
Recovery of Exponents of Polynomials of
High Degree

by

Jesse Elliott

Undergraduate Honours Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Bachelor of Science

in the
Department of Mathematics

Faculty of Science

c© Jesse Elliott 2016
SIMON FRASER UNIVERSITY

Fall 2016

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,
research, education, satire, parody, criticism, review and news reporting is likely

to be in accordance with the law, particularly if cited appropriately.

Approval

Name: Jesse Elliott

Degree: Bachelor of Science (Mathematics)

Title: Recovery of Exponents of Polynomials of High
Degree

Examining Committee:

Michael Monagan
Senior Supervisor
Professor

Marni Mishna
Professor

ii

Abstract

We present a new algorithm for sparse multivariate polynomial interpolation. The algorithm
is a modification of the Ben-Or and Tiwari sparse interpolation algorithm for efficient ex-
ponent recovery. While Kaltofen in [1] has shown that the Ben-Or/Tiwari method can be
modified with a Kronecker substitution to reduce multivariate interpolation to a univariate
interpolation, his method requires a prime p > (d+ 1)n where d is the maximum partial de-
gree and n is the number of variables. For cases involving polynomials with many variables
or high degree, p exceeds the machines register size and arithmetic becomes expensive. We
present a modification that runs the algorithm modulo several machine primes. A modular
extension for exponent recovery is challenging because the modular exponent images have
arbitrary order. Our method involves choosing moduli that share a common divisor and
sorting the images modulo this divisor.

Keywords: Sparse polynomial interpolation; Chinese remainder theorem; Ben-Or and
Tiwari

iii

Acknowledgements

I would like to thank my supervisor Michael Monagan for his encouragement, patience, and
guidance. I would also like to thank Marni Mishna for the guidance that she provided. I
thank my parents for their loyal support.

iv

Table of Contents

Approval ii

Abstract iii

Acknowledgements iv

Table of Contents v

1 Introduction 1
1.1 Polynomial Interpolation . 1
1.2 Outline . 2

2 The Algorithm 3
2.1 Development and Context . 3

2.1.1 Zippel’s Sparse Interpolation Algorithm 3
2.1.2 Ben-Or and Tiwari’s Sparse Interpolation Algorithm 3
2.1.3 The Ben-Or and Tiwari Algorithm with Discrete Logarithms 4
2.1.4 Kronecker Substitutions . 5
2.1.5 The Generalized Chinese Remainder Theorem 7

2.2 An Example . 7
2.3 Modular Exponent Recovery . 9

2.3.1 Assigning An Order To the Exponent Images 9
2.3.2 Collisions . 10
2.3.3 Unique Exponents Modulo ∆ . 12
2.3.4 Collisions Modulo ∆ . 15

2.4 Pseudo Code . 20
2.5 Complexity Analysis . 20

3 Smooth Prime Numbers 22
3.1 An Algorithm for Generating Smooth Prime Numbers 22
3.2 Smooth Prime Estimates . 23
3.3 A Polynomial GCD Application . 26

v

4 Conclusions 30

Bibliography 31

vi

Chapter 1

Introduction

This thesis presents a new modular algorithm for sparse multivariate polynomial interpola-
tion. The algorithm is a modular extension of the Ben-Or and Tiwari sparse interpolation
algorithm to efficiently recover large exponents.

1.1 Polynomial Interpolation

Polynomial interpolation is a fundamental part of many algorithms in computer algebra.
These algorithms interpolate the polynomial from its values. Calculations with polynomi-
als often involve intermediate expressions swell, which means that intermediate expressions
require more space than the final result. Intermediate expressions can have exponential
growth resulting in inefficient space complexities. Polynomial interpolation is used in com-
puter algebra algorithms to avoid intermediate expression swell. Algorithms that involve
operations with polynomials, such as computing the greatest common divisor of two poly-
nomials or computing the determinant of a matrix of polynomials, ofter use polynomial
interpolation.

In practice, polynomials in many variables are often sparse.

Definition 1.1.1. Let f ∈ R[x1, x2, ..., xn], where R is a ring and deg f = d. Let t denote
the number of non-zero terms of f and Tmax denote the maximum possible terms of f . The
polynomial f is sparse if t � Tmax =

(n+d
d

)
. If a polynomial is not sparse, we say it is

dense.

The notation used in this definition was taken from [2].

Example 1. Let f, with deg f = d, be the following polynomial:

xd−1
1 x2 + xd−1

2 x3 + . . .+ xd−1
n x1 + 2.

The polynomial f has n+ 1 terms. Since n+ 1�
(n+d
d

)
, f is sparse.

1

Polynomials arising in practice generally are not as sparse as the example just given.
A more typical example would be detVn, the determinant of the n×n Vandermonde matrix.

Example 2. Let

V10 =


1 1 . . . 1
x1 x2 . . . x10
...

...
...

...
x9

1 x9
2 . . . x9

10



be the Vandermonde matrix V10. The determinant of V10 is a polynomial with 10! terms
and degree 45 (i.e. t = 10! and d = 45). The maximum number of terms of detV10

is
(10+45

45
)

= 29248649430. The density ratio t/Tmax = 0.000124, and therefore detV10 is
sparse.

Let p be a prime and let f ∈ Z[x1, x2, . . . , xn] be a multivariate polynomial with t > 0
non zero terms, and let di = degxi

f be the partial degrees of f . We assume a black box
representation of f . In the black box model we can only evaluate the polynomial at a point
modulo a prime p, as shown in Figure 1.

Figure 1.

(a1, a2, ..., an) ∈ Znp f(a1, a2, ..., an) ∈ Zp
f

On input (a1, a2, ..., an) ∈ Znp , the black box evaluates and outputs f(a1, a2, ..., an) ∈ Zp.
As an example, the black box f could represent a matrixA of polynomials in Z[x1, x2, . . . , xn],
where the matrix entries may be explicit polynomials or black boxes of polynomials. In the
black box model we usually assume we have degree bounds degxi

f and a term bound t.
Methods for determining both exist. In this thesis both requirements will be relaxed.

1.2 Outline

In chapter 2 we present the new algorithm. The chapter begins with the development
and context of the algorithm. Following this, we present an example of the algorithm.
Next, the method for exponent recovery is presented. Finally, we present pseudo code and
complexities. In chapter 3 we discuss smooth prime numbers and their importance and role
in the algorithm. In chapter 4 we present conclusions.

2

Chapter 2

The Algorithm

2.1 Development and Context

2.1.1 Zippel’s Sparse Interpolation Algorithm

Richard Zippel in 1979 developed the first sparse interpolation algorithm for multivariate
polynomials. See [3]. The algorithm is probabilistic and uses the fact that if a polynomial
evaluates to zero at a random point then there is a high probability that the polynomial is
identically zero. In 1990 Zippel improved his algorithm by using special evaluation points
in Zp. See [4]. The new algorithm is currently used in Maple, Magma, and Mathematica.
For sparse polynomials, the worst case complexity requires O(ndt) evaluations. For dense
polynomials, the average case complexity requires O(dt) evaluations.

2.1.2 Ben-Or and Tiwari’s Sparse Interpolation Algorithm

The Ben-Or and Tiwari algorithm was the first deterministic polynomial time algorithm for
sparse multivariate polynomial interpolation. The algorithm involves two main independent
stages. Monomials are determined in the first stage and coefficients are determined in the
second. The algorithm applies a technique for decoding BCH codes. The evaluations of the
target polynomial are used to compute an error locating polynomial. This polynomial is
referred to as the λ polynomial. In the first stage of the algorithm, the black box polynomial
is evaluated at (2i, 3i, . . . , pin) and the evaluations are used to determine the λ polynomial.
The roots of the λ polynomial are used to determine the monomials. In the second stage of
the algorithm, the coefficients are determined by solving a transposed Vandermonde system.
See [5] for details.

Let

f(x1, x2, . . . , xn) =
t∑
i=1

aiMi ∈ Z[x1, x2 . . . , xn]

3

be the target polynomial, withMi = xdi1
1 ·x

di2
2 · . . . ·xdin

n and ai ∈ Z\{0}. Let di = degxi
f be

the partial degrees of f . Let d = maxi degxi
f , and D = deg f . Let pn be the n’th prime.

Let
vj = f(2j , 3j , 5j , . . . , pjn) for j = 0, 1, . . . , 2t− 1.

Algorithm 1 Ben-Or and Tiwari:
Input: Black box f =

∑t
i=1 aiMi ∈ Z[x1, x2, . . . , xn].

