
A new algorithm for improved
determinant computation with a view

towards resultants
by

Khalil Shivji

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of
Honours Bachelor of Science

in the
Department of Mathematics

Faculty of Science

c© Khalil Shivji 2019
SIMON FRASER UNIVERSITY

Fall 2019

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Approval

Name: Khalil Shivji

Degree: Honours Bachelor of Science (Mathematics)

Title: A new algorithm for improved determinant
computation with a view towards resultants

Supervisory Committee: Dr. Michael Monagan
Supervisor
Professor of Mathematics

Dr. Nathan Ilten
Course Instructor
Associate Professor of Mathematics

Date Approved: December 13, 2019

ii

Abstract

Certain symbolic matrices can be highly structured, with the possibility of having a block
triangular form. Correctly identifying the block triangular form of such a matrix can greatly
increase the efficiency of computing its determinant. Current techniques to compute the
block diagonal form of a matrix rely on existing algorithms from graph theory which do not
take into consideration key properties of the matrix itself. We developed a simple algorithm
that computes the block triangular form of a matrix using basic linear algebra and graph
theory techniques. We designed and implemented an algorithm that uses the Matrix Deter-
minant Lemma to exploit the nature of block triangular matrices. Using this new algorithm,
the computation of any determinant that has a block triangular form can be expedited with
negligible overhead.

Keywords: Linear Algebra; Determinants; Matrix Determinant Lemma; Schwartz-Zippel
Lemma; Algorithms; Dixon Resultants

iii

Dedication

For my brothers,
Kassim, Yaseen, and Hakeem.

iv

Acknowledgements

I would like to acknowledge Dr. Michael Monagan for providing his support throughout the
entire research project. This project would not have been possible without his commitment
towards developing whatever was needed to move forwards. Additionally, I would like to
thank Dr. Nathan Ilten for taking the time to create a rewarding research course, and for
giving us some insight as to what it is like to be a mathematician. I would also like to thank
David Sun, who began this research project with me and someone who positively influenced
many ideas throughout the project. Lastly, I would like to acknowledge NSERC and Simon
Fraser University for giving me the special opportunity to participate in research.

v

Table of Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 History . 1
1.2 Resultants . 2
1.3 Structured matrices . 3

2 Tools, Methods, & Vocabulary 5
2.1 Notation . 5
2.2 Motivation for Dixon’s Method . 6
2.3 Dixon’s method . 7
2.4 The area of a triangle . 12

3 Determinants 15
3.1 An overview of methods . 15
3.2 Minor expansion by Gentleman & Johnson 15
3.3 Characteristic polynomials by Berkowitz . 17
3.4 A comparison of methods . 18

4 Algorithms for revealing block structure 20
4.1 Divide and Conquer . 20
4.2 Phase 2: Link . 21

vi

4.3 Phase 1: Clarify . 25
4.3.1 Upper block triangular matrices . 25
4.3.2 Explanation and proof for Clarify algorithm 27

5 Empirical Results 30

6 Conclusion 33

Bibliography 35

Appendix A Code 37

vii

List of Tables

Table 2.1 Elimination techniques 1 . 7
Table 2.2 Elimination techniques 2 . 7

Table 3.1 Numerical determinant computation methods 18
Table 3.2 Symbolic determinant computation methods 19

Table 5.1 Systems information for Dixon matrices 31
Table 5.2 Block structure and multiplication count 32

viii

List of Figures

Figure 2.1 Heron’s problem . 12

Figure 3.1 Code for random symbolic matrices 19

Figure 4.1 Plot of speedup from computing block diagonal form of A′ 22
Figure 4.2 Transforming a matrix into block diagonal form 22

ix

Chapter 1

Introduction

1.1 History

From robotics [CLO15, chapter 3] to geodesy [PZAG08], to control theory [Pal13], systems
of polynomial equations have the power to model complex problems. A solution of a system
of polynomial equations might identify the optimal placement of an antenna on a satellite.
It could help robots navigate through space more effectively, giving rise to machines more
capable then ever before. These polynomial systems, and the methods for solving them,
have helped realize countless modern advances across a variety of domains.

Elimination theory is concerned with developing methods and techniques for solving
systems of polynomial equations. These techniques revolve around the idea that we can
generate new polynomial equations from a given collection of polynomials that involve
fewer variables. Under certain circumstances which will be discussed later on, the solution
sets of these new polynomials give us a hint as to what the solution to the original system
looks like.

Definition 1.1.1. [GCL92, chapter 9] A solution (or root) of a system of j polynomial
equations in r variables

pi(x1, x2, . . . , xr) = 0, 1 ≤ i ≤ j. (1.1)

over a field k is an r-tuple (α1, α2, . . . , αr) from a suitably chosen extension field of k such
that

pi(α1, α2, . . . , αr) = 0, 1 ≤ i ≤ j. (1.2)

Given a large system of equations in many variables, it will most likely be difficult to
see what the solution could be just by inspection. The general idea of elimination theory
is to eliminate variables from a system of polynomial equations to produce new equations
in a subset of the original variables. The advantage is that these new equations have fewer
variables, which provides us with the opportuniyt to find a partial solution. Given that
certain properties hold, these partial solutions can then be extended to full solutions as we
have described them in Definition 1.1.1.

1

When considering linear equations, a solution can be obtained using the combination of
Gaussian elimination and back substitution. Systems of equations that are row equivalent
share the same solution set [Lay06]. Reducing the system to row echelon form generates
new polynomials from the lower rows that have fewer variables. From this point of view, it
is easier to see a potential solution or lack thereof.

Gaussian Elimination provides us with a method of systematically eliminating variables
from a system of linear equations. What about systems of polynomials that contain non-
linear equations?

Throughout the 19th and 20th century mathematicians such as Sylvester [Has07, chapter
5] and Macaulay [Mac03] improved our understanding of solutions sets of polynomial sys-
tems, and produced general methods for obtaining solution sets to multivariate non-linear
systems. They developed methods to produce what are known as eliminants. These are
objects, often polynomials, that would give them an indication of whether such a solution
exists. These eliminants include the familiar quadratic discriminant b2− 4ac, which tells us
whether the polynomial ax2 + bx + c has any real solutions, and whether it has a double
root.

In 1965, Bruno Buchburger introduced his algorithm for computing a Gröbner ba-
sis [Buc76]. Once a Gröbner basis of an ideal defined by a collection of polynomials has
been computed, one can more easily answer many questions related to the existence of so-
lutions, and how to generate them. It is one of the main tools used in elimination theory
today, as computer algebra systems have become powerful enough to handle relatively large
systems. Buchburger’s algorithm can be seen as a non-linear analogue of Gaussian elimi-
nation, so it is not hard to believe that it can help us uncover the solution to a system of
polynomial equations [CLO15].

1.2 Resultants

We would like to preface this discussion on resultants by saying that it is not the purpose
of this thesis to give a complete and rigorous treatment of resultant theory. We wish to
provide a basic introduction to the ideas and techniques that we found helpful in computing
resultants. This will provide some motivation as to why computing resultants is important.

We begin by providing the most general definition of a resultant. While this definition
may seem abstract, its power lies in its generality. While we will not discuss all types
of resultants, this definition has allowed mathematicians such as Sylvester [CLO15] and
Macaulay [Mac03] to formulate resultants in different contexts.

Definition 1.2.1. [GKZ94, Chapter 12] The resultant of k+1 polynomials f0, f1, . . . , fk in
k variables is defined as an irreducible polynomial in the coefficients of f0, f1, . . . , fk, which
vanishes whenever these polynomials have a common root.

2

In 1908, Dixon defined a sequence of steps that allows us to eliminate one variable from
a system of two polynomial equation [Dix08]. One year later, he published a similar paper
describing a procedure to eliminate two variables from three equations [Dix09]. Almost a
century later in 1994, Kapur, Saxena, and Yang generalized Dixon’s method for systems F
of n + 1 polynomial equations with n variables [KSY94]. Their idea, known as the KSY-
variant of Dixon’s method, eliminates n variables, leaving us with a polynomial in the
coefficients of F . This polynomial is known as the Dixon resultant. Dixon’s method uses a
matrix called Dixon’s matrix, a matrix whose determinant produces a Dixon resultant. It is
similar in many respects to other matrix-based resultant formulations such as the Bèzout’s
matrix [Cay57] and Sylvester’s matrix. Because the Dixon’s method relies on determinant
computations, its time complexity is more manageable than that of Buchburger’s algorithm.
This is not to say computing symbolic determinants is always fast enough for practical
applications. We require a plethora of tools and tricks to compute symbolic determinants
efficiently, some of which we will see in chapters 3 and 4.

1.3 Structured matrices

It is possible to formulate many geometric problems as systems of polynomial equations.
Computing the Dixon resultant for such systems can provide us with information about
the solution to these system. Viewed in the correct context, the solution of such a system
can give us information about the volume of tetrahedron [KSY94], or prove geometric the-
orems [Kap97],[CLO15, Chapter 6]. Although it has not yet been detailed in the literature,
the Dixon matrix of systems of polynomial equations that represent geometric problem are
often highly structured. This is most likely due to some underlying structure of the polyno-
mials. These Dixon matrices frequently present themselves as row and column permutations
of block triangular matrices. These matrices have what is known as a block triangular form.
However, these matrices can be quite large, so determining if a matrix has a block triangular
form is no trivial task. A large portion of our research went into developing an algorithm
that is able to detect this structure within matrices.

