
Fast Power Series Inversion: Newton’s Iteration and the
Middle Product Optimization

Hao Ze

Abstract

The normal way to divide two polynomials is to perform a classical polynomial long
division, which requires a quadratic cost to compute the quotient and remainder. In
this paper, we present a quasilinear power series inversion algorithm which is based on
Newton’s iteration and fast Fourier transforms. By employing this algorithm, we can
determine the quotient and remainder in quasilinear time. We also utilize the middle
product optimization which was first introduced by Hanrot, Querica and Zimmermann
[2]. This improves the efficiency of our fast inversion algorithm by a constant factor.
We implemented our algorithms in C and present some timings.

1 Introduction

Let a(x) and b(x) be two polynomials of degree n and m, respectively. When n > m, the
classical polynomial long division requires O((n−m+1)m) arithmetic operations to compute
the quotient q(x) and the remainder r(x) where r(x) = 0 or deg(r(x)) < deg(b(x)). This
method has a quadratic cost and hence is inefficient when n and m are large.

Our purpose is to develop an algorithm which performs polynomial at a quasilinear cost.
We will show that this can be accomplished if we are able to determine the power series
inverse of a given polynomial to some desired order n in O(N logN) operations where N is
the first power of 2 greater than n. In order to achieve this, we exploit Newton’s iteration and
fast Fourier transforms. Then we develop two quasilinear power series inversion algorithms
based on them. We finally utilize the middle product method given by Hanrot, Querica and
Zimmermann [2] to optimize our inversion algorithm so that a power series inversion can
always be performed in 10F (N)+O(N) where F (N) is the cost of an FFT of size N , namely
F (N) ∈ O(N logN).

We review the classical long division and introduce the concept of reciprocal polynomials
in section 2. We explain Newton’s iteration and develop a recursive power series inversion
algorithm in section 3. In section 4, we expound the mechanism of the fast Fourier trans-
form and prove the necessary theorems. In section 5, we present two quasilinear inversion
algorithms and analyze the complexity. We introduce the middle product optimization in
section 6 and prove its correctness. In the end, we do timings for our C implementations to
verify the efficiency of our algorithms.

1

2 Division of Polynomials

Let F be a field. Given two polynomials a(x) and b(x) in F [x] with deg(a(x)) = n and
deg(b(x)) = m, we want to compute a(x) divided by b(x). That is, we want to find the
quotient q(x) and the remainder r(x) in F [x] such that

a(x) = b(x)q(x) + r(x)

where r(x) = 0 or deg(r(x)) < deg(b(x)). Here, if n < m, then we just have q(x) = 0 and
r(x) = a(x). Thus, it is reasonable to assume n > m.

One way to achieve this is to perform the classical polynomial long division. We write
a(x), b(x) in descending order so that a(x) = anx

n + an−1x
n−1 + · · · + a1x + a0 and b(x) =

bmx
m+bm−1x

m−1 + · · ·+b1x+b0. Notice that an, bm 6= 0. We do the division in the following
steps.

1. We compute an/bm in F to get the leading coefficient q1 of q(x).

q1x
n−m

bmx
n + bm−1x

m−1 + · · ·+ b0

)
anx

n + an−1x
n−1 + · · ·+ an−mx

n−m + · · ·+ a1x+ a0

Then we multiply each term of b(x) by q1x
n−m to get a new polynomial whose leading

term is also anx
n and subtract this polynomial from a(x). We let a(1)(x) denote the

result and write it underneath.

q1x
n−m

bmx
m + · · ·+ b0

)
anx

n + an−1x
n−1 + · · ·+ an−mx

n−m + · · ·+ a1x+ a0

−(anx
n + bm−1q1x

n−1 + · · ·+ b0q1x
n−m)

a(1)(x) = 0 + (an−1 − bm−1q1)xn−1 + · · ·+ (an−m − b0q1)xn−m + · · ·+ a0

2. If a(1)(x) 6= 0 and deg(a(1)(x)) = k > m, then we find the leading coefficient a(1)k of
a(1)(x). We compute a(1)k/bm in F to get the second term q2x

k−m of q(x). Again, we
multiply each term of b(x) by q2x

k−m. We subtract this new product from a(1)(x) and
use a(2)(x) to denote the resulting polynomial.

q1x
n−m + q2x

k−m

bmx
m + · · ·+ b0

)
anx

n + an−1x
n−1 + · · ·+ an−mx

n−m + · · ·+ a1x+ a0

−(anx
n + bm−1q1x

n−1 + · · ·+ b0q1x
n−m)

a(1)kx
k + a(1)k−1x

k−1 + · · ·+ a1x+ a0

−(a(1)kx
k + bm−1q2x

k−1 + · · ·+ b1q2x
k−m+1 + b0q2x

k−m)

a(2)(x) = 0 + (a(1)k−1 − bm−1q2)xk−1 + · · ·+ a1x+ a0

2

3. We repeat step 2 to calculate a(3)(x), a(4)(x), . . . until a(`)(x) = 0 or deg(a(`)(x)) < n.
Then the polynomial on the top is q(x) and r(x) = a(`)(x).

The following algorithm summarizes the procedure described above.

Algorithm Classical Polynomial Division

Input: a, b ∈ F [x] where F is a field and b 6= 0.
Output: q, r ∈ F [x] satisfying a = b · q + r where r = 0 or deg(r) < deg(b).

q ← 0
r ← a
while r 6= 0 and deg(r) ≥ deg(b) do

`← LeadingTerm(r)/LeadingTerm(b)
q ← q + `
r ← r − b · `

return q, r

Example 2.1. Let a(x) = 5x5 + 4x4 − 2x3 + x + 7 and b(x) = 2x3 − 3x2 − 5. Suppose we
want to divide a(x) by b(x) in Z13[x]. Performing the long division, we have

9x2 + 9x+ 6

2x3 − 3x2 − 5
)

5x5 + 4x4 − 2x3 + x+ 7

−(5x5 + 12x4 + 7x2)

5x4 − 2x3 − 7x2 + x+ 7

−(5x4 − x3 + 7x)

−x3 − 7x2 − 6x+ 7

−(12x3 − 5x2 − 4)

−2x2 − 6x+ 11

In this case, q(x) = 9x2 + 9x+ 6 and r(x) = 11x2 + 7x+ 11.

Now we consider the cost of the classical polynomial division by counting the arithmetic
operations in F . During each step, we obtain one new term ∆q of the quotient q(x). Since
deg(q(x)) = deg(a(x)) − deg(b(x)) = n − m, q(x) has at most n − m + 1 terms. Hence
there are at most n − m + 1 steps needed. We compute ∆q by one division in the field
F . Then we multiply b(x) by ∆q. As deg(b(x)) = m, b(x) has at most m + 1 terms. But
we already know the result of bmx

m · ∆q, which is unnecessary to compute again. So we
need at most m coefficient multiplications in F for each step. Similarly, when we do the

3

polynomial subtraction of each step, we know the difference between the leading terms must
be 0, so we need at most m coefficient subtractions in F . Totally we have at most (n−m+1)
divisions, (n−m+1)m multiplications and (n−m+1)m subtractions in F . Thus, it requires
O((n−m+ 1)m) operations in F to compute a(x) divided by b(x).

We want to ask whether there is a faster way to compute the quotient and remainder.
Notice that if b(x) has a nonzero constant term, then b(x)−1 exists and has a power series
expansion in the ring F [[x]]. Suppose we can compute b(x)−1. Since a(x) = b(x)q(x) + r(x),
we have

q(x) = a(x)b(x)−1 − r(x)b(x)−1

One idea here is truncating the power series b(x)−1 to the power of n −m. That is, we let
c(x) = b(x)−1 mod xn−m+1. Then

q(x) = a(x)c(x)− r(x)c(x)

However, since r(x) is unknown, we cannot compute r(x)c(x) which might contain some
term of degree less than n −m + 1. So it seems we are unable to directly get q(x) in this
way.

In fact, we may accomplish our purpose by performing calculations on the reciprocal
polynomials of the dividend and divisor.

Definition 2.1. Let a(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 with an 6= 0. The reciprocal
polynomial of a(x) is

ar(x) = xna(1/x) = an + an−1x+ · · ·+ a1x
n−1 + a0x

n.

Hence ar(x) is almost the same polynomial as a(x) except its coefficients are in reversed
order. Observe that

1. ar(x)−1 always exists in F [[x]] since an 6= 0.

2. If a0 6= 0, deg(ar(x)) = deg(a(x)). Otherwise, deg(ar(x)) < deg(a(x)).

Another useful property of ar(x) is stated below.

Lemma 2.1. Let a(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 with an 6= 0. If deg(ar(x)) = `,
then ar

r
(x) = x`−na(x).

Proof. By definition, we have

ar
r

(x) = x`ar(
1

x
) = x`

1

xn
a(

1

1/x
) = x`−na(x).

4

This lemma implies ar
r
(x) = a(x) ⇐⇒ a0 6= 0. As a result, we have the following

theorem which provides an approach to our problem.

Theorem 2.2. Let F be a field. Suppose a(x) and b(x) are two polynomials in F [x] with
deg(a(x)) = n, deg(b(x)) = m and n > m. Let q(x) and r(x) be the polynomials in F [x]
satisfying a(x) = b(x)q(x) + r(x) where r(x) = 0 or deg(r(x)) < deg(b(x)). Then

qr(x) =
ar(x)

br(x)
mod xn−m+1.

Proof. Since a(x) = b(x)q(x) + r(x), we have

a(1/x) = b(1/x)q(1/x) + r(1/x).

Multiplying both sides by xn, we get

xna(1/x) = xmb(1/x)xn−mq(1/x) + xnr(1/x).

As deg(q(x)) = deg(a(x))− deg(b(x)) = n−m, by definition, it follows that

ar(x) = br(x)qr(x) + xnr(1/x). (1)

If r(x) = 0, then r(1/x) = 0. Equation (1) becomes

ar(x) = br(x)qr(x).

Then the existence of br(x)−1 implies

qr(x) =
ar(x)

br(x)
.

Since deg(qr(x)) 6 deg(q(x)) = n−m, we obtain

qr(x) =
ar(x)

br(x)
mod xn−m+1.

Otherwise, when r(x) 6= 0, we let d = deg(r(x)) and hence 0 6 d 6 m − 1. Then equation
(1) becomes

ar(x) = br(x)qr(x) + xn−dxdr(1/x)

ar(x) = br(x)qr(x) + xn−drr(x)

Again, as br(y)−1 exists, we get

qr(x) =
ar(x)

br(x)
− xn−d r

r(x)

br(x)
.

5

Now d 6 m− 1 ensures n− d > n−m + 1. rr(x) cannot be 0 due to r(x) 6= 0. We realize
that the degree of any term in the power series xn−drr(x)br(x)−1 is at least n−m+ 1. Since
deg(qr(x)) 6 n−m, it follows that

qr(y) =
ar(y)

br(y)
mod yn−m+1.

Therefore, in both cases of r(x), the result is proved.

At this point, we are able to compute the quotient q(x) of a(x) divided by b(x) under
the assumption that the inverse of br(x) can be found in some way. We can find qr(x) by
computing all the terms of degree less than n − m + 1 in the product ar(x)br(x)−1. Once
we get qr(x), we may easily obtain qr

r
(x) by reversing the coefficients. If qr

r
(x) and q(x)

have the same degree, then q(x) is just qr
r
(x). Otherwise, we multiply qr

r
(x) by a power of

x to make up the degree deficiency. Finally, we compute r(x) = a(x) − b(x)q(x) to get the
remainder.

