}) \cong \mathbb{F}_{p}[z] /\left\langle M_{\gamma}(z)\right\rangle[x]$ respectively $\}$
$h \leftarrow \operatorname{FFTMult}\left(F, G, \mathbb{F}_{p}(\bar{\gamma})\right) ;\left\{h=f \cdot g \in \mathbb{Z}_{p}[z] /\left\langle M_{\gamma}(z)\right\rangle[x]\right\}$
17: $k \leftarrow c_{1} \bar{\alpha}_{1}+c_{2} \bar{\alpha}_{2}+\cdots+c_{t-1} \bar{\alpha}_{t-1}+\bar{\alpha}_{t}(=\bar{\gamma})$;
18: for $i=1 \ldots D-1$ do
19: \quad substitute $\bar{\gamma}^{i}$ for k in h;
20: $\quad k \leftarrow k \cdot \bar{\gamma} \in \mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{t}\right] ;$
21: end for
22: return $h(x) \in \mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{t}\right][x]$;

Chapter 8

Benchmarks and conclusion

We have implemented the resultant-based polynomial multiplication algorithm as described by Algorithm AlgFFTMult. This routine and all of its sub-routines were implemented in Maple, except for the resultant algorithm (Algorithm res_modp2) for the 2-step extensions case, which we implemented in C by modifying the existing Maple's kernel resultant routine to return not only the resultant but also the next-to-last element in the subresultant PRS and the degree sequence of the PRS. We gratefully acknowledge Roman Pearce for helping us with this implementation.

We compare the performance (in seconds) of our algorithm and the naïve multiplication algorithm over 3- and 4-step extensions of varying degrees. All timings were obtained using Maple 15 on a 64 -bit Intel Core i7 2.67 GHz running Linux. The polynomials to be multiplied (f and g) and all the minimal polynomials were generated at random. In each table, the column labelled ' n ' indicates the degrees of polynomials being multiplied, which were chosen to be the median of two consecutive powers of two, so that FFT multiplication requires the most number of "unnecessary" calculations. The ' d_{i} 's in the second column denote the degree (in u_{i}) of $m_{i}\left(u_{i}\right) \in \mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)\left[u_{i}\right]$, the minimal polynomial of α_{i} over $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$. Under the multi-columns ' $\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{t}\right]^{\prime}$ and ${ }^{\prime} \mathbb{F}_{p}[\bar{\gamma}]^{\prime}$, we list the timings for computing the product of f and g over the respective rings using naïve multiplication (column labelled 'mult') and FFT (column labelled 'FFT'). Under the multi-column ' $\mathbb{F}_{p}[\bar{\gamma}]$ ', we further have the following columns:

- 'prim': timings for computing the mapping from $\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{t}\right]$ to $\mathbb{F}_{p}[\bar{\gamma}]$, which includes computing $\bar{\gamma}=\Phi_{p}(\gamma)$, the minimal polynomial of $\gamma(\bmod p)$, and the normal representations $(\bmod p)$ of each α_{i} (line 2 in Algorithm AlgFFTMult).
- 'COB': timings for computing the change-of-basis matrix (Line 5 in Algorithm AlgFFTMult).
- ' ϕ ': timings for applying the mapping from $\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{t}\right]$ to $\mathbb{F}_{p}[\bar{\gamma}]$ by representing f and g as polynomials over $\mathbb{F}_{p}[\bar{\gamma}]$ using a series of matrix-vector multiplications (Lines 7-14 in Algorithm AlgFFTMult).
- ' ϕ^{-1} ': timings of mapping the product $f \cdot g$ back to $\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{t}\right][x]$ (Lines 18-21 in Algorithm AlgFFTMult).
- 'total': total timings for computing the polynomial product using the resultant approach (i.e. the sum of the columns 'prim', 'COB', ' ϕ ', 'FFT' and ' ϕ ' ${ }^{-1}$).

