
Resolving Zero-Divisors of Radical
Triangular Sets using Hensel Lifting and

Applications
by

John Kluesner

M.Sc. in Scientific Computing, Richard Stockton University, 2014
B.Sc. in Scientific Computing, Richard Stockton University, 2013

Master Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
Department of Mathematics

Faculty of Science

c© John Kluesner 2017
SIMON FRASER UNIVERSITY

Summer 2017

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Approval

Name: John Kluesner

Degree: Master of Science (Mathematics)

Title: Resolving Zero-Divisors of Radical Triangular Sets
using Hensel Lifting and Applications

Examining Committee: Chair: Jonathan Jedwab
Professor

Michael Monagan
Senior Supervisor
Professor

Nathan Ilten
Supervisor
Professor

Imin Chen
Examiner
Professor

Date Defended: August 16 2017

ii

Abstract

This thesis aims to create efficient algorithms for computing in the ring R = Q[z1, . . . , zn]/T
where T is a zero-dimensional triangular set. The presence of zero-divisors in R makes it a
computational challenge to use modular algorithms. In particular, there has never been a
proper modular algorithm for computing greatest common divisors of polynomials in R[x].
We present two new ways of resolving zero-divisors: Hensel lifting and fault tolerant rational
reconstruction, which allows us to create a new modular gcd algorithm for R[x] as well as
a new inversion algorithm for R. We have implemented our algorithms in Maple using the
recden library, and we show that they outperform the methods currently implemented in
Maple’s RegularChains package. The method of Hensel lifting for resolving zero-divisors
should give rise to other new modular algorithms for computing modulo triangular sets and
our applications show that this approach is fruitful.

Keywords: Computer Algebra, Modular Algorithms, Triangular Sets, Radical Ideals, In-
version, Greatest Common Divisors, Maple

iii

Dedication

I dedicate this thesis to my wife Lauren who I am looking forward to spending my post-
graduate life with.

iv

Acknowledgements

I would like to acknowledge all my friends, family, and teachers who have supported me in
my journey to complete this and my past degrees. In particular, I would like to thank

• My parents for giving me the freedom to pursue my dreams.

• My supervisor Dr. Michael Monagan for being patient, kind, and understanding, inside
and outside of work.

• Dr. Nathan Ilten for being a great professor in two of my favorite courses I have ever
enrolled.

• My wife Lauren for being supportive and patient with me while I finished this thesis.

• My Aunt Jeanne and Uncle Mike for always checking up on me and sending me maple
syrup while I have been away from home.

• Drs. Judith Vogel, Bradley Forrest, and Robert Olsen from my undergraduate insti-
tution for helping me get into graduate school.

• My good friends Jonathan Toscano, Kelly O’Neill, and Daniel King.

• My peers Marshall Law, Brett Nasserden, and Matthew Lynn for working with me
through difficult coursework.

v

Table of Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Algorithms ix

1 Introduction 1
1.1 Motivation . 1
1.2 New Results . 3

2 Abstract Algebra 5
2.1 Rings . 5
2.2 The Monic Euclidean Algorithm . 11
2.3 Rational Reconstruction . 14
2.4 p-adic Representations and Hensel lifting . 15
2.5 Fields and Extensions . 17

3 Triangular Sets 19
3.1 Definitions and Examples . 19
3.2 Arithmetic Modulo Triangular Sets . 21
3.3 Radical Triangular Sets . 26

4 Resolving Zero-Divisors 31
4.1 Hensel Lifting . 31
4.2 Fault Tolerant Rational Reconstruction . 34

vi

5 A Modular GCD Algorithm 38
5.1 Overview with Hensel lifting . 38
5.2 Overview with FTRR . 48
5.3 Implementation and Timing Results . 49
5.4 Asymptotic Analysis . 53

6 An Inversion Algorithm 55
6.1 Overview and Analysis . 55
6.2 Implementation and Timing Results . 58

7 Conclusion and Future Work 60

Bibliography 62

Appendix A Code for Time Tests 64

vii

List of Tables

Table 3.1 The first column is the main degree of each ti, the second is smallest number
of extensions where our bound exceeds the bound given in [20], the third is
the degree of this extension δ = dn. Values of d that are omitted have the
same value of n as the largest shown predecessor. For d < 5, our bound is
always smaller. For d ≥ 115 their bound is always smaller. 24

Table 5.1 The first column is the number of algebraic variables, the second is the degree
of the extensions, the third is the CPU time it took to compute c-gcd of
the inputs for ModularC-GCD, the fourth is the CPU time in ModularC-
Gcd spent doing trial divisions over Q, the fifth is the number of primes
needed to recover g, the sixth is the real time it took for RegularGcd to
do the same computation, the seventh is the total CPU time it took for
RegularGcd and the last is the number of terms in the unnormalized gcd
output by RegularGcd. All times are in seconds. 51

Table 5.2 The columns are the same as for Table 5.1. Here, the gcd of the inputs has
much smaller coefficients than in Table 5.1 52

Table 5.3 The columns are the same as for Table 5.1. Here, the degree of the input
polynomials are raised to 9 and 8 while their gcd still has degree 4. 52

Table 6.1 The first column is the number of algebraic variables, the second is the degree
of the extensions, the third is the CPU time it took to compute the inverse of
the inputs for Inversion, the fourth is the CPU time it took to compute the
inverse of the inputs for Inverse. All times are in seconds. 59

viii

List of Algorithms

1 MonicEuclideanWithErrorHandling . 12
2 RationalReconstruction . 15

3 IsRadicalPrime . 29

4 HenselLift . 34
5 HandleZeroDivisorHensel . 35
6 HRR . 36
7 HandleZeroDivisorHRR . 37

8 MonicEuclideanC-GCD . 40
9 ModularC-GCD . 42

10 Inversion . 57

ix

Chapter 1

Introduction

1.1 Motivation

Suppose that we seek to find the greatest common divisor of two polynomials a, b ∈
Q(α1, . . . , αn)[x] where αi are algebraic numbers. Since Q(α1, . . . , αn) is a field, this can
be done using the Euclidean algorithm, but since the coefficients in the polynomial remain-
der sequence grow quickly, as noted in [5], this is very inefficient. A better approach is to
use a modular algorithm. That is, reduce a and b modulo multiple prime numbers pi and
compute gi ≡ gcd(a, b) (mod p). Then use Chinese remaindering to combine all gi of lowest
degree. This is the approach of Langemyr and McCallum [18] and later improved by Encar-
nacion [12] by introducing rational reconstruction. A problem with their algorithms is their
solution to the multiple extension case is to find a primitive element and then apply an
algorithm for one extension. Monagan and van Hoeij [15] improved the multiple extension
case by circumventing the primitive element.

The computational model used for an algebraic number field is Q[z1, . . . , zn]/T where
T = 〈t1(z1), t2(z1, z2), . . . , tn(z1, . . . , zn)〉 and each ti is the minimal polynomial of αi, hence
irreducible, over Q(α1, . . . , αi−1). A natural generalization is to consider the same prob-
lem when each ti is possibly reducible and hence zero-divisors may be encountered while
computing in the ring Q[z1, . . . , zn]/T .

The generators of T form what is known as a triangular set. Let R = Q[z1, . . . , zn]/T .
This thesis proposes a new algorithm for computing gcd(a, b) with a, b ∈ R[x]. The backbone
of it is the Euclidean algorithm. However, the EA can not always be used in this ring. For
example, suppose T = 〈z2

1 + 1, z2
2 + 1〉 and R = Q[z1, z2]/T . Notice that z2

1 − z2
2 = 0 in R

hence z1 − z2 and z1 + z2 are zero-divisors in R. Consider computing the gcd of

a = x4 + (z1 + 18 z2)x3 + (−z2 + 3 z1)x2 + 324x+ 323

b = x3 + (z1 + 18 z2)x2 + (−19 z2 + 2 z1)x+ 324

1

using the Euclidean algorithm. The remainder of a÷ b is

r1 = (z1 + 18z2)x2 + 323.

Since z1 + 18z2 is a unit, a division can be performed; dividing b by r1 gives

r2 = (z1 − z2)x+ 1.

The next step in the Euclidean algorithm would be to invert z1−z2, but it is a zero-divisor,
so it cannot continue. A correct approach would be to factor z2

2 + 1 = (z2 − z1)(z2 + z1)
(mod z2

1 + 1) to split the triangular set T into {z2
1 + 1, z2 − z1} and {z2

1 + 1, z2 + z1}. After
that, finish the EA modulo each of these new triangular sets. It is possible to combine the
results using the Chinese remainder theorem, but that is costly so it is common practice to
instead return the output of the EA along with the associated triangular set. For example,
see the definition of pseudo-gcd in [17] and regular-gcd in [19]. We follow this trend with
our definition componentwise-gcd in section 5.1.

Now, consider trying to compute the gcd(a, b) above using a modular algorithm. One
would expect to hit the modular image of the same zero-divisor at each prime and hence one
could combine them using Chinese remaindering and rational reconstruction. For instance,
the EA modulo 13 will terminate with the zero-divisor z1 + 12z2 (mod 13) as expected.
However, running the EA modulo 17 terminates earlier because lc(r1) = z1 + 18z2 ≡ z1 + z2

(mod 17) is a zero-divisor. This presents a problem: z1+z2 (mod 17) and z1+12z2 (mod 13)
will never combine into a zero-divisor no matter how many more primes are chosen.