If a matrix has a block triangular form, then many matrix computations become easier
to perform. Most importantly for us, the determinant of a block triangular matrix is the
product of the determinants of each sub-matrix along the main diagonal [Dym13]. Since
each one of these sub-matrices is smaller, we can more efficiently compute the determinant
of large matrices by splitting the problem into many smaller determinant computations.
This is especially true if the matrix is a symbolic one, that is to say, it has polynomials
in its entries. Dixon matrices are symbolic matrices that can have a block triangular form.
Determinant computations can become infeasible if this block structure is not exploited.
The challenge is that it is not trivial to compute a block triangular form, even if we know

3

a priori the matrix has one. Therefore it is crucial that we have an efficient method for
detecting and computing block triangular forms in matrices.

Our new algorithm consists of two phases, with the first phase containing two key lemmas
that allow us to perform inexpensive operations on matrices. The first phase utilizes the
Matrix Determinant Lemma (MDL), which gives us the ability to update the determinant
of a matrix after changing some of its entries without recomputing the entire determinant.
The second phase uses the Schwartz-Zippel Lemma (SZL), which assures us that when we
evaluate a symbolic matrix at random values, the image we obtain is an accurate one with
high probability. We will go into greater depth as to what an accurate image means, but
for now we will keep things simple and just say that this image will satisfies some desirable
properties. The key idea is that we can look at the structure of the inverse of an image
of a matrix (using MDL) to see which entries affect the determinant. If the matrix has a
block triangular form, then we may set equal to zero all entries not within the blocks of the
original matrix to simplify it. From there it becomes trivial for the second phase to detect
the hidden block structure of the original matrix.

This thesis begins with a general discussion about Dixon’s method, and then it spends
the majority of the time on determinant computation techniques. Chapter 2 begins with an
introduction to the notation and vocabulary that is used throughout the thesis. We then
present data that motivates the use of Dixon’s method, as well as an outline of Dixon’s
method. This section concludes with a basic example to solidify our understanding before
moving on to more specific topics. Chapter 3 is entirely devoted to determinant computation
techniques. Given that the Dixon resultant is the determinant of a symbolic matrix, it
is crucial that we are well equipped to compute determinants efficiently. We describe a
variety of determinant methods, and provide data to compare and contrast them. Chapter
4 presents our main contribution to the research area. We present a new method for testing
whether a matrix has a block diagonal form, along with pseudo-code and a proof. In Chapter
5 we display a table of data about Dixon matrices that was collected during our time
experimenting. This highlights the value in using Dixon’s method, especially for larger
polynomial systems. We conclude with chapter 6, where we communicate open questions,
summarize the thesis, and provide an assortment of references for further reading material.

4

Chapter 2

Tools, Methods, & Vocabulary

For definitions related to matrices, we follow the conventions seen in Linear Algebra in
Action [Dym13]. For notation related to polynomials we refer the reader to Introduction to
algebraic geometry [Has07].

2.1 Notation

We use k and F to denote fields, and R will denote a ring. When we are referring to matrices
we will always use F, while we will use k when we speak about polynomials and systems of
polynomials.

We use F and C to refer to a system of polynomial equations and a collection of polyno-
mials respectively. Depending on the system, it might have indeterminates which we do not
wish to consider as variables. We call these indeterminates parameters of the system, and
they belong to the coefficient ring. We denote the parameters of a system with using c =
{a, b, . . .}, where c is a finite list of symbols. Hence the parameters belong to the coefficient
ring k[c]. For the entire thesis, we only consider systems F which have a finite number of
equations, variables, and parameters.

We can view multivariate polynomials as univariate polynomials whose coefficients are
polynomials in the other variables. Given a ring R, a polynomial f ∈ R[x1, . . . , xn] can
be viewed recursively as a polynomial in R[x2, . . . , xn][x1]. An example illustrates this idea
nicely.

Example 2.1.1. [GCL92, chapter 2] The polynomial a(x, y) = 5x3y2 − x2y4 − 3x2y2 +
7xy2 + 2xy − 2x+ 4y4 + 5 ∈ Z[x, y] may be viewed as a polynomial in the ring Z[y][x]:

a(x, y) = (5y2)x3 − (y4 + 3y2)x2 + (7y2 + 2y − 2)x+ (4y4 + 5). (2.1)

We can also consider a(x, y) as a polynomial in the ring Z[x][y]:

a(x, y) = (−x2 + 4)y4 + (5x3 − 3x2 + 7x)y2 + (2x)y(−2x+ 5). (2.2)

5

This recursive view of polynomials is important when solving problems with Dixon’s
method, as it gives us the freedom to move variables and parameters in and out of the
coefficient ring depending on how we want to view the problem.

The set of integers modulo p will be represented as Fp. The list X = [x1, x2, . . . , xn] is
an ordered list of variables. The list X̄ = [x̄1, x̄2, . . . , x̄n] is also an ordered list of variables
where X ∩ X̄ = ∅.

An n-tuple < a1, a2, . . . , an > represents a column vector, and < a1, a2, . . . , an >
T is its

corresponding row vector. The narrow angle brackets are reserved for ideals; 〈C〉 is the ideal
generated by the collection of polynomials C.

If A is any matrix, then aij will represent the entry in row i, column j of A. If instead
we use Aij , we are referring to some sub-matrix in A whose dimensions will be made clear
in each instance. The order of a square matrix is the number of rows it has. A matrix is
sparse if at least 50% of its entries are equal to 0.

An arbitrary Dixon matrix will be denoted by Θ, while a sub-matrix of maximal rank
in Θ is denoted by Θ′. Note that for certain Dixon matrices Θ is full rank, hence Θ = Θ′.
The determinant of Θ′ is known as Dixon’s resultant, and we represent it with DR.

We make a distinction between the concept of a particular algorithm, and the implemen-
tation of said algorithm. If we write ’Gaussian elimination’, we are referring to the abstract
notion of the algorithm. However if we write GaussianElimination, we are referring to a
specific implementation of Gaussian elimination, usually writte in Maple.

We will present various tables of data throughout the thesis. In order to save space, we
will abbreviate many words and/or sentences. The number of terms in a polynomial f is
denoted nops(f) or #f . We shorten Gaussian elimination with G.E. where convenient.

2.2 Motivation for Dixon’s Method

Before we explain the intricacies of Dixon’s method, we would like to provide some mo-
tivation as to why we prefer this method over other techniques. Buchburger’s algorithm
for computing a Gröbner basis is used to compute elimination ideals. Since resultants lie
in certain elimination ideals, this algorithm can also be used to produce a resultant for a
systems of multivariate polynomial equations.

Wu’s method of characteristic set is another method that produces a resultant of a
system of equations. It takes a collection of polynomials on input, and returns a collection of
polynomials which help to produce solutions to the original system of polynomial equations.

We ran these two algorithms, and Dixon’s method, on systems of randomly generated
quadratic and cubic polynomials. We timed each one, and present a table for direct com-
parison.

The timings for Gröbner Basis were done using Maple’s Groebner[Basis] command,
while the timings for triangular sets were done using Maple’s Triangularize command.

6

As we will see shortly, Dixon’s method requires the computation of determinants, in
particular Dixon’s matrix. For the timings in Table 2.1 and 2.2, we used a technique known
as Dixon-EDF, which is essentially a version of fraction-free Gaussian elimination [Lew08].
It was was designed specifically for taking determinants of Dixon matrices. A detailed
explanation of the technique with examples and pseudo-code can be found in [Lew17].

Table 2.1: Comparison of elimination techniques: part 1

Number of equations 2 3 4 5 6 7 8 9 10
Gröbner Basis 0.016 0.000 0.015 0.016 0.032 0.016 15.36 99.98 147.6
Triangular sets 0.000 0.015 0.032 0.062 0.047 0.078 897.672 > 103 > 103

Dixon’s method 0.015 0.032 3.967 44.227 0.015 0.015 1.610 3.016 65.640
All polynomials are quadratic. Time recorded in seconds

Table 2.2: Comparison of elimination techniques: part 2

Number of equations 2 3 4 5 6 7 8 9 10
Gröbner Basis 0.016 0.047 0.063 0.125 0.102 > 103 > 103 > 103 > 103

Triangular sets 0.000 0.032 0.062 906.6 0.437 > 103 > 103 > 103 > 103

Dixon’s method 0.000 0.000 0.391 2.343 16.079 158.640 > 103 > 103 > 103

All polynomials are cubic. Time recorded in seconds.

The main difference between Table 2.1 and Table 2.2 is that Table 2.1 tests quadratic
polynomials, while Table 2.2 tests cubic polynomials.

2.3 Dixon’s method

Dixon’s method is a multi-stage process that requires the execution of a few different pro-
cedures. We outline the steps in Dixon’s method and the KSY-variant of Dixon’s method
in a visual manner to prepare the reader for what is ahead. The KSY-variant begins at
the fork (darkest blue) in the diagram on the next page, and extends rightwards and then
downwards. On the other hand, Dixon’s original method continues directly downwards, but
can only do so under certain circumstances which will be discussed later in the section.