Output: Monomials M1,M2, . . . ,Mt, and coefficients a1, a2, . . . , at.

1: Let vj = f(2j , 3j , 5j , . . . , pjn) for j = 0, 1, . . . , 2t− 1.
2: Compute λ(z) =

∏t
i=1(z −mi), from the evaluations vj .

3: Compute the roots of λ(z).
4: Factor the roots mi with trial division by 2, 3, ..., pn to obtain Mi.

For example, if mi = 720 = 6! = 24225 then Mi = x4
1x

2
2x

1
3.

5: Solve the following Vandermonde system for the coefficients a1, a2, ..., at.
1 1 . . . 1
m1 m2 . . . mt

...
...

...
...

mt−1
1 mt−1

2 . . . mt−1
t




a1

a2
...
at

 =


v1

v2
...
vt


.

The modular implementation of the Ben-Or and Tiwari algorithm runs steps 1,2, and
4, mod p, where p is a prime. To ensure that the monomials mod p are unique it is required
that p > mi ≤ 2d13d2 . . . pdn

n ≤ pDn , and therefore the size of the prime needed is O(D log pn).
The algorithm requires 2t ∈ O(t) evaluations if t is known. In their presentation, the authors
assumed a term bound T is given. In most applications a good term bound is not readily
available. Kaltofen shows in [6] how to modify steps 1 and 2 to determine t with high
probability using a few additional evaluation points. In this thesis we will assume t has
been determined.

2.1.3 The Ben-Or and Tiwari Algorithm with Discrete Logarithms

The discrete logarithm modification of the Ben-Or and Tiwari algorithm reduces the size of
the prime from O(D log pn) to O(n log d). The method involves an application of Fermat’s
little theorem and the computation of a discrete logarithm.

Definition 2.1.1. Let G = 〈g〉 be a cyclic group with order n. The discrete logarithm
problem for the group G can be stated as follows.

Let h ∈ G. Given G = 〈g〉, find an integer a such that ga = h.

4

The cyclic group in our application is the prime field of units Z∗p. At this time, there does
not exist a fast algorithm that will solve the discrete logarithm problem in general. However,
if the prime p is smooth, then the Pohlig-Hellman algorithm can be used to compute the
discrete logarithm efficiently. See [7].

Definition 2.1.2. A prime p is y-smooth if for every prime q|p− 1 we have q ≤ y.

The method requires a smooth prime p = q1q2 . . . qn+1 with qi > degxi
f and gcd(qi, qj) = 1,

and a random generator α ∈ Zp. The evaluation points (2j , 3j , 5j , . . . , pjn) are modified to

(ωj1, ω
j
2, . . . , ω

j
n) where ωi = α

(p−1)
qi . Notice that ωi = α

(p−1)
qi → ωqi

i = 1, by Fermat’s little
theorem. The substitution changes the roots mi of the λ polynomial. Since Mi =

∏n
k=1 x

dk
k

we now have that mi =
∏n
k=1 ω

dk
k . The partial degrees dk are determined by computing

discrete logarithms with base α as follows:

logαmi = logα
n∏
k=1

ωdk
k =

n∑
k=1

dk
p− 1
qk

= d1(q2q3 . . . qn) + d2(q1q3 . . . qn) + . . .+ dn(q1q2 . . . qn−1).

By taking the result modulo qk, for each 1 ≤ k ≤ n, the partial degrees dk of Mi are
determined.

The number of required evaluations does not change (i.e. 2t ∈ O(t) evaluations are
required). Since qi > degxi

f ≤ d, the algorithm requires that qi ≥ d+ 1 and therefore

p = q1q2 . . . qn + 1 ≥ (d+ 1)n + 1

⇒ p ≥ (d+ 1)n + 1

⇒ p > (d+ 1)n.

Therefore the size of the prime required is O(n log d).

2.1.4 Kronecker Substitutions

Kaltofen in [1] showed that the discrete logarithms method can be modified efficiently
if a Kronecker substitution is used to reduce multivariate interpolation to a univariate
interpolation and a prime p of the form 2ks+ 1 with s small is chosen.

Definition 2.1.3. Let D be an integral domain. Let f ∈ D[x1, x2, ..., xn], f 6= 0. Let
r = [r1, r2, ..., rn−1] ∈ Zn−1, ri > di = degxi

f. Let Kr : D[x1, x2, ..., xn] → D[x] be the
Kronecker substitution Kr(f) = f(x, xr1 , xr1r2 , ..., xr1r2...rn−1).

Note that Kr is invertible if ri > di, for 1 ≤ i ≤ n− 1.

5

Example 3. Let

f(x1, x2, x3, x4, x5, x6) = 2x1x
3
2x

5
3x

2
4x

9
5x6 + x6

2x
9
3x

9
4x5x

3
6

+ 3x9
1x

6
2x

9
3x6 − 5x1x

9
2x

2
4x

3
5x

5
6 − x1x2x3x

3
4x

6
5x

9
6.

Each partial degree of f is 9. Therefore r = [1, 10, 100, 1000, 10000, 100000] and

Kr(f) = f(x, x10, x100, x1000, x10000, x100000)

= 2x192531 + x319960 + 3x100969 − 5x532091 − x963111.

The Kronecker substitution is applied to the multivariate target polynomial f(x1, ..., xn) =∑t
i=1 aiMi ∈ Z[x1, ..., xn]. Let ri > di, for all 1 ≤ i ≤ n− 1, and let

g(x) = Kr(f) = f(x, xr1 , xr1r2 , ..., xr1r2...rn−1) =
t∑
i=1

aix
ei .

Our goal is to develop a modular extension of the Ben-Or and Tiwari algorithm for exponent
recovery. By reducing multivariate interpolation to a univariate interpolation we greatly
simplify this task. To interpolate f , we first interpolate g. If ri > di then Kr is invertible
and we can recover f easily. Note, in the black box model, to compute g(a), for a ∈ Zp, we
replace the input

(a1, a2, . . . , an) ∈ Znp

with
(a, ar1 , ar1r2 , . . . , ar1r2...rn−1) ∈ Znp .

To determine g = Kr(f), the prime p must still be larger than the monomials mi.
How large could the monomials be? Lets imagine a worst case scenario with monomial
xd1

1 x
d2
2 . . . xdn

n and determine a bound for p. Assuming d = max di,

Kr(xd1
1 x

d2
2 . . . xdn

n) = xd+d(d+1)+...+d(d+1)n−1

= xd((d+1)n−1
d

) = x(d+1)n−1

⇒ logα α(d+1)n−1 = (d+ 1)n − 1.

Therefore, p > (d+ 1)n suffices and the size of the prime needed is O(n log d) which is the
same as before the Kronecker substitution is applied.

The Kronecker substitution also simplifies the main algorithm. The evaluations are
simplified to vj = αj and the roots of the λ polynomial are simplified to mi = αei mod p−1.

6

Therefore the univariate exponents are determined by computing

logα(αei mod p−1) mod p = ei mod p− 1.

2.1.5 The Generalized Chinese Remainder Theorem

If f is a polynomial in many variables or high degree, the prime p > (d + 1)n will be very
large. The prime p can become large enough to exceed the register size of the computing
machine. In these cases arithmetic becomes expensive. The purpose of the method pre-
sented in this thesis is to reduce this expense. We present a modular extension that runs
the algorithm modulo several machine primes. A difficulty that we faced was the following.
Each time λ(z) =

∏t
i=1(z − αei mod pk−1) is computed and factored, the roots are assigned

a new order. The λ polynomial splits into linear factors and the order of the roots are
defined arbitrarily. Therefore, to recover the exponents, the images mod p− 1 first have to
be assigned a correct order. Our method involves choosing primes p1, p2, . . . , ps such that
p−1 share a common divisor. We choose our primes so that this divisor is large and sort the
exponents modulo this divisor. Since the moduli p− 1 are not relatively prime, to recover
the exponents, we use a generalized form of the Chinese remainder theorem which does not
require relatively prime moduli. The generalized Chinese remainder theorem guarantees
unique integers modulo the least common multiple of the moduli. We choose s prime so
that LCM(p1 − 1, p2 − 1, . . . , ps − 1) > (d + 1)n. In [8] Murao and Fujise also used the
generalized Chinese remainder theorem to develop a modular extension of the Ben-Or and
Tiwari algorithm.