Table 8.1 lists the timings for polynomial multiplication over a field with a tower of three extensions. It shows that it is more efficient to use FFT and to perform multiplications in $\mathbb{F}_{p}[\bar{\gamma}]$ in all cases. In particular, when $n=384$ and $d_{i}=10$ (last row in the table), using FFT multiplication over $\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \bar{\alpha}_{2}, \bar{\alpha}_{3}\right]$ provides a gain by a factor of $\frac{19584}{409.01} \approx 50$ over naïve multiplication performed over $\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \bar{\alpha}_{2}, \bar{\alpha}_{3}\right]$. Finding the product using FFT multiplication over $\mathbb{F}_{p}[\bar{\gamma}]$ shows a greater gain by a factor of $\frac{19584}{55.561} \approx 350$ over naïve multiplication performed over $\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \bar{\alpha}_{2}, \bar{\alpha}_{3}\right]$. The table also shows that when the degree of the field D is held constant and the degree of the polynomials n becomes large, the speed gain obtained by converting to a simple extension becomes more pronounced. For example, when $n=24$ and $d_{i}=10$ (fifth row from the bottom of the table), $\frac{11.896+1.568+0.738+9.102}{24.161} \approx 96 \%$ of the total time is taken in mapping and applying the conversions (i.e., sum of columns 'prim', 'COB', ' ϕ ', and ' ϕ^{-1} '). However, when $n=384$ and $d_{i}=10$ (last row in the table), it comprises only $\frac{12.944+1.651+6.168+13.630}{55.561} \approx 62 \%$ of the total time.

		$\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \bar{\alpha}_{2}, \bar{\alpha}_{3}\right]$			$\mathbb{F}_{p}[\bar{\gamma}]$					
n	d_{i}	mult	FFT	mult	prim	COB	ϕ	FFT	ϕ^{-1}	total
24	2	0.450	0.116	0.003	0.018	0.000	0.004	0.018	0.003	0.043
48	2	1.456	0.292	0.012	0.020	0.000	0.008	0.039	0.005	0.072
96	2	5.736	0.634	0.052	0.018	0.000	0.015	0.087	0.008	0.128
192	2	22.722	1.343	0.203	0.018	0.000	0.030	0.193	0.016	0.258
384	2	90.865	2.960	0.799	0.018	0.000	0.060	0.446	0.040	0.564
24	4	3.010	0.772	0.017	0.160	0.003	0.016	0.036	0.013	0.228
48	4	11.146	1.609	0.067	0.159	0.004	0.029	0.080	0.020	0.293
96	4	43.094	3.445	0.248	0.163	0.003	0.056	0.185	0.037	0.445
192	4	171.06	7.310	0.984	0.157	0.010	0.118	0.421	0.076	0.782
384	4	692.71	15.941	4.030	0.171	0.003	0.238	0.994	0.146	1.552
24	6	11.894	2.859	0.252	0.846	0.037	0.063	0.109	0.132	1.187
48	6	43.224	5.868	0.934	0.823	0.036	0.112	0.249	0.165	1.385
96	6	167.42	12.286	3.719	0.830	0.036	0.204	0.566	0.229	1.864
192	6	669.19	26.325	15.293	0.853	0.037	0.388	1.291	0.355	2.923
384	6	2755.4	58.134	64.923	0.890	0.050	0.757	2.991	0.625	5.313
24	8	34.920	8.306	1.134	3.519	0.237	0.241	0.324	1.323	5.644
48	8	124.36	16.652	4.155	3.467	0.236	0.375	0.719	1.427	6.225
96	8	484.05	35.078	16.728	3.456	0.235	0.753	1.596	1.634	7.675
192	8	1959.7	76.118	70.455	3.596	0.236	1.259	3.638	2.024	10.753
384	8	8280.6	173.57	312.56	3.857	0.237	2.377	8.579	2.893	17.943
24	10	84.206	20.112	3.757	11.896	1.568	0.738	0.857	9.102	24.161
48	10	287.65	38.758	13.412	11.527	1.455	1.196	1.823	9.434	25.434
96	10	1121.9	81.923	54.589	11.761	1.479	1.914	3.985	10.041	29.180
192	10	4576.6	179.50	234.14	12.164	1.529	3.411	9.005	11.240	37.348
384	10	19584	409.01	1053.3	12.944	1.651	6.168	21.167	13.630	55.561
			10							

Table 8.1: Polynomial multiplication over a field given as 3 -step extensions using naïve multiplication and FFT, with and without converting to a simple extension.

On the other hand, when the degree of the polynomials n stays constant and $D=$ $d_{1} d_{2} d_{3}$ becomes larger, mapping and applying the conversions become the bottleneck
of the algorithm, which is as expected. For example, when $n=384$ and $d_{i}=2$ (fifth row in the table) so that $D=\prod_{i=1}^{3} d_{i}=(2)(2)(2)=8$, the time spent on mapping and applying the conversions is $\frac{0.018+0.000+0.060+0.040}{0.564} \approx 21 \%$, whereas when $n=384$ and $d_{i}=10$ (last row in the table) so that $D=\prod_{i=1}^{3} d_{i}=(10)(10)(10)=1000$, the fraction of the time spent on mapping and applying the conversions as we have computed above is higher at $\approx 62 \%$. However, the gain in the speed of FFT multiplication over a simple extension offsets this bottleneck.