To circumvent, our algorithm finds a monic zero-divisor and lifts it using Hensel lifting
to a zero-divisor over Q. Our technique handles both the expected zero-divisors (such as
z1 +12z2 (mod 13) in the above example) and the unexpected zero-divisors (such as z1 +z2

(mod 17)). A different approach that we tried is Abbott’s fault tolerant rational reconstruc-
tion as described in [1]; although this is effective, we prefer Hensel lifting as it enables us
to split the triangular set immediately thus saving work.

We also consider the inversion problem for triangular sets: Given a triangular set T ⊂
Q[z1, . . . , zn] and a polynomial a ∈ Q[z1, . . . , zn]/T , compute a−1 or determine it does not
exist. This has been solved by Maza, Schost, and Vrbik in [21]. We propose a new algo-
rithm that uses Hensel lifting to resolve zero-divisors, a modular-gcd algorithm to determine
invertibility, and Newton iteration to compute the inverse.

We would like to motivate triangular sets from an algebraic geometry perspective. Note
that we will be omitting details which the reader may refer to hapter 2 of [8] for. Consider
a set of polynomials f1, . . . , fs ∈ Q[z1, . . . , zn]. Further, assume the variety

V = V(f1, . . . , fs) = {α ∈ Cn : fi(α) = 0 for all i}

2

is finite. We can create an ideal I(V) = {f ∈ Q[z1, . . . , zn] : f(α) = 0 for all α ∈ V }.
In general, I(V) ⊃ 〈f1, . . . , fs〉. Using resultants or Grobner bases, one can show that
I(V) = 〈t1, t2, . . . , tn〉 for polynomials t1 ∈ Q[z1], t2 ∈ Q[z1, z2], etc. where degzi

(ti) > 0.
This is a natural setting where triangular sets occur.

Continuing, we will show how working modulo I(V) relates to the roots of f1, . . . , fs.
Suppose f ∈ Q[z1, . . . , zn] satisfied ∅ (V ∩V(f) (V . We can find g ∈ Q[z1, . . . , zn] where
g(β) = 0 for all β ∈ V −V(f) but g 6∈ I(V). Then fg ∈ I(V) and so f would be a zero-
divisor modulo I(V). Conversely, if f is a zero-divisor modulo I(V), it must contain a root
in V for similar reasoning. This establishes that f 6∈ I(V) is a zero-divisor modulo I(V) if
and only if ∅ (V ∩V(f) (V . We can similarly prove f 6∈ I(V) is a unit modulo I(V) if
and only if V ∩V(f) = ∅.

Thus, computation modulo I(V) is intrinsically related to the roots of system of polyno-
mials; in particular, the equivalences in the last paragraph show that efficient computation
modulo triangular sets is fundamental to studying these roots. A large amount of research
in algebraic geometry concerns roots of systems of polynomials, see chapters 2,3,7 in Using
Algebraic Geometry [8] by Cox, Little, and O’Shea for instance.

1.2 New Results

With the motivation in mind, we would like to share what new results we have contributed.
Our main contribution comes in the way of using Hensel lifting to resolve zero-divisors
encountered modulo a prime p. We give two new applications: a modular gcd algorithm
and an inversion algorithm. Using timing tests, we show that our approach is a significant
improvement over the algorithms used in the RegularChains package in Maple. We also
reprove some known results about zero-dimensional radical triangular sets using an approach
motivated by algebraic number theory while the norm has been techniques from algebraic
geometry in the past. We give detailed descriptions of the algorithms created as well as
proofs of correctness. In particular,

• Chapter 4 gives two new ways of resolving zero-divisors modulo triangular sets: one
based on Abbott’s fault tolerant rational reconstruction (see [1]), and the other based
on Hensel lifting.

• Proposition 14 shows a new algorithm for multiplying polynomials modulo a triangular
set. While this is not better than other methods asymptotically, we show it is a
practical improvement.

• Lemma 32 is a new result about the prime numbers that appear in fractions of monic
factors of monic polynomials modulo a triangular set. This generalizes known results
from algebraic number theory.

3

• ModularC-GCD is a new algorithm for computing greatest common divisors of
polynomials with coefficients modulo a radical triangular set. We have time tests that
show it is faster than the method implemented in Maple.

• Inversion is a new algorithm for computing the inverse of a polynomial modulo a
radical triangular set. We have time tests that show it is faster than the method im-
plemented in Maple when working over multiple extensions, which is of major interest.

4

Chapter 2

Abstract Algebra

The goal of this thesis is to create new algorithms for efficient computation for polynomials
over Q. For this purpose, we will make use of more general algebraic structures. The first
of these will be commutative rings with unity. We will continue with the monic Euclidean
algorithm over a commutative ring with unity. Next, we review rational reconstruction and
the p-adic representation of integers because of their importance. We conclude with some
field theory to motivate triangular sets, the key object of study in this thesis. The material
in section 2.1 can be found in chapter 7 of Dummit and Foote’s Abstract Algebra textbook
[11]. Also see the first two sections of chapter 13 in [11] for the material in section 2.5.

2.1 Rings

Definition 1. A commutative ring R with unity is a nonempty set with two binary oper-
ations, addition (denoted by a + b) and multiplication (denoted by ab), that satisfy the
following axioms:

i) a+ b = b+ a for all a, b ∈ R; (commutativity of +)
ii) (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R; (associativity of +)
iii) there exists 0 ∈ R where a+ 0 = a for all a ∈ R; (additive identity)
iv) for any a ∈ R, there exists −a ∈ R where a+ (−a) = 0; (additive invertibility)
v) ab = ba for all a, b ∈ R; (commutativity of multiplication)
vi) (ab)c = a(bc) for all a, b, c ∈ R; (associativity of multiplication)
vii) a(b+ c) = ab+ ac for all a, b, c ∈ R; (distributive property)
viii) there exists 1 ∈ R where 1a = a for all a ∈ R; (multiplicative identity)
ix) 1 6= 0. (identity distinction)

We will never consider noncommutative rings with or without unity; so when we refer
to a ring, we always mean commutative with unity. Here are some examples:

- The rational numbers Q form a ring.

5

- The integers Z form a ring.

- Polynomials with coefficients from a ring R and indeterminate x form a ring; this will
be denoted as R[x].

- The set Q[z]/〈z2−2〉 forms what is known as a quotient ring. It is in fact isomorphic to
the algebraic number field Q(

√
2) = {a+ b

√
2 : a, b ∈ Q}. These concepts are reviewed

in later sections.

- Given two rings R1 and R2, one can form a new ring R1 ×R2 under component-wise
addition and multiplication.

Many natural properties come easily from the axioms, such as uniqueness of identities
and inverses and that a0 = 0 for all a ∈ R. The proofs are straightforward. It should be
noted that rings do not enjoy the existence of multiplicative inverses. The set of elements
of R with multiplicative inverses is called the units of R and is denoted as R∗.

We now turn our attention to important subsets of a ring: ideals. These will be used
when we define the coefficients of polynomials to which this thesis pertains.

Definition 2. Consider a ring R. An ideal I ⊂ R is a nonempty set where (i) a− b ∈ I for
all a, b ∈ I and (ii) ra ∈ I for all r ∈ R and a ∈ I.

Ideals occur very naturally in any ring R. For example, the even integers form an ideal
of Z. The set {0} forms an ideal of any ring R and is sometimes called the trivial ideal. Fix
an element a ∈ R and the set 〈a〉 = {ar : r ∈ R} forms the principal ideal generated by a.
Fix elements a1, . . . , an ∈ R and the set 〈a1, . . . , an〉 = {r1a1 + · · ·+ rnan : ri ∈ R, i = 1..n}
forms the ideal generated by a1, . . . , an. More concretely, if we let R = Z, then 〈23993〉 is
all integer multiples of 23993.

Given ideals I, J ⊂ R, new ideals can formed as

• the sum of the ideals I + J = {a+ b : a ∈ I, b ∈ J};

• the intersection of the ideals I ∩ J ; and

• the product of the ideals IJ = {
∑n
i=1 aibi : ai ∈ I, bj ∈ J, n ∈ Z, n ≥ 1}, which is

the set of all finite sums of two-products of elements of I and J .

Proving each is an ideal is straightforward. In general, the constructions above form the
chain IJ ⊂ I ∩ J ⊂ I ⊂ I + J . One can also characterize I + J as the smallest ideal
containing both I and J , while IJ is the smallest ideal containing all products of elements
in I ∪ J . An interesting question is when the inclusion IJ ⊂ I ∩ J is actually an equality.
The next definition gives the answer.

Definition 3. Let I and J be ideals of a ring R. Then I and J are called comaximal if
I + J = R. Equivalently, I and J are comaximal if 1 ∈ I + J .

Lemma 1. Let I1, . . . , In ⊂ R be pairwise comaximal ideals of R. Then
⋂n
i=1 Ii =

∏n
i=1 Ii.