2.2 An Example

Example 4. Let f ∈ Z[x, y, z, w] be the following polynomial:

f(x, y, z, w) = 194x227743y443802z28326w17525 − 227x101808y548145z89669w49883

+ 423x226283y436997z100540w34879.

After applying the Kronecker substitution we have

g(x) = Kr(f) = f(x, x227744, x124836962624, x12551233059179584)

= 194x219963895594998967455 − 227x626104352821493556816 + 423x437787009078870598347.

7

To illustrate the method, we choose primes p so that ∆ = 10 is a divisor of p − 1. The
primes we choose are the following:

p1 = 10 · 110539728 + 1

p2 = 10 · 7421875 + 1

p3 = 10 · 54824434 + 1.

Therefore we have

LCM(p1 − 1, p2 − 1, p3 − 1) = 224893129726884937500000

> 626104352821493556816 = deg g.

The exponents are first determined modulo p − 1 for primes p1, p2, and p3. We only show
these steps with p1. The process is the same with each prime.

1. We pick α = 22 ∈ Z1105397281 to be our generator, and evaluate vi = g(22i), for
0 ≤ i ≤ 2t− 1 = 5.

2. Next, we use these evaluations to compute the λ polynomial:

λ(z) = z3 + 434581602z2 + 759602492z + 574542741.

The λ polynomial can be computed with the Berlekamp Massey algorithm. See [9].

3. We compute the roots of λ with Rabin’s algorithm: 743370416, 462579879, 570262665.
See [10].

4. Now we take the discrete logarithm with base 22 using the Pohlig–Hellman algorithm:

log22(743370416) mod p1 = 516130347

log22(462579879) mod p1 = 647786256

log22(570262665) mod p1 = 393234495.

Notice that the exponents mod ∆ = 10 are distinct; they are {5, 7, 6}. Repeating steps 1
through 4 with primes p2 and p3 we obtain:

E1 = {393234495, 516130347, 647786256}

E2 = {14592455, 38567097, 56056816}

E3 = {18108647, 95513076, 507017295}

Now we can pair the images E1, E2, and E3 by sorting each set mod ∆ = 10. After pairing
the images we recover the exponents with the generalized Chinese remainder theorem.

8

Consider the matrix in figure 2. The exponent images are listed in each row with
increasing order modulo ∆ = 10. Notice the 10th digit in each row is sorted in increasing
order. Each column contain entries that are congruent modulo ∆ = 10 and that corresponds
to a single exponent. The arrows below each column point to an exponent recovered with
the generalized Chinese remainder theorem.

Figure 2. 
393234495 647786256 516130347
14592455 56056816 38567097
507017295 95513076 18108647


= E1

= E2

= E3

↓ ↓ ↘
E = {219963895594998967455, 626104352821493556816, 437787009078870598347}

5. The final step is to determine the coefficients a1, a2, and a3. To do this we solve the
following transposed Vandermonde system:

1 1 1
−169167301 −376042798 154252317
−315717630 −10068892 235190918



a1

a2

a3

 =


390

−293393302
486206426

 .
The values on the right of the system are the evaluations vi mod p1. The entries in the
Vandermonde matrix on the left are the roots of λ taken to consecutive powers. Solving
the system we get:

a1 = 194, a2 = 423, and a3 = −227.

2.3 Modular Exponent Recovery

2.3.1 Assigning An Order To the Exponent Images

Each time λ(z) =
∏t
i=1(z − αei mod pk−1) is computed and factored, the roots are assigned

a new order. The λ polynomial splits into linear factors and the roots are defined an
arbitrary order. Therefore, to recover the exponents, the images first have to be assigned a
corresponding order. With E denoting the set of exponents, the algorithm first computes
the modular images

E1 = {e mod p1 − 1 : e ∈ E}

E2 = {e mod p2 − 1 : e ∈ E}
...

Es = {e mod ps − 1 : e ∈ E}.

9

Our strategy for pairing the images is to choose primes p1, p2, . . . , ps so that a common
divisor ∆ divides pk − 1, for each 1 ≤ k ≤ s. We want ∆ large so the exponents are unique
modulo ∆. If the exponents are unique modulo ∆, they are also unique modulo pk − 1.
That is, each integer in an image set Ek will be congruent modulo pk − 1 to exactly one
exponent. Since ∆ divides pk − 1, this integer is congruent modulo ∆ to that exponent as
well. Therefore, by sorting the images modulo ∆ at the same time we pair the images with
correct exponents.

For 1 ≤ k ≤ s, let ek1, ek2, . . . , ekt denote the elements of Ek. We sort the elements of
Ek so that ek1 ≤∆ ek2 ≤∆ ... ≤∆ ekt, where, for x 6= y ∈ E, we say x ≤∆ y if x mod ∆ ≤ y

mod ∆.

Figure 3. 
e11 e12 . . . e1t

e21 e22 . . . e2t
...

...
es1 es2 . . . est


= E1 = E mod p1 − 1
= E2 = E mod p2 − 1

...
= Es = E mod ps − 1

↓ ↓ . . . ↓
e1 e2 . . . et = E

The matrix of images sorted modulo ∆ in figure 3 is a visual representation of the problem.

2.3.2 Collisions

It is possible that ei ≡ ej (mod pk − 1), for i 6= j. If this happens we have a collision and
|Ek| < |E|. We call this a p–collision. However, if we choose pk � t2, by the birthday
paradox, p–collisions are unlikely. A more serious problem is when ei ≡ ej (mod ∆), for
i 6= j.

Definition 2.3.1. Let {e1, e2, ..., et} be the target exponents, and ∆ an integer. If
eρ ≡ eσ (mod ∆), for some 1 ≤ ρ < σ ≤ t, we call this a ∆–collision.

Let X count the number of ∆–collisions.

Proposition 1. Pr{X = 0} = ∆!
(∆− t)!∆t

.

Proof. Let {e1, e2, ..., et} be the target exponents, and let ∆ be an integer. Assume that
{e1, e2, ..., et} are random integers in [0, (d + 1)n − 1] and therefore ei mod ∆ is random
mod ∆. If X = 0 then there are no collisions and each ei is unique mod ∆. Therefore, the
problem reduces to sampling t unique values with replacement from {0, 1, ...,∆− 1}. Since
there are ∆ possible values, there are

∆ · (∆− 1) · (∆− 2) . . . (∆− (t− 1))

10

ways all t values can be unique. Since there are ∆t choices we have

Pr{X = 0} = ∆ · (∆− 1) · (∆− 2) . . . (∆− (t− 1))
∆t

= ∆!
(∆− t)!∆t

.

Remark. If we take ∆ ≈ t2 then Prob{X = 0} ≈ .6 by proposition 1.

Let Xij be an indicator random variable such that

Xij =
{

1 if ei and ej have a ∆–collision,
0 otherwise.

Since X counts the number of ∆–collisions, X =
t−1∑
i=1

t∑
j=i+1

Xij .

Let Aij be the event that Xij = 1. Since Xij is an indicator random variable, we have that

E[Xij] = Pr{Aij} = 1
∆ .

Proposition 2. E[X] =
(t
2
)

∆ .

Proof. By properties of expectations and indicator random variables, we have the following:

E [X] = E

t−1∑
i=1

t∑
j=i+1

Xij


=

t−1∑
i=1

t∑
j=i+1

E [Xij]

=
t−1∑
i=1

t∑
j=i+1

Pr{Aij}

=
t−1∑
i=1

t∑
j=i+1

1
∆ =

(t
2
)

∆ .

The notation used in this proof was taken from [11].

Remark. If ∆ = t2 then
E [X] = 1

2 −
1
2t = 1

2

[
1− 1

t

]
∼ 1

2 .

Also, if ∆ = 2(l−1)t2, for l ∈ Z, then

E [X] = 1
2(l−1)t2

[
t2 − t

2

]
= 1

2l (1−
1
t
) ∼ 2−l.

11

Notice that we defined a ∆–collision to involve only a pair of values. It is possible to
have collisions modulo ∆ involving more than two exponents. However, such collisions are
unlikely. For the sake of doing the analysis we assume that ∆–collisions with more than 2
integers do not occur.

2.3.3 Unique Exponents Modulo ∆

Here we present our method for exponent recovery. This method requires that the exponents
are unique modulo ∆. Remember, ∆ is a divisor of the moduli pk−1. We use the generalized
Chinese remainder theorem to recover the exponents because it does not require relatively
prime moduli.