			$\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{4}\right]$		$\mathbb{F}_{p}[\bar{\gamma}]$					
n	d_{i}	mult	FFT	mult	prim	COB	ϕ	FFT	ϕ^{-1}	total
24	2	2.446	0.492	0.005	0.064	0.001	0.009	0.019	0.005	0.098
48	2	9.113	1.035	0.016	0.093	0.000	0.018	0.043	0.010	0.164
96	2	35.313	2.202	0.061	0.093	0.000	0.035	0.096	0.018	0.243
192	2	139.92	4.672	0.298	0.064	0.000	0.069	0.243	0.036	0.412
384	2	563.64	10.166	1.076	0.065	0.001	0.172	0.544	0.071	0.852
24	4	70.976	13.540	0.321	2.051	0.065	0.126	0.139	0.208	2.590
48	4	262.37	27.549	1.149	2.050	0.094	0.197	0.308	0.255	2.903
96	4	1029.0	57.716	4.668	2.054	0.065	0.407	0.670	0.372	3.568
192	4	4188.6	124.38	19.580	2.172	0.107	0.623	1.622	0.533	5.058
384	4	17657	281.46	85.102	2.339	0.066	1.379	3.805	1.011	8.600
24	6	631.72	132.23	7.785	36.767	4.881	1.286	1.531	19.541	64.006
48	6	2236.1	256.89	29.268	36.174	4.839	1.925	3.143	20.111	66.191
96	6	8773.4	537.74	120.10	36.936	5.026	3.392	6.922	21.202	73.479
192	6	36390	1218.3	493.65	38.313	5.210	5.758	14.989	23.045	87.315
384	6	154166	2664.4	2318.2	41.428	5.738	10.618	35.881	26.733	120.40

Table 8.2: Polynomial multiplication over fields given as a 4-step extension using naïve multiplication and FFT, with and without converting to a simple extension.

Table 8.2 lists the timings for polynomial multiplication over a field with a tower of four extensions. It indicates, there is even more significant speed-up in using our algorithm over fields given as four-step extensions. However, because the degree of the field $D=\prod_{i=1}^{4} d_{i}$ is large in all cases, the bottleneck is computing and applying
the conversions, as expected. For example, for the case $n=384$ and $d_{i}=6$ (last row in the table) so that $D=6^{4}=1296$, approximately $\frac{41.428+5.738+10.618+26.733}{120.40} \approx 70 \%$ of the time is spent on computing and applying the conversions (sum of columns 'prim', 'COB', ' ϕ ', and ' ϕ^{-1} '). Nevertheless, as with the 3 -step extension case, performing the FFT multiplication over a simple extension provides a significant speed advantage over performing the multiplication over multiple extension, so this offsets the high conversion costs. For example, in the case $n=384$ and $d_{i}=6$ (last row in table), the speed-up in performing the FFT multiplication over the simple extension versus multiple extensions is approximately a factor of $\frac{2664.4}{35.881} \approx 74$.

Table 8.3 lists timings for computing the product of two polynomials of degree 96 each (that is, $n=96$) over a field given as a three-step extension of degree 256, where the degrees of each extension vary. As mentioned in Chapter 4, the table shows that when d_{1} is small relative to D, naïve multiplication is very slow; in particular, when $\left[d_{1}, d_{2}, d_{3}\right]=[2,2,64]$ (that is, when multiplying over $\mathbb{F}_{p}\left[u_{1}, u_{2}, u_{3}\right]\left\langle u_{1}^{2}+\right.$ $\left.\left.\ldots, u_{2}^{2}+\ldots, u_{3}^{64}+\cdots\right\rangle\right)$, the speed gain in computing over a simple extension is a factor of $\frac{4485.2}{3.462} \approx 1300$. However, when d_{1} is large, naïve multiplication is relatively efficient; for example, when $\left[d_{1}, d_{2}, d_{3}\right]=[64,2,2]$ (that is, when multiplying over $\left.\mathbb{F}_{p}\left[u_{1}, u_{2}, u_{3}\right]\left\langle u_{1}^{64}+\ldots, u_{2}^{2}+\ldots, u_{3}^{2}+\cdots\right\rangle\right)$, the gain is only a factor of $\frac{15.870}{2.133} \approx 7.5$. In fact, in this case it is more efficient to compute the product using FFT multiplication over multiple extensions than using the FFT multiplication after converting to a simple extension, by a factor of $\frac{2.133}{1.393} \approx 1.5$. There are two underlying reasons for such drastically different timings observed in Table 8.3 when d_{1} is small and d_{1} is large. The first reason arises from the structure of the recden representation. When $\left[d_{1}, d_{2}, d_{3}\right]=[2,2,64]$ the recden data structure is illustrated in Figure 8.1.