6

Proof. Work by induction on n. Consider the base case n = 2. Take an arbitrary r ∈ I1∩I2.
Since I1 and I2 are comaximal, there exist a ∈ I1 and b ∈ I2 where a + b = 1. Then,
r = ar+br ∈ I1I2 by definition. Continue with the inductive step. The inductive hypothesis
states

⋂n−1
i=1 Ii =

∏n−1
i=1 Ii. I claim In and

∏n−1
i=1 Ii are comaximal. To see this, note that

there are ai ∈ Ii and bi ∈ In where ai + bi = 1 for i < n. Then, 1 =
∏n−1
i−1 (ai + bi). If

one expands this product, one term is a1a2 · · · an−1 while all others contain some bi and so
must be contained in In. This shows 1 ∈ In +

∏n−1
i=1 Ii and so indeed In and

∏n−1
i=1 Ii are

comaximal. Thus, by the base case using
∏n−1
i=1 Ii and In,

n∏
i=1

Ii = In

n−1∏
i=1

Ii = In

n−1⋂
i=1

Ii = In ∩
n−1⋂
i=1

Ii =
n⋂
i=1

Ii

We now show how to create quotient rings. Consider a ring R with a nonempty subset
I. The relation ≡ on R with respect to I is defined by a ≡ b (mod I) if a− b ∈ I.

Proposition 2. Let R be a ring with a nonempty subset I. The relation ≡ is an equivalence
relation if and only if I is closed under subtraction.

Proof. (=⇒) Take a, b ∈ I. Note that a ≡ a (mod I) by reflexivity. This gives 0 = a−a ∈ I.
Also, a− 0 ∈ I and b− 0 ∈ I. Therefore, a ≡ 0 (mod I) and b ≡ 0 (mod I). By symmetry,
0 ≡ b (mod I). Finally, using transitivity, a ≡ 0 ≡ b (mod I). Thus, a − b ∈ I and so I is
indeed closed under subtraction.

(⇐=) First, consider a ∈ I. Since I is closed under subtraction, 0 = a − a ∈ I. Now,
for reflexive, take r ∈ R and note that r − r = 0 ∈ I gives r ≡ r (mod I). For symmetric,
take r, s ∈ R where r ≡ s (mod I) and observe that s − r = 0 − (r − s) ∈ I since 0 ∈ I
and r− s ∈ I. This implies s ≡ r (mod I). For transitive, suppose r ≡ s (mod I) and s ≡ t
(mod I), so r − s ∈ I and t − s ∈ I using symmetry. Then, r − t = (r − s) − (t − s) ∈ I.
Thus, ≡ is an equivalence relation.

If I is a set closed under subtraction we can thus form equivalence classes

[a] := {b ∈ I : b ≡ a (mod I)}.

We can multiply and add equivalence classes by multiplying their representatives. For this
to be useful, we need [a][b] = [ab] and [a] + [b] = [a+ b], but this is only true if I is an ideal.

Proposition 3. Consider a ring R with a nonempty subset I that is closed under subtrac-
tion. Then addition and multiplication of the equivalence classes of ≡ are well-defined if
and only if I is an ideal.

7

Proof. (=⇒) First, 0 ∈ I since I is closed under subtraction. With that in mind, take any
r ∈ R and a ∈ I. Note that a ≡ 0 (mod I). Then, using that multiplication is well-defined,
ra ≡ r0 ≡ 0 (mod I) and so ra = ra− 0 ∈ I, as desired.

(⇐=) Suppose a, b1, b2 ∈ R with b1 ≡ b2 (mod I). To show addition is well-defined, note
that b1 − b2 ∈ I and so a + b1 − (a + b2) = b1 − b2 ∈ I shows a + b1 ≡ a + b2 (mod I).
For multiplication, note that b1 − b2 ∈ I and so ab1 − ab2 = a(b1 − b2) ∈ I by the second
defining property of an ideal. Thus, ab1 ≡ ab2 (mod I).

The equivalence classes of ≡ form the quotient ring of R modulo I. This is often de-
noted as R/I. All the ring axioms of R/I are inherited from the ring axioms of R because
multiplication and addition of the equivalence classes are well-defined.

Note that if a ∈ I, then a ≡ 0 (mod I). This reveals the intuition behind quotient rings:
all the elements in the ideal act as the additive identity in R/I. For example, consider the
ring Q[x] with ideal 〈x〉. Then a polynomial a0 + a1x + · · · + anx

n can be identified with
its constant coefficient a0 when working in Q[x]/〈x〉 since aixi ∈ 〈x〉 for i ≥ 1. This reveals
that Q[x]/〈x〉 is more-or-less just like working in Q. This notion of equality is known as
being isomorphic and will formalized soon. Another important example is the ideal 〈p〉 ⊂ Z
when p is a prime number. It follows that Z/〈p〉 gives the integers modulo p as studied in
elementary number theory. We denote here Zm := Z/〈m〉 for any integer m.
Definition 4. Let R be a ring. A zero-divisor a ∈ R is a nonzero element in which there
exists a nonzero b ∈ R where ab = 0.

For example, Q[x] contains no zero-divisors. For an example of a zero-divisor, in the
ring of Z6, observe that 2 · 3 ≡ 0 (mod 〈6〉).
Definition 5. Let R1 and R2 be rings. A homomorphism is a mapping ϕ : R1 → R2 that
satisfies

ϕ(1) = 1, ϕ(a+ b) = ϕ(a) + ϕ(b), ϕ(ab) = ϕ(a)ϕ(b).

Additionally, if ϕ is bijective, then ϕ is called an isomorphism; we write R1 ∼= R2 and say
R1 and R2 are isomorphic.

Given a homomorphism ϕ : R1 → R2, one can prove many expected properties such as
ϕ(0) = 0, ϕ(a− b) = ϕ(a)−ϕ(b), and ϕ(a−1) = ϕ(a)−1 provided a ∈ R∗1. A homomorphism
also gives a way to create an ideal as the kernel, ker(ϕ) = {a ∈ R1 : ϕ(a) = 0}. One can
show that a homomorphism is injective if and only if its kernel is trivial. Here are some
examples of homomorphisms:

(i) The mapping π : R1×R2 → R1 defined as π(a, b) = a is known as a natural projection
homomorphism.

(ii) Give an ideal I ⊂ R, the homomorphism ϕ : R → R/I defined as ϕ(r) = r + I is
known as the canonical projection.

8

(iii) The most important isomorphism in this thesis is the Chinese remainder theorem.

Theorem 4 (CRT). Let R be a ring with pairwise comaximal ideals I1, . . . , In. Then there
is a canonical isomorphism giving R/

∏n
i=1 Ii

∼=
∏n
i=1R/Ii.

Proof. Let I =
∏n
i=1 Ii. The canonical isomorphism will be given by ϕ(x+I) = (x+Ii)i=1..n.

Proving that ϕ is a homomorphism is straightforward. What is left to show is that ϕ is well-
defined, injective, and surjective. For well-defined, suppose ϕ(x+I) 6= ϕ(y+I) but x−y ∈ I.
This implies that there is some Ii where x− y 6∈ Ii. But then x− y 6∈

⋂n
i=1 Ii =

∏n
i=1 Ii = I

by Lemma 1. For injective, suppose ϕ(x + I) = ϕ(y + I). This implies x − y ∈ Ii for all i
and so x− y ∈

⋂n
i=1 Ii = I.

For surjective, it is sufficient to show that there is an element xi ∈ R such that xi ≡ 1
(mod Ii) and xi ≡ 0 (mod Ij) for j 6= i. If we had such xi, then for any point (ai+ Ii)i=1..n,
we could use

∑n
i=1 aixi to map to it. With that in mind, note that Ii is comaximal to∏n

j=1,j 6=i Ij as proven in Lemma 1. This implies there is bi ∈ Ii and xi ∈
∏n
j=1,j 6=i Ij where

bi+xi = 1. Note that xi = 0 (mod Ij) for j 6= i and xi ≡ 1−bi ≡ 1 (mod Ii), as desired.

This statement of Theorem 4 generalizes its analogue in elementary number theory,
which asserts that if given relatively prime integers q1, . . . , qs and integers u1, . . . , us, then
there exists a unique integer u where |u| < q1 · · · qs and u ≡ ui (mod qi). This is how we
will use the CRT to combine modular images. That is, consider distinct prime numbers
p1, . . . , pk. We often find ourselves in the situation where we are trying to compute some
a ∈ Z and it is easier to compute its modular images bi modulo pi; that is, a ≡ bi (mod pi).
Suppose we can ensure 0 ≤ a < p1 · · · pk. Then we compute multiple modular images bi
modulo pi for i = 1, . . . , k. Next, we use the CRT to retrieve b where b ≡ bi (mod pi) and
|b| ≤ p1 · · · pk. Since b is the unique integer satisfying these properties, it follows that a = b.
This process is known as recovering a from its modular images. We will also call this entire
process Chinese remaindering. Note that if we want to recover negative integers, we can
use the symmetric range modulo m; that is, we choose integers t where −m/2 < t ≤ m/2
as the equivalence class representatives. For example, if m = 5, the symmetric range has
representatives −2,−1, 0, 1, 2. This allows us to recover any integer a where |a| < m/2.

We turn our attention to the important concept of the radical of an ideal and the related
notion of nilpotent elements. In general, nilpotent elements should be seen as troublesome;
this is exemplified in Proposition 5 below where we show that if R has a nonzero nilpotent
element, then R[x] contains units of nonzero degree.

Definition 6. An element a ∈ R is nilpotent if an = 0 for some positive integer n.

Definition 7. Let R be a ring. The radical of an ideal I is
√
I = {a ∈ R : an ∈ I for some n ∈

Z}. An ideal I is radical if
√
I = I.