Theorem 1 (Generalized Chinese Remainder Theorem [12]). Let m1,m2, ...,ms be positive
integers, and let u1, u2, ..., us be any integers, and M = LCM(m1,m2, ...,ms). There exists
a unique integer u such that u ≡ ui(mod mi), for all 1 ≤ i ≤ s, and 0 ≤ u < M, if and
only if ui ≡ uj (mod gcd(mi,mj)), for all 1 ≤ i < j ≤ s.

Proof. Assume there exists an integer u, 0 ≤ u < M, such that u ≡ ui (mod mi),
for all 1 ≤ i ≤ s. Clearly, for all 1 ≤ i < j ≤ s, u ≡ ui (mod gcd(mi,mj)) and
u ≡ uj (mod gcd(mi,mj)), and therefore ui ≡ uj (mod gcd(mi,mj)).

Assume that ui ≡ uj (mod gcd(mi,mj)), for all 1 ≤ i < j ≤ s, and letMj = LCM(m1,m2, . . . ,mj).
Now, we need to determine

u = x1 +M1x2 + ...+Ms−1xs, where 0 ≤ xi <
Mi

Mi−1
.

Assume that x1, x2, ..., xj−1 have been determined. We can solve

xjMj−1 + xj−1Mj−2 + ...+ x1 ≡ uj (mod mj)

for xj as follows. Since xj−1Mj−2 + xj−2Mj−3 + ... + x1 ≡ uj−1 (mod mj−1), and ui ≡ uj

(mod gcd(mi,mj)), it follows that

xj−1Mj−2 + xj−2Mj−3 + ...+ x1 ≡ ui ≡ uj(mod gcd(mi,mj)), for all 1 ≤ i < j ≤ s.

Therefore,

LCM((m1,mj), (m2,mj), ..., (mj−1,mj)) = gcd(LCM(m1, ...,mj−1),mj)

= gcd(Mj−1,mj) divides uj − (xj−1Mj−2 + xj−2Mj−3...+ x1).

Let αj = uj − (xj−1Mj−2 + xj−2Mj−3...+ x1) and dj = gcd(Mj−1,mj). Then

xjMj−1
dj

≡ αj
dj

(mod mj

dj
)

12

and Mj−1
dj

(mod mj

dj
) is invertible. The inverse can be found with Euclid’s algorithm. There-

fore,
xj = (αj

dj
)(Mj−1

dj
)−1 (mod mj

dj
)

and we have u = x1 +M1x2 + ...+Ms−1xs satisfying our requirements.

Now, assume that two solutions u and v exist such that u ≡ v ≡ ui (mod mi), for 1 ≤ i ≤ s.
Then mi|u − v so that LCM(m1,m2, . . . ,ms) = M |u − v and therefore u ≡ v (mod M).
Therefore the solution is unique modulo M .

Example 5. Let u be an integer such that u ≡ 3 (mod 6) and u ≡ 5 (mod 10). Notice
that 3 ≡ 5 (mod gcd(6, 10) = 2). Therefore it follows by the generalized Chinese remainder
theorem that a unique integer modulo LCM(6, 10) = 30 exists. Notice that 15 mod 6 = 3
and 15 mod 10 = 5. Therefore u = 15 is a unique solution.

Now let u be an integer such that u ≡ 4 (mod 6) and u ≡ 5 (mod 10). Since 4 6≡ 5 (mod
2) it follows by the generalized Chinese remainder theorem that no solution u exists.

Theorem 2. Let m1 = ∆x1,m2 = ∆x2, ...,ms = ∆xs, and M = LCM(m1,m2, ...,ms).
Let E be a set of t non negative integers. Let E1, E2, ..., Es be sets such that, Ek = {x mod
mk : x ∈ E}, 1 ≤ k ≤ s. If the elements of E are distinct modulo ∆, then there exists exactly
t integers, u1, u2, ..., ut such that

(i) 0 ≤ ui < M ,
(ii) for each ui, there exist exactly s integers e1i, e2i, ..., esi such that e1i ∈ E1, e2i ∈

E2, ..., esi ∈ Es, and ui ≡ eki(mod mk), for all 1 ≤ k ≤ s.

Proof. Since the elements of E are distinct mod ∆, they must also be distinct mod mk, for
all 1 ≤ k ≤ s. If this were not the case, if ∃ x 6= y ∈ E such that x ≡ y (mod mk), then,
since ∆|mk, it follows that x ≡ y (mod ∆) and this is a contradiction. Therefore, the values
of Ek are distinct mod mk and |Ek| = t.

For x 6= y ∈ E, we say x <∆ y if x mod ∆ < y mod ∆. Since E contains distinct elements
mod ∆, we can sort E into a list of elements e1, e2, ..., et such that e1 <∆ e2 <∆ ... <∆ et.

Now consider each set Ek. Let ek1, ek2, ..., ekt be the elements of Ek defined as follows:
ek1 = e1 mod mk, ek2 = e2 mod mk . . . ekt = et mod mk. Since ∆|mk, we have that
e1 ≡ ek1 (mod ∆), e2 ≡ ek2 (mod ∆) . . . et ≡ ekt (mod ∆). Since E contains distinct
elements mod ∆, each element ei in E is congruent mod ∆ to exactly one element in Ek
(namely ei mod mk). Therefore, since e1 <∆ e2 <∆ ... <∆ et it follows from the definition
of Ek that ek1 <∆ ek2 <∆ ... <∆ ekt.

We can therefore order the elements of E1, E2, ..., Es in a matrix where every column con-

13

tains entries that are equal mod ∆.

e11 e12 e13 e14 ... e1t

e21 e22 e23 e24 ... e2t
...

...
...

...
es1 es2 es3 es3 ... est


= E1

= E2
...

= Es

By definition we have that, for all 1 ≤ i ≤ t, and all 1 ≤ k ≤ s, ei ≡ eki (mod mk).
Therefore, it follows by the generalized Chinese remainder theorem that, eki ≡ eli (mod
gcd(mk,ml)), for k < l, and there exists integers u1, u2, ..., ut such that 0 ≤ ui < M and
ui ≡ eki (mod mk), for all 1 ≤ k ≤ s.

Furthermore, The integers u1, u2, ..., ut are incongruent mod M . If this were not the case, if
∃ ρ < σ ∈ {1, ..., t}, such that uρ ≡ uσ (mod M), then uρ ≡ uσ (mod mk), for all 1 ≤ k ≤ s,
and thus uρ ≡ uσ (mod ∆), uρ ≡ ekρ (mod ∆), and uσ ≡ ekσ (mod ∆), which implies that
ekρ ≡ ekσ (mod ∆), contradicting ekρ <∆ ekσ.

The proof of theorem 2 illustrates our method for recovering the exponents.

Algorithm 2 Generalized Chinese Remainder Algorithm: GCHREM(~u, ~m)
Input: u1, ..., un and m1, ...,mn, where ui ≡ uj(mod gcd(mi,mj)), 1 ≤ i < j ≤ n.
Output: u and M such that u ≡ ui(modmi), for all 1 ≤ i ≤ n, and 0 ≤ u < M.

1: if n = 1 then
2: return u1 mod m1,m1.

3: else
4: V,M ← GCHREM(u1, ..., un−1,m1, ...,mn−1).
5: Solve sM + tmn = gcd(M,mn) = d, for t and d, using the extended euclidean

algorithm.
6: b ←(un − V)/d.
7: modulus← mn/d.

8: X ← tb mod modulus.
9: return M ·X + V,M ·modulus.

10: end if

14

Algorithm 3 Exponent Recovery: ER(~E,~m,∆)
Input: Sets E1, E2..., Es integers m1 = ∆x1, . . . ,ms = ∆xs, and ∆.
Output: E such that E mod mi = Ei, or FAIL.

1: if |E1 mod ∆| 6= |E1| then
2: return FAIL.
3: end if
4: Sort E1, E2, ..., Es mod ∆.
5: for i← 1, t do
6: x,M←GCHREM([E1i, ..., Esi], [m1, ...ms]).
7: E ←E ∪ x.
8: end for
9: return E.

2.3.4 Collisions Modulo ∆

In this section we present details of a possible second method for exponent recovery that
permits a relatively small number of ∆–collisions. The strategy for pairing the modular
images again involves sorting the images modulo ∆. We sort the elements eki ∈ Ek so that
ek1 ≤∆ ek2 ≤∆ . . . ≤∆ ekt and order the elements in the following matrix:


e11 e12 e13 e14 ... e1t

e21 e22 e23 e24 ... e2t
...