	$\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \bar{\alpha}_{2}, \bar{\alpha}_{3}\right]$			$\mathbb{F}_{p}[\bar{\gamma}]$							
d_{1}	d_{2}	d_{3}	mult	FFT	mult	prim	COB	ϕ	FFT	ϕ^{-1}	total
2	2	64	4485.2	329.69	5.203	1.637	0.035	0.604	0.714	0.472	3.462
2	4	32	2347.9	172.81	4.995	3.379	0.034	0.487	0.722	0.448	5.069
2	8	16	1529.5	114.54	4.842	4.942	0.036	0.676	0.708	0.429	6.792
2	16	8	1246.8	90.899	4.768	8.338	0.046	0.661	0.700	0.421	10.166
2	32	4	1284.7	83.377	5.013	19.276	0.066	0.358	0.742	0.409	20.852
2	64	2	1569.8	78.457	5.016	55.292	0.108	0.353	0.744	0.408	56.906
4	2	32	1086.5	81.055	4.723	0.761	0.034	0.391	0.692	0.367	2.245
4	4	16	616.42	44.876	4.758	1.210	0.054	0.327	0.676	0.364	2.631
4	8	8	429.45	31.060	4.710	1.936	0.046	0.287	0.686	0.344	3.299
4	16	4	401.33	26.480	4.955	3.721	0.066	0.331	0.729	0.347	5.194
4	32	2	439.63	23.065	4.969	9.262	0.108	0.308	0.717	0.346	10.741
8	2	16	302.85	22.256	4.637	0.596	0.051	0.256	0.678	0.320	1.901
8	4	8	178.78	13.064	4.594	0.790	0.046	0.249	0.674	0.314	2.072
8	8	4	142.42	9.921	4.806	1.136	0.090	0.230	0.710	0.306	2.473
8	16	2	140.06	8.222	4.801	2.111	0.107	0.249	0.713	0.305	3.485
16	2	8	89.932	6.910	4.362	0.570	0.046	0.232	0.647	0.293	1.787
16	4	4	62.592	4.770	4.746	0.769	0.066	0.184	0.695	0.293	2.007
16	8	2	49.766	3.462	4.357	0.861	0.127	0.184	0.643	0.286	2.101
32	2	4	34.439	2.806	4.714	0.734	0.077	0.181	0.691	0.285	1.969
32	4	2	24.753	1.934	4.411	0.767	0.109	0.172	0.642	0.279	1.968
64	2	2	15.870	1.393	4.564	0.902	0.135	0.157	0.664	0.275	2.133

Table 8.3: Multiplication of two polynomials of degree 96 each over a field given as a 3 -step extension of degree $D=\prod_{i=1}^{3} d_{i}=256$ is held constant.

Figure 8.1: The recden representation of an element in $\mathbb{F}_{p}\left[u_{1}, u_{2}, u_{3}\right] /\left\langle M_{1}, M_{2}, M_{3}\right\rangle$ where $\operatorname{deg}_{u_{1}}\left(M_{1}\right)=2, \operatorname{deg}_{u_{2}}\left(M_{2}\right)=2$, and $\operatorname{deg}_{u_{3}}\left(M_{3}\right)=64$.

On the other hand, when $\left[d_{1}, d_{2}, d_{3}\right]=[64,2,2]$, the recden data structure is illustrated by Figure 8.2.

Figure 8.2: The recden representation of an element in $\mathbb{F}_{p}\left[u_{1}, u_{2}, u_{3}\right] /\left\langle M_{1}, M_{2}, M_{3}\right\rangle$ where $\operatorname{deg}_{u_{1}}\left(M_{1}\right)=64, \operatorname{deg}_{u_{2}}\left(M_{2}\right)=2$, and $\operatorname{deg}_{u_{3}}\left(M_{3}\right)=2$.

Because of the nature of the data structure, there relatively large overhead costs associated with doing polynomial arithmetic (for example, allocating storage, copying objects, et cetera) when d_{1} is small compared with the case when d_{1} is large.

The second reason depends on the number of polynomial multiplications and divisions performed in each case. When $\left[d_{1}, d_{2}, d_{3}\right]=[2,2,64]$, multiplying a coefficient of f by a coefficient of g requires a multiplication of two polynomials of three variables, followed by a division by a degree 64 polynomial $\left(M_{3}\right)$, then a division by M_{2} up to 64 times (one for each coefficient of M_{3}), and subsequently by M_{1} another 64 times (once for each coefficient of M_{3}). On the other hand, when $\left[d_{1}, d_{2}, d_{3}\right]=[64,2,2]$, after the multiplication one must divide by a degree two polynomial M_{3}, followed by a degree two polynomial M_{2} at most two times, then finally a division by a degree 64 polynomial M_{1} at most twice. Clearly there are many more multiplications one must perform in the case when d_{1} is small compared to other d_{i} 's.