The prerequisite here is that we need to know br(x)−1, or at least br(x)−1 mod xn−m+1.
For b(x) = bmx

m + bm−1x
m−1 + · · · + b0 with b0 6= 0, one way to calculate c(x) = b(x)−1 up

to terms of degree k is using the classical power series inversion algorithm.

1. Write (b(x) mod xk+1) in ascending order. We compute 1/b0 in F to get the constant
term c0 of c(x). Let c(0)(x) = c0. Then we multiply (b(x) mod xk+1) by c0 and subtract
this product from 1. Let e(0)(x) denote the result.

c0

b0 + b1x+ · · ·+ bkx
k
)

1

−(1 + b1c0x+ · · ·+ bkc0x
k)

e(0)(x) = 0− b1c0x− · · · − bkc0xk

2. If k > deg(c(0)(x)) = 0 and e(0)(x) 6= 0, we find the term in e(0)(x) which has the lowest
degree, say e(0)tx

t. We compute e(0)t/b0 in F to get the coefficient ct of c(x), and let
c(1)(x) = c(0)(x) + ctx

t. Then we multiply (b(x) mod xk−t+1) by ctx
t to get another

polynomial of degree k. We subtract it from e(0)(x) and let e(1)(x) denote the resulting
polynomial.

c0 + ctx
t

b0 + b1x+ · · ·+ bk−tx
k−t

)
1

−(1 + b1c0x+ · · ·+ bkc0x
k)

e0tx
t + e0t+1x

t+1 + · · · − bkc0xk

−(e0tx
t + b1ctx

t+1 + · · ·+ bk−tctx
k)

e(1)(x) = 0 + (e0t+1 − b1ct)xt+1 + · · · − (bkc0 + bk−tct)x
k

6

3. We repeat step 2 to update c(`)(x) by one term each time until deg(c(`)(x)) = k or
e(`)(x) = 0. Then c(x) = c(`)(x) = b(x)−1 mod xk+1.

Algorithm Classical Power Series Inversion

Input: b ∈ F [x] where F is a field and b0 6= 0, a positive integer k.
Output: c ∈ F [x] satisfying c = b−1 mod xk+1.

ClassicalInversion(b, k):
e← 1
c← 0
t← 0
while e 6= 0 and t < k do

`← the term of the lowest degree in e
`← `/b0
t← deg(`)
c← c+ `
e← e− (b mod xk+1−t) · `

return c

This algorithm requires at most k + 1 steps to determine c(x) = (b(x)−1 mod xk+1) since
c(x) is updated by one new term each time and deg(c(x)) 6 k. At each step i, we need one
coefficient division in F to compute the new term cix

i of c(x). We only need to multiply
b1x + b2x

2 + · · · + bk−ix
k−i by cix

i because any term of degree higher than k is useless to
our calculation and it is unnecessary to compute b0 · cixi. Hence we need at most k − i
multiplications in F . For the polynomial subtraction, we know b0cix

i must cancel out the
term of the lowest degree e(i−1)(x), so we need at most k − i subtractions in F . Totally,
we need at most (k + 1) divisions, at most

∑k
i=0(k − i) = 1

2
(k2 + k) multiplications and

subtractions. It thus takes O(k2) operations in F to compute b(x)−1 truncated to degree k.

Combining this inversion algorithm with the results achieved from Lemma 2.1 and The-
orem 2.2, we obtain an alternative way to perform polynomial divisions.

7

Algorithm Polynomial Division by Power Series Inversion

Input: a, b ∈ F [x] where F is a field and b 6= 0.
Output: q, r ∈ F [x] satisfying a = b · q + r where r = 0 or deg(r) < deg(b).

k ← deg(a)− deg(b) . k = deg(q)
if k < 0 then return q = 0, r = a

if deg(b) = 0 then return q = a/b0, r = 0

c← ClassicalInversion(br, k)
d← ar · c mod xk+1

`← deg(d)
q ← xk−`dr

r ← a− b · q
return q, r

Example 2.2. For a(x) = x5 − 3x4 − x3 + 2x2 + x − 1 and b(x) = 2x3 − 3x2 + 8, we want
to divide a(x) by b(x) in Z13[x].

We have ar(x) = 1 − 3x − x2 + 2x3 + x4 − x5 and br(x) = 2 − 3x + 8x3. As deg(q(x))
must be 2, we need to determine the terms of degree at most 2 in ar(x)br(x)−1. Notice ar(x)
has a nonzero constant term, so we need to compute br(x)−1 up to terms of degree 2. We
perform ClassicalInversion(br(x), 1).

7 + 4x+ 6x2

2− 3x
)

1

−(1 + 5x)

8x

−(8x+ x2)

12x2

Hence br(x)−1 mod x3 = 7 + 4x+ 6x2. Then we get

qr(x) = (1− 3x− x2 + 2x3 + x4 − x5)(7 + 4x+ 6x2) mod x3 = 7 + 9x.

So q(x) = x · qrr(x) = x(7x+ 9) = 7x2 + 9x,

r(x) = (x5 − 3x4 − x3 + 2x2 + x− 1)− (2x3 − 3x2 + 8)(7x2 + 9x) = 11x2 + 7x+ 12.

Now we turn to the complexity of our new division algorithm. We perform a(x) =∑n
i=0 aix

i divided by b(x) =
∑m

i=0 bix
i with n > m by determining (br(x)−1 mod xn−m+1),

qr(x), q(x) and r(x) in turn.

8

1. As a consequence of the analysis on page 7, we are able to find (br(x)−1 mod xn−m+1)
at a cost of O((n−m)2).

2. Computing qr(x) = ar(x)br(x)−1 mod xn−m+1 requires one multiplication of (ar(x)
mod xn−m+1) and (br(x)−1 mod xn−m+1). Let M(n) denote the cost of multiplying two
polynomials of degree less than n. Then such a multiplication costs M(n−m+1), which
depends on the multiplication method we choose. For instance, if we apply the classical
polynomial multiplication to expand this product and subsequently truncate the result,
the cost will be (n−m+ 1)2. However, by noticing the calculations of all the terms of
degree higher than n−m can be omitted in advance, we have a cheaper way to do the
expansion. Writing br(x)−1 mod xn−m+1 = c0 +c1x+ · · ·+cn−m−1x

n−m−1 +cn−mx
n−m,

we obtain

(an + an−1x+ · · ·+ amx
n−m)(c0 + c1x+ · · ·+ cn−mx

n−m) mod xn−m+1

= an(c0 + c1x+ · · ·+ cn−mx
n−m) + an−1x(c0 + c1x+ · · ·+ cn−m−1x

n−m−1) (2)

+ · · ·+ amx
n−mc0

We need
∑n−m+1

i=1 i = 1
2
(n − m + 1)(n − m + 2) multiplications and additions in F .

Hence the cost of computing qr(x) in this way is 1
2
(n−m+ 1)2 +O(n−m).

3. Reversing the coefficients of qr(x) requires a linear cost. When deg(qr(x)) = ` < n−m,
we need increase the degree of every term in qr

r
(x) by n − m − ` to get q(x). This

process is also linear. So it costs O(n−m) to determine q(x).

4. Computing r(x) = a(x) − b(x)q(x) requires one polynomial multiplication and one
polynomial subtraction. The subtraction cost is linear, and the multiplication cost
here depends on the greater one of m + 1 and n−m + 1. So we can obtain r(x) at a
cost of M(max{m+ 1, n−m+ 1}) +O(n+ 1).

Consequently, the total cost of this algorithm is

O((n−m)2) +M(n−m+ 1) +O(n−m) +M(max{m,n−m}+ 1) +O(n+ 1)

=O((n−m)2) +O(M(max{m+ 1, n−m+ 1})).

We see that the efficiency of the algorithm is mainly determined by the inversion and multi-
plication methods we employ. In practice, we can reduce M(n) to O(nlog2 3) by Karatsuba’s
algorithm or to O(n log n) by the fast Fourier transform, which will be discussed later in this
paper. Moreover, we are able to save the cost of a power series inversion by using Newton’s
iteration.

9

3 Newton’s Iteration

Newton’s iteration is an iterative algorithm for approximating the solution to a nonlinear
equation f(x) = 0. The iteration starts with an initial guess of the root near the correct
answer, say x0. Given f(x) is differentiable and f ′(x0) 6= 0, the Taylor series for f(x) at
x = x0 is

f(x) = f(x0) + f ′(x0)(x− x0) +O((x− x0)2).
Let T (x) = f(x0) + f ′(x0)(x− x0) ≈ f(x). Solving the linear equation T (x1) = 0 for x1, we
get

x1 = x0 −
f(x0)

f ′(x0)
.

Then x1 becomes the next approximation to the solution. Repeating the process, we obtain
x2, x3, x4, . . . where xk+1 = xk − f(xk)/f

′(xk). With a good initial guess x0, the iteration
generates a sequence {xk}∞k=0 which converges to the correct root of the equation f(x) = 0.
Furthermore, if that root is a simple root, the rate of convergence is quadratic. See page
137 of Geddes, Czapor and Labahn [1] and page 70 of Burden and Faires [4] for more details
about the convergence of Newton’s iteration.

Definition 3.1. We say a power series p̄(x) is an order n approximation of p(x) if p̄(x) =
p(x) +O(xn) = p(x) mod xn.

Then for some polynomial a(x) =
∑m

i=0 aix
i with a0 6= 0, Newton’s iteration provides

a way to generate a sequence of polynomials that approximates the power series a(x)−1 to
higher and higher order.

Let y(x) = a(x)−1. Finding y(x) is equivalent to solving the equation

a(x)− 1

y(x)
= 0.

Define f(y) = a(x)− 1/y. Then solving f(yk) + f ′(yk)(yk+1 − yk) = 0 for yk+1 gives

yk+1 = yk −
f(yk)

f ′(yk)

= yk −
a(x)− 1/yk

1/yk2

= yk + yk(1− yk · a(x)).

Suppose yk is an order ` approximation of y(x), which means yk = y(x) + O(x`). It then
follows that

yk+1 = 2y(x) + 2O(x`)−
[
y(x)2 + 2y(x)O(x`) +O(x`)2

]
a(x)

= 2y(x) + 2O(x`)− y(x)− 2O(x`)−O(x`)2a(x)

= y(x)−O(x`)2a(x)

10

= y(x)−O(x2`)a(x)

Since a(x) 6= 0, we have yk+1 = a(x)−1 +O(x2`). Thus, yk+1 is an order 2` approximation of
a(x)−1. This means we can double the correct terms of a(x)−1 after a new iteration. Hence the
accuracy of our approximation is doubled each time. The sequence {y0, y1, y2, . . . } converges
to a(x)−1 quadratically.

Accordingly, we are able to find an order n approximation of y(x) in dn/2e iterations.
Moreover, we notice that

f ′(
1

a0
) =

1

1/a02
= a0

2 6= 0,

so we may choose y0 = 1/a0 as our initial approximation. Since f(y0) = a(x) − a0 =
a1x + a2x

2 + a3x
3 + · · · = 0 mod x, y0 is an order 1 approximation of y(x). Then by

induction on k, it is clear that yk = y(x) + O(x2
k
). Therefore, the formula for the kth

iteration is
yk+1 = yk + yk(1− yk · a(x)) mod x2

k+1

.

But in our polynomial division problem, if the divisor is a constant, then the quotient
and remainder can be immediately determined, namely q(x) = a(x)/b0 and r(x) = 0, at a
linear cost. Hence we may reasonably assume that the input polynomial of the following
power series inversion algorithm is not a constant.

Algorithm Newton’s Iteration for Power Series Inversion

Input: A polynomial a(x) with a0 6= 0 and a positive integer n.
Output: An order n approximation of a(x)−1.

y ← 1/a0
N ← 1
while N < n do

N ← 2N
b← a(x) mod xN

y ← y + y(1− y · b) mod xN

return y mod xn

We illustrate this iteration algorithm by the following example.