...
...

...
es1 es2 es3 es3 ... est


= E1

= E2
...

= Es

.

After sorting the images modulo ∆, the entries of each column are congruent modulo ∆.
However, if the exponents are not unique modulo ∆, each ∆–collision will result in a pair of
adjacent columns with entries congruent modulo ∆. A correct exponent can be recovered
from some combination of entries y1 ∈ E1, y2 ∈ E2, . . . , ys ∈ Es from adjacent columns
with congruent entries. However, we don’t know what the combination is. Each column that
does not correspond to a ∆–collision will contain the modular images of a target exponent.

For adjacent columns corresponding to a ∆–collision, we take all combinations of entries
that satisfy the generalized Chinese remainder theorem allowing for values to be constructed
which do not correspond to an exponent. These superfluous values will be assigned a zero
coefficient in the final stage of the extended Ben-Or/Tiwari algorithm. Let s1, s2, . . . , st′ be
the superfluous values and let S = {e1, . . . , et, s1, . . . , st′} where t′ ≤ t.

15

Let

g(x) =
t∑
i=1

aix
ei +

t′∑
i=1

bix
si , where bi = 0 for 1 ≤ i ≤ t′.

In the last step of the algorithm where the coefficients are determined, the following Van-
dermonde system will be solved for the coefficients a1, . . . , at, b1, . . . , bt′ :



1 1 . . . 1
...

... . . .
...

mt−1
1 mt−1

2 . . . mt−1
t

mt
1 mt

2 . . . mt
t

...
... . . .

...
mt+t′−1

1 mt+t′−1
2 . . . mt+t′−1

t





a1
...
at

b1
...
bt′


=



v0
...

vt−1

vt
...

vt+t′−1


.

Since the matrix on the left is a transposed Vandermonde matrix we have that

detM = det


1 . . . 1
... . . .

...
mt+t′−1

1 . . . mt+t′−1
t

 =
∏
i>j

mi −mj .

We know that detM 6= 0⇔ m1, . . . ,mt are distinct. We know that m1, . . . ,mt are distinct
because the exponents are distinct. Therefore a1, . . . , at, b1, . . . , bt′ is a unique solution.
And, since

g(x) =
t∑
i=1

aix
ei

is the true polynomial, it must be that b1, . . . , bt′ are all zero.
For m1 = ∆x1,m2 = ∆x2, ...,ms = ∆xs, the generalized Chinese remainder problem is

to solve for an integer u, where u ≡ e mod mi, for 1 ≤ i ≤ s. Notice that if ∆, x1, . . . , xs

are pairwise relatively prime then

u ≡ e (mod mi = ∆xi = LCM(∆xi)), for all 1 ≤ i ≤ s,

⇔ u ≡ e (mod ∆) and u ≡ e (mod xi), for all 1 ≤ i ≤ s.

Furthermore, if ∆, x1, . . . , xs are pairwise relatively prime, then LCM(m1,m2, . . . ,ms)
= ∆ · x1 · x2 · . . . · xs. Therefore, in this special case, the generalized Chinese remainder
problem has an equivalent standard Chinese remainder problem. That is, we can recover
the exponents with the standard Chinese remainder theorem. With p1− 1 = ∆x1, p2− 1 =

16

∆x2, . . . , ps − 1 = ∆xs, the modular image sets become

E∆ = {e mod ∆ : e ∈ E}

E1 = {e mod x1 : e ∈ E}
...

Es = {e mod xs : e ∈ E}.

Theorem 3. Let m1 = ∆x1,m2 = ∆x2, ...,ms = ∆xs, and M = LCM(m1,m2, ...,ms).
Let E be a set of t non negative integers with maxE < M . Let E1, E2, ..., Es be sets such
that Ek = {x mod mk : x ∈ E}, for 1 ≤ k ≤ s. Assume that exactly two elements of E are
congruent modulo ∆. Let S denote the set of integers y1, y2, . . . , y|S| that have the following
properties:

(i) 0 ≤ yi < M ,
(ii) for each yi, there exist exactly s integers e1i, e2i, ..., esi such that e1i ∈ E1, e2i ∈

E2, . . . , esi ∈ Es, and yi ≡ eki(mod mk), for all 1 ≤ k ≤ s.

Note that S is the set of solutions. If ∆, x1, x2, . . . , xs are pairwise relatively prime and
|E1| = |E2| = . . . = |Es| = t then |S| = 2s + t− 2.

Proof. Let a and b denote the two elements of E that are congruent modulo ∆. Consider
the set E \ {a, b}. This set contains t − 2 unique elements modulo ∆. Therefore, since
maxE < M , by theorem 2 there exists t− 2 elements with properties i) and ii).

Now consider {a, b} ⊆ E. Since |E1| = |E2| = . . . = |Es| = t, we know that a 6≡
b (mod mk), for any 1 ≤ k ≤ s. Since ∆, x1, x2, . . . , xs are relatively prime, for all 1 ≤ k ≤
s,

a ≡ b(mod ∆) and a ≡ b (mod xk)

⇔ a ≡ b (mod LCM(∆ xk) = ∆xk = mk).

Since a ≡ b (mod ∆) and a 6≡ b (mod mk) it follows that a 6≡ b (mod xk) for any
1 ≤ k ≤ s.

Consider the following matrix with 2 columns and s+ 1 rows:

a mod ∆ = b mod ∆
a mod x1 b mod x1

...
...

a mod xs b mod xs

 .

Consider all combinations of s+1 integers from the matrix where 1 integer is taken from each
row. Since a ≡ b (mod ∆) the entries in the first row are the same. Since a 6≡ b (mod xk),

17

for any 1 ≤ k ≤ s, the entries in the remaining rows are distinct. It follows that 2s distinct
combinations can be taken. Each is a combination of distinct integers. Therefore it follows
by the standard Chinese remainder theorem that the integers of each combination are the
residues of a unique integer modulo ∆ · x1 · . . . · xs.

For an integer y, since

y ≡ a (mod ∆) and y ≡ a (mod xk)

⇔ y ≡ a (mod mk)

and

y ≡ b (mod ∆) and y ≡ b (mod xk)

⇔ y ≡ b (mod mk),

it follows that there are 2s combination y1 ∈ E1, y2 ∈ E2, . . . , ys ∈ Es with y ≡ yi(mod
mi), for all 1 ≤ i ≤ s, such that y is unique modulo M .

Therefore |S| = 2s + t− 2.

Remark. It follows from theorem 3 that, if ∆, x1, . . . , xs are relatively prime, then for each
∆–collision 2s − 2 superfluous values will be constructed.

If ∆, x1, x2, . . . , xs are not relatively prime then it is often the case that
|S| < |X| · (2s − 2), where |X| counts the number of ∆–collisions and s is the number
of primes. This is because the condition of the generalized Chinese remainder theorem
eliminates many possible combinations.

Example 6. With ∆ = 10, let

E1 = {3887, 3919, 4657, 6328, 6866, 8056} = E mod p1 − 1 = 10 · 810

E2 = {16, 69, 328, 407, 1456, 4487} = E mod p2 − 1 = 10 · 475

E3 = {578, 3237, 9706, 9907, 10069, 10516} = E mod p3 − 1 = 10 · 1225

E4 = {2427, 4347, 4866, 6188, 9229, 11626} = E mod p4 − 1 = 10 · 1573

In this example x1 = 810, x2 = 475, x3 = 1225, and x4 = 1573. These values are not rela-
tively prime. Notice that 810·475·1225·1573

LCM(810,475,1225,1573) = 125000. We can check to see if the expo-
nents are unique modulo ∆ by reducing modulo ∆ as follows: E1 mod ∆ = {7, 9, 7, 8, 6, 6}.
Also, E1 sorted mod ∆ = [6, 6, 7, 7, 8, 9]. Notice the exponents have 2 ∆–collisions. Figure
4 lists the images sorted modulo ∆ = 10. The arrows below each block of two columns
point to the corresponding integers that can be constructed.

18

Figure 4. 
6866 8056 3887 4657 6328 3919
16 1456 407 4487 328 69

9706 10516 3237 9907 578 10069
4866 11626︸ ︷︷ ︸ 2427 4347︸ ︷︷ ︸ 6188 9229


= E1

= E2

= E3

= E4

↓y {14356728157, 19409265157, 43201159487, 48253696487}
{14356728157, 19409265157, 43201159487, 48253696487}

Notice that the sets in figure 4 have only 4 out of 16 = 24 integers. This is because
only 4 out of 16 combinations satisfy the condition of the generalized Chinese remainder
theorem. This is the case for both collisions. The remaining two columns do not correspond
to a collision and this is presented in figure 5.