Observe further from the table that our algorithm is quite inefficient at computing the mapping from multiple extensions to a simple extension when $\left[d_{1}, d_{2}, d_{3}\right]=$
$[2,64,2]$ (sixth row and column 'prim_elt' of the table). We now explain why this is so. Recall that to convert from a fields given as a 3 -step extension to a field with a simple extension, we first collapse the last two extensions by finding a $\bar{\gamma}_{1}$ satisfying $\mathbb{F}_{p}\left[\bar{\alpha}_{1}\right]\left[\bar{\alpha}_{2}, \bar{\alpha}_{3}\right]=\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \bar{\gamma}_{1}\right]$, after which we collapse $\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \bar{\gamma}_{1}\right]$ to $\mathbb{F}_{p}\left[\bar{\gamma}_{2}\right]$. Since the cost of mapping from three extensions to two is $\mathcal{O}\left(d_{2}^{3} d_{3}+d_{2}^{2} d_{3}^{2}\right)$ (Chapter 6), the cost of mapping is high if $d_{2} \gg d_{3}$, as is the case when $\left[d_{1}, d_{2}, d_{3}\right]=[2,64,2]$ and $\left[d_{1}, d_{2}, d_{3}\right]=[2,32,4]$. The next step of mapping from two extensions to one costs $\mathcal{O}\left(d_{1}^{3}\left(d_{2} d_{3}\right)+d_{1}^{2}\left(d_{2} d_{3}\right)^{2}\right)$ arithmetic operations. Hence if $d_{1} \gg d_{2} d_{3}$, the cost of the algorithm must become expensive. However, this is not reflected in Table 8.3 (for example, when $\left[d_{1}, d_{2}, d_{3}\right]=[64,2,2]$ the algorithm is relatively efficient) because the resultant algorithm used in the two extensions case (used in finding $\bar{\gamma}_{2}$) is implemented in C, which is much more efficient than the Maple resultant algorithm used in finding $\bar{\gamma}_{1}$.

Our algorithm is most efficient when $d_{2} \approx d_{3}$ and $d_{1} \approx d_{2} d_{3}$, which is expected, since the cost of mapping to a simple extension for these cases is $\mathcal{O}\left(d_{1}^{2} d_{2}^{2}\right)$.

8.1 Conclusion and future work

In this thesis we presented two efficient algorithms for computing the product of univariate polynomials of degrees at most n over a multiple extension field $K=$ $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ of degree D. The main ideas used were: mapping the rational coefficients to integers modulo a prime p, collapsing the multiple extension to a simple extension, computing the product over the simple extension using the FFT for bivariate polynomials, and using efficient methods of computing the resultant and the gcd. We have shown that the time complexity of applying the resultant \& gcd method and the FFT to compute the product is $\mathcal{O}\left(D^{3}+D^{2} n+D n \log n\right)$ arithmetic operations in \mathbb{F}_{p} for each prime p. This is an improvement (for the case $D \leq n^{2}$) over the naïve multiplication method,which requires $\mathcal{O}\left(D^{2} n^{2}\right)$ arithmetic operations in \mathbb{Q}.

To speed up the computation, we mapped $K=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ to $K_{p}=$ $\mathbb{F}_{p}\left[u_{1}, \ldots, u_{t}\right] /\left\langle\Phi_{p}\left(m_{1}\right), \ldots, \Phi_{p}\left(m_{t}\right)\right\rangle$, where p was chosen to be a good Fourier prime between 2^{30} and $2^{31.5}$. However, because K_{p} may not be a ring depending on p, many complications arose. In particular, there were problems arising from: attempting to
divide by zero divisors, $\Phi_{p}\left(m_{i}\right)$ not being square-free over $\mathbb{F}_{p}\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{i-1}\right]$, p being a fail prime, and encountering unlucky evaluation points while computing the gcd. However, we showed that these complications rarely occur; in fact they are polynomially bounded by D. Thus, provided p is sufficiently large the algorithm will not fail with high probability.