For example,
√

0 is the set of all nilpotent elements. We will define
√
R =

√
0 even

though it does not follow the definition above. It’s straightforward to show that
√
I is also

9

an ideal. Note that computing in R/
√
I as opposed to R/I essentially strips R/I of its

nilpotents. It turns out for many applications zero-divisors are easier to conquer. This is
true for the modular algorithm presented later, largely due to the following proposition. Its
main application is it tells us that if

√
R = 0, then R[x]∗ = R∗. The proposition is taken

from exercise 4 of section 1.3 of [4].

Lemma 5. Let R be a ring. Suppose a ∈ R∗ and b ∈
√
R. Then a+ b ∈ R∗.

Proof. Let bm = 0. Observe that (a + b)(a−1 − a−2b + · · · + (−1)m−1a−mbm−1) = 1 since
aa−1 = 1, bm = 0, and all other terms cancel since expanding results in a telescoping
sum.

Proposition 6. Let R be a ring. Then
√
R[x] =

√
R[x]. Furthermore,

R[x]∗ = R∗ +
√
R[x]

where the right hand side is to be interpreted as the set of all polynomials a0+a1x+· · ·+adxd

where a0 ∈ R∗ and ai is nilpotent for i > 0.

Proof. First, let f = a0 + a1x + · · · + anx
n ∈

√
R[x]. There is a positive integer d where

fd = 0. Well, the constant coefficient of fd must also equal 0 by comparing coefficients.
Therefore, a0 ∈

√
R. Clearly,

√
R ⊂

√
R[x] and so f − a0 ∈

√
R[x]. This implies that there

is a positive integer d1 where (a1x+ · · ·+ anx
n)d1 = 0. We can use similar computations to

show a1 ∈
√
R and hence a1x ∈

√
R[x]. Repeating will give f ∈

√
R[x]. Conversely, suppose

f ∈
√
R[x]. Work by induction on deg(f). If deg(f) = 0, then f ∈

√
R ⊂

√
R[x]. Next, let

f = f0 + anx
n where deg(f0) = n− 1 and so f0 ∈

√
R[x] by the induction hypothesis. Since

an ∈
√
R, clearly anxn ∈

√
R[x]. Hence f ∈

√
R[x] as

√
R[x] is an ideal.

For the second statement, let f ∈ R∗ +
√
R[x] so that f = a + f1 where a ∈ R∗ and

f1 has no constant term with all nilpotent coefficients. Then, f1 ∈
√
R[x] =

√
R[x] and

so Lemma 5 gives f ∈ R[x]∗. Conversely, let f ∈ R[x]∗. Proceed by induction on deg(f).
The base case with deg(f) = 0 should be clear. Now, suppose f is of degree n and there is
g ∈ R[x] where fg = 1. Let f = f0 + f1x+ · · ·+ fnx

n and g = g0 + g1x+ · · ·+ gmx
m. The

equation fg = 1 creates the system of equations

1 = f0g0,

0 = f0g1 + f1g0,

...

0 = fn−1gm + fngm−1,

0 = fngm.

10

This clearly gives f0 ∈ R∗. Next, multiplying the second to last by fn reveals 0 = f2
ngm−1.

Then, multiplying 0 = fn−2gm + fn−1gm−1 + fngm−2 by f2
n gives f2

ngm−2 = 0. Repeat this
process until fmn g0 = 0. Since g0 is a unit, fmn = 0. Of course fnxn would be nilpotent as
well. Therefore, f − fnxn is a unit by Lemma 5. By the induction hypothesis, f − fnxn has
the desired form and hence f does as well.

We conclude with a simple lemma about comaximal radical ideals that will be often
used in the section about the modular gcd algorithm presented later.

Lemma 7. Suppose I1, . . . , In are comaximal ideals of a ring R. Then
⋂n
i=1 Ii is radical if

and only if all Ii are radical.

Proof. (=⇒) Suppose some Ij is not radical. By the CRT, R/
⋂n
i=1 Ii

∼=
∏n
i=1R/Ii. Since

Ij is not radical, R/Ij contains a nilpotent element gj . Well, let g map to (0, . . . , gj . . . , 0)
using the CRT where all components are 0 besides the jth. Clearly, g would be a nonzero
nilpotent as well, giving that

⋂n
i=1 Ii is radical.

(⇐=) Conversely, suppose g is a nonzero nilpotent element of R/
⋂n
i=1 Ii and let g 7→

(g1, . . . , gn). Since g is nonzero, some gj 6= 0 because the CRT gives an isomorphism. If
gk = 0, then clearly gkj = 0 as well. Therefore, Ij is not radical.

2.2 The Monic Euclidean Algorithm

In this section, we will assume we are working over a commutative ring R with unity where
every non-zero element of the ring is either a unit or a zero-divisor, there is an algorithm
that can decide if an element is a unit, and we have a method to compute inverses. This is
everything we need to be able to use the monic Euclidean algorithm in R[x]. The purpose of
the Euclidean algorithm is to compute greatest common divisors. We follow the presentation
in [15].

Definition 8. Let R be a ring with elements a, b. We say a divides b and write a | b if there
exists q ∈ R such that aq = b.

Definition 9. Let R be a ring and a, b ∈ R[x]. Then a greatest common divisor of a and b
is denoted as gcd(a, b) and satisfies (i) gcd(a, b) | a and gcd(a, b) | b, and (ii) any common
divisor of a and b divides gcd(a, b). We use the convention that gcd(0, 0) = 0.

Although greatest common divisors are not unique, as the property of being a great-
est common divisor is invariant under multiplication by units, we will nevertheless write
gcd(a, b) to represent an arbitrary but consistently chosen greatest common divisor.

The Euclidean algorithm works by using repeated divisions. Here, we specialize to only
division by monic polynomials. That is, given a, b ∈ R[x] with b monic, we can compute the

11

quotient and remainder of a÷ b using the following recurrences:

r0 := a, q0 = 0,

rn := rn−1 − lc(rn−1)bxdeg(rn−1)−deg(b) qn := qn−1 + lc(rn−1)xdeg(rn−1)−deg(b)

which terminate when deg(rn) < deg(b) or rn = 0. Note that deg(rn) < deg(rn−1), so the
process must end. It can be easily verified by induction that a = bqn + rn. We are making
no assumptions on the uniqueness of the remainder, just the existence.

The monic Euclidean algorithm can be succinctly described as inverting leading coeffi-
cients and division by the resulting monic polynomial. Of course, if a leading coefficient can
not be inverted, we can ensure that it is a zero-divisor because of our assumptions about
R. If this happens, we terminate and return an error message [“ZERODIVISOR”, u] where
u ∈ R is the zero-divisor.

Algorithm 1: MonicEuclideanWithErrorHandling
Input : A ring R as specified in the opening of the section, and two polynomials

a, b ∈ R[x]. Assume degx(a) ≥ degx(b).
Output: Either monic gcd(a, b) or an error if a zero-divisor is encountered.

1 if b = 0 then
2 if lc(a) is a zero-divisor then return [“ZERODIVISOR”, lc(a)];
3 return lc(a)−1a

4 end
5 Set r0 := a and r1 := b;
6 i := 1;
7 while ri 6= 0 do
8 if lc(ri) is a zero-divisor then return [“ZERODIVISOR”, lc(ri)];
9 ri := lc(ri)−1ri;

10 Set ri+1 as the remainder of ri−1 divided by ri;
11 i := i+ 1;
12 end
13 return ri−1

Proposition 8. Let R be a ring and a, b ∈ R[x] with deg(a) ≥ deg(b). Assume no zero-
divisors are encountered when running the monic Euclidean algorithm on a and b. Then
the output is a gcd(a, b).

Proof. Let g = ri−1, the last nonzero remainder. We have to show that (i) g | a and g | b, and
(ii) any common divisor d | a and d | b also divides g. It will be useful to index the quotient qj
and leading coefficient cj = lc(rj) at the jth iteration; so rj−2 = qjrj−1 + cjrj . With that in
mind, for (i), note that ri−2 = qiri−1, and g | ri−2. This implies g | qi−1ri−2 +ci−1ri−1 = ri−3

as well. We can repeat the above argument i−3 more times to get g | r0 and g | r1. Clearly,
g | lc(b)r1 = b as well. This completes (i). For (ii), consider a common divisor d. Then,

12

d | r0 = a and d | lc(b)−1b = r1. This implies d | r0 − q2r1 = r2. Apply this argument i− 2
more times to get d | ri−1, as desired.

Further, the algorithm must terminate because after a finite number of iterations in the
while-loop, some ri must be of degree 0 since the deg(ri) < deg(ri+1).

We can also make the extended monic Euclidean algorithm by introducing the recur-
rences

s0 := 1, s1 := 0 t0 := 0, t1 := 1 (2.1)

sn := sn−2 − lc(rn−1)−1qnsn−1 tn := tn−2 − lc(rn−1)−1qntn−1 (2.2)

We have to scale the quotient qn by lc(rn−1)−1 to match the scaling of rn−1. It can again be
easily verified that sna+ tnb = rn using induction. In particular, there exists s, t ∈ R where
as + bt = gcd(a, b). Of course, this is only proven for the case when the monic Euclidean
algorithm does not encounter a zero-divisor. We have proven the following lemma.