Figure 5. 
6866 8056 3887 4657 6328 3919
16 1456 407 4487 328 69

9706 10516 3237 9907 578 10069
4866 11626 2427 4347 6188︸ ︷︷ ︸ 9229︸ ︷︷ ︸


= E1

= E2

= E3

= E4

↓y 35319883819
2318104828

Remark. If ∆, x1, . . . , xs are not relatively prime then LCM(p1 − 1, p2 − 1, . . . , ps − 1) is
smaller and therefore more primes are required to recover the exponents.

19

2.4 Pseudo Code

Algorithm 4 High Degree Polynomial Interpolation:
Input: Black box f =

∑t
i=1 aiMi ∈ Z[x1, x2, . . . , xn].

Output: Polynomial f with monomials M1,M2, . . . ,Mt and coefficients a1, a2, . . . , at.

1: Apply g(x) = Kr(f) =
∑t
i=1 aix

ei , with r = [r1, r2, . . . , rn−1] and ri > deg xi f .
2: Pick s smooth primes pi = ∆xi+1 with ∆ ≥ t2 and LCM(p1−1, . . . , ps−1) > (d+1)n,

where d = maxi degxi
f .

3: for k ← 1, s do
4: Pick a random generator α ∈ Zpk

and evaluate vj = g(αj), for 0 ≤ j ≤ 2t− 1.
5: Compute λ(z) =

∏t
i=1(z − αei mod pk−1) from the evaluations vj .

6: Compute the roots of λ(z) : αe1 mod pk−1, αe2 mod pk−1, ..., αet mod pk−1 ∈ Zpk.
7: Compute logα(αei mod pk−1) mod pk = ei mod pk − 1 determining
Ek = {e mod pk − 1 : e is a target univariate exponent}.

8: end for
9: if |E1 mod ∆| = |E1| then

10: E ← ER(E1, . . . , Es, p1 − 1, . . . , ps − 1,∆).
11: else
12: Set ∆ = 2 ·∆ or 3 ·∆ and goto step 2.
13: end if
14: Invert the Kronecker map = K−1

r (g) = f determining monomials M1,M2, . . .Mt.

15: Solve the following transposed Vandermonde system for the coefficients a1, a2, ..., at:
1 1 . . . 1
m1 m2 . . . mt

...
...

...
...

mt−1
1 mt−1

2 . . . mt−1
t




a1

a2
...
at

 =


v1

v2
...
vt

 .

16: Return f .

2.5 Complexity Analysis

In this section some complexity details are given. The complexities are in terms of the
number of arithmetic operations in Zp. Let F (t) denote the cost of one evaluation of the
black box polynomial f . The algorithm requires 2t ∈ O(t) evaluations and therefore the
total cost of evaluations are F (t)O(t) = O(F (t)t). From the evaluations, the Berlekamp
Massey algorithm can be used to compute the λ polynomial in O(t2) arithmetic operations.
See [9] for detials. Rabin’s algorithm can be used to factor the λ polynomial in O(t2 log p)

20

arithmetic operations. See [10] for details. We use the Pohlig–Hellman algorithm to solve
the discrete logarithm. If p = pf1

1 p
f2
2 . . . pfk

k + 1 then the cost of running the Pohlig-Hellman
algorithm is

O(
k∑
i=1

fi(log p+√pi)).

Details for the Pohlig–Hellman algorithm can be found in [7]. In the last step of the
algorithm a Vandermonde system is solved for the coefficients. This can be done in O(t2)
arithmetic operations. See [4] for details.

We summarize these costs in the following table and where it is relevant we compare with
fast timings. In the table, let M(t) denote the cost of multiplying two degree t polynomials
in Zp[t].

Step Fast Classical
Evaluations NA O(F (t)t)
Computing λ(z) O(M(t) log t) O(t2)
Factoring λ(z) O(M(t) log t log p) O(t2 log p)
Computing the discrete logarithm NA O(

∑k
i=1 fi(log p+√pi))

Solving the Vandermonde system O(M(t) log t) O(t2)

Let BT (t) denote the number of arithmetic operations in Zp used in the modified Ben-Or
and Tiwari algorithm. That is, BT (t) denotes the sum of the costs in the chart above,
which could be either fast or classical. If we need p > (d+ 1)n then the cost of arithmetic
in Zp is O(log2 p) and therefore O(n2 log2 d). Assume there are s primes chosen with

LCM(p1 − 1, p2 − 1, ..., ps − 1) > (d+ 1)n

and assume that each prime is a machine prime. With this assumptions, arithmetic has
constant cost.

Theorem 4. The number of arithmetic operations in Zp that algorithm High Degree Poly-
nomial Interpolation does is

O(s ·BT (t) + ts2)

Proof. The cost of running High Degree Polynomial Interpolation is the number of primes
s multiplied by BT (t) plus the cost of applying the Chinese remainder theorem. Given s
primes, the cost of using the Chinese remainder theorem to recover each individual exponent
is O(s2). See [13]. Since there are t exponents the cost of recovering every exponent is
tO(s2) ∈ O(ts2). Therefore, the cost is O(s ·BT (t) + ts2).

21

Chapter 3

Smooth Prime Numbers

3.1 An Algorithm for Generating Smooth Prime Numbers

The algorithm High Degree Polynomial Interpolation computes a discrete logarithm over
Z?p. The computation is efficient if p is smooth and the Pohlig–Hellman algorithm is used.

Definition 3.1.1. A prime p is y-smooth if for every prime q|p− 1 we have q ≤ y.

In this chapter we focus on the problem of obtaining enough smooth prime numbers for the
algorithm to work efficiently.

The algorithm requires s smooth primes with LCM(p1−1, p2−1, . . . , ps−1) > (d+1)n,
where each prime has the form p = ∆x+ 1 where ∆ > t2 and p� t2 so that there are few
∆–collisions and no p–collisions.

22

Algorithm 5 Generate Smooth Prime Numbers:
Input: 1 ≤ 2∆ ≤ 232, d, and y, where 2∆ is smooth and y is small.
Output: y−smooth primes q1, q2, ..., qs such that ∆|qi−1 and LCM(q1−1, . . . qs−1) > d,

or FAIL.

1: L← 2∆.
2: i← 1.
3: PRIMES ← [] .
4: while L ≤ d and i < 169 do
5: Let pi be the i’th prime.
6: i← i+ 1.
7: k ← k such that 260 ≤ 2∆ · pki < 263.

8: n← b 263

2∆·pk
i

c.
9: while L ≤ d and n > 1 do

10: if n is y–smooth then
11: if 2∆ · pki · n+ 1 is prime then
12: if 2∆ · pki · n+ 1 6∈ PRIMES then
13: PRIMES ← PRIMES ∪ {2∆ · pki · n+ 1}.
14: L← LCM(L, pki · n).
15: n← 1.
16: end if
17: end if
18: end if
19: n← n− 1.
20: end while
21: end while
22: if L > d then
23: return PRIMES.

24: else
25: return FAIL.

3.2 Smooth Prime Estimates

In this section we discuss and present estimates for smooth prime densities.

23

Definition 3.2.1. An integer x is y-smooth if for every prime p|x we have p ≤ y. The
number of y-smooth integers is

Ψ(x, y) =
∑

integers m≤x such that m is y−smooth
1.

Example 7. We computed Ψ(230, 1024) = 63750580.

For u = log x
log y , Karl Dickman in [14] proved that

Ψ(x, y) ∼ xρ(u),

where ρ(u) is the Dickman-de Bruijn ρ-function.

Definition 3.2.2. The Dickman-de Bruijn ρ-function is the solution to the following
delay differential equation

uρ(u) + ρ(u− 1) = 0,

where ρ(u) = 1, 0 ≤ u ≤ 1.

We can solve for ρ(u) as follows:

uρ(u) + ρ(u− 1) = 0

⇒ uρ(u) = −ρ(u− 1)

⇒ ρ(u) = −ρ(u− 1)
u

⇒ ρ(u) = −
∫ u

1

ρ(v − 1)
v

dv + c.

Notice that ρ(1) = −0 + c and ρ(1) = 1, so we have that c = 1. Therefore

ρ(u) =

1 0 ≤ u ≤ 1

1−
∫ u

1
ρ(v−1)
v dv u > 1

.