To collapse the multiple extension to a simple extension, we discussed two methods: a linear algebra approach (which was previously known) and a resultants \& gcd approach (whose modular method is new). Of the two approaches, computing the minimal polynomial (modulo p) for a primitive element of the multiple extension field using the resultant method is more efficient $\left(\mathcal{O}\left(\left(\sum_{i=1}^{t} d_{i}\right) D^{2}\right)\right.$ arithmetic operations in \mathbb{F}_{p} are required in executing Algorithm res_modp2) than the linear algebra method $\left(\mathcal{O}\left(D^{3}\right)\right.$ arithmetic operations in \mathbb{F}_{p} required in computing the change-ofbasis matrix). We do note however that we can lower the complexity of making the substitutions by viewing the series of matrix-vector multiplication problem as a single matrix-matrix multiplication problem, then employing the Schönhage-Strassen method (Strassen [16]) for efficiency.

However, computing the normal representations (modulo p) and making the substitutions using the normal representations to the polynomials causes a bottleneck of the resultant method $\left(\mathcal{O}\left(D^{3}\right)\right.$ arithmetic operations in $\left.\mathbb{F}_{p}\right)$, making it only as efficient as the linear algebra method. In the future, we will investigate a faster method for this step in order to prevent the bottleneck.

Appendix A

Proof of Lemma 4.11

Proof. For $i>1$, we have

$$
\begin{align*}
&(c x+y)^{i} \bmod \left\langle m_{1}, m_{2}\right\rangle \\
&=\left((c x+y) \cdot r_{i-1}\right) \bmod \left\langle m_{1}, m_{2}\right\rangle \\
&=\left(c x \cdot r_{i-1} \bmod \left\langle m_{1}\right\rangle\right)+\left(\left(y \cdot r_{i-1} \quad \bmod \left\langle m_{2}\right\rangle\right) \bmod \left\langle m_{1}\right\rangle\right) \tag{1}\\
&=\left(c \cdot A_{\left(d_{1}, d_{2}-1\right)} \cdot x^{d_{1}} y^{d_{2}-1}+\cdots+A_{(0,0)}\right) \bmod \left\langle m_{1}\right\rangle+ \\
&\left(\left(B_{\left(d_{1}-1, d_{2}\right)} \cdot x^{d_{1}-1} y^{d_{2}}+\cdots+B_{(0,0)}\right) \quad \bmod \left\langle m_{2}\right\rangle\right) \bmod \left\langle m_{1}\right\rangle
\end{align*}
$$

where $A_{(i, j)}, B_{(k, r)} \in \mathbb{Z}$. Let

$$
g_{1}=c \cdot A_{\left(d_{1}, d_{2}-1\right)} \cdot x^{d_{1}} y^{d_{2}-1}+\cdots+A_{(0,0)}, \text { and } g_{2}=B_{\left(d_{1}-1, d_{2}\right)} \cdot y^{d_{2}} x^{d_{1}-1}+\cdots+B_{(0,0)}
$$

Only the first term of g_{1} requires division by m_{1}. If $\tilde{c}=\max \{|c|, 1\}$, then by Lemma 4.10,

$$
\left\|\hat{g}_{1}\right\|:=\left\|g_{1} \quad \bmod \left\langle m_{1}\right\rangle\right\| \leq\left(1+\left\|m_{1}\right\|\right)^{d_{1}-d_{1}+1} \cdot \tilde{c} \cdot\left\|r_{i-1}\right\| \leq M \cdot \tilde{c} \cdot\left\|r_{i-1}\right\| .
$$

Similarly,

$$
\left\|\hat{g}_{2}\right\|:=\left\|g_{2} \quad \bmod \left\langle m_{2}\right\rangle\right\| \leq\left(1+\left\|m_{2}\right\|\right)^{d_{2}-d_{2}+1} \cdot\left\|r_{i-1}\right\| \leq M \cdot\left\|r_{i-1}\right\| .
$$

At this point, $\operatorname{deg}_{x}\left(\hat{g}_{2}\right) \leq\left(d_{1}-1\right)+\left(d_{1}-1\right)=2 d_{1}-2$. Thus after division by m_{1}, we get

$$
\begin{aligned}
\left\|\hat{g}_{2} \quad \bmod \left\langle m_{1}\right\rangle\right\| & \leq\left(1+\left\|m_{1}\right\|\right)^{\left(2 d_{1}-2\right)-\operatorname{deg}\left(m_{1}\right)+1} \cdot\left(M \cdot\left\|r_{i-1}\right\|\right) \\
& \leq M^{\left(2 d_{1}-2\right)-d_{1}+1} \cdot M \cdot\left\|r_{i-1}\right\| \\
& =M^{d_{1}} \cdot\left\|r_{i-1}\right\| .
\end{aligned}
$$