It also acts as reference if the reader should choose to implement this method. Pseudo-
code for most of the steps involved can be found the appendix, and we encourage the reader
to read it at least once as it illustrates some aspects of this method nicely. With that begin
said, the content of this section can be understood without reading any code.

7

Input:
collection of polynomials C,
and variable ordering X

Construct cancellation matrix Flow chart for
Dixon’s method

Compute Dixon polynomial

Use Algorithm 3 to
build Dixon matrix Θ

Use Algorithm 4 to compute Θ′,
where Θ′ is maximal
rank sub-matrix of Θ

Search for block
diagonal form of Θ′ us-
ing Algorithms 2 + 1

Compute determinant
of each sub-matrix:

Obtain DR1,DR2, . . . ,DRt

Output:
Dixon resultant: DR =

∏t
i=1DRi

Compute DR = det(Θ′)

Output:
Dixon resultant: DR

8

Arriving at the Dixon resultant involves three major steps. Throughout our research,
we used the Kapur-Saxena-Yang variant of the Dixon resultant [Lew96]. The first step
is to construct what is known as the cancellation matrix [CK02]. The determinant of the
cancellation matrix is the Dixon polynomial. The Dixon polynomial acts as an intermediary
stage between the cancellation matrix and the Dixon matrix. To produce the Dixon matrix
from the Dixon polynomial, one needs to rewrite the Dixon polynomial as a special vector-
matrix-vector product. The matrix produced in this product is called the Dixon matrix.

Beginning with a system of n+1 equations F = {f0, . . . , fn}, we must select n variables
X = [x1, . . . , xn] to eliminate. We call the list variables in the list X the set of original
variables. The order of these variables can affect the size and degree of of the Dixon polyno-
mial. For this reason we denote the Dixon polynomial of a given system F as ∆(F , X), to
emphasize that the Dixon polynomial depends on both F and X. Literature on selecting the
optimal order to eliminate the variables does exist but will not be the focus of this thesis.
See [CK02] for more information. Once a variable ordering is chosen, we can compute the
Dixon polynomial using the following formula:

Definition 2.3.1. [CK02] Let π(xα) = x̄α1
1 · · · x̄

αi
i x

α+1
i+1 · · ·x

αd
d , for i ∈ {0, . . . , d}, and x̄i’s

are new variables; π0(xα) = xα. We extend π to polynomials as: πi(f(x1, x2, . . . , xd)) =
f(x̄1, . . . , x̄i, xi+1, . . . , xd). We define the Dixon polynomial as:

∆(F , X) =
n∏
i=1

1
xi − x̄i

∣∣∣∣∣∣∣∣∣∣∣∣∣

π0(f0) π0(f1) π0(f2) . . . π0(fn)

π1(f0) π1(f1) π1(f2) . . . π1(fn)
...

...
...

...

πn(f0) πn(f1) πn(f2) . . . πn(fn)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.3)

The matrix in definition 2.3.1 is the cancellation matrix of F with respect to a particular
variable elimination order X. Hence we denote this matrix with CF ,X . Since for all 1 ≤
i ≤ n, (xi − x̄i) is a zero of CF ,X ,

∏n
i=1(xi − x̄i) divides CF ,X [Kap97]. Hence ∆(F , X)

is a polynomial, which we call the Dixon polynomial of F with respect to a particular
elimination variable ordering of X. The Dixon polynomial can also tell us the dimension of
Dixon’s matrix, which will be produced in the next stage.

Definition 2.3.2. [Kap97] Let V be a row vector of all monomials in X which appear
in ∆(F , X), when ∆(F , X) is viewed as a polynomial in X. Similarly, Let W be a column
vector of all monomials in X̄ which appear in ∆(F , X), when ∆(F , X) is viewed as a
polynomial in X̄. The Dixon matrix, Θ, of F is defined to be the matrix for which
∆(F , X) = VΘW. The entries of the Dixon matrix for F are polynomials in the coefficients
of F . Dixon’s matrix is an

∏n
i=1(ei+1)×

∏n
i=1(di+1) matrix, where ei = deg(∆(F , X), xi),

and di = deg(∆(F , X), x̄i).

9

The Dixon resultant is the determinant of Dixon’s matrix. Technically speaking, the
Dixon resultant is not a resultant as we defined it in Definition 1.2.1. It is a non-zero multiple
of the resultant of a given system.

Let C be a collection of polynomials in the variables X, with parameters c. Let I be
the ideal generated by C in the ring k[X, c], and let J = I ∩ k[c]. Then J is the elimination
ideal of I over c, and all polynomials h ∈ J are known as the projection operators of C
with respect to X [Kap97]. The Dixon resultant is a member of J , or a projection operator
of C. It can be shown that the resultant of C also belongs to J , and divides all projection
operators. Hence every Dixon resultant contains as one of its factors the resultant of C with
respect to a particular set of variables X [Kap97]. All factors of a Dixon resultant that
are not the resultant are called extraneous factors [Kap97]. A Dixon resultant that does
not contain any extraneous factors is called exact [Kap97]. Identifying extraneous factors
in Dixon resultants is not trivial, especially when the Dixon resultants are large. Further
information about extraneous factors can be found in [KS97].

As was discussed by Dixon himself, his method is only defined if the system of polyno-
mials equations is generic and n-degree [Dix08], [Dix09].

Definition 2.3.3. [Kap97] A collection of polynomials C = {f1, . . . , fn+1} is called generic
n-degree if there exists non-negative integers d1, . . . , dn such that,

fj =
d1∑
i1=0
· · ·

dn∑
in=0

aj,i1,...,inx
i1
1 · · ·x

in
n for 1 ≤ j ≤ n+ 1

where each coefficient aj,i1,...,inx
i1
1 · · ·xinn is a distinct indeterminate. The n-tuple (d1, . . . , dn)

is known as their n-degree.

This limits us to a small class of systems. One reason is because if this condition does
not hold, then using the formula in Definition 2.3.2 it is not hard to show that Dixon’s
matrix will not be square. Dixon’s original method only allows us to take determinants of
square matrices, so if Θ is not square we are stuck. Additionally, Θ could be square but
rank deficient, which means its determinant is identical to zero [Dym13]. This gives us no
information about the system in question.

The Kapur-Saxena-Yang variant [KS95] of Dixon’s method gives us the necessary tools to
sidestep both of these problems. Once the Dixon matrix Θ of C is constructed, we search for
a sub-matrix of maximal rank Θ′ within Θ. Not only is Θ′ guaranteed to be square [Lay06],
but given that certain conditions are satisfied, det(Θ′) is a non-zero projection operator of
C. This is stated nicely in the theorem below. An algorithm to search for a sub-matrix of
maximal rank is provided in the appendix (Algorithm 4).

Theorem 2.3.4 (Kapur-Saxena-Yang). [Lew96] Let DR be the determinant of any maxi-
mal rank sub-matrix of Θ. Then, if a certain condition holds, DR = 0 is necessary for the
existence of a common zero.

10

In short, this theorem is saying that if a system F generates a rank deficient Dixon matrix
Θ, including the possibility of Θ begin non-square, then the determinant of any maximal
rank sub-matrix of Θ will be a projection operator of F . Theorem 2.3.4 provides us with
the means to compute the Dixon resultant of arbitrary systems of polynomial equations.

So once we produce a Dixon resultant, what can we do with it? We mentioned early
in the introduction that under certain circumstances the resultant of a polynomial system
gives us information about what the solution to the entire system looks like. We formalize
that notion with a central theorem.

Theorem 2.3.5 (Fundamental Theorem of Resultants). [GCL92, chapter 9] Let k̄ be an
algebraically closed field, and let

f =
m∑
i=0

ai(x2, . . . , xr)xi1, g =
n∑
i=0

bi(x2, . . . , xr)xi1 (2.4)

be elements of k̄[x1, . . . , xr] of positive degrees in x1. Then if (α1, . . . , αr) is a common zero
of f and g, their resultant with respect to x1 satisfies

Res(f, g, x1)(α2, . . . , αr) = 0. (2.5)

Conversely, if the above resultant vanishes at (α2, . . . , αr), then at least one of the fol-
lowing holds:

1. am(α2, . . . , αr) = · · · = a0(α2, . . . , αr)

2. bn(α2, . . . , αr) = · · · = b0(α2, . . . , αr)

3. am(α2, . . . , αr) = bn(α2, . . . , αr) = 0

4. ∃α1 ∈ x̄ such that (α1, α2, . . . , αr) is a common zero of f and g.

This theorem provides us with a way to use resultants to construct partial solutions to
systems of polynomial equations, which under certain circumstances lead to the full solu-
tion. If the first three conditions of Theorem 2.3.5 do not hold, then Condition 4 guarantees
us that we are able to extend a partial solution one more coordinate position. Hence pro-
ducing a resultant can be thought of as simplifying the problem of finding the solution to
many polynomial equations at once, to finding the solution of a single polynomial in fewer
variables.

Before we end this chapter, we want to do a small example with Dixon’s method so that
we become comfortable with the sequence of procedures. The flow chart was presented on
page 8 if it is needed for reference.

11

2.4 The area of a triangle

c = 6

a = 5
b = 5

A =?