Lemma 9. Let a, b ∈ R[x] with deg(a) ≥ deg(b). Suppose no zero-divisors are encountered
when running the monic Euclidean algorithm on a and b. Then there exists polynomials
s, t ∈ R where as+ bt = gcd(a, b). Moreover, 〈gcd(a, b)〉 = 〈a, b〉.

We would like to end with a Lemma concerning gcds and direct products of rings. The
proof is straightforward and follows from isomorphisms preserving divisibility, but is not
commonly studied. This will be of great use in the modular gcd algorithm in chapter 4. One
can generalize this result for R ∼= R1 × · · · ×Rn easily by using induction on n.

Lemma 10. Let R ∼= R1×R2. Let πi : R→ Ri be the natural projection homomorphisms.
Let a, b ∈ R with πi(a) = ai and πi(b) = bi. Then

(i) If g = gcd(a, b), then πi(g) is a gcd(ai, bi).

(ii) If g1 = gcd(a1, b1) and g2 = gcd(a2, b2), then g ∈ R is a gcd(a, b) where g satisfies
π1(g) = g1 and π2(g) = g2.

Proof. (i) We will only prove this for i = 1 without loss of generality. First, π1(g) | a1

and π1(g) | b1 since homomorphisms preserve divisibility. Next, consider a common divisor
d1 | a1 and d1 | b1 in R1. Note that 1 | a2 and 1 | b2. Let d ∈ R satisfy π1(d) = d1 and
π2(d) = 1. Then d must be a common divisor of a and b. Therefore, d | g and so indeed
d1 | π1(g).

(ii) First, g | a and g | b since isomorphisms preserve divisibility. Next, take a common
divisor d | a and d | b. Let d ∈ R satisfy π1(d) = d1 and π2(d) = d2. It follows that di | ai
and di | bi. Therefore, di | gi. Using that isomorphisms preserve divisibility, we get d | g.

13

2.3 Rational Reconstruction

Rational reconstruction solves the problem of recovering rational numbers from a modular
image. In particular, given u and m, it finds n, d ∈ Z where n/d ≡ u (mod m) and there is
some sort of uniqueness criteria on n and d. It has a wide range of applications in computer
algebra, including Encarnacion’s gcd algorithm for polynomials over a number field [12] and
solving linear systems over Q. For us, it will be used multiple times in multiple algorithms,
so we would like to quickly review.

With that in mind, let u and m be two integers. We can use the extended Euclidean
algorithm on u and m to create a sequence of integers si, ti, ri such that

sim+ tiu = ri, 1 ≤ i ≤ n+ 1

where r1 := m, r2 := u, and ri+1 = rem(ri−1, ri). This is done in the same way as the
extended Euclidean over a ring as in the last section, but the integer division algorithm is
used rather than the polynomial division algorithm. The key observation is that tiu ≡ ri

(mod m). In particular, if gcd(ti,m) = 1, then t−1
i mod m exists and u ≡ ri/ti (mod m).

This is how the rational numbers n/d ∈ Q are generated. This construction also gives a
uniqueness result.

Theorem 11 (Wang, Guy, Davenport, 1982). Let n, d,m, u ∈ Z with d,m > 0 and
gcd(n, d) = gcd(m, d) = 1 and u ≡ n/d (mod m). Let N,D ∈ Z such that N ≥ n and
D ≥ d. If m > 2ND, then

(i) the modular map ϕ : Q → Zm defined as ϕ(ab) = b−1a (mod m) is injective when
restricted to {ab ∈ Q : |ab | < m, gcd(b,m) = 1}.

(ii) on input of m and u, there exists a unique index i in the extended Euclidean algorithm
satisfying ri/ti = n/d. Moreover, i is the first index such that ri ≤ N .

For a proof, see [25]. The restriction gcd(m, d) = 1 is a valid concern and must be
resolved in the algorithm that is using rational reconstruction. If, for instance, the algorithm
uses multiple primes and one such prime p does not satisfy gcd(p, d) = 1, then rational
reconstruction will not work. The algorithm must either not use p or eventually discard
p from consideration. The modular gcd algorithm in chapter 5 and inversion algorithm in
chapter 6 indeed consider this.

There have been many optimizations to the main algorithm, such as Monagan’s Maximal
Quotient Rational Reconstruction [23]. Also see [1] for fault tolerant rational reconstruction,
which we use and review in section 4.2. The base algorithm for rational reconstruction now
follows in Algorithm 2 as it is depicted in [25]. Note that it requires bounds N ≥ |n| and
D ≥ d on input.

14

Algorithm 2: RationalReconstruction
Input : Integers m,u,N,D with m > u ≥ 0, N,D > 0 and 2ND < m.
Output: Either n/d ∈ Q such that |n| ≤ N , 0 < d ≤ D, gcd(n, d) = 1, and n/d ≡ u

(mod m), or FAIL implying no such rational n/d exists.
1 Initialize r1 := m, r2 := u, and t1 := 0, t2 := 1;
2 Set i := 2;
3 while ri > N do
4 Set q := bri−1/ric;
5 Set ri+1 := ri−1 − qri;
6 Set ti+1 := ti−1 − qri;
7 Iterate i := i+ 1;
8 end
9 Set n := ri and d := ti;

10 if d < 0 then set n := −n and d := −d;
11 if d ≤ D and gcd(n, d) = 1 then return n/d;
12 Otherwise, return FAIL;

We will assume any actual calls to the rational reconstruction will use Monagan’s max-
imal quotient rational reconstruction. Note that this version is heuristic and so doesn’t
require bounds on the numerator or denominator.

2.4 p-adic Representations and Hensel lifting

We would like to briefly review the p-adic representation of integers using the symmetric
range. With that in mind, let p be an odd prime and n an integer. The main result we need
is that we may write n in the form n =

∑k
i=0 aip

i for some positive integer k and integers
ai where |ai| < p/2. The number k is the order of the p-adic representation. For example,
the 5-adic expansion of 13 using the symmetric range is 12 = −2 + (−2)5 + 1 · 52. Further,
we will need this form to be unique. Once we have proven the uniqueness and existence for
integers, it is easy to extend this result to that of polynomials.

Proposition 12. Let p > 2 be a prime number. Every integer n ∈ Z has a unique p-adic
representation with finite order if the symmetric range is used.

Proof. Existence: First, consider only n ≥ 0. If n ≤ p/2, then the p-adic representation of n
clearly exists. Otherwise, divide n by p in the symmetric range to achieve n = pq0 + r0 with
|r0| < p/2. We claim |q0| < |n|. If q0 = 0, we are done, so assume |q0| ≥ 1. Now, suppose

15

|n| ≤ |q0| to the contrary and observe that

|q0| ≥ |n| = |pq0 + r0| = |pq0 − (−r0)|

≥ |pq0| − | − r0|

> p|q0| −
p

2
= p

2 |q0|+
p

2 |q0| −
p

2
≥ p

2 |q0|+
p

2 −
p

2
= p

2 |q0|

which is a contradiction since p > 2. Also, if q0 < 0, then n < p0 + r0 = r0 < p/2 which
falls into a case that is already handled. In particular, we may assume that 0 ≤ q0 < n and
so we may repeat the same argument on q0 giving n = (pq1 + r1)p + r0. There are only a
finite amount of integers between 0 and n, so this process must terminate after k iterations
with qk = 0. This gives

n = rkp
k + rk−1p

k−1 + · · ·+ r1p+ r0,

as desired. If n < 0, then find the p-adic representation for −n and flip the signs of the
remainders.

Uniqueness: Suppose n had two p-adic representations:

n = a0 + a1p+ · · ·+ akp
k = b0 + b1p+ · · ·+ bmp

m

where m, k are positive integers and ai, bi ∈ Z with |ai|, |bi| < p/2. Reduce this equation
modulo p to get a0 = b0 by size constraints. After that, reduce modulo p2 to get a1p ≡ b1p
(mod p2) so that a1 ≡ b1 (mod p). By size constraints again, a1 = b1. This process can be
repeated to get all ai = bi for i ≤ max{m, k}. Thus, uniqueness is shown.

We can also give a p-adic representation to polynomials in Z[z1, . . . , zn]. That is, let
f =

∑k
i=0 cizi where zi are monomials and ci ∈ Z. Then each ci has a unique p-adic

representation: ci =
∑mi
j=0 aijp

j . Let m = maxi=1..k{mi} and define aij = 0 for i > mij .
Expanding out and grouping in terms of powers of p gives a p-adic representation of f :

f =
k∑
i=0

cizi =
k∑
i=0

(m∑
j=0

aijp
j
)
zi =

m∑
j=0

(k∑
i=0

aijzi
)
pj .

The integer m would be the order of f with respect to its p-adic representation.

Proposition 13. Let p > 2 be a prime number. Every polynomial f ∈ Z[z1, . . . , zn] has a
unique p-adic representation.

16

Proof. Existence follows from the preceding paragraph. The uniqueness result can be proven
the same way as the integer case.

Our main use of the p-adic representation is in Hensel lifting. Let f ∈ Z[x] and a1, b1 ∈
Zp[x] satisfying f ≡ a1b1 (mod p) and gcd(a1, b1) = 1. Hensel lifting gives a construction
that lifts this factorization to a factorization mod pj for any j > 1; that is, it constructs
unique polynomials aj , bj such that f ≡ ajbj (mod pj) with aj ≡ a1 (mod p) and bj ≡ b1

(mod p) for all j. This is done via the Hensel construction:

1) Assume there are polynomials aj−1, bj−1 ∈ Zpj−1 [x] where f ≡ aj−1bj−1 (mod pj−1).