Example 3.1. Let a(x) = 3− 4x + 7x2 + 9x4 − 5x5 + 2x6 + x7 + O(x8) ∈ Z11[[x]]. Setting
y0 = 1/3 = 4, we can compute an order 5 approximation of a(x)−1 with 3 iterations.

y1 = 4 + 4(1− 4 · (3− 4x)) mod x2

= 4 + 9x

y2 = 4 + 9x+ (4 + 9x)(1− (4 + 9x)(3− 4x+ 7x2)) mod x4

= 4 + 9x+ 10x2 + 7x3

y3 = (4 + 9x+ 10x2 + 7x3) + (4 + 9x+ 10x2 + 7x3)(1− (4 + 9x+ 10x2 + 7x3)

11

(3− 4x+ 7x2 + 9x4 − 5x5 + 2x6 + x7)) mod x8

= 4 + 9x+ 10x2 + 7x3 + 7x4 + 2x5 + 9x6 + 3x7

Then y(x) = 4 + 9x+ 10x2 + 7x3 + 7x4 is an order 5 approximation of a(x)−1. As we expect,
y(x) · a(x) = 1 + 5x5 + 3x6 + 2x7 + · · · = 1 +O(x5).

In the above example, we see a flaw. From y2 to y(x), we only need one new term, but
we computed y3 which contains twice as many terms as y2 has. In fact, we can modify our
algorithm to get a recursive version that saves some work.

Algorithm Recursive Newton Inversion Algorithm

Input: A polynomial a(x) with a0 6= 0 and a positive integer n.
Output: An order n approximation of a(x)−1.

RNI(a(x), n):
if n = 1 then return y ← 1/a0

m← dn/2e
y ← RNI((a(x),m)
b← a(x) mod xn∑n−1

i=0 gix
i ← y · b mod xn

f ←
∑n−m−1

i=0 (−gi+m)xi

 y ← y + y(1− y · b) mod xn∑n−m−1
i=0 hix

i ← y · f mod xn−m

y ← y +
∑n−m−1

i=0 hix
i+m

return y

The algorithm RNI(a(x), n) indeed makes use of the same mechanism as the previous
one does. They both need dlog2 ne steps. Nevertheless, the sizes of the polynomials y, b
required at each step are reduced. For instance, suppose we are given some power series
a(x) with a0 6= 0 and we want to find an order 18 approximation of a(x)−1. Instead of doing
calculations modulo x2, x4, x8, x16 and x32 in turn, we may recursively compute better and
better approximations modulo x2, x3, x5, x9 and x18.

In addition, RNI(a(x), n) gives a detailed procedure which shows how we may compute
(y + y(1 − y · b) mod xn) with less cost. First, since b has degree at most n − 1 and y has
degree at most m−1 where m = dn/2e, it costs M(n) to compute (y ·b mod xn). Intuitively,
we might think computing (y(1 − y · b) mod xn) requires M(n) as well because (1 − y · b
mod xn) has degree at most n− 1. However, as we know y = a(x)−1 mod xm and b = a(x)
mod xn, we must have

y ·b mod xn = 1+0 ·x+0 ·x2 +0 ·x3 + · · ·+0 ·xm−1 +gm ·xm+gm+1 ·xm+1 + · · ·+gn−1 ·xn−1

for some coefficients gi’s in F . So it follows that

1− y · b mod xn = −gm · xm − gm+1 · xm+1 − · · · − gn−2 · xn−2 − gn−1 · xn−1

12

= xm(−gm − gm+1 · x− · · · − gn−2 · xn−m−2 − gn−1 · xn−m−1)

Let f denote (−gm − gm+1 · x − · · · − gn−2 · xn−m−2 − gn−1 · xn−m−1). We may simplify
our calculation of (y(1 − y · b) mod xn) by computing h = (y · f mod xn−m) first. As
deg(f) 6 n − m − 1 = n − dn/2e − 1 6 dn/2e − 1, both y and f have degree at most
dn/2e− 1. In consequence, h can be obtained by one multiplication of cost M(dn/2e). Then
we increase the degree of every term in h by m and add the resulting polynomial to y. This
has a linear cost cn for some constant c. Therefore, we are able to compute (y + y(1− y · b)
mod xn) in M(n) +M(dn/2e) + cn rather than 2M(n) + cn.

Now we may consider the total complexity of RNI(a(x), n). Let I(n) denote the cost
of performing RNI(a(x), n) for some power series a(x) ∈ F [[x]]. Based on a reasonable
assumption that M(2n) > 2M(n) for all n > 1, the following theorem provides an upper
bound for I(n).

Theorem 3.1. Let F be a field and a(x) be a power series in F [[x]] with a0 6= 0. If N = 2k

is the first power of 2 greater than n−1, namely N
2
< n 6 N , and assuming M(2n) > 2M(n)

for all n > 1, then I(n) ∈ O(M(N)):

I(n) < 3M(N) +O(N).

Proof. Clearly, I(1) = 1 since we only need one division in F to obtain 1/a0. For n > 2, we
first find an order dn/2e approximation y by a recursive call RNI(a(x), dn/2e) at a cost of
I(dn/2e). Then we compute y + y(1− y · b) mod xn. According to the discussion above, it
costs M(n) +M(dn/2e) + cn to perform this computation. Hence we obtain the recurrence
relation

I(n) = I(dn/2e) +M(n) +M(dn/2e) + cn, I(1) = 1.

This gives

I(n) 6 I(N) = I(
N

2
) +M(N) +M(

N

2
) + cN

= I(
N

4
) +M(

N

2
) +M(

N

4
) + c(

N

2
) +M(N) +M(

N

2
) + cN

...

= I(1) +M(2) +M(4) + · · ·+M(
N

2
) +M(N) +M(1) +M(2) + · · ·+

M(
N

4
) +M(

N

2
) + c(2 + 4 + · · ·+N)

As N = 2k and M(n) < 2−1M(2n), it follows that M(1) < 2−1M(2) < 2−2M(4) < · · · <
2−kM(N). Then we have

I(N) < I(1) + 21−kM(N) + 22−kM(N) + · · ·+ 2−1M(N) +M(N)

+ 2−kM(N) + 21−kM(N) + · · ·+ 2−2M(N) + 2−1M(N) + c(2 + 22 + · · ·+ 2k)

13

= 1 + 21−k(1 + 2−1)M(N) + 22−k(1 + 2−1)M(N) + · · ·+ 2−1(1 + 2−1)M(N)

+ (1 + 2−1)M(N) + c(2k+1 − 2)

= 1 +
3

2
M(N)

k∑
j=1

21−j + c(2N − 2)

<
3

2
M(N)

∞∑
j=1

21−j + 2cN − 2c+ 1

=
3

2
· 2M(N) + 2cN − 2c+ 1

= 3M(N) +O(N)

We finally derive an upper bound for the complexity of RNI(a(x), n):

I(n) 6 I(N) < 3M(N) +O(N)

where N/2 < n 6 N = 2k for some k. Thus, I(n) ∈ O(M(N)) since M(N) /∈ O(N).

If the classical polynomial multiplication is employed, then computing (y + y(1 − y · b)
mod xn) will have a quadratic cost in O(n2). More precisely, it will consume ndn/2e to
expand y · b and (dn/2e)2 to expand y · f . For simplicity, we assume n is a power of 2. Then
we will have

I(n) = I(
n

2
) +

3

4
n2 + cn.

It follows that

I(n) = I(1) +
3

4
(n2 +

n2

4
+
n2

16
+ · · ·+ 4) + c(n+

n

2
+
n

4
+ · · ·+ 2)

< 1 +
3

4
n2

∞∑
j=0

4−j + c(2n− 2)

=
4

3
· 3

4
n2 + 2cn− 2c+ 1

= n2 +O(n)

One obvious drawback here is that we compute many unnecessary terms during these
two expansions. Since we will truncate our results after the expansions, the calculations of
those terms, which will be eliminated by the truncation, are superfluous and hence should
be avoided. This is similar to the idea shown in equation (2) of section 2. In general, given
two polynomials a(x) =

∑s−1
i=0 aix

i and b(x) =
∑t−1

i=0 bix
i with as−1, bt−1 6= 0, we have

s−1∑
i=0

aix
i

t−1∑
i=0

bix
i mod xk =

k−1∑
i=0

i∑
j=0

ajbi−jx
i (3)

14

for all k satisfying 1 6 k 6 min{s, t}. The total number of coefficient multiplications
needed is

∑k−1
i=0 (i + 1) = 1

2
k(k + 1). Accordingly, the cost of expanding (y · f mod xn/2)

can be reduced to 1
2
(n/2)(n/2 + 1) = n2/8 + n/4. The case for (y · b mod xn) is a bit more

complicated. The premise of equation (3) is not met because deg(y) + 1 < n. Consequently,
we cannot directly apply equation (3). Instead, by writing y = z0 + z1x+ · · ·+ zn/2−1x

n/2−1

and b = b0 + b1x+ · · ·+ bn−1x
n−1, we see that

y · b mod xn = y(b0 + b1x+ · · ·+ bn/2x
n/2) + (z0 + z1x+ · · ·+ zn/2−2x

n/2−2)bn/2+1x
n/2+1

+ (z0 + z1x+ · · ·+ zn/2−3x
n/2−3)bn/2+2x

n/2+2 + · · ·+ (z0 + z1x)bn−2x
n−2

+ z0bn−1x
n−1

The cost of expanding y(b0 + b1x+ · · ·+ bn/2x
n/2) is n/2 · (n/2 + 1) = n2/4 + n/2. The rest

costs
∑n/2−1

i=1 i = 1
2
(n/2 − 1)(n/2) = n2/8 − n/4. So the total cost of the multiplications at

an order n recursive step drops to

n2

8
+
n

4
+
n2

4
+
n

2
+
n2

8
− n

4
=
n2

2
+
n

2
.

Therefore, we obtain another recurrence

I(n) = I(
n

2
) +

n2

2
+ cn.

We solve it in the same manner.

I(n) = I(1) +
1

2
(n2 +

n2

4
+
n2

16
+ · · ·+ 4) + c(n+

n

2
+
n

4
+ · · ·+ 2)

<
n2

2

∞∑
j=0

4−j + 2cn− 2c+ 1

=
2n2

3
+O(n)

In comparison with the classical polynomial multiplication, we see

2n2/3 +O(n)

n2 +O(n)
∼ 2

3
.

Although the improved multiplication method still has a unsatisfactory quadratic complexity,
it is about 1/3 faster than the classical one.

Now we exhibit an implementation of our power series inversion algorithm. In order to
express polynomials appropriately in programming language, we consider an array represen-
tation of polynomials. Given a polynomial a(x) of degree m, we can express a(x) as an array
A by storing the coefficient aj at position j of A.

A = [a0, a1, a2, . . . , am−1, am, 0, 0, 0, . . .]