γ α

β

Figure 2.1: Heron’s problem [not drawn to scale]

Our goal is to determine the area of a triangle without computing any of its angles. We will
assume that the side lengths we are given are in fact valid side lengths of a triangle. One
can easily check this by verifying that the follow three inequalities hold:

a+ b > c, a+ c > b, b+ c > a

It is important to check this since this problem does not make sense if there does not exist
a triangle with the given side lengths to begin with. These inequalities tell us for which
values we are allowed to specialize Dixon’s resultant; essentially only values which produce
a valid triangle.

We begin by setting up a system of polynomial equations which correspond to the
geometric nature of this problem. We will not detail the process of constructing a system
of polynomial equations from a geometric problem, however [CLO15, Chapter 6] has an
introduction to geometric theorem proving which provides a concrete example.

Example 2.4.1. Let F = {x2 + y2− c2, (x− a)2 + y2− b2, 2A− ay}. Let X = [x, y] be the
variables which we wish to eliminate, our new variables X̄ = [x̄1, x̄2] and the parameters
c = {A, a, b, c}. Note that both X and X̄ are ordered lists, and correspond to the order
we are eliminating the variables. Simply put, the polynomials in F provide an algebraic
description of the problem we are trying to solve.
Using the formula in 2.3.1 we get:

∆ = ∆(F , X) =
2∏
i=1

1
xi − x̄i

∣∣∣∣∣∣∣∣∣∣
−c2 + x2 + y2 (x− a)2 + y2 − b2 −ay + 2A

−y − x̄1 −y − α1 a

−x− x̄2 −x+ 2a− x̄2 0

∣∣∣∣∣∣∣∣∣∣
(2.6)

12

Computing the determinant in equation 2.6, and dividing by
∏2
i=1(xi − x̄i) of gives us:

∆ =
(
−a3 + 2 a2α2 + ab2 − ac2

)
x+
(
2 a2α1 − 4Aa

)
y−a3α2+2 a2c2+ab2α2−ac2α2−4Aaα1

Now we can use Algorithm 3, or any equivalent method, to produce the Dixon matrix for
∆. In this particular example, V = [x, y, 1], W = [x̄1, x̄2, 1]T , and

Θ =

0 2 a2 −a3 + ab2 − ac2

2 a2 0 −4Aa

−4Aa −a3 + ab2 − ac2 2 a2c2

 (2.7)

In this example Θ is already a matrix of full rank so we skip the step involving finding a
sub-matrix of maximal rank. We then try and compute a block diagonal form of Θ, however
it does not have one so we continue with Θ. Now we use any efficient method to compute
the determinant of Θ

det(Θ) = DR = 2 a4
(
a4 − 2 a2b2 − 2 a2c2 + b4 − 2 b2c2 + c4 + 16A2

)
Recalling that the system of polynomials has a solution if and only if the resultant

vanishes, we want to set this Dixon resultant equal to zero. Additionally, we may now
specialize the parameters found in DR with the side lengths we are given; this amounts to
evaluating DR at E = {a = 5, b = 5, c = 6}.

DR|E = 20000A2 − 2880000 = 0

We could use numerical methods to solve this quadratic, however it is small enough that
we can just factor it. Using Maple’s factor command we obtain:

20000A2 − 2880000 = 20000(A− 12)(A+ 12) = 0

We discard the negative solution, as the area of a valid non-degenerate triangle will always
be positive. Hence the area of the triangle in Figure 2.1 solved using a Dixon resultant is:

A = 12

While this example is small and there are many other ways to calculate the area of a tri-
angle, this procedure extends to higher dimensional objects in a very natural way [KSY94].
For this reason computing a resultant can be used for a wide array of geometric prob-
lems [Kap97], [LC06]. In general, the more complicated the problem, the more polynomial
equations we will have in a system. As seen in the previous example, we need to take deter-

13

minants of matrices in order to obtain Dixon’s resultant. Furthermore, the matrices we are
working are over a polynomial ring. We need efficient methods to compute the determinant
of symbolic matrices if we hope to produce Dixon resultants for large systems. This leads
us into Chapter 3, as we explore determinant computation.

14

Chapter 3

Determinants

3.1 An overview of methods

Let us start with Gaussian elimination which is taught in a first linear algebra course as a
method for calculating the determinant of a matrix. Gaussian elimination needs divisions,
and thus requires a field. For an n × n matrix it does O(n3) field operations. When ap-
plied to a symbolic matrix, Gaussian elimination produces rational functions which grow
in size/degree with each elimination step. These expressions require the computation of
polynomial gcds to simplify. These operations can be expensive even for small matrices.

In this chapter, we consider two other methods that compute the determinant of a
matrix using only the ring operations addition, subtraction, and multiplication. The cost of
the methods are shown below for convenient reference.

Algorithm Number of ring/field operations

Gaussian Elimination O(n3)

Berkowitz O(n4)

Minor Expansion O(n2n)

The number of arithmetic operations in the table above do not account for the cost
of individual arithmetic operations, which may vary greatly. We will see in the following
sections that on symbolic matrices, the method of Minor expansion by Gentlemen & Johnson
is often the best choice despite the exponential number of operations it requires.

3.2 Minor expansion by Gentleman & Johnson

In this section we discuss the method of Minor expansion for computing determinants, which
also goes by the names cofactor expansion or Laplace expansion. In 1973 paper [GJ73], two
researchers Gentleman and Johnson noticed something peculiar about minor expansion.
They noticed that for matrices of order 4 and larger, minor expansion computes certain
expressions multiple times. We use a short example with a matrix over the integers to

15

illustrate this concept in a simple manner, however the same idea applies to matrices with
polynomial entries.

Example 3.2.1.

A =

9 3 4 2

2 4 6 8

2 3 5 7

9 8 2 1

(3.1)

We will expand across the first row of A.

|A| = 9

∣∣∣∣∣∣∣∣∣∣
4 6 8

3 5 7

8 2 1

∣∣∣∣∣∣∣∣∣∣
− 3

∣∣∣∣∣∣∣∣∣∣
2 6 8

2 5 7

9 2 1

∣∣∣∣∣∣∣∣∣∣
+ 4

∣∣∣∣∣∣∣∣∣∣
2 4 8

2 3 7

9 8 1

∣∣∣∣∣∣∣∣∣∣
− 2

∣∣∣∣∣∣∣∣∣∣
2 4 6

2 3 5

9 8 2

∣∣∣∣∣∣∣∣∣∣
(3.2)

It is enough to expanded the first two terms from Equation 3.2 to see that the same sub-
determinants, highlighted in boldface, get computed more than once.

In order to see where they could avoid performing redundant computations, they took
a bottom-up approach. We refer to rows, although the same analysis can be done with
columns. For an n×n matrix, they reasoned that any generic determinant calculation must
compute all 1 × 1 determinants in the bottom row. It then must compute all 2 × 2 sub-
determinants in the bottom two rows. However, once it reaches the 3 × 3 determinants in
the bottom three rows, it already has all 2 × 2 determinants computed from the previous
step. So we only have to multiply the non-zero entries of the third rows with the appropriate
sub-determinants in the bottom two rows. This process climbs all the up the matrix until
it reach the first row of the matrix, where there is only one n× n determinant to compute.

In short, the method of Minor expansion by Gentleman & Johnson computes all k × k
sub-determinants from the bottom k rows of a matrix and stores them. When it is time to
compute all k+ 1×k+ 1 sub-determinants, it already has all k×k sub-determinants stored
from the previous step. So instead of recomputing these, we just use them to compute the
k + 1× k + 1 sub-determinants.

In Example 3.2.1 above, the standard minor expansion algorithm requires a total of 72
multiplications; with the modification from Gentlemen & Johnson that number drops to 28.
When considering the number of multiplications done, the improved algorithm still requires
O(n(2n−1 − 1)) ring operations [GJ73]. However, at the end of this chapter we will show
that this method turns out to be one of the most efficient methods of computing symbolic
determinants.

16

3.3 Characteristic polynomials by Berkowitz

The Samuelson-Berkowitz algorithm is an efficient method of computing the characteristic
polynomial of an n× n matrix. It is particularly useful in our case because the Samuelson-
Berkowitz algorithm well behaved when the entries of the matrix belong to any unital
commutative ring without zero divisors. Given an n×n matrix, it recursively partitions the
matrix into principal sub-matrices until it reaches the 1 × 1 sub-matrix in the upper left
hand corner. It then assembles the coefficients of the characteristic polynomial by taking
successively larger vector-matrix products. The Samuelson-Berkowitz algorithm stands as
one of the most efficient ways to compute the characteristic polynomial of an n× n matrix
over a ring. As was mentioned early in this chapter, the algorithm requires O(n4) ring
operations.

So how does computing the characteristic polynomial relate to determinants? To answer
this question, we need to look at the definition of the characteristic polynomial.

Definition 3.3.1. Consider an n × n matrix A ∈ Fn×n. The characteristic polynomial of
A, denoted by pA(x), is the polynomial defined by

n∑
i=0

aix
i = pA(x) = det(xI −A).

where I denotes the n× n identity matrix.

The characteristic polynomial pA(x) is a polynomial in x, with coefficients from the
domain which the matrix is defined over. In addition, definition 3.3.1 will produce a monic
polynomial. The eigenvalues of A are the roots of pA(x), and so we may write:

pA(x) = (x− λ1)(x− λ2) · · · (x− λn) =
n∏
i=1

(x− λi). (3.3)

We can easily show that the constant term in the expansion of the characteristic poly-
nomial of A is in fact the determinant of A. Consider what would happen it we set x = 0
in Equation 3.3.

a0 =
n∏
i=1

λi = pA(0) = det(0I −A) = det(−A) = −det(A).