Notice that, for 1 ≤ u ≤ 2,

ρ(u) = 1−
∫ u

1

1
v
dv = 1− [log u− log 1] = 1− log u.

The Dickman function becomes increasingly complicated for higher values of u.
There is also a way to express ρ(u) as an integral delay equation. We will show this,

but first consider the following proposition.

Proposition 3. Let f be continuous on [a, b], and F (x) =
∫ x
a f(t) dt, a ≤ x ≤ b. Then,

∫ b

a
f(t− 1) dt =

∫ b−1

a
f(t) dt+

∫ a

a−1
f(t) dt.

24

Proof. By the fundamental theorem of calculus we have that
∫ b

a
f(t− 1) dt = F (b− 1)− F (a− 1)

=
∫ b−1

a
f(t) dt−

∫ a−1

a
f(t) dt =

∫ b−1

a
f(t) dt+

∫ a

a−1
f(t) dt.

Let P (u) =
∫ x
0 ρ(t)dt, for x ≥ 0. Using proposition 3, we can express ρ(u) as an integral

delay equation as follows:

uρ(u) = −ρ(u− 1)

⇒
∫ u

1
tρ(t)dt =

∫ u

1
[−ρ(t− 1)]dt

⇒ uρ(u)− 1 · ρ(1)−
∫ u

1
ρ(t)dt = −

∫ u

1
ρ(t− 1)dt,

which follows from applying integration by parts. Now we have that

uρ(u) =
∫ u

1
ρ(t)dt−

∫ u

1
ρ(t− 1)dt+ 1

=
∫ u

1
ρ(t)dt− (

∫ u−1

1
ρ(t)dt+

∫ 1

0
ρ(t)dt) + 1,

which follows by proposition 3. Now,∫ u

1
ρ(t)dt− (

∫ u−1

1
ρ(t)dt+

∫ 1

0
ρ(t)dt) + 1

=
∫ u

1
ρ(t)dt− (

∫ u−1

1
ρ(t)dt+ (1− 0)) + 1 =

∫ u

1
ρ(t)dt−

∫ u−1

1
ρ(t)dt

= P (u)− P (u− 1) =
∫ u

u−1
ρ(t)dt,

which follows by the fundamental theorem of Calculus. Therefore we have that uρ(u) =∫ u
u−1 ρ(t)dt and thus

ρ(t) = 1
u

∫ u

u−1
ρ(t)dt.

Now we use the Dickman function to estimate smooth prime densities.

Definition 3.2.3. The number of y-smooth primes is

π(x, y) =
∑

integers p≤x such that p−1 is y−smooth
1.

Example 8. We computed π(230, 1024) = 4816780.

25

Since Dickman proved that Ψ(x, y) ∼ xρ(u), it has been conjectured that π(x, y) ∼ π(x)ρ(u)
where π(x) is the number of primes less than or equal to x. Our goal is to provide some
evidence that enough smooth primes exist for the algorithm to work efficiently. Using the
conjecture we can make the following estimates:

π(263, 1024) ≈ 1.346744909 · 1012,

π(2127, 1024) ≈ 2.670631580 · 1021.

The following theorem by Friedlander provides some additional evidence.

Theorem 5 (Friedlander J.B., 1989 [15]). If α >
√
e/2 = 0.303... and y > xα then there

exists c > 0 such that
π(x, y) > c

x

log x.

Theorem 5 is helpful for the following reasons. The prime number theorem states that

π(x) ∼ x

log x.

Therefore, theorem 5 tells us that, for every α > .303, we can find a constant c such that
π(x, y) > cπ(x). It is believed that theorem 5 holds for all α > 0. We computed a table of
these constants for α = .5, α = .33, α = .25, and α = 0.2. Each constant in the table was
computed from a density of 106 primes.

α = 0.5 α = 0.33 α = 0.25 α = 0.2
y x c x c x c x c

216 232 0.33759 248 0.05600 264 0.00595 280 0.000446
218 236 0.33343 254 0.05578 272 0.00559 290 0.000388
220 240 0.32862 260 0.05418 280 0.00562 2100 0.000402
222 244 0.32845 266 0.05355 288 0.00555 2110 0.000421
224 248 0.32661 272 0.05307 296 0.00554 2120 0.000420
226 252 0.32560 278 0.05260 2104 0.00545 2130 0.000385
228 256 0.32463 284 0.05171 2112 0.00543 2140 0.000405
230 260 0.32260 290 0.05190 2120 0.00526 2150 0.000411

Notice that theorem 5 hold for α = .2. Obviously as α becomes smaller the fraction of xα

smooth integers also becomes smaller. About .04% of primes are xα=.2 smooth.

3.3 A Polynomial GCD Application

26

In this section we present an application of the algorithm for computing greatest common
divisors of polynomials over finite fields Zp. In particular, we investigate the number of
smooth primes that the algorithm requires when used for this application.

Let A,B ∈ Z[x0, x1, . . . , xn] and let G = GCD(A,B). Let degA = dA, degB = dB,

and let d = max{dA, dB}. Let LC(A) and LC(B) denote the leading coefficients of A
and B. Assume that A and B are primitive (i.e. gcd{ai} = 1 and gcd{bi} = 1). The
greatest common divisor problem is to determine G from input polynomials A and B. Hu
and Monagan in [16] have developed a sparse greatest common divisor algorithm that uses
interpolation. The algorithm works by first computingH = ∆×G, and ∆, and then deriving
G by computing H/∆. The greatest common divisor algorithm uses sparse polynomial
interpolation to interpolate the coefficients hi(x1, ..., xn) of H.

Kronecker substitutions are used to reduce multivariate polynomial GCD problems in
Z[x0, x1, ..., xn] to bivariate GCD problems in Z[x, y].

Definition 3.3.1. Let D be an integral domain. Let f ∈ D[x0, x1, . . . , xn], f 6= 0. Let
r = [r1, r2, ..., rn−1] ∈ Zn−1, ri > di = degxi

f. Let Kr : D[x0, x1 . . . , xn] → D[x, y] be the
Kronecker substitution Kr(f) = f(x, y, yr1 , yr1r2 , ..., yr1r2...rn−1).

The problem is reduced to computing GCD(Kr(A),Kr(B)) = Kr(G) from which G can be
recovered by inverting the Kronecker substitution.

The algorithm is run mod p, and evaluations are taken over Zp.

Definition 3.3.2. Let p be a prime and let f ∈ Z[x, y]. Define φp : Z[x, y]→ Zp[x, y] to be
the morphism φp(f) = f mod p.

Not all primes can be used to derive G. Consider the following example.

Example 9. Let A = x2
0 + x2

1, B = x2
0 + x2

1 + p, and G = x0 + x1. Thus, we have that
Kr(A) = x2 + y2, Kr(B) = x2 + y2 + p, and Kr(G) = x+ y.

GCD(φp(Kr(A)) φp(Kr(B)))

= GCD(φp(x2 + y2), φp(x2 + y2 + p))

= GCD(x2 + y2, x2 + y2 + 0) = x2 + y2.

Since GCD(φp(Kr(A)), φp(Kr(B))) 6= 1, this image cannot be used to recover G.

Definition 3.3.3. Let p be a prime. If degxGCD(φp(Kr(A)), φp(Kr(B))) > 0 then we
say that p is unlucky.

We now proceed to determine a bound on the number of unlucky primes. In doing this
we use properties of the Sylvester resultant.

27

Definition 3.3.4. Let D be an integral domain, and let

f = anx
n + an−1x

n−1 + . . .+ a0 ∈ D[x], a0 6= 0,

g = bnx
n + bn−1x

n−1 + . . .+ b0 ∈ D[x], b0 6= 0.

The Sylvester matrix of f and g, denoted Syl(f, g), is the following (n + m) × (n + m)
matrix:

Syl(f, g) =



a0 b0

a1 a0 b1 b0

a2 a1
. . . b2 b1

. . .
... . . . a0

... . . . b0
... a1

... b1

a1 bm

an
... bm

...
.

an bm



The empty spaces are filled with zeros. The Sylvester resultant of f and g with respect
to x, denoted resx(f, g), is the determinant of the Sylvester matrix. The Sylvester resultant
is a polynomial with coefficients of f and g. See [17].