2) We will compute the next term in p-adic representation of aj and bj . That is, we will
compute u, v ∈ Z[x] satisfying aj = aj−1 + upj−1 and bj = bj−1 + vpj−1 where u and v
have integer coefficients bounded by p/2, deg(u) < deg(aj), and deg(v) < deg(bj).

3) We also want to satisfy f ≡ ajbj (mod pj). This gives

f ≡ ajbj ≡ (aj−1 + upj−1)(bj−1 + vpj−1) ≡ aj−1bj−1 + (aj−1v + ubj−1)pj−1 (mod pj).

4) Subtract aj−1bj−1 on both sides and divide through by pj−1 to get

f − aj−1bj−1
pj−1 ≡ aj−1v + ubj−1 (mod p).

5) Let cj = f−aj−1bj−1
pj−1 . Note that aj−1 ≡ a1 (mod p) and bj−1 ≡ b1 (mod p). So, it’s

sufficient to be able to solve the Diophantine equation c ≡ a1v + ub1 (mod p) for u and
v in Zp[x] satisfying the requirements from step 1.

Well, Theorem 2.6 in [14] states that this result exists when gcd(a1, b1) ≡ 1 (mod p) and is
unique when it satisfies the degree constraints in step 2. We generalize it in section 4.1 as
Lemma 25.

Hensel lifting is used often in computer algebra. One of its main applications is for
factorization of polynomials over Z. See chapter 8 of [14] for details.

Starting with an initial factorization mod p allows us to use the construction above to
lift to as high p-adic order as we like. Please see section 6.5 of [14] for more details of this
process. We will generalize the Hensel construction in section 4.1 to a R[x] where R is a
quotient ring over Q.

2.5 Fields and Extensions

Definition 10. A field is a ring where every nonzero element has a multiplicative inverse.

17

For example, Q and Zp (where p is a prime number) are fields. The characteristic m
of a field is the smallest positive integer where

∑m
i=1 1 = 0, or if no such m exists, the

characteristic is 0. The field Q is of characteristic 0 and Zp is of characteristic p. It is not
hard to prove that the characteristic is either 0 or a prime number.

Definition 11. Let k and F be fields with a homomorphism ϕ : k → F . Then k → F is a
field extension. The degree of F over k is the dimension of F as a k-vector space. If the
degree is a finite number m, we say k → F is a finite extension and write [F : k] = m.

If there is a tower of finite extensions k → F → L, one can show that [L : k] = [L :
F][F : k] by taking products of pairs of elements from each corresponding basis.

The most important field extension in this paper will be k → k[z]/〈t(z)〉 where t(z) is an
irreducible polynomial; recall that a polynomial is irreducible if whenever t(z) = a(z)b(z),
either a(z) or b(z) is a unit. It is not immediately obvious that k[z]/〈t(z)〉 is a field. This
follows since any equivalence class modulo t(z) can be represented by a polynomial f(z)
of smaller degree than t(z). By Lemma 9, 〈t(z), f(z)〉 = 〈gcd(t(z), f(z)〉. Well as long as
f(z) 6≡ 0 (mod t(z)), then gcd(t(z), f(z)) = 1 because of the degree constraints of f(z) and
irreducibility of t(z). It is easy to see from here that f(z) would be unit modulo t(z) as long
as f(z) 6≡ 0 (mod t(z)).

Consider a finite field extension k → F . Let α ∈ F be a nonzero element. Since [F : k]
is finite, the set {1, α, α2, . . . } must have a linear dependence in it. That is, there exists
c0, . . . , cm with cm 6= 0 and c0 + c1α + · · · + cmα

m = 0. If we choose m minimally, then
t(z) = c0 + c1z + · · · + cmz

m is the polynomial of lowest degree over k with α as a root.
If in addition cm = 1, then t(x) is called the minimal polynomial of α over k. We define
k(α) := k[z]/t(z). When k = Q and α is contained in some finite extension Q → F , we
call Q(α) an algebraic number field. For example, Q(

√
2) ∼= Q(z)/〈z2 − 2〉 is an algebraic

number field defined by the minimal polynomial z2 − 2.
Once we have an extension of the form Q → Q(α1), we can extend it further to

Q → Q(α1) → Q(α1, α2) where Q(α1, α2) := Q(α1)(α2). This is equivalent to working
in Q[z1, z2]/〈t1(z1), t2(z1, z2)〉 where t1(z1) is the minimal polynomial of α1 over Q and
t2(z1, z2) is the minimal polynomial of α2 over Q(α1). Note that the theorem of the primitive
element (see Theorem 5.4.1 of [9]) tells us that Q(α1, α2) ∼= Q(β) for some β ∈ Q(α1, α2).
Here, we do not use such a primitive element and instead work over multiple extensions.
However, this does justify us calling Q(α1, α2) an algebraic number field.

We can repeat the above construction for n extensions:

Q(α1, . . . , αn) ∼= Q[z1, . . . , zn]/〈t1(z1), . . . , tn(z1, . . . , zn)〉

where tk(z1, . . . , zk) is the minimal polynomial of αk over Q(α1, . . . , αk−1) when zi is eval-
uated at αi for i < k. These sets {t1(z1), . . . , tn(z1, . . . , zn)} obtained in this fashion are
examples of triangular sets, the topic to which the remainder of this thesis is dedicated.

18

Chapter 3

Triangular Sets

This section details the important concept of a triangular set. We start with definitions and
examples while recalling our motivation from algebraic number fields. We continue with
results about counting field multiplications of arithmetic operations modulo triangular sets;
including a new result about multiplication which we show is a practical improvement over
the currently used methods. The last section is dedicated to radical triangular sets. We
give a structure theorem with significant corollaries and conclude with an algorithm for
determining when T is radical over Q, but is not when reduced modulo a prime number p.

3.1 Definitions and Examples

We begin with some notation. All computations will be done in the ring k[z1, . . . , zn] en-
dowed with the monomial ordering zi < zi+1 and k a field. Let f ∈ k[z1, . . . , zn] be non-
constant. The main variable mvar(f) of f is the largest variable with nonzero degree in f ,
and the main degree of f is mdeg(f) = degmvar(f)(f). This notation was taken from [2].

As noted in the previous section, triangular sets will be of key interest in this paper.
Further, they are to be viewed as a generalization of an algebraic number field with multiple
extensions. For this reason, we impose extra structure than is standard:

Definition 12. A triangular set T is an ordered set of non-constant polynomials in k[z1, . . . , zn]
with distinct main variables. Further:

(i) |T | = n,
(ii) T = {t1, . . . , tn} where mvar(ti) = zi,
(iii) ti is monic with respect to zi, and
(iv) degzj

(ti) < mdeg(tj) for j < i.

The degree of T is
∏n
i=1 mdeg(ti). Also, T = ∅ is a triangular set.

Condition (i) states there are no unused variables. We call such a T zero-dimensional,
this can be shown to be equivalent to V(T) being finite, see Proposition 8 of section 5.3
of [7]. Condition (ii) gives a standard notation that will be used throughout this paper.

19

Conditions (iii) and (iv) relates the definition to that of minimal polynomials. Condition
(iv) is commonly referred to as a reduced triangular set as seen in [2]. The degree of T is
akin to the degree of an extension; that is, they are both equal to the dimension over k as
a k-vector space. These extra assumptions were also used in [20].

Example 1. The polynomials {z3
1 + 4z1, z

2
2 + (z1 + 1)z2 + 4} form a triangular set. However,

{z2
2 + (z1 + 1)z2 + 4} would not since there is no polynomial with z1 as a main variable.

Also, {t1 = z3
1 + 4z1, t2 = z2

2 + z4
1z2 + 3} is not because degz1(t2) = 4 > mdeg(t1).

Given a triangular set T , we define Ti = {t1, . . . , ti} and T0 = ∅. For example, let
T = {z3

1 + 1, z3
2 + 2, z3

3 + 3}. Then, T3 = T , T2 = {z3
1 + 1, z3

2 + 2}, T1 = {z3
1 + 1}. Since each

ti is monic in its main variable, k[z1, . . . , zk] ∩ 〈T 〉 = 〈Tk〉. This is known as an elimination
ideal, see chapter 3 of [7] for more details.

The presence of zero-divisors presents many unforeseen difficulties that the following
examples illustrate.

Example 2. It is possible for a monic polynomial to factor as two polynomials with zero-
divisors as leading coefficients. Consider the triangular set T = {z4

1 + 3z2
1 + 2, z3

2 − z2}.
There are some obvious zero-divisors modulo T which come from the factorizations t1 =
(z2

1 + 1)(z2
1 + 2) and t2 = (z2 − 1)(z2 + 1)z2, but a not so obvious one is

z3
2 − z2 =

(
(z2

1 + 2)z2
2 − 1

) (
(z2

1 + 1)z3
2 + z2

)
. (3.1)

Factoring z3
2−z2 = (z2

2−1)z2 is nicer because it creates a splitting 〈T 〉 = 〈t1, z2
2−1〉∩〈t1, z2〉

of triangular sets where the factorization in (3.1) would not. This greatly enhances the
complexity of handling zero-divisors. Equation (3.1) also shows that the degree formula for
the product of two polynomials does not hold in this setting.