It follows that the constant term of pA is, up to a unit, the determinant of the A. To
summarize, the Samuelson-Berkowitz algorithm for computing the characteristic polynomial
of a matrix acts as a vehicle for producing determinants.

17

3.4 A comparison of methods

We now directly compare the determinant methods discussed throughout this section. All
testing was done using Maple 2018, on a desktop equipped with an Intel Core i5-6699
CPU @ 3.30 GHz, and 16 GB of RAM. Our method was to run a variety of determinant
computation algorithms on random symbolic matrices of different orders. More precisely,
for matrices of order 2, 3, . . . , 10, we generated 5 random matrices and ran each algorithm
on them, and took the average time in seconds. We also recorded the average number
(approximated to 3 decimal places) of terms for the determinants of each order, placing
these numbers in the column nops(det(A)). The random numerical matrices were produced
with Maple’s RandomMatrix command, where aij were chosen at random from the integer
range [−99, 99].

Table 3.1: Numerical determinant computation methods

Order Minor Expansion Berkowitz Gaussian Elimination
12 0.078 0 0
14 0.313 0.015 0
16 1.422 0 0.016
18 6.328 0.016 0.015
20 40.110 0.016 0
30 > 1000 0.109 0.031
50 > 1000 0.672 0.156
70 > 1000 2.188 0.516
90 > 1000 6.437 1.203
110 > 1000 14.547 2.484
130 > 1000 29.063 5.000
150 > 1000 53.203 8.266

Data is from a single random matrix over the integers.
nops = number of terms.

In the next experiment, we wanted to know how effective the same determinant compu-
tation algorithms are when used on symbolic matrices. So that no algorithm has an unfair
advantage due to some undetected structure of a matrix, we opted for random symbolic
matrices of varying orders. For the sake of clarity and reproducibility, we present the Maple
code in Figure 3.1 that was used to generate these random symbolic matrices.

The program in Figure 3.1 takes as its inputs a number, and a finite list of variables.
First it generates an empty matrix of appropriate size. It then fills every entry with a
random polynomials in the input variables. These polynomials are of degree 5 with exactly
five terms, and all coefficients are 1.

18

Random Symbolic Matrix

RanSymbolicMtx := proc(order::integer, vars::{list,set})
local A, i, j;
A := Matrix(order);
for i from 1 to order do

for j from 1 to order do
A[i,j] := randpoly(vars,terms=5,degree=5,coeffs=proc() 1 end);

od;
od;
return A;
end:

Figure 3.1: Maple code for generating random symbolic matrices

Table 3.2: Symbolic determinant computation methods

Order Minor Expansion Berkowitz Gaussian Elimination nops(det(A))
5 0.003 0.019 0.262 2376.4
6 0.021 0.116 1.400 4540.4
7 0.078 0.468 5.250 7609.8
8 0.303 1.153 15.053 11609
9 0.922 3.343 34.887 16399
10 2.768 21.593 83.021 22780

Data is the average of 5 tests on random symbolic matrices.
nops = number of terms.

The key message to take from this experiment is that determinant methods which are
effective for numerical computations can perform poorly when the matrix is a symbolic one.
A runtime analysis for polynomial matrices is presented in [GJ73].

In the next section we explore a method that improves determinant computation of
symbolic matrices.

19

Chapter 4

Algorithms for revealing block
structure

This chapter contains information pertaining to the algorithm we developed, and constitutes
our main contribution.

4.1 Divide and Conquer

Divide and Conquer is an algorithm design paradigm that revolves around breaking down
a given problem into at least two smaller sub-problems. In problems well suited to this
paradigm, the smaller sub-problems are easier to solve. We will not have a comprehensive
discussion about which algorithms are well suited for Divide and Conquer, however there
is one application in which using the paradigm of Divide and Conquer pays dividends.

We will define block matrices in general, however throughout this section we will only
make reference to either block diagonal matrices or block diagonal triangular matrices. The
determinant properties we are interested in apply to both upper and lower block triangular
matrices.

Definition 4.1.1. [Dym13, Chapter 1] A matrix A ∈ Fn×n with block decomposition

A =

A11 · · · A1k
...

...

Ak1 · · · Akk

where Aij ∈ Fpi×qj for i, j = 1, . . . , k and p1 + · · ·+ pk = q1 + · · ·+ qk = n is said to be:

• upper block triangular if pi = qi for i = 1, . . . , k and Aij = O for i > j.

• lower block triangular if pi = qi for i = 1, . . . , k and Aij = O for i < j.

• block triangular if it is either upper block triangular or lower block triangular.

20

• block diagonal if pi = qi for i = 1, . . . , k and Aij = O for i 6= j.

Note that the blocks Aii in a block triangular decomposition need not be triangular.

Certain Dixon matrices Θ′ have a block triangular form. By block triangular form, we
mean that there exists some permutation of the rows and columns of the matrix such that the
matrix now satisfies one of the statements in Definition 4.1.1. We consider block diagonal
matrices a special subset of block triangular matrices. Knowing if a matrix has a block
triangular form is important because we know that the determinant of such a matrix is the
product of the determinants of the square sub-matrices along its main diagonal [Dym13,
Chapter 5]. Using the notation for Dixon matrices, rather then computing det(Θ′), we
employ a Divide and Conquer strategy, and compute the determinant of each sub-matrix
along the main diagonal. Even better, the computation of the determinant of each sub-
matrix can be done in parallel, since the computations are now independent of one another.
This can provide significant savings in computational resources as the matrices become
large. We do not have necessary and sufficient conditions as to which systems of polynomial
equations produce Dixon matrices that have a block triangular form.

Before we give an explanation of the algorithm, we would like to justify the claim that
computing a block diagonal form using our algorithm does actually result in faster deter-
minant computation. Figure 4.1 shows the expected speed-up for computing determinants
when computing the determinants of the blocks as opposed to the entire matrix at once.
We have plotted in number of blocks on the x-axis, the order of the matrix on the y-axis,
and the speed-up achieved on the vertical axis.

In the following two sections we will outline our method. The algorithms unfolds in two
phases, with the possibility of running the second phase without the first. For this reason
we introduction the second phase of the algorithm before the first. This is also consistent
with how we actually developed the sub-routines during the course of our research. Phase
1 is carried out by Algorithm 2, and we will refer to this algorithm as Clarify. Phase 2 is
carried out by Algorithm 1, and we refer to this algorithm as Link.

4.2 Phase 2: Link

The structure of a graph derived from a matrix can tell us many things about the ma-
trix in question. With this in mind, we took inspiration for phase 2 of our new algorithm
from [PF90]. In [PF90], they show a technique for computing the block diagonal form of a
rectangular matrix. Their method first creates a bipartite graph. Then it seeks to construct
a maximal matching. Since our ultimate goal is to take the determinant of all the matrices
we work with, we only needed an algorithm for square matrices.

We create a bipartite graph that is based on the locations of the non-zero entries in
each row and column. To begin, let A be a k × k matrix of full rank where aij represents

21

Figure 4.1: Plot of speedup from computing block diagonal form of A′

the entry in row i column j of A. Generate 2k vertices and partition them into two equal
sets such that V = R ∪ C. The vertices of R and C represent the rows and columns of A
respectively. Let ri and cj represent the vertices in R and C respectively. Now scan through
the matrix and whenever aij 6= 0 draw an edge eij from ri ∈ R to cj ∈ C. This creates
a companion bipartite graph for A, denoted HA. After finishing this step we now run any
algorithm that identifies the connected components of HA. Depth-First Search is a good
option here, as it runs in linear time (O(|V | + |E|)) and easy to implement. As we will
see shortly, if the matrix A has a block diagonal form then each connected components of
the companion graph defines a partition of the row and column vertices. Since we labelled
these vertices, they correspond to the rows and columns of each sub-matrix along the main
diagonal.

A =

3 0 1 0 9
0 2 0 3 0
5 0 0 0 4
0 5 0 7 0
2 0 7 0 6

(a) Random matrix A

A′ =

3 1 9 0 0
5 0 4 0 0
2 7 6 0 0
0 0 0 2 3
0 0 0 5 7

(b) Block diagonal form of A

Figure 4.2: Transforming a matrix into block diagonal form

To provide some additional intuition, we present a short visual example. We use a ma-
trix over the integers for simplicity, and because the relevant part of a matrix for Algorithm
1 is where the non-zero entries are not what they are. While this example is small and the
reader can probably detect the blocks by inspection, this is not practical when the matrices

22

Algorithm 1: Link
input : M

1 M is a matrix with full rank, and has a block diagonal form
output: Blocks along the main diagonal of M

2 begin
3 E ←− ∅
4 MatxList←− empty list
5 Blist←− empty list
6 n←− order(M)

// Initialize the set of vertices
7 V ←− {r1, r2, . . . , rn, c1, c2, . . . , cn}

// Build the set of edges
8 E ←− {(ri, cj) : Mi,j 6= 0}

// Construct graph with on vertices V and edges E
9 G←− Graph(V,E)

// Run Depth-First Search on G to identify connected components
10 CC ←− ConnectedComponents(G)

// Identify rows and columns of each block
11 for ` ∈ CC do
12 Rlist←− {i : (ri, cj) ∈ `}
13 Clist←− {j : (ri, cj) ∈ `}
14 MatxList←−MatxList ∪ SubMatrix(M,Rlist, Clist)
15 return MatxList

23

get large.