15

Obviously, A should have length at least m+ 1 to completely represent a(x).
The function modinv(c,p) computes the inverse of c in Zp by using the extended Eu-

clidean algorithm.

int modinv(int c, int p)

{ int d, r, q, r1, c1, d1;

d = p; c1 = 1; d1 = 0;

while(d!=0) {

q = c/d;

r = c-q*d; r1 = c1-q*d1;

c = d; c1 = d1;

d = r; d1 = r1; }

if(c!=1) return(0);

if(c1<0) c1 += p;

return(c1);

}

The function polmul(A,B,C,da,db,d,p) applys the improved polynomial multiplication
method to compute C = A ·B mod xd+1 in Zp[x], where deg(A) = da and deg(B) = db. The
polynomials A,B and C are all in array representations. We adopt the positive representation
for integers modulo p.

int max(int a, int b) { if(a>b) return a; else return b; }

int min(int a, int b) { if(a<b) return a; else return b; }

void polmul(int *A, int *B, int *C, int da, int db, int d, int p)

{ int i, k; LONG t, M;

M = ((LONG) p)*p;

for(k=min(d,da+db); k>=0; k--) {

t = M;

for(i=max(0,k-db); i<=min(k,da); i++)

{ if(t<0) t += M; t -= ((LONG) A[i])*((LONG) B[k-i]); }

t = t%p; t = -t; if(t<0) t += p;

C[k] = t; }

return;

}

The function NewtonSlow(a,n,T,y,p) performs RNI(a, n) based on polmulB() to com-
pute y = a−1 mod xn for a given a ∈ Zp[x]. The input array T is used as temporary storage
for intermediate calculations. Its length should be at least n.

void NewtonSlow(int *a, int n, int *T, int *y, int p)

{ if(n==1) { y[0] = modinv(a[0], p); return; }

int m = (n+1)/2;

NewtonSlow(a, m, T, y, p);

polmul(y, a, T, m-1, n-1, n-1, p);

for(int i=m; i<=n-1; i++)

if(T[i]!=0) T[i] = p-T[i];

polmul(y, T+m, y+m, m-1, n-m-1, n-m-1, p);

return;

}

16

As we have shown above, the efficiency of our power series inversion algorithm highly
depends on the multiplication cost M(n). The two methods we discussed are both quadratic,
which leads the complexity I(n) to be O(n2) as well. Hence we seek some other multiplication
algorithm that is faster than O(n2). One possible choice is Karatsuba’s algorithm. It takes
O(nlog2 3) ≈ O(n1.585) arithmetic operations in F to multiply two polynomials in F [x]. See
pages 118-119 of Geddes, Czapor and Labahn [1] for details. In fact, there is an even faster
method. We can perform polynomial multiplications in quasilinear time by utilizing fast
Fourier transforms.

4 Fast Fourier Transform

A fast Fourier transform (FFT) evaluates or interpolates a polynomial in quasilinear time on
the basis of the symmetry property of the Fourier points. So we begin the discussion with
an introduction of Fourier points.

Definition 4.1. In a field F , an element ω is a primitive n-th root of unity if

ωn = 1, but ωk 6= 1 for 0 < k < n.

Then the set of n points {1, ω, ω2, . . . , ωn−1} are called Fourier points.

Lemma 4.1. If ω is a primitive n-th root of unity with n even, then ω2 is a primitive n/2-th
root of unity.

Proof. ω2 is an n/2-th root of unity because

(ω2)n/2 = ωn = 1.

In order to show ω2 is also primitive, we assume there exists some 0 < k < n/2 such that
(ω2)k = 1. Then we have

ω2k = 1 with 0 < 2k < n.

This contradicts that ω is a primitive n-th root of unity. Thus, ω2 is a primitive n/2-th root
of unity.

Example 4.1. In Z17, 8 is a primitive 8th root of unity since 88 = 1 mod 17 and

82 = −4, 83 = 2, 84 = −1, 85 = −8, 86 = 4, 87 = −2. (mod 17)

The corresponding 8 Fourier points are {1, 8,−4, 2,−1,−8, 4,−2}.
Moreover, 82 is a primitive 4th root of unity. The corresponding 4 Fourier points are
{1, 82, 84, 86} = {1,−4,−1, 4}.
And 84 is a primitive 2nd root of unity. The corresponding 2 Fourier points are {1, 84} =
{1,−1}.

17

In the above example, we observe that 84+i = −8i for i ∈ {0, 1, 2, 3}. In reality, such a
symmetry exists in every set of Fourier points and is crucial to an FFT. The following lemma
gives an explicit statement of this property.

Lemma 4.2. If ω is a primitive n-th root of unity, then the n Fourier points satisfy

ωn/2+i = −ωi

for i ∈ {0, 1, . . . , n/2− 1}.

Proof. Since ωn = 1, we have

(ωn/2+i + ωi)(ωn/2+i − ωi) = (ωn/2+i)2 − (ωi)2

= ωn(ωi)2 − (ωi)2

= 0.

If ωn/2+i − ωi = 0, then ωn/2+i = ωi. We will get ωn/2 = 1, which contradicts that ω is
primitive. Therefore, ωn/2+i + ωi = 0.

Now we start to expound the mechanism of fast Fourier transforms.

Definition 4.2. Let F be a field and ω be a primitive n-th root of unity in F . The discrete
Fourier transform (DFT) is a mapping Tω : F n → F n defined by

Tω(a0, a1, a2, . . . , an−1) = (â0, â1, â2, . . . , ân−1),

where
âi = a0 + a1ω

i + a2(ω
i)2 + · · ·+ an−1(ω

i)n−1.

We realize that the DFT is a linear transformation from the vector space F n to itself. Its
matrix in the standard basis is given by

1 1 1 1 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...
1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)

As a consequence, the DFT is a homomorphism which preserves the addition and multipli-
cation of F n. In other words, for any

(f0, f1, . . . , fn−1), (g0, g1, . . . , gn−1) ∈ F n,

we have the following properties:

18

(i) Tω(f0, f1, . . . , fn−1) + Tω(g0, g1, . . . , gn−1) = Tω(f0 + g0, f1 + g1, . . . , fn−1 + gn−1)

(ii) Tω(f0, f1, . . . , fn−1) · Tω(g0, g1, . . . , gn−1) = Tω(f0 · g0, f1 · g1, . . . , fn−1 · gn−1)
From Definition 4.2, we also see that if a(x) = a0 + a1x+ a2x

2 + · · ·+ an−1x
n−1, then

Tω(a0, a1, a2, . . . , an−1) = (a(1), a(ω), a(ω2), . . . , a(ωn−1)).

Hence, for any polynomial f(x) ∈ F [x] with deg(f(x)) 6 n− 1, the DFT can evaluate f(x)
at {1, ω, ω2, . . . , ωn−1}. Normally, it requires O(n2) arithmetic operations in F to evaluate a
polynomial of degree n− 1 at n points. Nevertheless, by taking advantage of the symmetry
property of Fourier points, we are able to perform such evaluations with a quasilinear cost.

Suppose a(x) is a polynomial of degree n − 1 in F [x]. We wish to evaluate a(x) by
the DFT. Let N be the first power of 2 greater than n − 1, and ω be a primitive N -th
root of unity in F . Again, when n < N , we add dummy zero terms to a(x) so as to make
the number of terms be N . As a result, we get a(x) =

∑N−1
i=0 aix

i. Then our goal is to
compute Tω(a0, a1, a2, . . . , aN−1). If N = 1, then a(x) = a0 is a constant. Accordingly,
T1(a0) = (â0) = (a0). Otherwise, we rearrange the terms of a(x) in the form

a(x) = (a0 + a2x
2 + a4x

4 + · · ·+ aN−2x
N−2) + (a1 + a3x

3 + a5x
5 + · · ·+ aN−1x

N−1).

Then we can rewrite a(x) as
a(x) = b(x2) + x · c(x2) (4)

where

b(y) = a0 + a2y + a4y
2 + · · ·+ aN−2y

N/2−1 and c(y) = a1 + a3y + a5y
2 + · · ·+ aN−1y

N/2−1.

In other words, b(x2) is the sum of the even degree terms of a(x) and c(x2) is the sum of
the odd degree terms of a(x) with the power of x reduced by 1. By definition, we should
determine

âi = a0 + a1ω
i + a2(ω

i)2 + · · ·+ aN−1(ω
i)N−1 = a(ωi)

for i ∈ {0, 1, 2, . . . , N − 1}. Equation (4) implies that we may compute

a(ωi) = b(ω2i) + ωi · c(ω2i)

for i ∈ {0, 1, 2, . . . , N − 1}. Thanks to the symmetry property revealed by Lemma 4.2, we
have

ωN/2+i = −ωi, and hence ω2(N/2+i) = ω2i.

In consequence, we only need to compute b(ω2i) and c(ω2i) from which we get

a(ωi) = b(ω2i) + ωi · c(ω2i), a(ωN/2+i) = b(ω2i)− ωi · c(ω2i) (5)

for i ∈ {0, 1, 2, . . . , N/2− 1}. In addition, we notice that both b(y) and c(y) have degree at
most N/2 − 1. By Lemma 4.1, ω2 is a primitive N/2-th root of unity with the set of N/2
Fourier points {1, ω2, ω4, . . . , ωN−2}. Thus, we are capable of evaluating b(y) and c(y) at these
N/2 points by another two DFTs, Tω2(a0, a2, a4, . . . , aN−2) and Tω2(a1, a3, a5, . . . , aN−1), re-
spectively. After evaluating b(y) and c(y), we combine the results into the desired evaluations
of a(x) by formula (5).

Now we present the fast Fourier transform algorithm in full detail.

19

Algorithm Fast Fourier Transform

Input: a(x) is a polynomial in F [x] where F is a field,
N is a power of 2 such that N/2 < deg(a(x)) + 1 6 N ,
W = (W0,W1,W2, . . . ,WN/2−1) = (1, ω, ω2, . . . , ωN/2−1) where ω is a primitive N -th
root of unity in F .

Output: (a(1), a(ω), a(ω2), . . . , a(ωn−1)).

FFT(a(x), N,W):
if N = 1 then return A0 ← a0
b(x)←

∑N/2−1
i=0 a2ix

i c(x)←
∑N/2−1

i=0 a2i+1x
i

(B0, B1, . . . , BN/2−1)← FFT(b(x), N/2, (W0,W2,W4, . . . ,WN/2−2))

(C0, C1, . . . , CN/2−1) ← FFT(c(x), N/2, (W0,W2,W4, . . . ,WN/2−2))

for i from 0 to N/2− 1 do
Ai ← Bi +Wi · Ci
AN/2+i ← Bi −Wi · Ci

return (A0, A1, . . . , AN−1)

Example 4.2. In Example 4.1, we find that −4 is a primitive 4th root of unity in Z17 and
the corresponding 4 Fourier points are {1,−4,−1, 4}. Say we want to evaluate

a(x) = 3x3 + 6x2 − x+ 5

at these 4 points. We write a(x) = b(y) + x · c(y) where y = x2 and

b(y) = 6y + 5, c(y) = 3y − 1.

We first need to evaluate b(y) and c(y) at {1,−1}. Again, we write b(y) = d(z) + x · e(z)
and c(y) = f(z) + x · g(z) where z = y2 and

d(z) = 5, e(z) = 6, f(z) = −1, g(z) = 3.

Since
d(1) = 5, e(1) = 6, f(1) = −1, g(1) = 3,

we have
b(1) = d(1) + e(1) = 11, b(−1) = d(1)− e(1) = −1,

c(1) = f(1) + g(1) = 2, c(−1) = f(1)− g(1) = −4.

Combining these evaluations, we obtain

a(1) = b(1) + c(1) = −4, a(−1) = b(1)− c(1) = −8,

a(−4) = b(−1) + (−4) · c(−1) = −2, a(4) = b(−1)− (−4) · c(−1) = 0.

Thus, the final result is T−4(5,−1, 6, 3) = (−4,−2,−8, 0).

20

Theorem 4.3. Let N be a power of 2 and ω be a primitive N -th root of unity. The corre-
sponding Fourier points are precomputed and stored inW , namelyW = (1, ω, ω2, . . . , ωN/2−1).
If F (N) denotes the cost of performing FFT(a(x), N,W) for a polynomial a(x) with deg(a(x))
< N , then

F (N) ∈ O(N logN).