If LCx(Kr(A))LCx(Kr(B)) mod p 6= 0 then

degxGCD(φp(Kr(A)), φp(Kr(B))) > 0

⇔ resx(φp(Kr(A)), φp(Kr(B))) = 0

and resx(φp(Kr(A)), φp(Kr(B))) = φp(resx(Kr(A),Kr(B))).

Therefore, p is unlucky if and only if p|resx(Kr(A),Kr(B)). See [17] for more details. Thus,
we need a bound on the height of resx(Kr(A),Kr(B)) to bound the maximum number of
unlucky primes. However, A and B are unknown. We know A and B and we know that
A|A and B|B.

Let S be the Sylvester matrix of Kr(A) and Kr(B), and R = resx(Kr(A),Kr(B)). We
have that degx0 A ≤ degx0 A ≤ d and degx0 B ≤ degx0 B ≤ d so that the dimensions of S
are no larger than 2d× 2d. Let m = 2d. We use the following theorem from Goldstein and
Graham to determine a bound on the height of resx(Kr(A),Kr(B)).

28

Lemma 1 (Goldstein and Graham, 1974 [18]). Let A be an n×n matrix of polynomials in
Z[x]. Let B be the matrix of one norms of the entries in A. That is, let Bij = ||Aij ||1. Let
H be the Hadamard’s bound for the determinant of B. Then ||detA||∞ ≤ H.

LetA′ be the matrix of one norms of the entries of the matrix S. Let h = max{||A||∞, ||B||∞}.
We can determine h because A and B are inputs to the GCD algorithm. We can use the
following theorem to determine a bound on the height of A and B.

Theorem 6 (A.O. Gelfond [19]). Suppose P1(x1, x2, ..., xs), ..., Pm(x1, x2, ..., xs) are arbi-
trary polynomials in s variables with heights H1, H2, ...,Hm. Denoting the height and degrees
of the polynomial P (x1, x2, ..., xs) = P1(x1, ..., xs)...Pm(x1, ..., xs) by H and n1, n2, ..., ns in
the variables x1, x2, ..., xs, respectively, we will have the inequality

H ≥ e−nH1H2 . . . Hm, n =
s∑
i=1

ni.

We have by theorem 6 that max{||A||∞, ||B||∞} ≤ e(n+1)dh = H, where we let H denote
this bound. The entries of S are polynomials Sij =

∑tij

k=1 σiy
i, where |σi| < e(n+1)dh = H.

The maximum possible number of terms that each entire Sij could have is (d + 1)n which
is the maximum degree after applying the Kronecker substitution. Let

||Sij ||1 < (d+ 1)nH = Γ, where d = max{dA, dB}.

Finally, we can apply Goldstein and Graham’s theorem to find a bound on the height of R
as follows:

||R||∞ ≤ H(A′) =
m∏
i=1

√√√√ m∑
j=1
||Sij ||2 ≤

m∏
i=1

√√√√ m∑
j=1

Γ2 =
m∏
i=1

√
mΓ2 = m

m
2 Γm = m

m
2 (d+1)nmHm.

Now lets consider a very large GCD problem. Let h = 264,m = 2d = 40, and n = 8.
With these numbers we can determine H. After determining H we can determine Γ. We
have that ||R||∞ ≤ m

m
2 Γm which is a very large number. We can determine a bound on

the number of unlucky 63 bit primes by calculating dlog263 m
m
2 Γme = 230. Therefore, this

problem can have no more than 230 unlucky primes.

29

Chapter 4

Conclusions

Zippel’s sparse interpolation algorithm is currently used in Maple, Magma, and Mathemat-
ica. The modified Ben-Or and Tiwari algorithm requires fewer evaluations than Zippel’s
algorithm. This is especially true for sparse polynomials. However, for polynomials with
high degree or many variables the size of the prime required for the modified Ben-Or and
Tiwari algorithm is large and may exceed the computing machines register size. This makes
arithmetic expensive. The modular extension of the Ben-Or and Tiwari algorithm for expo-
nent recovery presented in this thesis will efficiently handle polynomials in many variables or
high degree. The algorithm can also be implemented in parallel where the exponent images
modulo mk are computed in parallel. Wang and Weber in [20] investigated the parallelism
of Zippel’s algorithm and found that it has limitations.

The algorithm presented in this thesis requires s primes pk such that pk − 1 share a
common divisor ∆. This common divisor ∆ takes up approximately half of the prime. Con-
sequentially more primes are required to recover exponents. There may be another method
that requires fewer primes.

30

Bibliography

[1] E. Kaltofen. Fifteen years after dsc and wlss2. Proc. of PASCO, pages 10–17, 2010.

[2] Go Soo. Sparse polynomial interpolation and the fast euclidean algorithm – masters
thesis. Simon Fraser University, 2012.

[3] R. Zippel. Probabilistic algorithms for sparse polynomials. In Proc. of EUROSAM,
79:216–226, 1979.

[4] R. Zippel. Interpolating polynomials from their values. J.Symb. Comput., 9(3):375–403,
1990.

[5] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynomial
interpolation. In Proc. of the twentieth anual ACM symposium on Theory of computing,
pages 301–309, 1988.

[6] W.Lee E. Kaltofen and A.A. Lobo. Early termination in ben-or/tiwari sparse inter-
polation and a hybrid of zippel’s algorithm. Proc. of ISSAC 00, ACM Press, pages
192–201, 2000.

[7] S. Pohlig and M. Hellman. An improved algorithm for computing logarithms over gf(p)
and its cryptographic significance. IEEE Transactions on Information Theory, IT-24,
1, 1978.

[8] Hirokazu Murao and Tetsuro Fujise. Modular algorithm for sparse multivariate poly-
nomial interpolation and its parallel implementation. J. Symb. C, 21:377–396, 1996.

[9] J. L. Massey. Shift-register synthesis and bch decoding. IEEE Trans. on Information
Theory, 15:122–127, 1969.

[10] Michael Rabin. Probabilistic algorithms in finite fields. SIAM J. Comput, 9:273–280,
1979.

[11] R. Rivest C. Stein T. Cormen, C. Leiserson. Introduction to algorithms, 3rd edition.
The MIT Press Cambridge, Massachusetts, pages 118–120, and 130–133, 2009.

[12] D. Knuth. The art of computer programming - semi-numerical algorithm. IEEE
Transactions on Information Theory, 2, 1981.

[13] George Labahn. Keith O. Geddes, Stephen R. Czapor. Algorithms for computer alge-
bra. Kluwer Academic Publishers, 1992.

[14] K. Dickman. On the frequency of numbers containing prime factors of a certain relative
magnitude. Ark. Mat. Astr. Fys., 21:1–14, 1930.

31

[15] J. B. Friedlander. Shifted primes without large prime factors. Number Theory and
Applications Banff AB, pages 393–401, 1988.

[16] J. Hu and M. Monagan. A fast parallel sparse polynomial gcd algorithm. Proc. ISSAC,
ACM Press, pages 271–278, 2016.

[17] D. O’Shea. D. Cox, J.Little. Ideals, varieties and algorithms. Springer Verlag, pages
162–168, 1991.

[18] A. Goldstein and G. Graham. A hadamard type bound on the coefficients of a deter-
minant of polynomials. SIAM Review, 21:394–395, 1974.

[19] A. O. Gelfond. Translated by Leo F. Boron. Transcendental and algebraic numbers.
Dover Publications, Mineola, New York, 21:135–139, 1960.

[20] Kenneth Weber. Mohamed Rayes, Paul Wang. Parallelization of the sparse modular
gcd algorithm for multivariate polynomials on shared memory multiprocessors. Proc.
of ISSAC, ACM Press, 94:66–73, 1994.

32

	Approval
	Abstract
	Acknowledgements
	Table of Contents
	Introduction
	Polynomial Interpolation
	Outline

	The Algorithm
	Development and Context
	Zippel's Sparse Interpolation Algorithm
	Ben-Or and Tiwari's Sparse Interpolation Algorithm
	The Ben-Or and Tiwari Algorithm with Discrete Logarithms
	Kronecker Substitutions
	The Generalized Chinese Remainder Theorem

	An Example
	Modular Exponent Recovery
	Assigning An Order To the Exponent Images
	Collisions
	Unique Exponents Modulo
	Collisions Modulo

	Pseudo Code
	Complexity Analysis

	Smooth Prime Numbers
	An Algorithm for Generating Smooth Prime Numbers
	Smooth Prime Estimates
	A Polynomial GCD Application

	Conclusions
	Bibliography