Example 4.2.1. Consider the following matrix:

A =

3 16 0 15 0

0 0 32 0 9

2 14 0 41 0

0 0 17 0 16

27 21 0 33 0

(4.1)

Our goal here is to determine if the rows and columns of A can be permuted in such a
way that it is either in block diagonal form, or upper block diagonal form. If this is in fact
possible, we would also like to know which rows and column belong to each block. Link

begins by producing the bipartite graph in figure 4.3a.

(a) Bipartite construction of matrix A (b) Bipartite construction of matrix A′

Now we can run any algorithm that identifies the connected components of this graph.
Depth-First Search is a good choice as it runs in O(|V | + |E|). If we let n be the order
of the matrix A, then |V | = 2n and |E| = hn2 for some h constant h ∈ Q. Since HA is a
bipartite graph, it can have at most n2 edges. The matrices we usually work with are sparse,
so h could be as small as 1

20 . Hence O(|V |+ |E|) simplifies to O(2n+ hn2) = O(n+ hn2).
Algorithm 1 runs Maple’s ConnectedComponents command which gives us:

L = [[c1, c2, c4, r1, r3, r5], [c3, c5, r2, r4]] .

24

This tells us that the first block is of order 3, defined by the rows 1, 3, 5 and columns 1, 2, 4.
The second block is identified in the same manner. With this information we can now
permute the rows and columns of A to reveal the block structure. The rows and columns
need to be permuted in the order that we see the indices in L. So the row and column
permutations are:
rows:

rows:[1, 2, 3, 4, 5]→ [1, 3, 5, 2, 4] columns:[1, 2, 3, 4, 5]→ [1, 2, 4, 3, 5]

.
This results in:

A′ =

3 16 15 0 0

2 14 41 0 0

27 21 33 0 0

0 0 0 32 9

0 0 0 17 16

(4.2)

If we run Link on A′, the companion graph HA′ is shown in figure 4.3b.

Now we can clearly see the two connected components of the graph. This is the intuitive
reason why this algorithm works without having to permute rows and columns. This is also
the reason why Link fails when the matrix has a block triangular but not strictly block
diagonal. The entries that do not belong to the blocks on the diagonal create "bridges"
from one block to another. This effectively puts an edge from one connected component to
another, and prevents any connected components algorithm from differentiating between
multiple blocks. Fortunately we have a solution in that case, and it is the main topic of
discussion in the next section.

4.3 Phase 1: Clarify

4.3.1 Upper block triangular matrices

Now suppose we are given a matrix that has a block triangular form, but not a strictly
block diagonal form. The difference here begin that there exists some non-zero entries in
blocks above the main diagonal. It can be shown that the determinant of these matrices
is also the product of the determinant of the matrices along the main diagonal. In other
words the determinant of such a matrix does not depend on the entries in blocks off the
main diagonal. If we use Algorithm 1 as seen in the previous section, it will fail to reliably

25

identify any block structure. An example illustrates what must occur in order for us to
retrieve the blocks in this case.

Observation 4.3.1. Let A be an upper block triangular matrix.

A =

1 4 2 9

6 5 4 0

0 0 6 1

0 0 4 8

, det(A) = −836 (4.3)

We can obtain a new matrix A′ from A by adding 1 to a13. This corresponds to adding the
outer product of the two column vectors

u = < 1, 0, 0, 0 >, v = < 0, 0, 1, 0 > .

to the matrix A.

A+ uvT = A′ =

1 4 3 9

6 5 4 0

0 0 6 1

0 0 4 8

, det(A′) = −836 (4.4)

It follows that det(A) = −836 = det(A′).

In addition, row and column swaps only change the sign of the determinant. Hence the
determinant of a block triangular matrix whose rows and columns have been permuted is
still the product of the determinants of the blocks along the main diagonal. However, if
the rows and columns have been permuted, we cannot see where the blocks are and which
entries belong to which block. So we need some way of learning whether an arbitrary entry
belongs to some block along the main diagonal; this amounts to determining if it contributes
to the determinant.

With that, we introduce the key lemma which acts as the defining identity of our new
algorithm. In addition, we reproduce the proof found in [DZ07] because it is short and may
help in understanding why the algorithm on following page is correct.

Lemma 4.3.2 (Matrix Determinant Lemma). [DZ07, Lemma 1.1] If A is an invertible
n× n matrix, and u and v are two n-dimensional column vectors, then

det(A+ uvT) = (1 + vTA−1u) det(A) (4.5)

Proof. We may assume A = I, the n × n identify matrix, since then equation 4.5 follows
from A + uvT = A(I + A−1uvT) in the general case. In this special case, the result comes

26

from the equality
 I 0

vT 1

I + uvT u

0 1

 I 0

−vT 1

 =

I u

0 1 + vTu

 (4.6)

The main idea is as follows: given a matrix A over the integers we look at the location
of zeros in A−1 in order to set equal to zero entries in A without altering the determinant
of A. If A is a symbolic matrix, then we induce an evaluation homomorphism on A, and
do the same thing on an image of A. The next sub-section will explain this idea in greater
detail.

4.3.2 Explanation and proof for Clarify algorithm

Algorithm 2: Clarify
input : A,n

1 A is an n× n matrix with full rank, n is order of A, with aij ∈ Z[x1, . . . , xt]
output: A matrix M with det(M) = det(A), or the input matrix A

2 begin
3 M ←− A
4 Pick a suitably large prime, e.g 262 < p < 263

5 Pick γ = (γ1, . . . , γt) at random from Ftp
6 B ←− Evaluate M at (xj = γj : 1 ≤ j ≤ t) mod p
7 if rank(B) < n then
8 Go back to line 4 // γ is unlucky

9 V ←− B−1 mod p
10 for i← 1 to n do
11 for j ← 1 to n do
12 if vij = 0 then
13 mji ←− 0

14 return M

Our new algorithm is comprised of two separate sub-routines. Usually Clarify (Algo-
rithm 2) is run first, followed by Link (Algorithm 1). As we have seen it is possible that
Link can identify block structure without the use of Clarify. If the matrix has a block
triangular form but not a strictly block diagonal form, then using Clarify is required for
Link to return the blocks.

By Lemma 4.5, we have seen that we can update the determinant of a matrix without
having to compute another determinant. Clarify exploits this by checking if the following

27

equality holds:
det(A+ uvT) = (1 + vTA−1u) det(A) ?= det(A). (4.7)

In our implementation of Clarify, the column vectors u and v are always unit vectors
with exactly one non-zero entry; this is implicit as we do not perform any vector-matrix
multiplications. Clarify is a modular algorithm, as we perform all computations over a
finite field Fp. Hence the inverse of B is computed modulo some prime p. This allows us
to compute block diagonal forms of large matrices without creating massive numbers in
B. Lastly, Clarify is a probabilistic algorithm, as it could happen that m−1

ij 6= 0 but
vij = m−1

ij (γ) = 0. With this in mind, we introduce the Schwartz-Zippel Lemma, which will
be used in the approaching proof.

Lemma 4.3.3 (Schwartz-Zippel Lemma). Let f ∈ k[x1, x2, . . . , xn] be a non-zero polyno-
mial of total degree d ≥ 0 over a field k. Let S be a finite subset of k and let r1, r2, . . . , rn

be selected at random independently and uniformly from S. Then

Prob[f(r1, r2, . . . , rn) = 0] ≤ d

|S|
.

In order to explain Algorithm Clarify in greater detail, we will provide a proof of
correctness. This proof will not only show why the algorithm is correct, but also why it is
implemented in the way it has been.

Theorem 4.3.4. Let A be an n × n matrix of rank n, where aij ∈ Fp[x1, . . . , xt]. Let
C = adj(A) and let B ≥ max deg(cij). Let p be the prime chosen in Algorithm Clarify.
Then the output matrix M of Algorithm Clarify satisfies det(M) 6= det(A) with probability
at most n2B

p .

Proof. Let C = adj(A). To use the Schwartz-Zippel Lemma, we need a degree bound B ≥
deg(cij). We can use

B = min(
n∑
i=1

nmax
j=1

deg(cij),
n∑
j=1

nmax
i=1

deg(cij)).

Then deg(detA) ≤ B and deg(cij) ≤ B. Recall that A−1 = C
det(A) . In algorithm Clarify,

V = A(γ)−1 = C(γ)
det(A)(γ) and det(A)(γ) 6= 0. If cij 6= 0 but vij(γ) = 0, we say algorithm

Clarify is unlucky. We wish to determine the probability that Clarify outputs a matrix
M with det(M) 6= det(A). This can happen in one of two ways. First, if a cij 6= 0 but

28

vij = 0, or in other words cij 6= 0 but cij(γ) ≡ 0 mod p. Then we have the following bound:

Prob[cij 6= 0 ∧ cij(γ) ≡ 0 mod p for some ij] ≤
∏

1≤i,j≤n
Prob[cij 6= 0 ∧ cij(γ) ≡ 0 mod p]

≤
n2 · max

1≤i,j≤n
deg(cij)

p

≤ n2B

p

The other way we could get unlucky is if the prime p divides every coefficient of det(A).
Since we are working modulo p, this would cause the determinant to vanish. In practice this
has never occurred because usually the system of polynomial equations has small coefficients
to begin with. This in turn means the coefficients of the Dixon resultant will be relatively
small. Given that p is of suitable size, it would be very unlikely for a non-zero coefficient to
belong to the residue class [0]. Overall, the bigger p is, the less likely Algorithm Clarify

will return a bad matrix M .