Proof. When N = 1, we directly return the constant a0 without any operation. Clearly,
F (1) = 0.
When N > 2, we need two recursive calls to evaluate b(x) and c(x) at N/2 points. Since
b(x) and c(x) both have degree at most N/2 − 1, each call requires F (N/2) operations. In
addition, for 0 6 i 6 N/2 − 1, since each ωi is precomputed, we need N/2 multiplications
to determine wiCi’s, N/2 additions to determine Ai’s and N/2 subtractions to determine
AN/2+i’s. Therefore, we obtain the recurrence relation

F (1) = 0, F (N) = 2F (
N

2
) + c

N

2

for some constant c. With N = 2k, we have

F (N) = 2(2F (
N

4
) + c

N

4
) + c

N

2

= 22F (
N

4
) + 2c

N

2

= 23F (
N

8
) + 3c

N

2
...

= 2kF (1) + kc
N

2

=
c

2
kN

As k = logN , it follows that

F (N) =
c

2
N logN.

Furthermore, if {ω2, ω3, . . . , ωN/2−1} are not given along with ω, then they should be cal-
culated beforehand. This will require an extra N/2 − 2 multiplications. Accordingly, the
total cost will become c

2
N logN + O(N). Thus, the complexity of the FFT algorithm is

O(N logN).

After we obtain the evaluations of a polynomial at a set of Fourier points, we seek an
efficient way to do polynomial interpolation. That is, we wish to reconstruct the correct
polynomial from the results of the DFT. One possible way is to invert the associated ma-
trix of the linear transformation Tω by using Gaussian elimination. But this will require
O(n3) operations. Other polynomial interpolation methods such as Lagrange interpolation

21

and Newton interpolation can be performed in O(n2) operations (see Chapter 5 of Geddes,
Czapor and Labahn [1]), which is still unsatisfactory. We want an even faster method, say
a quasilinear one. Actually, this can be accomplished by using another FFT.

Definition 4.3. Let F be a field and ω be a primitive n-th root of unity in F . The inverse
discrete Fourier transform (IDFT) is a mapping Sω : F n → F n defined by

Sω(b0, b1, b2, . . . , bn−1) = (b̄0, b̄1, b̄2, . . . , b̄n−1),

where
b̄j = n−1(b0 + b1ω

−j + b2(ω
−j)2 + · · ·+ bn−1(ω

−j)n−1).

We claim that the IDFT is the inverse of the DFT.

Theorem 4.4. Let F be a field and ω be a primitive n-th root of unity in F . For any
(a0, a1, a2, . . . , an−1) ∈ F n, if

Tω(a0, a1, a2, . . . , an−1) = (â0, â1, â2, . . . , ân−1),

then
Sω(â0, â1, â2, . . . , ân−1) = (a0, a1, a2, . . . , an−1).

Proof. Since ω is a primitive n-th root of unity, we have

(ωp)n = (ωn)p = 1, and ωp 6= 1,

for any integer power p satisfying 0 < p < n. The identity

xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ x+ 1)

implies that

(ωp − 1)((ωp)n−1 + (ωp)n−2 + · · ·+ ωp + 1) = (ωp)n − 1 = 0.

As ωp − 1 6= 0, we must have

(ωp)n−1 + (ωp)n−2 + · · ·+ ωp + 1 = 0.

Also, if we multiply both sides by (ω−p)n−1, we get

1 + ω−p + · · ·+ (ω−p)n−2 + (ω−p)n−1 = 0

where −n < −p < 0. Combining the above two equations, we obtain

(ωp)n−1 + (ωp)n−2 + · · ·+ ωp + 1 = 0, whenever 0 < |p| < n. (6)

22

Now we are ready to show Sω = Tω
−1.

First, by Definition 4.2, Tω(a0, a1, a2, . . . , an−1) = (â0, â1, â2, . . . , ân−1) means

âi =
n−1∑
k=0

ak(ω
i)k, for i = 0, 1, . . . , n− 1.

And by Definition 4.3, the j-th component of Sω(â0, â1, â2, . . . , ân−1) is in the form

n−1
n−1∑
i=0

âi(ω
−j)i.

Then for any j ∈ {0, 1, . . . , n− 1}, we have

n−1
n−1∑
i=0

âi · ω−ij = n−1
n−1∑
i=0

n−1∑
k=0

ak · ωik · ω−ij

= n−1
n−1∑
k=0

ak

n−1∑
i=0

ωi(k−j).

The result of the inside summation
∑n−1

i=0 ω
i(k−j) depends on whether j and k are equal.

When k = j, we get
n−1∑
i=0

ωi(k−j) =
n−1∑
i=0

ω0 =
n−1∑
i=0

1 = n.

When k 6= j, we have 0 < |k − j| < n since j, k ∈ {0, 1, . . . , n− 1}. Then

n−1∑
i=0

ωi(k−j) = (ωk−j)n−1 + (ωk−j)n−2 + · · ·+ ωk−j + 1 = 0

by equation (6). It follows that

n−1
n−1∑
k=0

ak

n−1∑
i=0

ωi(k−j) = n−1 · aj · n = aj,

which means the j-th component of Sω(â0, â1, â2, . . . , ân−1) is exactly aj.
Consequently, we obtain

Sω(â0, â1, â2, . . . , ân−1) = (a0, a1, a2, . . . , an−1).

Now we return to our original aim. The following algorithm exploits fast Fourier trans-
forms to perform polynomial multiplications in quasilinear time.

23

Algorithm Polynomial Multiplications by Fast Fourier Transforms

Input: Two polynomials a(x), b(x) in F [x] where F is a field.
Output: c(x) = a(x) · b(x)

FFTMul(a(x), b(x)):

N ← the first power of 2 greater than deg(a(x)) + deg(b(x))
ω ← a primitive N -th root of unity in F

W ← (1, ω, ω2, . . . , ωN/2−1)

(A0, A1, . . . , AN−1)← FFT(a(x), N,W)

(B0, B1, . . . , BN−1)← FFT(b(x), N,W)

for i from 0 to N − 1 do Ci = Ai ·Bi

V ← (1, ω−1, ω−2, . . . , ω−(N/2−1))

(c0, c1, . . . , cN−1)← N−1·FFT(
∑N−1

i=0 Cix
i, N, V)

c(x)←
∑N−1

i=0 cix
i

return c(x)

The correctness of this algorithm follows from Theorem 4.4 and the fact that the DFT is a
homomorphism. Notice that we need N > deg(a(x))+deg(b(x)) = deg(c(x)) so as to have an
adequate number of Fourier points to interpolate c(x). In order to determine the complexity,
we count the number of arithmetic operations required. There are three FFTs of size N .
According to Theorem 4.3, they cost a total of 3F (N) operations where F (N) ∈ O(N logN).
The Fourier points can be computed iteratively. For instance, ω2 = ω · ω, ω3 = ω2 · ω, ω4 =
ω3 · ω, etc. So it takes N/2 − 2 field multiplication to obtain W . One optimization here is
that we can save the additional computations of (ω−1, ω−2, . . . , ω−(N/2−1)) by negating the
values of (ωN/2−1, ωN/2−2, . . . , ω) in turn. Notice that

ω−i = ωn−i = −ωn/2−i

since ωn = 1 and ωn/2+i = −ωi. As a consequence, we have

{1, ω−1, ω−2, . . . , ω−(n/2−1)} = {1,−ωn/2−1,−ωn/2−2, . . . ,−ω}.

Hence V can be obtained simply based on W . Lastly, it takes N field multiplications to
determine Ci’s for 0 6 i 6 N − 1. Combining these costs, we see the total complexity here is

3F (N) +O(N)

where N is a power of 2 and N/2 < deg(a(x)) + deg(b(x)) < N . Therefore, we obtain a
O(N logN) algorithm for polynomial multiplications.

Example 4.3. Suppose we want to compute

a(x) · b(x)− c(x)2 + 5

24

in Z17[x], where

a(x) = 5x3 + 4x+ 1, b(x) = 6x4 − 2x3 + x, c(x) = 3x3 − 7.

Since the degree of the result will be 7, we need N = 8. Then ω = 8 is a primitive 8th root
of unity. First, FFT(5, 8, 8) is simply (5, 5, 5, 5, 5, 5, 5, 5) since evaluating a constant at any
point will give the constant itself. For the remaining 3 polynomials, we have

A = FFT(a(x), 8, 8) = (−7,−8, 5,−2,−8,−7,−3, 4),

B = FFT(b(x), 8, 8) = (5,−2,−6,−3, 7, 7, 1, 8),

C = FFT(c(x), 8, 8) = (−4,−1, 5, 0, 7, 4,−2, 3).

Then we compute (AiBi −Ci2 + 5 mod 17) for i = 0, 1, 2, . . . , 7. This gives the DFT of the
final result:

(5, 3, 1,−6, 2, 8,−2,−6).

Now we compute the IDFT. As ω−1 = −2, we perform

FFT((5 + 3x+ x2 − 6x3 + 2x4 + 8x5 − 2x6 − 6x7) , 8,−2)

and get
(5, 8,−2,−3, 7, 5, 1, 2).

Thus, the desired polynomial result is

8−1(5 + 8x− 2x2 − 3x3 + 7x4 + 5x5 + x6 + 2x7) = 7 + x+ 4x2 + 6x3x4 + 7x5 − 2x6 − 4x7.

Before exhibiting an implementation of the FFT algorithm, we want to discuss how to
determine a primitive n-th root of unity in a given field F . When F = C, this is easy. A
primitive n-th root of unity is simply ω = e2πi/n. However, when F is a finite field, say
F = Zp for some prime p, the situation is more complicated to deal with.

From finite field theory, we know that the multiplicative group of Zp is actually a cyclic
group. In other words, (Zp,×) is generated by a single element. Suppose α is such a
generator. Since Zp has exactly p− 1 distinct elements, we must have

Zp = {1, α, α2, . . . , αp−2} and αp−1 = 1.

Now for any integer n that divides p− 1, α(p−1)/n is an element in Zp. Since

(α(p−1)/n)n = αp−1 = 1,

α(p−1)/n is an n-th root of unity. In addition, for 0 < k < n, we have 0 < (p− 1)k/n < p− 1.
As a result, we get

α(p−1)k/n 6= 1,

25

which implies that α(p−1)/n is also primitive. Hence ω = α(p−1)/n is a primitive n-th root of
unity in Zp whenever n divides p− 1.

On the other hand, for an integer m which does not divide p−1, if there exists a primitive
m-th root of unity, say δ, then {1, δ, δ2, . . . , δm−1} forms a cyclic subgroup of (Zp,×). By
Lagrange’s theorem from group theory (Gallian [3], 141-142), the order of this subgroup
should divide the order of Zp. This implies m divides p− 1, which results in a contradiction.
So a primitive m-th root of unity cannot exist if m does not divide p− 1.

In our FFT algorithm, we always need a primitive 2k-th root of unity for some integer
k. Hence we want a finite field Zp where the prime p has the form

p = 2rt+ 1

for some r > k and some odd number t. If such a finite field is given along with its generator
α, then we may determine a primitive 2k-th root of unity by computing

ω = α(p−1)/N

with N = 2k. In practice, we prefer a prime p = 2rt + 1 with r as large as possible so as to
deal with those polynomials of a huge degree. For example, p = 227 · 15 + 1 = 2013265921 is
the largest 31-bit prime of such form.

Now we present the implementations of the fast Fourier transform algorithm and the
associated multiplication algorithm.