Hence,

$$
\begin{align*}
\left\|r_{i}\right\|=\left\|(c x+y)^{i} \quad \bmod \left\langle m_{1}, m_{2}\right\rangle\right\| & =\left\|\hat{g}_{1}+\hat{g}_{2}\right\| \\
& \leq\left\|\hat{g}_{1}\right\|+\left\|\hat{g}_{2}\right\| \\
& \leq M \cdot \tilde{c} \cdot\left\|r_{i-1}\right\|+M^{d_{1}} \cdot\left\|r_{i-1}\right\| \\
& =\left\|r_{i-1}\right\| \cdot\left(\tilde{c} M+M^{d_{1}}\right) \\
& =\left\|r_{i-1}\right\| \cdot(\tilde{c}+1) \cdot M^{d_{1}} \quad \text { for } 2 \leq i \leq D-1 . \tag{2}
\end{align*}
$$

Since $\left\|r_{1}\right\|=\|c x+y\|=\tilde{c}=\max \{|c|, 1\}$, we have

$$
\left\|(c x+y)^{i}\right\|=\left\|r_{i}\right\|=\left\|r_{i-1}\right\|(\tilde{c}+1) M^{d_{1}}=\tilde{c}\left[(\tilde{c}+1) M^{d_{1}}\right]^{i-1} \text { for } i=2, \cdots, D .
$$

Let C be the change-of-basis matrix whose i-th column consists of the coefficients of $(c x+y)^{i-1}$ for $i=1, \cdots, D$. If $a_{i j}$ denotes the entry in the i-th row and j-th column of C, then by Hadamard's inequality we have

$$
\begin{aligned}
|\operatorname{det}(C)|=\left|\operatorname{det}(C)^{T}\right| & \leq \prod_{i=1}^{D} \sqrt{\sum_{j=1}^{D} a_{i j}^{2}} \\
& \leq \prod_{i=0}^{D-1} \sqrt{D\left(\left\|r_{i}\right\|^{2}\right)} \\
& =\left(\sqrt{D}\left\|r_{0}\right\|\right) \cdot \prod_{i=1}^{D-1}\left(\sqrt{D}\left\|r_{i}\right\|\right) \\
& \leq \sqrt{D} \cdot \prod_{i=1}^{D-1}\left(\sqrt{D}\left[\tilde{c}\left[(\tilde{c}+1) M^{d_{1}}\right]^{i-1}\right]\right) \\
& =D^{D / 2} \tilde{c}^{D}\left(\left[(\tilde{c}+1) M^{d_{1}}\right]^{\frac{(D-1)(D-2)}{2}}\right) .
\end{aligned}
$$

Taking the log of both sides with base B, we obtain

$$
\begin{aligned}
\log _{B}(|\operatorname{det}(C)|) & \leq \log _{B}\left(D^{D / 2} \tilde{c}^{D}\right)+\left(\frac{(D-1)(D-2)}{2}\right)\left(\log _{B}(\tilde{c}+1)+\log _{B}\left(M^{d_{1}}\right)\right) \\
& <D \log _{B}(D \tilde{c})+\left(\frac{(D-1)(D-2)}{2}\right)\left(\log _{B}(\tilde{c}+1)+d_{1} \log _{B}(M)\right)
\end{aligned}
$$

That is, the number of digits of $\operatorname{det}(C)$ in base B is at most

$$
\begin{aligned}
& D \log _{B}(D \tilde{c})+\left(\frac{(D-1)(D-2)}{2}\right)\left(\log _{B}(\tilde{c}+1)+d_{1} \log _{B}(M)\right) \\
& \in \mathcal{O}\left(D^{2}\left(\log _{B}(\tilde{c})+d_{1} \log _{B}(M)\right)\right) .
\end{aligned}
$$

Proof of Lemma 4.12

Proof. Let $\left\|r_{i}\right\| \equiv\left(c_{1} x_{1}+\cdots c_{t-1} x_{t-1}+x_{t}\right)^{i} \bmod \left\langle m_{1}, \cdots, m_{t}\right\rangle$ for $i=0, \cdots, D-1$. Using a similar reasoning as in the proof of Lemma 4.11, one can show that, for $i \geq 0$,

$$
\left\|\left(c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{t-1} x_{t-1}+x_{t}\right)^{i}\right\|=\left\|r_{i}\right\| \leq \tilde{c}\left((\tilde{s}+1) M^{\tilde{d}}\right)^{i-1}
$$