To summarize, if A has a block triangular form, then Clarify will delete all entries that
lie above/below the block diagonal; it transforms the matrix into one which has a block
diagonal form without knowing first what that block diagonal form is. After Clarify is run
of a matrix that has a block triangular form, the resulting matrix has a block diagonal form.
We are now in the case where Link will correctly return all blocks along the main diagonal.

We finish this chapter with a small demonstration of Clarify.

Example 4.3.5. Let

A = M =

36y2 + 69 76 + 84y

0 62y + 1

 , p = 997.

Clarify produces the following objects:

S = {x = 771, y = 218}, B =

81 442

0 556

 , V =

837 493

0 945

 .
Looking at V , v21 = 0 indicates that we can set b12 equal to zero, which implies we can also
set m12 equal to zero. Since v21 was the only entry that was identical to zero, Algorithm
Clarify terminates and outputs:

M =

36y2 + 69 0

0 62y + 1

 , det(M) = det(A).

29

Chapter 5

Empirical Results

We tested 15 polynomial systems using the KSY-variant of Dixon’s method, all coming from
real-world geometric and scientific problems. For each system, we present an assortment of
information.

In Table 5.1, we show the number of polynomial equations in the system (Eqns), the
number of variables which are to be eliminated (Vars), and the number of indeterminates in
c (Pars). We also mention the size of the associated Dixon matrix Θ before we searched for
a sub-matrix of maximal rank. After finding a sub-matrix Θ′ of Θ which has maximal rank,
we recorded the rank of Θ′. Then we attempted to compute the upper block triangular or
block diagonal form of Θ′. We define the Sparsity of a matrix as the number of entries of a
matrix that are zero, divided by the total number of entries in the matrix Θ′. The columns
Time (M.E) and Time (EDF) show the time it took to compute the determinant of the
smallest block along the main diagonal of Θ′. Finally nops(DR) shows the number of terms
in a Dixon resultant of the corresponding system.

Table 5.2, Block Structure shows the sizes of the blocks along the main diagonal of
each Θ′. Next to this column, Number of Multiplications shows how many polynomial
multiplications the method of Minor Expansion by Gentleman & Johnson [GJ73] requires
for computing each sub-matrix along the main diagonal of Θ′. These two lists are ordered
from left to right, and are in a one-to-one correspondence. For example, the first row of Table
5.2 says that the Minor Expansion algorithm by Gentleman & Johnson requires 229568 and
7767 multiplications to compute the determinants of the order 17 and order 12 blocks along
the main diagonal respectively. Most importantly, the number of multiplications for each
system is within the computable range. We hope this provides some insight as to what
Dixon matrices look like in practice.

30

Ta
bl
e
5.
1:

Sy
st
em

s
In
fo
rm

at
io
n
fo
r
D
ix
on

m
at
ric

es
+

M
in
or

Ex
pa

ns
io
n
ve
rs
us

D
ix
on

-E
D
F

Sy
st
em

E
qn

s
V
ar
s
\P

ar
s

di
m

Θ
R
an

k
Sp

ar
si
ty

T
im

e
(M

.E
)

T
im

e
(E

D
F
)

no
ps

(D
R
)

br
ic
ar
d

6
5/

12
41
×

44
29

0.
80

4
16

6.
20

0
69

.8
0

11
11

77
5

ca
th

ed
ra

l†
6

5/
2

46
×

41
34

0.
74

8
0.
89

6
0.
02

6
7

he
ro

n2
d†

3
2/

4
3
×

3
3

0.
37

5
0.
00

0
0.
02

7
7

he
ro

n3
d†

6
5/

7
16
×

14
13

0.
76

9
0.
00

1
0.
00

8
23

he
ro

n4
d†

10
9/

11
10

3
×

75
63

0.
94

1
0.
02

6
0.
04

3
14

71
he

ro
n5

d
15

14
/1

6
70

7
×

51
4

39
9

0.
98

9
!

36
.3
9

?
im

ag
e2

d†
6

5/
6

32
×

29
29

0.
90

7
0.
00

0
0.
00

5
22

im
ag

e3
d†

10
9/

10
17

8
×

15
2

13
0

0.
97

5
0.
00

9
0.
03

6
14

56
im

ag
e4

d†
10

9/
10

13
6
×

12
6

12
0

0.
97

6
0.
00

8
0.
02

3
70

4
im

ag
eF

le
x†

10
9/

10
13

6
×

12
6

12
0

0.
97

6
0.
00

6
0.
02

3
70

4
ro
bo

ta
rm

s
4

3/
4

32
×

32
16

0.
53

1
!

3.
38

?
sy
s2
2

4
3/

9
26
×

26
22

0.
73

6
55

6.
2

51
9.
6

39
90

25
2

to
t

3
2/

3
40
×

40
33

0.
56

7
!

46
.7
8

?
va

na
ub

el
†

9
8/

6
28
×

28
28

0.
89

3
3.
22

0
0.
21

8
32

16
6

M
in
or

Ex
pa

ns
io
n
tim

in
gs

do
ne

w
ith

M
ap

le
’s

im
pl
em

en
ta
tio

n
of

G
en
tle

m
an

&
Jo

hn
so
n

†
=

Pr
oj
ec
tio

n
op

er
at
or

co
m
pu

ta
bl
e
us
in
g
M
ap

le
’s

Gr
oe

bn
er

[B
as

is
]
co
m
m
an

d
in
<

10
00

se
co
nd

s

!=
R
an

ou
t
of

m
em

or
y
at
te
m
pt
in
g
ca
lc
ul
at
io
n

31

Ta
bl
e
5.
2:

B
lo
ck

st
ru
ct
ur
e
of

D
ix
on

m
at
ric

es
+

M
in
or

Ex
pa

ns
io
n
m
ul
tip

lic
at
io
n
co
un

t

Sy
st
em

B
lo
ck

St
ru
ct
ur
e

N
um

be
r
of

M
ul
ti
pl
ic
at
io
ns

br
ic
ar
d

[1
7,
12

]
[2
29

56
8,
77

67
]

ca
th

ed
ra

l†
[1
6,
18

]
[1
70

90
5,
95

53
15

]
he

ro
n2

d†
[4
]

[1
0]

he
ro

n3
d†

[6
,7
]

[4
1,
73

]
he

ro
n4

d†
[1
4,
14

,1
7,
18

]
[6
48

,1
59

2,
19

07
8,
46

58
6]

he
ro
n5

d
[4
9,
50

,5
2,
49

,4
8,
48

,5
0,
53

]
[1
23

50
07

8,
?,
?,
20

20
65

71
,2
49

05
07

8,
?,
?,
?]

im
ag

e2
d†

[1
0,
7,
7,
5]

[1
11

,9
9,
39

,3
9]

im
ag

e3
d†

[1
3,
14

,1
4,
15

,1
8,
19

,1
8,
19

]
[5
75

,5
79

,3
46

2,
91

4,
45

27
,7
11

8,
14

77
7,
47

37
]

im
ag

e4
d†

[1
3,
14

,1
4,
15

,1
7,
16

,1
6,
15

]
[9
45

,7
19

,1
50

5,
66

4,
68

72
,4
21

5,
50

43
,3
57

5]
im

ag
eF

le
x†

[1
3,
14

,1
4,
15

,1
7,
16

,1
6,
15

]
[9
45

,7
19

,1
50

5,
64

4,
68

72
,4
21

5,
50

43
,3
57

5]
ro
bo

ta
rm

s
[8
,8
]

[7
28

,5
44

]
sy
s2
2

[1
1,
11

]
[4
09

0,
42

76
]

to
t

[1
7,
16

]
[8
90

69
5,
44

27
78

]
va

na
ub

el
†

[7
,7
,7
,7
]

[9
3,
10

3,
68

,3
9]

T
he

bl
oc
k
st
ru
ct
ur
e
of

a
sy
st
em

is
se
ns
iti
ve

to
th
e
va
ria

bl
e
el
im

in
at
io
n
or
de

r

†
=

Pr
oj
ec
tio

n
op

er
at
or

co
m
pu

ta
bl
e
us
in
g
M
ap

le
’s

Gr
oe

bn
er

[B
as

is
]
co
m
m
an

d
in
<

10
00

se
co
nd

s

32

Chapter 6

Conclusion

We begin the concluding chapter with two open research questions. While solving these is
not going to change the basic procedure we have outline in the paper, it could potentially
increase the speed at which we produce Dixon resultants.

Open Question 6.0.1. Does there exists sufficient conditions on a polynomial system F
for its Dixon matrix to have a block diagonal form?

It is possible that these matrices have even more structure then what we currently know
about. If we knew more about the polynomials that generated these matrices, we might be
able to develop even better tools for taking the determinants of the Dixon matrices they
give rise to.