The functions add(a,b,p), sub(a,b,p) and neg(a,b,p) compute additions, subtractions
and negations in Zp, respectively. They efficiently transform a negative number into the
positive representation modulo p without an if statement.

inline int add(int a, int b, int p) { int t; t = (a-p)+b; t += (t>>31) & p; return t; }

inline int sub(int a, int b, int p) { int t; t = (a-b); t += (t>>31) & p; return t; }

inline int neg(int a, int p) { int t; t = -a; t += (t>>31) & p; return t; }

The function powmod(a,n,p) computes an mod p in Zp, for 0 6 a < p < 231.

int powmod(int a, int n, int p)

{ LONG r, s;

for(r=1, s=a; n>0; n/=2) { if(n&1) r = (r*s)% p; s = (s*s)% p; }

return r;

}

The function polfill(A,da,n,A,B) fills the array B, a copy of A, with dummy zero
coefficients so that the length of B is extended to n. A is a polynomial of degree da in array
representation.

void polfill(int *A, int da, int n, int *B)

{ int i;

for(i=0; i<=da; i++) B[i] = A[i];

for(; i<n; i++) B[i] = 0;

return;

}

26

The function FFT(n,w,W,A,p,T) performs the fast Fourier transform algorithm to com-
pute the DFT of A in Zpn, where A is a polynomial in array representation. We need n to
be a power of 2 and w to be a primitive n-th root of unity. The array W stores the first n/2
Fourier points. T is a temporary array. We alternately use A and T to store intermediate
results from the recursive calls in order to save space memory. The final result is put in A.

void FFT(int n, int w, int *W, int *A, int p, int *T)

{ int i, w1, n2;

int s, t, x;

if (n == 1) { return; }

n2 = n/2;

for(i=0; i<n2; i++) { T[i] = A[2*i]; T[n2+i] = A[2*i+1]; }

FFT(n2, 2*w, W, T, p, A);

FFT(n2, 2*w, W, T+n2, p, A+n2);

for(w1=0, i=0; i<n2; i++, w1+=w) {

t = T[n2+i];

t = ((LONG) W[w1])*t % p;

x = T[i];

A[i] = add(x,t,p);

A[n2+i] = sub(x,t,p); }

return;

}

The function FFTmul(A,B,T,da,db,alpha,W,p) utilizes FFT() to compute a polynomial
multiplication T = A · B in Zp[x] where deg(A) = da and deg(B) = db. The input integer
alpha should be the generator of the field Zp. In consideration of space efficiency, we also
use T to store the intermediate results of the FFT() calls. We compute {ω, ω2, . . . , ωn/2−1}
and store them in the array W .

int FFTmul(int *A, int *B, int *T, int da, int db, int alpha, int *W, int p)

{ int i, n, dc;

dc = da+db;

for(n=1; n<=dc; n*=2);

LONG w = powmod(alpha, (p-1)/n, p);

W[0] = 1;

for(i=1; i<n/2; i++) W[i] = (w*W[i-1])% p;

polfill(A, da, n, T);

FFT(n, 1, W, T, p, T+n);

polfill(B, db, n, T+n);

FFT(n, 1, W, T+n, p, T+2*n);

for(i=0; i<n; i++) T[i] = ((LONG) T[i])*((LONG) T[i+n]) % p;

for(i=1; i<n/4; i++) { int t = W[i]; W[i] = p-W[n/2-i]; W[n/2-i] = p-t; }

W[n/4] = p-W[n/4];

FFT(n, 1, W, T, p, T+n);

LONG v = modinv(n, p);

for(i=0; i<n; i++) T[i] = (v*T[i]) % p;

return n;

}

27

5 Two Fast Power Series Inversion Algorithms

Now we are able to update our power series inversion algorithm by employing fast Fourier
transforms as the multiplication method. Recall that we require two multiplications y · b
and y · f . In order to show the mechanism as clearly as possible, we give explicit steps for
performing these two FFT multiplications.

Algorithm Fast Newton Inversion Algorithm

Input: A polynomial a(x) with a0 6= 0 and a positive integer n.
Output: An order n approximation of a(x)−1.

FNI(a(x), n):

if n = 1 then return y ← 1/a0

m← dn/2e
y ← FNI((a(x),m)

b← a(x) mod xn

M ← the first power 2 greater than m+ n− 2

ω ← a primitive M -th root of unity

W = (W0,W1,W2, . . . ,WM/2−1)← (1, ω, ω2, . . . , ωM/2−1)

(B0, B1, . . . , BM−1)← FFT(b,M,W)

(Y0, Y1, . . . , YM−1)← FFT(y,M,W)

for i from 0 to M − 1 do Gi = Bi · Yi

∑m+n−2

i=0 gix
i ← y · b

V = (V0, V1, V2, . . . , VM/2−1)← (1, ω−1, ω−2, . . . , ω−(M/2−1))

(g0, g1, . . . , gM−1)←M−1·FFT(
∑M−1

i=0 Gix
i,M, V)

f ←
∑n−m−1

i=0 (−gi+m)xi

N ← the first power 2 greater than n− 2 . since deg(f) + deg(y) 6 n− 2

j ←M/N . j is either 1 or 2

(F0, F1, . . . , FN−1)← FFT(f,N, (W0,Wj,W2j, . . . ,WM/2−j))

for i from 0 to N − 1 do Hi = Fi · Yij

∑n−2

i=0 hix
i ← y · f

(h0, . . . , hN−1)← N−1·FFT(
∑N−1

i=0 Hix
i, N, (V0, Vj, V2j, . . . , VM/2−j))

y ← y +
∑n−m−1

i=0 hix
i+m

return y

Suppose we want to find an order n approximation of a(x)−1 by FNI(a(x), n) and N is a
power of 2 such that N/2 < n 6 N . The second multiplication y ·f can always be performed
by FFTs of size N , whereas there are two possibilities for the first multiplication y · b.

If we are lucky, say
n 6 n+ dn/2e − 1 6 N,

28

we need three FFTs of size N to compute y · b: one for the DFT of b, one for the DFT of y
and the other for the IDFT of y · b. Then computing y · f requires another two FFTs of size
N : one for the DFT of f and the other for the IDFT of y · f . Therefore, we need a total of
5 FFTs of size N . The multiplications’ cost in this case is

5F (N) +O(N).

Otherwise, when
n 6 N < n+ dn/2e − 1,

the required size of FFTs for computing y · b increases to 2N . Accordingly, the first
multiplication requires three FFTs of size 2N . For the second one, the DFT of f still
costs an FFT of size N and IDFT of y · f costs another FFT of size N . Notice that
it is unnecessary to compute FFT(y,N, (W0,W2,W4, . . . ,WN−2)) since we have obtained
(Y0, Y1, . . . , Y2N−1) = FFT(y, 2N,W). Hence the evaluations of y at N Fourier points are
just

(y(1), y(ω), . . . , y(ωN−1)) = (Y0, Y2, . . . , Y2N−2).

Consequently, we need 3 FFTs of size 2N and 2FFTs of size N in total. Correspondingly,
the cost rises to

3F (2N) + 2F (N) +O(N).

Since F (N) = cN logN for some constant c, we have

F (2N) = 2cN log 2N = 2cN(logN + log 2) = 2cN logN + 2cN.

This means F (2N) = 2F (N) +O(N) and thus the multiplication’s cost in this case is

8F (N) +O(N).

We see that the original input n is critical to the efficiency of this algorithm. For convenience,
we define a subset of Z+ by

L = {n ∈ Z+| 2k < n 6 n+ dn/2e − 1 6 2k+1 for every k ∈ N}. (7)

Then, whether n belongs to L decides the practical cost of FNI(a(x), n). We claim this set
membership is transitive, that is, n ∈ L implies dn/2e ∈ L. First, we deal with the base
case. When n = 2, dn/2e = 1. Clearly, 1 < n + dn/2e − 1 = 2 implies 2 ∈ L. The following
theorem guarantees the transitivity for n > 3.

Theorem 5.1. Let L be the set defined in (7). For any integer n > 3, if n ∈ L, then
dn/2e ∈ L.

Proof. When n = 3, dn/2e = 2. We see that 2 < n + dn/2e − 1 = 4. So 3 ∈ L. As 2 ∈ L is
shown above, the statement is true for n = 3.

29

Now we turn to the general cases of n > 4. Let m = dn/2e and ` = dm/2e. Suppose n ∈ L,
by definition, this means

n+m− 1 6 2k+1

where 2k < n 6 2k+1. In order to prove m ∈ L, it is sufficient to show

2k−1 < m 6 2k (8)

and
m+ `− 1 6 2k. (9)

When n is even, we simply get 2k−1 < n/2 = m 6 2k. When n is odd, we have 2k−1 < n <
n+ 1 6 2k, which implies 2k−1 < (n+ 1)/2 = m 6 2k. Hence inequation (8) holds.

Then we consider 4 cases of n: 4t, 4t+ 1, 4t+ 2 and 4t+ 3 where t ∈ N.

1. When n = 4t, we have m = 2t and ` = t. Then n+m− 1 6 2k+1 means 6t− 1 6 2k+1.
Since 6t− 1 is odd, we get 6t− 1 < 6t 6 2k+1. It follows that

m+ `− 1 = 3t− 1 < 3t 6 2k.

2. When n = 4t + 1, we have m = 2t + 1 and ` = t + 1. Then n + m − 1 6 2k+1 means
6t+ 1 6 2k+1. Again, since 6t+ 1 is odd, we have 6t+ 1 < 6t+ 2 6 2k+1, which gives

m+ `− 1 = 3t+ 1 6 2k.

3. When n = 4t + 2, we have m = 2t + 1 and ` = t + 1. Then n + m − 1 6 2k+1 means
6t+ 2 6 2k+1. Hence

m+ `− 1 = 3t+ 1 6 2k.

4. When n = 4t + 3, we have m = 2t + 2 and ` = t + 1. Then n + m − 1 6 2k+1 means
6t+ 4 6 2k+1. So we have

m+ `− 1 = 3t+ 2 6 2k.

Thus, inequation (9) holds for all n > 4. This completes the proof.

By Theorem 5.1, if the original input n of FNI(a(x), n) belongs to L, we can deduce that
all the integers

m1,m2,m3, . . . , 2

belong to L where m1 = dn/2e and mi+1 = dmi/2e. Furthermore, if 2k−1 < n 6 2k for some
k > 1, then we have

2k−1−i < mi 6 2k−i

for 1 6 i 6 k − 1. Then a recursive call FNI(a(x),mi) requires 5F (2k−i) + O(2k−i) cost to
perform the two polynomial multiplications. Therefore, the total cost of FNI(a(x), n) when
n ∈ L is

If (n) = If (m1) + 5F (2k) + c2k

30

= If (m2) + 5F (2k−1) + c2k−1 + 5F (2k) + c2k

...

= If (1) + 5(F (2k) + F (2k−1) + · · ·+ F (2)) + c(2k + 2k−1 + · · ·+ 2)

= 1 + 5(F (2k) + F (2k−1) + · · ·+ F (2)) + c(2k+1 − 2)

< 5(F (2k) + 2−1F (2k) + · · ·+ 2−k+1F (2k)) + 2c2k − 2c+ 1

= 5F (2k)
k−1∑
i=0

2−i +O(2k)

< 5F (2k)
∞∑
i=0

2−i +O(2k)

= 10F (2k) +O(2k).

Nevertheless, when n /∈ L, dn/2e /∈ L is not necessarily true. For instance, 12 /∈ L
while 6 ∈ L. Hence for the sequence of integers m1,m2,m3, . . . , 2 where m1 = dn/2e and
mi+1 = dmi/2e, some mi could belong to L even if n /∈ L. Once such an mi exists, all the
succeeding integers mi+1,mi+2, . . . , 2 belong to L. This leads to the uncertainty of the total
cost. For the sake of convenience, we need to conclude that such an mi is rare.

Theorem 5.2. For every k ∈ N, there exists at most one integer n ∈ (2k, 2k+1], such that
n /∈ L but dn/2e ∈ L.