Hence

$$
\begin{align*}
\|\operatorname{det}(C)\| & \leq \prod_{i=0}^{D-1} \sqrt{\left.D\left(\| c_{1} x_{1}+\cdots+c_{t-1} x^{t-1}+x_{t}\right)^{i} \|\right)^{2}} \\
& \leq \sqrt{D} \cdot \prod_{i=1}^{D-1}\left(\sqrt{D} \tilde{c}\left[(\tilde{s}+1) M^{\tilde{d}}\right]^{i-1}\right) \\
& =D^{D / 2} \tilde{c}^{D}\left[(\tilde{s}+1) M^{\tilde{d}}\right]^{(D-1)(D-2) / 2} \tag{3}\\
& <(D \tilde{c})^{D}\left[(\tilde{s}+1) M^{\tilde{d}}\right]^{(D-1)(D-2) / 2},
\end{align*}
$$

so

$$
\begin{align*}
\log _{B}(\| \operatorname{det}(C)) \| & <\log _{B}\left((D \tilde{c})^{D}\left[(\tilde{s}+1) M^{\tilde{d}}\right]^{(D-1)(D-2) / 2}\right) \\
& =D \log _{B}(D \tilde{c})+\left(\frac{(D-1)(D-2)}{2}\right) \log _{B}\left((\tilde{s}+1) M^{\tilde{d}}\right) \tag{4}\\
& =D \log _{B}(D \tilde{c})+\left(\frac{(D-1)(D-2)}{2}\right)\left[\log _{B}(\tilde{s}+1)+\tilde{d} \log _{B}(M)\right] \\
& \in \mathcal{O}\left(D^{2}\left[\log _{B}(\tilde{s})+\tilde{d} \log _{B}(M)\right]\right)
\end{align*}
$$

Bibliography

[1] Alaca, S., Williams, K. S. Introductory Algebraic Number Theory. Cambridge University Press, 1st edition, 2004.
[2] Basu, S., Pollack, R., Roy, M. Algorithms in Real Algebraic Geometry. Springer, 2nd edition, 2006, p. 316-317.
[3] Bronstein, M. Symbolic Integration I: Transcendental Functions. Springer, 2nd edition, 2005.
[4] Brown, W. S. The subresultant PRS algorithm. ACM Trans. Math. Software, 4 (1978), no. 3, p. 237-249.
[5] Brown, W. S., Traub, J.F. On Euclid's algorithm and the theory of subresultants. J. Assoc. Comput. Mach. 18 (1971), p. 505-514.
[6] Chen, L., Monagan, M. Algorithms for solving linear systems over cyclotomic fields. J. Symbolic Comput. 45 (2010), p. 902-917.
[7] Collins, G.E. The calculation of multivariate polynomial resultants. J. Assoc. Comput. Mach. 18 (1971), p. 515-532.
[8] Collins, G.E. Subresultants and Reduced Polynomial Remainder Sequences. J. ACM, 14(1) (1967) p. 128-142.
[9] Gaal, L. Classical Galois Theory, with Examples. American Mathematical Society, 5th edition, 1998.
[10] Garling, D.J.H. Inequalities: a journey into linear analysis. Cambridge University Press, 1st edition, 2007.
[11] Geddes, K.O., Czapor, S.R., \& Labahn, G. Algorithms for Computer Algebra. Kluwer Academic Publishers, 1st edition, 1992.
[12] Lang, S. Algebraic Number Theory. Springer-Verlag, 2nd edition, 1994.
[13] McCarthy, P. Algebraic Extensions of Fields. Chelsea Publishing Company, 2nd edition, 1976.
[14] Mishra, B. Algorithmic Algebra. Texts and Monographs in Computer Science, Springer-Verlag, New York, 1993.
[15] Monagan, M. Maximal Quotient Rational Reconstruction: An Almost Optimal Algorithm for Rational Reconstruction. Proceedings of ISSAC '04, ACM Press, pp. 243-249, 2004.
[16] Strassen, V. Gaussian elimination is not optimal. Numerische Mathematik, Springer Berlin, 1969.
[17] Trager, B. Algebraic Factoring and Rational Function Integration. Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation, 1976.
[18] von zur Gathen, J., Gerhard, J. Modern Computer Algebra. Cambridge University Press, 2nd edition, 2003.
[19] Wang, P. S., Guy, M. J. T., Davenport, J. H. p-adic reconstruction of rational numbers. ACM SIGSAM Bulletin, 16, No 2, 1982.
[20] Wang, P. S. A p-adic Algorithm for Univariate Partial Fractions. Proceedings of SYMSAC ‘81, ACM Press, p.212-217, 1981.
[21] Winkler, F. Polynomial Algorithms in Computer Algebra. Springer-Verlag/Wien, 1st edition, 1996.
[22] Zippel, R. Effective polynomial computation. Kluwer Academic Publishers Group, 1st edition, 1993.