Open Question 6.0.2. For which systems are iterative resultant computation methods
more efficient that Dixon’s method?

Dixon’s method simultaneously eliminates n variables from a system of n+1 polynomial
equations. Another technique is to systematically eliminate one variables from the systems
one at a time using simpler resultant formulations such as Sylvester’s resultant. For large
systems of polynomial equations Dixon’s method seems to be the better choice, however
it has not been well documented which techniques perform better for which systems in
general.

Resultant matrices have much to be discovered about them, but our hope is that we
have illuminated a fruitful research path for others. The algorithms and procedures from
Chapter 2 should be implemented by those who are interested in learning more, as we
found a hands-on learning approach to this kind of work more effective. The key idea from
Chapter 3 was that despite the seemingly prohibitive cost of the method of Minor expansion,
it was the most effective algorithm with respect to symbolic determinant computation.
Gentleman & Johnson demonstrated this beautifully when they showed that their version
of Minor expansion was actually the most effective when computing symbolic determinants

33

compared to methods which are superior in numerical computation. Chapter 4 contained
our main results of the research project. Techniques and algorithms like Clarify and Link

were crucial for computing many of the symbolic determinants that otherwise would not be
possible. The implementation of Clarify was designed to be fast yet simple, and we have
successfully used it to locate blocks within matrices of up to order 1000.

We hope it is clear that resultants can aid in solving polynomial systems. They can easily
outperform competing methods, such as Buchburger’s algorithm, if careful implementation
is made. Since resultants computed from resultant matrices rely heavily on the speed at
which we can compute symbolic determinants, high performance algorithms for computing
symbolic determinants are also of great interest. For those interested in learning more about
computer algebra, see [GCL92] for an nice introduction. For those who are interested in a
more rigorous treatment of the Dixon matrix, and Dixon resultants in general, consult
[CK02], [Chi01], and [CK04]. For those interested in learning more about resultants, good
places to start would be [CLO15] and [Has07]. For more examples and applications of Dixon
resultants see [Kap97], [Lew08], [LC06], [PZAG08], and [Lew17].

34

Bibliography

[Buc76] B. Buchberger. A theoretical basis for the reduction of polynomials to canonical
forms. ACM SIGSAM Bull., 10(3):19–29, 1976.

[Cay57] A. Cayley. Note sur la méthode d’élimination de Bezout. J. Reine Angew. Math.,
53:366–367, 1857.

[Chi01] Eng-Wee Chionh. Rectangular corner cutting and Dixon A-resultants. J. Sym-
bolic Comput., 31(6):651–669, 2001.

[CK02] Arthur D. Chtcherba and Deepak Kapur. On the efficiency and optimality of
Dixon-based resultant methods. In Proceedings of the 2002 International Sym-
posium on Symbolic and Algebraic Computation, pages 29–36. ACM, New York,
2002.

[CK04] Arthur D. Chtcherba and Deepak Kapur. Constructing Sylvester-type resultant
matrices using the Dixon formulation. J. Symbolic Comput., 38(1):777–814, 2004.

[CLO15] David A. Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms.
Undergraduate Texts in Mathematics. Springer, Cham, fourth edition, 2015. An
introduction to computational algebraic geometry and commutative algebra.

[Dix08] A. L. Dixon. On a Form of the Eliminant of Two Quantics. Proc. London Math.
Soc. (2), 6:468–478, 1908.

[Dix09] A. L. Dixon. The Eliminant of Three Quantics in two Independent Variables.
Proc. London Math. Soc. (2), 7:49–69, 1909.

[Dym13] Harry Dym. Linear algebra in action, volume 78 of Graduate Studies in Mathe-
matics. American Mathematical Society, Providence, RI, second edition, 2013.

[DZ07] Jiu Ding and Aihui Zhou. Eigenvalues of rank-one updated matrices with some
applications. Appl. Math. Lett., 20(12):1223–1226, 2007.

[GCL92] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for computer algebra.
Kluwer Academic Publishers, Boston, MA, 1992.

[GJ73] W. M. Gentleman and S. C. Johnson. Analysis of algorithms, a case study:
determinants of polynomials. In Fifth Annual ACM Symposium on Theory of
Computing (Austin, Tex., 1973), pages 135–141. 1973.

[GKZ94] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants, resul-
tants, and multidimensional determinants. Mathematics: Theory & Applica-
tions. Birkhäuser Boston, Inc., Boston, MA, 1994.

35

[Has07] Brendan Hassett. Introduction to algebraic geometry. Cambridge University
Press, Cambridge, 2007.

[Kap97] Deepak Kapur. Automated geometric reasoning: Dixon resultants, gröbner bases,
and characteristic sets. In Dongming Wang, editor, Automated Deduction in
Geometry, pages 1–36, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[KS95] Deepak Kapur and Tushar Saxena. Comparison of various multivariate resultant
formulations. In ISSAC, volume 95, pages 187–194. Citeseer, 1995.

[KS97] Deepak Kapur and Tushar Saxena. Extraneous factors in the Dixon resultant
formulation. In Proceedings of the 1997 International Symposium on Symbolic
and Algebraic Computation (Kihei, HI), pages 141–148. ACM, New York, 1997.

[KSY94] Deepak Kapur, Tushar Saxena, and Lu Yang. Algebraic and geometric reason-
ing using Dixon resultants. In Proceedings of the international symposium on
Symbolic and algebraic computation, pages 99–107. ACM, 1994.

[Lay06] David C Lay. Linear algebra and its applications. Third edition, 2006.

[LC06] Robert H Lewis and Evangelos A Coutsias. Algorithmic search for flexibility
using resultants of polynomial systems. In International Workshop on Automated
Deduction in Geometry, pages 68–79. Springer, 2006.

[Lew96] Robert H Lewis. The Kapur-Saxena-Yang variant of the Dixon resultant. 1996.

[Lew08] Robert H. Lewis. Heuristics to accelerate the Dixon resultant. Math. Comput.
Simulation, 77(4):400–407, 2008.

[Lew17] Robert H. Lewis. Dixon-EDF: the premier method for solution of parametric
polynomial systems. In Applications of computer algebra, volume 198 of Springer
Proc. Math. Stat., pages 237–256. Springer, Cham, 2017.

[Mac03] F. S. MacAulay. Some Formulae in Elimination. Proc. Lond. Math. Soc., 35:3–27,
1903.

[Pal13] B. Paláncz. Application of Dixon resultant to satellite trajectory control by pole
placement. J. Symbolic Comput., 50:79–99, 2013.

[PF90] Alex Pothen and Chin-Ju Fan. Computing the block triangular form of a sparse
matrix. ACM Trans. Math. Software, 16(4):303–324, 1990.

[PZAG08] Béla Paláncz, Piroska Zaletnyik, Joseph L Awange, and Erik W Grafarend.
Dixon resultant’s solution of systems of geodetic polynomial equations. Journal
of Geodesy, 82(8):505–511, 2008.

36

Appendix A

Code

Algorithm 3: BuildDixon
input : P = ∆(F , X), X, X̄

1 P is a Dixon polynomial, X = {x1, . . . , xn} is the set of original variables,
X̄ = {x̄1, . . . , x̄n} is the set of new variables
output: Dixon matrix

2 begin
3 BL←− list of monomials of P in the variables X
4 BR←− list of monomials of P in the variables X̄
5 r ←− |BL|
6 c←− |BR|
7 D ←− r × c zero matrix
8 i←− 1
9 for m1 ∈ BL do

10 c1 ←− coeff(P,m1)
11 j ←− 1
12 for m2 ∈ BR do
13 Di,j ←− coeff(c1,m2)
14 j ←− j + 1
15 i←− i+ 1
16 return BL, D, BR

Algorithm 3 constructs the dixon matrix for a given Dixon polynomial by separating the
variables from the parameters. Hence this matrix will be over k[c].

Algorithm 4 finds a sub-matrix of maximal rank. The SubMatrix command takes as its
inputs a matrix A, and two sets of integers L1 and L2 that define the rows and columns of
the sub-matrix being extracted.

37

Algorithm 4: Chop
input : A,N,m, n

1 A is a Dixon matrix, N = {xn, a, b, . . .} is a list of t variables in A to be evaluated,
m is the number of rows, n is the number of columns
output: Dixon matrix minor of full rank

2 begin
3 Pick a suitably large prime p > 263

4 Pick γ = (γ1, . . . , γt) at random from Fp
5 Evaluate the entries of A at γ
6 A1←− A in row echelon form
7 L1←− PivotColumns(A1)
8 A2←− A in column echelon form
9 L2←− PivotColumns(A2)

10 M ←− Submatrix(A,L1, L2)
11 return M

38

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	History
	Resultants
	Structured matrices

	Tools, Methods, & Vocabulary
	Notation
	Motivation for Dixon's Method
	Dixon's method
	The area of a triangle

	Determinants
	An overview of methods
	Minor expansion by Gentleman & Johnson
	Characteristic polynomials by Berkowitz
	A comparison of methods

	Algorithms for revealing block structure
	Divide and Conquer
	Phase 2: Link
	Phase 1: Clarify
	Upper block triangular matrices
	Explanation and proof for Clarify algorithm

	Empirical Results
	Conclusion
	Bibliography
	Appendix Code