Proof. Let m = dn/2e and ` = dm/2e. If n /∈ L, then we have

n+m− 1 > 2k+1

where 2k < n 6 2k+1. As we shown in Theorem 5.1, m must satisfy

2k−1 < m 6 2k.

Then a sufficient condition for m /∈ L is

m+ `− 1 > 2k.

Again, we analyze 4 cases of n: 4t, 4t+ 1, 4t+ 2 and 4t+ 3 where t ∈ N.

1. When n = 4t+ 1, we have m = 2t+ 1 and ` = t+ 1. Then we have

6t+ 2 > 6t+ 1 = n+m− 1 > 2k+1,

which gives
m+ `− 1 = 3t+ 1 > 2k.

Hence m /∈ L.

31

2. When n = 4t + 2, we have m = 2t + 1 and ` = t + 1. Then n + m − 1 > 2k+1 means
6t+ 2 > 2k+1. Again, we get

m+ `− 1 = 3t+ 1 > 2k.

So m /∈ L.

3. When n = 4t + 3, we have m = 2t + 2 and ` = t + 1. Then n + m − 1 > 2k+1 means
6t+ 4 > 2k+1. This leads to

m+ `− 1 = 3t+ 2 > 2k

and thus m /∈ L.

4. When n = 4t, we have m = 2t and ` = t. Then n+m− 1 > 2k+1 means 6t− 1 > 2k+1.
Since 6t− 1 and 2k+1 are integers, we have 6t− 1 > 6t− 2 > 2k+1. It follows that

m+ `− 1 = 3t− 1 > 2k.

If 3t − 1 > 2k, we obtain m /∈ L. Otherwise, if 3t − 1 = 2k, then m ∈ L only when
3 | (2k + 1). And

n = 4t =
4(2k + 1)

3

is the only n for this case.

According to this rarity, we may assume that if the initial input n of FNI(a(x), n) is not
in L, then the integers m1,m2,m3, . . . are not in L except those small ones such as mi = 2.
In this case, a recursive calls FNI(a(x),mi) requires 8F (2k−i) +O(2k−i) cost to perform the
two polynomial multiplications. The total cost becomes

If (n) = If (m1) + 8F (2k) + c2k

...

< 16F (2k) +O(2k).

Now we consider the average cost of FNI(a(x), n). For 2k−1 < n 6 2k, since

n+ dn/2e ≈ 3

2
n,

if n ∈ L then we approximately have
3

2
n 6 2k.

Hence we obtain

2k−1 < n 6
4

3
2k−1,

32

which means about 1/3 of the integers in the interval (2k−1, 2k] belong to L. If an n just
exceeds 2k−1 and is far from 2k, then FNI(a(x), n) will cost 10F (2k) +O(2k). Otherwise, its
cost will rise to 16F (2k)+O(2k). Suppose we randomly pick an integer n to run FNI(a(x), n).
After an adequate number of times, the total cost of this algorithm will be

1

3
10F (2k) +

2

3
16F (2k) +O(2k) = 14F (2k) +O(2k)

on average. If N denotes 2k, then the average complexity of FNI(a(x), n) is

14F (N) +O(N).

In fact, there is an alternative way to compute y(1−y ·b) by using fast Fourier transforms.
Since the DFT is a homomorphism, we can do calculations directly after the transforms of
y and b. Then we invert the result by the IDFT. As deg(y) 6 dn/2e− 1 and deg(b) 6 n− 1,
the total degree of y(1− y · b) must be at most

2dn/2e+ n− 3 6 2
n+ 1

2
+ n− 3 = 2n− 2.

Again, say N is a power of 2 such that N/2 < n 6 N . Then we have

N − 2 < 2n− 2 6 2N − 2,

which means 2N is the first power of 2 greater than 2n − 2. Therefore, it takes 3 FFT of
size 2N to compute y(1− y · b). Two for the DFTs of y, b and the other for the IDFT.

33

Algorithm Alternative Fast Newton Inversion Algorithm

Input: A polynomial a(x) with a0 6= 0 and a positive integer n.
Output: An order n approximation of a(x)−1.

ANI(a(x), n):

if n = 1 then return y ← 1/a0

m← dn/2e
y ← ANI((a(x),m)

b← a(x) mod xn

M ← the first power 2 greater than 2n− 2

ω ← a primitive M -th root of unity

W ← (1, ω, ω2, . . . , ωM/2−1)

(B0, B1, . . . , BM−1)← FFT(b,M,W)

(Y0, Y1, . . . , YM−1)← FFT(y,M,W)

for i from 0 to M − 1 do Ri = Yi(1−Bi · Yi) . the DFT of y(1− y · b)

V ← (1, ω−1, ω−2, . . . , ω−(M/2−1))

(h0, h1, . . . , hM−1)←M−1·FFT(
∑M−1

i=0 Rix
i,M, V)

y ← y +
∑n−1

i=m hix
i . h0 = h1 = · · · = hm−1 = 0

return y

The complexity of this alternative algorithm is clearer. We have the recurrence

Ia(n) = Ia(dn/2e) + 3F (2N) + c(2N).

Solving it in the same manner as before, we obtain

Ia(n) < 6F (2N) +O(2N)

= 12F (N) +O(N).

Compared with FNI(a(x), n), ANI(a(x), n) has an obvious advantage when n /∈ L. Although
it is less efficient when n ∈ L, on average it is a better choice than FNI(a(x), n). The
implementations of these two algorithms are given below.

The function NewtonFast(a,n,T,y,p,alpha,W) performs FNI(a, n) to compute y = a−1

mod xn for a given a ∈ Zp[x]. The input array T is used as temporary storage for intermediate
calculations. Its length should be at least 3M where M is the first power of 2 greater than
n+ dn/2e − 2.

int NewtonFast(int *a, int n , int *T, int *y, int p, int alpha, int *W)

{ if(n==1) { y[0] = modinv(a[0],p); return n; }

int m = (n+1)/2;

int N = NewtonFast(a, m, T, y, p, alpha, W);

while(N<=m+n-2) N *= 2 ;

34

LONG w = powmod(alpha, (p-1)/N, p);

W[0] = 1; int i;

for(i=1; i<N/2; i++) W[i] = (w * W[i-1]) % p;

polfill(a, n-1, N, T); FFT(N, 1, W, T, p, T+N);

polfill(y, m-1, N, T+2*N); FFT(N, 1, W, T+2*N, p, T+N);

for(i=0; i<N; i++) T[i] = ((LONG) T[i]) * ((LONG) T[i+2*N]) % p;

for(i=1; i<N/4; i++) { int t = W[i]; W[i] = p-W[N/2-i]; W[N/2-i] = p-t; }

W[N/4] = p-W[N/4];

FFT(N, 1, W, T, p, T+N);

LONG v = modinv(N, p);

for(i=0; i<=n-m-1; i++) T[i] = neg(v*T[i+m] % p, p);

for(i=1; i<N/4; i++) { int t = W[i]; W[i] = p-W[N/2-i]; W[N/2-i] = p-t; }

W[N/4] = p-W[N/4];

int j = 1;

if(N/2>n-2) j = 2;

N = N/j;

for(i=1; i<N/2; i++) W[i] = W[i*j];

polfill(T, n-m-1, N, T+N); FFT(N, 1, W, T+N, p, T);

for(i=0; i<N; i++) T[i] = ((LONG) T[i+N]) * ((LONG) T[i*j+2*N*j]) % p;

for(i=1; i<N/4; i++) { int t = W[i]; W[i] = p-W[N/2-i]; W[N/2-i] = p-t; }

W[N/4] = p-W[N/4];

FFT(N, 1, W, T, p, T+N);

for(i=0; i<=n-m-1; i++) y[i+m] = (j*v*T[i]) % p;

return N*j;

}

The function NewtonAlt(a,n,T,y,p,alpha,W) performs ANI(a, n) to compute y = a−1

mod xn for a given a ∈ Zp[x]. The input array T is used as temporary storage for intermediate
calculations. Its length should be at least 3M where M is the first power of 2 greater than
2n− 2.

int NewtonAlt(int *a, int n , int *T, int *y, int p, int alpha, int *W)

{ if(n==1) { y[0] = modinv(a[0],p); return n; }

int i;

int m = (n+1)/2;

int N = NewtonAlt(a, m, T, y, p, alpha, W);

while(N<=2*n-2) N *= 2;

LONG w = powmod(alpha, (p-1)/N, p);

W[0] = 1;

for(i=1; i<N/2; i++) W[i] = (w * W[i-1]) % p;

polfill(a, n-1, N, T); FFT(N, 1, W, T, p, T+N);

polfill(y, m-1, N, T+2*N); FFT(N, 1, W, T+2*N, p, T+N);

for(i=0; i<N; i++)

T[i] = (1+p-((LONG) T[i])*((LONG) T[i+2*N])%p)*(((LONG) T[i+2*N])) % p;

LONG v = modinv(N, p);

for(i=1; i<N/4; i++) { int t = W[i]; W[i] = p-W[N/2-i]; W[N/2-i] = p-t; }

W[N/4] = p-W[N/4];

FFT(N, 1, W, T, p, T+N);

for(i=m; i<=n-1; i++) y[i] = (v*T[i])%p;

return N;

}

35

6 Middle Product Optimization

In the previous section, we see that the algorithm FNI(a(x), n) takes 5 FFTs of size N to
compute (y(1 − y · b) mod xn) in the lucky case, when n ∈ L. In fact, such efficiency can
always be achieved independently of whether n belongs to L, by utilizing the middle product
optimization

Recall that y is an order m = dn/2e approximation of a(x)−1 and b = a(x) mod xn.
Since y · a(x) = 1 mod xm, we have

y · b = 1 + 0 · x+ 0 · x2 + 0 · x3 + · · ·+ 0 · xm−1 + gm · xm + gm+1 · xm+1 + · · ·+ gn+m−2 · xn+m−2

for some gi’s in F . In order to obtain

1− y · b mod xn = −gm · xm − gm+1 · xm+1 − · · · − gn−2 · xn−2 − gn−1 · xn−1

= −xm(gm + gm+1 · x+ · · ·+ gn−2 · xn−m−2 + gn−1 · xn−m−1),

we need to determine

gm + gm+1 · x+ · · ·+ gn−2 · xn−m−2 + gn−1 · xn−m−1.

Definition 6.1. Suppose F is a field and a(x) is a power series in F[[x]] with a0 6= 0. For
some integer n > 2, let b = a(x) mod xn, y = a(x)−1 mod xm where m = dn/2e. If

y · b =
n+m−2∑
i=0

gix
i,

then the polynomial
n−m+1∑
i=0

gm+ix
i

is called the middle product, denoted by MP.

In FNI(a(x), n), it takes 3 FFTs of size 2N to get MP because deg(y · b) 6 n + m − 2
and N/2 < n 6 N . In reality, we may just perform 3 FFTs of size N to determine MP.

Theorem 6.1. Let F, a(x), n, b,m and y be the same as defined above. Also, Let N be a
power of 2 such that N/2 < n 6 N and ω be a primitive N -th root of unity. If

FFT(b,N, ω) = (B0, B1, . . . , BN−1),

FFT(y,N, ω) = (Y0, Y1, . . . , YN−1),

Di = BiYi for i = 0, . . . , N − 1 and

(d0, d1, . . . , dN−1) = N−1FFT(
N−1∑
i=0

Dix
i, N, ω−1),

then we have

MP =
n−m+1∑
i=0

dm+ix
i.