Example 3. Another difficulty is that denominators in the factors of a polynomial a(x) ∈
R[x] may not appear in the denominators of a(x). For instance, let t1(z1) = z2

1 − 5. Then,

x2 + x− 1 = (x− 1
2z1 + 1

2)(x+ 1
2z1 + 1

2).

In the special case when R is an algebraic number field, the denominator of any factor f(x)
of a(x) (denom(f) = 2 in this example) must divide the defect d of the R, as noted in [12]. It
is known that the discriminant ∆ of the defining polynomial of R is a multiple of d, usually,
much larger than d (∆ = 20 in this example). Although one could try to generalize the
discriminant to the case n > 1, we handle fractions with a different approach. In particular,
Lemma 32 in section 5.1 gives a characterization of primes appearing in denominators of
monic factors of monic polynomials modulo a radical triangular set. Also, see [26] for more
details considering defects and discriminants.

20

3.2 Arithmetic Modulo Triangular Sets

To start, we prove a tight bound on the number of field multiplications it takes to multiply
two polynomials and reduce modulo a triangular set. We assume the inputs are reduced.
We will need this later when doing an asymptotic analysis of the modular algorithms.

Let δ be the degree of a triangular set T with n variables. To multiply two polynomials
modulo a triangular set, the obvious approach is to multiply out the polynomials and then
reduce. The reduction step involves doing divisions by the polynomials in the triangular
set. The way these divisions are carried out leaves a large impact on the total number of
operations. We would like to illustrate by describing the classical approach as outlined in
[20]. We will assume a and b are reduced and dense in all variables. Let di = mdeg(ti) for
all i. First, view a and b as polynomials in zn with coefficients modulo Tn−1. Multiplying
ab modulo Tn−1 involves recursively multiplying all pairs of coefficients from a and b and
reducing modulo Tn−1. There are d2

n such pairings and the process yields a polynomial c
with degzn

(c) = 2(dn − 1) and coefficients that are reduced with respect to Tn−1. Next,
we have to divide c by tn. If one uses the high school division algorithm, this involves
scaling dn coefficients of tn for degzn

(c)−dn+ 1 iterations for a total of dn(dn−1) recursive
multiplications modulo Tn−1.

Let M(n) be the number of field multiplications used during a multiplication of a and
b modulo T . The algorithm described above does d2

n + dn(dn − 1) multiplications modulo
Tn−1 each costing M(n− 1) field multiplications. This gives a recurrence

M(n) ≤ (d2
n + dn(dn − 1))M(n− 1)

If there are no extensions, it takes a single field multiplication so that M(0) = 1. It is
straightforward to solve this to getM(n) = O(2nδ2). This is as stated in [20] for the classical
multiplication algorithm. We show that it can in be done in O(δ2) field multiplications in
Proposition 14. It should be noted that one normally assumes mdeg(ti) ≥ 2 since extensions
by linear polynomials are trivial. With that in mind, the classical multiplication algorithm
is O(δ3). We mention this because it should be clear that our result does not turn an
exponential-time algorithm to a quadratic one, but rather cubic to quadratic.

We would like to note that we have done an actual field multiplication count (in our
code) and got the exact same result in the dense case as the proposition states. The key
idea of the optimization is to do as little recursive reductions as possible and was originally
done by Monagan for the ring Zn with n too big for a single machine word, see [22].

Proposition 14. Let M(n) be the number of field multiplications required to multiply
a, b ∈ k[z1, . . . , zn]/T and reduce by the triangular set T . Let mdeg(ti) = di and define

21

δ1 = d1, δ2 = d1d2, and so on ending with δn = d1d2 · · · dn = δ. Then

M(n) ≤ δ2
n +

n∑
k=1

δ2
k

dk − 1
dk

n∏
j=k+1

(2dj − 1) (3.2)

which is exact in the dense case. Further, M(n) ≤ 3δ2.

Proof. Let D(n) be the number of field multiplications it takes to reduce a polynomial of
degree 2(dj−1) in each corresponding variable by Tn. It is assumed that D(n) works by first
reducing by t1, then reducing by t2 modulo T1, etc. Well, multiplying ab will always take
δ2
n multiplications before reducing, and this is true whether or not these multiplications
are done recursively or at the on-set; in particular, it follows that M(n) = δ2

n + D(n).
We proceed by describing a division algorithm to divide c = ab by tn modulo Tn−1. Let
c = c0 + c1zn + · · · + c2(dn−1)z

2(dn−1)
n and tn = p0 + p1zn + · · · + zdn

dn
. We can compute the

quotient q = q0 + · · · + qdn−2z
dn−2
n and remainder r = r0 + · · · + rdn−1z

dn−1
n via the linear

system generated by r = c− tnq,

qdn−2 = c2dn−2,

qdn−3 = c2dn−3 − qdn−2pdn−1,

qdn−4 = c2dn−4 − qdn−3pdn−1 − qdn−2pdn−2,

...

q0 = cdn − q1pdn−1 − · · · − qdn−2p2,

rdn−1 = cdn−1 − q0pdn−1 − q1pdn−2 − · · · − qdn−2p1,

rdn−2 = cdn−2 − q0pdn−2 − q1pdn−3 − · · · − qdn−3p0,

...

r1 = c1 − q0p1 − q1p0,

r0 = c0 − q0p0.

We will outline a method to solve the equations above. The key idea is to compute the entire
right-hand-side of the equations before reduction. First, set qdn−2 = c2dn−2 and reduce by
Tn−1. Then, multiply qdn−2pdn−2 over k and subtract it from c2dn−3, and then reduce by
Tn−1 to obtain qdn−3. It should be clear how to generalize this result and compute all qk.
Next, to get rk, simply multiply the corresponding qipj over k and end by reducing the
result of the sum by Tn−1. This reveals we only have to do a single reduction per equation
and each reduction is of a polynomial of degree at most 2(dj − 1) in the corresponding
variable; this takes at most (2dn − 1)D(n − 1) field multiplications. Multiplying each qipj

22

will take δ2
n−1 field multiplications each. This takes

(1 + 2 + · · ·+ (dn − 2))δ2
n−1 =

(
dn − 1

2

)
δ2
n−1

field multiplications for computing all qi in the top dn − 1 rows, and

(
(1 + 2 + · · ·+ (dn − 1) + (dn − 1)

)
δ2
n−1 =

((
dn
2

)
+ dn − 1

)
δ2
n−1

field multiplications for computing all ri in the bottom dn rows. Overall,

D(n) = (2dn − 1)D(n− 1) +
((dn − 1)(dn − 2)

2 + (dn(dn − 1)
2 + dn − 1

)
δ2
n−1

= (2dn − 1)D(n− 1) + dn(dn − 1)δ2
n−1.

If there are no extensions, it takes 0 multiplications to reduce; so we may use D(0) = 0 as
our initial condition. The solution can be found most easily using Maple’s rsolve command
and some algebraic simplification. The command is

rsolve({M(n) = (2*d[n]-1)*M(n-1) + d[n]*(d[n]-1)*del(n-1)^2, del(n)=del(n-1)*d[n],

M(0)=0, del(1)=d[1]}, {M(n), del(n)});

For the lighter bound, we claim D(n) ≤ 2δ2
n. To prove this, proceed by induction on n.

The base case n = 0 follows from D(0) = 0 ≤ 2 = 2δ0. Next,

D(n) = (2dn − 1)D(n− 1) + dn(dn − 1)δ2
n−1

≤ (2dn − 1)2δ2
n−1 + dn(dn − 1)δ2

n−1

= 4dnδ2
n−1 − 2δ2

n−1 + dn(dn − 1)δ2
n−1

= 4dnδ2
n−1 − 2δ2

n−1 + d2
nδ

2
n−1 − dnδ2

n−1

= 3dnδ2
n−1 − 2δ2

n−1 + δ2
n

= (3dn − 2)δ2
n−1 + δ2

n.

To finish, note that 3dn − 2 ≤ d2
n which follows from d2

n − 3dn + 2 = (dn − 2)(dn − 1) ≥ 0
for all dn ∈ Z. Thus, D(n) ≤ d2

nδ
2
n−1 + δ2

n = 2δ2
n and indeed M(n) ≤ δ2

n +D(n) ≤ 3δ2
n.

In [20], Li et al prove that multiplication can be done in O(4nδ log(δ) log(log(δ))) field
operations. Their method computes the coefficients by lifting modulo the ideal 〈xn〉 using
Newton-iteration, and computes the coefficients of x1, . . . , xn−1 recursively. However, the
algorithm outlined in the proof above is what we are actually using, so it is what we should
be counting. It should also be noted that the constant in their algorithm is much larger
than the one from ours, so one would expect ours to perform better for smaller inputs.
Comparing these two quantities is not obvious. To aid the reader we compare our bound

23

(3.1) with theirs in the table below. Because they do not give an explicit constant, we use 3
since their proofs ensure it is smaller. The table considers extensions of degree δ = dn with
mdeg(ti) = d. We give the smallest value of n such that our bound exceeds theirs.

d n δ = dn

5 29 186264514923095703125
6 14 78364164096
7 10 282475249
8 8 16777216
9 6 531441
10 5 100000
12 4 20736
16 3 4096
28 2 784
115 1 115

Table 3.1: The first column is the main degree of each ti, the second is smallest number of extensions
where our bound exceeds the bound given in [20], the third is the degree of this extension δ = dn.
Values of d that are omitted have the same value of n as the largest shown predecessor. For d < 5,
our bound is always smaller. For d ≥ 115 their bound is always smaller.