36

Proof. By definition, if y · b =
∑n+m−2

j=0 gjx
j, then MP =

∑n−m+1
i=0 gm+ix

i. So we need to
show gj = dj for each j ∈ {m,m+ 1, . . . , n− 1}.
Notice that when n + m − 2 < N , this is just a normal FFT multiplication procedure, and
hence the claim must be true. Then we consider the case of n+m− 2 > N .
The first two FFTs evaluate b and y at the Fourier points

{1, ω, ω2, . . . , ωN−1}.

This means
(B0, B1, . . . , BN−1) = (b(1), b(ω), . . . , b(ωN−1)),

(Y0, Y1, . . . , YN−1) = (y(1), y(ω), . . . , y(ωN−1)).

Since these evaluations are homomorphic, we have

Di = BiYi

= b(ωi)y(ωi)

= (b · y)(ωi)

=
n+m−2∑
j=0

gj(ω
i)j

for 0 6 i 6 N − 1.
As n+m− 2 > N , we write

Di =
N−1∑
j=0

gj(ω
i)j +

n+m−2∑
j=N

gj(ω
i)j.

=
N−1∑
j=0

gj(ω
i)j +

n+m−2−N∑
j=0

gj+N(ωi)j+N

Due to wN = 1, we get

Di =
N−1∑
j=0

gj(ω
i)j +

n+m−2−N∑
j=0

gj+N(ωi)j(ωi)N

=
N−1∑
j=0

gj(ω
i)j +

n+m−2−N∑
j=0

gj+N(ωi)j(ωN)i

=
N−1∑
j=0

gj(ω
i)j +

n+m−2−N∑
j=0

gj+N(ωi)j

Since m = dn/2e 6 (n+ 1)/2 6 (N + 1)/2 = N/2 + 1/2 and m is an integer, we know that
m 6 N/2. Hence

N > 2m

37

−N 6 −2m

n+m− 2−N 6 n−m− 2

It follows that
n+m− 2−N < m.

So we obtain

Di =

(
n+m−2−N∑

j=0

gj(ω
i)j +

m−1∑
j=n+m−1−N

gj(ω
i)j +

N−1∑
j=m

gj(ω
i)j

)
+

n+m−2−N∑
j=0

gj+N(ωi)j

=
n+m−2−N∑

j=0

(gj + gj+N)(ωi)j +
m−1∑

j=n+m−1−N

gj(ω
i)j +

N−1∑
j=m

gj(ω
i)j

Then the IDFT (d0, d1, . . . , dN−1) = N−1FFT(
∑N−1

i=0 Dix
i, N, ω−1) interpolates the evalua-

tion points {D0, D − 1, . . . , DN−1} and returns

dj =

gj + gj+N for 0 6 j 6 n+m− 2−N,
gj for n+m− 1−N 6 j 6 m− 1,

gj for m 6 j 6 N − 1.

Therefore, dj = gj for each j ∈ {m,m+ 1, . . . , n− 1}. This completes the proof.

38

Algorithm Fast Newton Inversion by Middle Product

Input: A polynomial a(x) with a0 6= 0 and a positive integer n.
Output: An order n approximation of a(x)−1.

MPNI(a(x), n):

if n = 1 then return y ← 1/a0

m← dn/2e
y ← MPNI((a(x),m)

b← a(x) mod xn

N ← the first power 2 greater than n− 1

ω ← a primitive N -th root of unity

W ← (1, ω, ω2, . . . , ωN/2−1)

(B0, B1, . . . , BN−1)← FFT(b,N,W)

(Y0, Y1, . . . , YN−1)← FFT(y,N,W)

for i from 0 to N − 1 do Di = Bi · Yi
V ← (1, ω−1, ω−2, . . . , ω−(N/2−1))

(d0, d1, . . . , dN−1)← N−1·FFT(
∑N−1

i=0 Dix
i, N, V)

MP←
∑n−m−1

i=0 (dm+i)x
i

(F0, F1, . . . , FN−1)← FFT(−MP, N,W)

for i from 0 to N − 1 do Hi = Fi · Yi
(h0, h1, . . . , hN−1)← N−1·FFT(

∑N−1
i=0 Hix

i, N, V)

y ← y +
∑n−m−1

i=0 hix
i+m

return y

The algorithm MPNI(a(x), n) computes (y(1 − y · b) mod xn) by using 5 FFTs of size
N where N/2 < n 6 N . Hence we obtain

Im(n) = Im(dn/2e) + 5F (N) +O(N).

We have shown that this recurrence leads to

Im(n) < 10F (N) +O(N).

In comparison with ANI(a(x), n), the time efficiency is improved by 1/6, which is not so
remarkable. If we take space efficiency into consideration, then MPNI(a(x), n) shows an
advantage. It requires half as much space as ANI(a(x), n) does. The implementation of
MPNI(a(x), n) is presented below.

The function NewtonMP(a,n,T,y,p,alpha,W) performs MPNI(a, n) to compute y = a−1

mod xn for a given a ∈ Zp[x]. The input array T is used as temporary storage for intermediate
calculations. Its length should be at least 3N where N is the first power of 2 greater than
n− 1.

39

int NewtonMP(int *a, int n, int *T, int *y,int p, int alpha, int *W)

{ if(n==1) {y[0] = modinv(a[0], p); return n; }

int m = (n+1)/2;

int N = NewtonMP(a, m, T, y, p, alpha, W);

N *= 2 ;

LONG w = powmod(alpha, (p-1)/N, p);

W[0] = 1;

int i;

for(i=1; i<N/2; i++) W[i] = (w * W[i-1]) % p;

polfill(a, n-1, N, T); FFT(N, 1, W, T, p, T+N);

polfill(y, m-1, N, T+2*N);

FFT(N, 1, W, T+2*N, p, T+N);

for(i=0; i<N; i++) T[i] = ((LONG) T[i]) * ((LONG) T[i+2*N]) % p;

for(i=1; i<N/4; i++) { int t = W[i]; W[i] = p-W[N/2-i]; W[N/2-i] = p-t; }

W[N/4]=p-W[N/4];

FFT(N, 1, W, T, p, T+N);

LONG v = modinv(N, p);

for(i=0;i<=n-m-1;i++) T[i]= neg((v*T[i+m]) % p, p);

for(i=1; i<N/4; i++) { int t = W[i]; W[i] = p-W[N/2-i]; W[N/2-i] = p-t; }

W[N/4]=p-W[N/4];

polfill(T, n-m-1, N, T+N);

FFT(N, 1, W, T+N, p, T);

for(i=0; i<N; i++) T[i] = ((LONG) T[i+N]) * ((LONG) T[i+2*N]) % p;

for(i=1; i<N/4; i++) { int t = W[i]; W[i] = p-W[N/2-i]; W[N/2-i] = p-t; }

W[N/4]=p-W[N/4];

FFT(N, 1, W, T, p, T+N);

for(i=0; i<=n-m-1; i++) y[i+m] = (v*T[i]) % p;

return N;

}

7 Timings

Now we test the time efficiency of our power series inversion algorithms. For different integers
n, we generate a random polynomial a(x) of degree n− 1 in Zp[x] where

p = 2013265921 = 227 · 3 · 5 + 1.

We do timings for running the functions NewtonSlow(), NewtonFast(), NewtonAlt() and
NewtonMP() to compute an order n approximation of a(x)−1.

40

n if n ∈ F NewtonSlow NewtonFast NewtonAlt NewtonMP
1024 No 12ms 13ms 10ms 7ms
2048 No 49ms 27ms 22ms 16ms
4100 Yes 188ms 67ms 96ms 71ms
6600 No 488ms 120ms 96ms 72ms
8500 Yes 812ms 153ms 204ms 152ms
10000 Yes 1192ms 163ms 209ms 154ms
12000 No 1604ms 258ms 205ms 153ms
16384 No 2993ms 259ms 205ms 154ms
18000 Yes 3626ms 328ms 437ms 329ms
20000 Yes 4583ms 338ms 452ms 344ms
32768 No 12361ms 577ms 454ms 340ms

We see that the time for NewtonSlow() is quadratic and grows much more rapidly than
those of the three FFT-based algorithms. As we expected, when n ∈ L, NewtonFast() and
NewtonMP() almost require the same running time and are both faster than NewtonAlt() .
When n /∈ L, NewtonAlt() is faster than NewtonFast() but still slower than NewtonMP().

We construct a table of the time cost ratios to illustrate the efficiency.

n if n ∈ F NewtonFast : NewtonAlt NewtonMP : NewtonAlt
1024 No 1.300 0.700
2048 No 1.227 0.727
4100 Yes 0.698 0.739
6600 No 1.250 0.750
8500 Yes 0.750 0.745
10000 Yes 0.780 0.737
12000 No 1.258 0.746
16384 No 1.263 0.751
18000 Yes 0.751 0.753
20000 Yes 0.748 0.761
32768 No 1.271 0.749

As we discussed in section 4, the complexity of NewtonFast() is

If (n) = 10F (N) +O(N) when n ∈ L

and
If (n) = 16F (N) +O(N) when n /∈ L.

The complexity of NewtonAlt() is always

Ia(n) = 6F (2N) +O(N) > 12(N) +O(N)).

And the complexity of NewtonMP() is always

Im(n) = 10F (N) +O(N).

41

Theoretically, we should have

If (n) : Ia(n) < 10 : 12 ≈ 0.83 when n ∈ L

and
If (n) : Ia(n) < 16 : 12 ≈ 1.33 when n /∈ L.

For any n, we should have

Im(n) : Ia(n) < 10 : 12 ≈ 0.83.

Our timing results show that

If (n) : Ia(n) ≈ 0.75 when n ∈ L,
If (n) : Ia(n) ≈ 1.25 when n /∈ L and

Im(n) : Ia(n) ≈ 0.75,

which substantially matches the expectation.

8 Conclusion

The following table summarizes the complexity of the power series inversion algorithms in this
paper. We assume that N is the first power of 2 greater than n. Also, F (N) ∈ O(N logN).

Algorithm NewtonSlow NewtonFast (average) NewtonAlt NewtonMP
Complexity 2/3n2 +O(n) 14F (N) +O(N) 12F (N) +O(N) 10F (N) +O(N)
Space for T n 5N 6N 3N
Space for W 0 5/6N N N/2

Since MPNI(a, n) is the best algorithm in terms of time complexity, we should adopt it
as the power series inversion method in our polynomial division procedure. Once we get
the inverse of the reciprocal polynomial of the divisor, we use FFTMul(a, b) to compute
the quotient and remainder. Finally, we obtain a fast polynomial division algorithm whose
complexity is in O(N logN).

42

Algorithm Fast Polynomial Division

Input: a, b ∈ F [x] where F is a field and b 6= 0.
Output: q, r ∈ F [x] satisfying a = b · q + r where r = 0 or deg(r) < deg(b).

k ← deg(a)− deg(b) . k = deg(q)
if k < 0 then return q = 0, r = a

if deg(b) = 0 then return q = a/b0, r = 0

c← MPNI(br, k)
d← FFTMul(ar, c) mod xk+1

`← deg(d)
q ← xk−`dr

r ← a−FFTMul(b, q)
return q, r

References

[1] K.O. Geddes, S.R. Czapor and G. Labahn. (1992). Algorithms for Computer Algebra.
Norwell, MA: Kluwer Academic Publishers.

[2] Guillaume Hanrot, Michel Querica and Paul Zimmermann. The Middle Product Algo-
rithm, I. Applicable Algebra in Engineering, Communication and Computing. Volume
14, Issue 6, pp 415438, March 2004.

[3] Joseph A. Gallian. (2010). Contemporary Abstract Algebra. (7th ed.). Belmont, CA:
Brooks/Cole.

[4] Richard L. Burden and J. Douglas Faires. (2011). Numerical Analysis. (9th ed.). Bel-
mont, CA: Brooks/Cole.

43