Of course the bounds do not say it all. The algorithm in [20] does a lot of extra processing
(such as evaluations/interpolations, reversing coefficients of a polynomial, truncating power
series) so their constant is much larger than 3, which we used. Also, it should be noted that
one can not expect to ever efficiently compute over extensions of degree larger than 106

with modern computers; view our timing tests in section 5.3 and 6.2 for evidence of this.
Next, we would like to go over a field multiplication count for the other arithmetic

operations assuming classical quadratic multiplication: division, inversion, and GCDs via
the Euclidean algorithm. We will not get an exact count as in Proposition 14, instead just
focus on asymptotics. We will need these when analyzing the modular gcd algorithm and the
inversion algorithm later. We will be using the extended Euclidean algorithm for computing
inverses here, and will only need this result when the field is Zp. When using the Euclidean
algorithm, we need to assume no zero-divisors are encountered.

Proposition 15. Let T ⊂ k[z1, . . . , zn] be a triangular set and R = k[z1, . . . , zn]/T . Let
a, b ∈ R[x] with deg(a) ≥ deg(b) and b monic. Then the remainder and quotient of a ÷ b
can be computed in O(deg(b)(deg(a)− deg(b) + 1)δ2) field multiplications.

Proof. The standard division works by multiplying the coefficients of b modulo T by an
element of R for at most deg(a)−deg(b)+1 iterations. There are deg(b) coefficients of b not
including the leading coefficient; note that we ignore lc(b) since we are assuming b is monic.
This implies that we need to do deg(b)(deg(a)−deg(b) + 1) ring multiplications. We can do
ring multiplications in O(δ2) field multiplications by Proposition 14, giving the result.

24

Proposition 16. Let T ⊂ k[z1, . . . , zn] be a triangular set and R = k[z1, . . . , zn]/T . As-
sume inverses in k can be computed in a O(1) field multiplications. Let a ∈ R. Then a−1

can be computed in O(δ2) field multiplications. We will be using the extended Euclidean
algorithm in a and tn modulo Tn−1 to compute a−1 and we will assume no zero-divisors are
encountered.

Proof. Work by induction on n. Note that our assumption on k satisfies the base case
n = 0. Next, let δm =

∏m
i=1 deg(ti) as in Proposition 14. Let I(n) be the number of field

multiplications it takes to compute the inverse of an element with n variables. Then the
first step of the Euclidean algorithm is to invert lc(a). After that, we would have to invert
the leading coefficient of the remainder of tn ÷ a. Since the worst case is the degree of
each successive remainder going down by 1, this will take a total of at most deg(a) =
deg(tn)− 1 recursive inversions. By Proposition 15, this will take O((deg(tn)− 1)δ2

n−1) field
multiplications, the next remainder will take O((deg(tn)−2)δn−1) field multiplications, and
so on. In total,

I(n) = deg(tn)I(n− 1) +
deg(tn)−1∑

j=1
O(jδn−1) = deg(tn)I(n− 1) +O(deg(tn)2δn−1).

Note that we also have to multiply through by the inverse of the leading coefficient at each
step. This will take O(deg(tn)2δn−1) over all steps as well.

Now, the induction hypothesis states I(n− 1) = O(δ2
n−1). So,

I(n) = deg(tn)I(n− 1) +O(δ2) = deg(tn)O(δ2
n−1) +O(δ2) = O(δ2),

completing the inductive step. We have not counted the extra multiplications in the extended
Euclidean algorithm, but this does not impact the asymptotics; see Theorem 3.11 of [13].

Proposition 17. Let T ⊂ k[z1, . . . , zn] be a triangular set and R = k[z1, . . . , zn]/T . Let
a, b ∈ R[x] with deg(a) ≥ deg(b). Then running the Euclidean algorithm on a and b takes
O(dadbδ2) field multiplications assuming no zero-divisors are encountered.

Proof. Let da = deg(a) and db = deg(b). We will have to perform at most db remainders
to complete the Euclidean algorithm. This implies we need to invert db leading coefficients
as well as lc(b). This accounts for O(dbδ2) field multiplications. Multiplying through by the
leading coefficients will cost O(d2

bδ
2) ≤ O(dadbδ2) field multiplications since each remainder

has degree ≤ db and there are db of them. Next, computing all but the first remainder cost
a total of O(d2

bδ
2) field multiplications since each remainder has ≤ db degree and there are

db of them in the worst case. Finally, the first remainder costs O(db(da − db + 1)δ2) field
multiplications. Thus, the entire cost is O(dadbδ2 + db(da − db + 1)δ2) = O(dadbδ2).

25

3.3 Radical Triangular Sets

We turn our attention now to radical triangular sets. We start with a useful structure
theorem and some corollaries. Theorem 18 is well-known in the literature, but we give a
new proof. The more standard proof is based on a concept known as associated primes to
an ideal, see Proposition 4.7 in [17]. Our proof is a good example of how we view triangular
sets from an algebraic number theory perspective.

Theorem 18. Let T ⊆ k[z1, . . . , zn] be a zero-dimensional triangular set andR = k[z1, . . . , zn]/T .
Then R is isomorphic to a direct product of fields if and only if 〈T 〉 is radical.

Proof. (⇐=) Use induction on the number of variables n. If n = 1, let t1 = a1a2 · · · am be
the monic irreducible factorization of t1. Since 〈t1〉 is radical, t1 must be square-free. By
the CRT, k[z1]/〈t1〉 ≡

∏m
i=1 k[z1]/〈ai〉. Since each ai is irreducible, k[z1]/〈ai〉 is a field and

so k[z1]/〈t1〉 is isomorphic to a product of fields.
We proceed with the inductive step. I claim 〈Tn−1〉 is radical. To see this, suppose gk ∈

〈Tn−1〉. Then, gk ∈ 〈T 〉 which implies g ∈ 〈T 〉 by 〈T 〉 being radical. Also, g ∈ k[z1, . . . , zn−1]
by assumption. Therefore, g ∈ 〈Tn−1〉. So, k[z1, . . . , zn−1]/Tn−1 ∼=

∏
Fi where Fi are fields

by the induction hypothesis. We can extend this isomorphism to

(k[z1, . . . , zn−1]/Tn−1)[zn] ∼= (
∏

Fi)[zn] =
∏

Fi[zn].

Observe that

R = k[z1, . . . , zn]/T = (k[z1, . . . , zn−1]/Tn−1)[zn]/〈tn〉 ∼= (
∏

Fi[zn])/〈tn〉 ∼=
∏

Fi[zn]/〈tn〉

where we are assuming that tn is reduced appropriately in Fi. I claim that tn is square-free
and nonzero in Fi[zn]. Being nonzero simply follows from tn being monic. Next, if tn was not
square-free in Fi[zn], there would be some gk | tn in Fi. But this would imply Fi[zn]/tn has
a nilpotent element, contradicting that T is radical. Thus, each Fi[zn]/tn will be isomorphic
to a product of fields by the base case. This completes the inductive step and this direction
of the proof.

(=⇒) Since k[z1, . . . , zn]/〈T 〉 ∼=
∏
Fi is isomorphic to a direct product of fields, it will

have no nilpotent elements. Thus, 〈T 〉 is radical.

One important reason that we restrict the modular gcd algorithm to radical triangular
sets is that it is sufficient for gcds to exist for any two polynomials; this is proven in Corollary
19. Next, we prove a result in Corollary 20 about the extended Euclidean representation
modulo a radical triangular set. It should be noted that it works even if lc(g) is a zero-
divisor, or (more generally) if the Euclidean algorithm would encounter a zero-divisor. This
shows it is more powerful than the extended Euclidean algorithm. After that we prove that
all nonzero elements are either units or zero-divisors and a version of the division algorithm.

26

Corollary 19. Let T ⊂ k[z1, . . . , zn] be a radical, zero-dimensional triangular set and
R = k[z1, . . . , zn]/T . Let a, b ∈ R[x]. Then a greatest common divisor of a and b exists.

Proof. Let R[x] ∼=
∏
Fi[x] where each Fi is a field. Let a 7→ (ai)i and b 7→ (bi)i. Since Fi[x]

is a Euclidean domain, gi = gcd(ai, bi) certainly exists. Well, the polynomial g 7→ (gi)i is a
gcd of a and b in R[x] by Lemma 10.

Corollary 20 (Extended Euclidean Representation). Let T ⊂ k[z1, . . . , zn] be a radical,
zero-dimensional triangular set and R = k[z1, . . . , zn]/T . Let a, b ∈ R[x] with g = gcd(a, b).
Then, there exists polynomial A,B ∈ R[x] such that aA+ bB = g.

Proof. Note that R ∼=
∏
Fi where Fi is a field, and we can extend this to R[x] ∼=

∏
Fi[x].

Let a 7→ (ai)i and b 7→ (bi)i under this isomorphism. Define hi = gcd(ai, bi) in Fi[x]. By
the extended Euclidean algorithm, there exists Ai, Bi ∈ Fi[x] such that aiAi + biBi = hi.
Let h,A,B ∈ R[x] be the unique polynomials such that h 7→ (hi)i and A 7→ (Ai)i and
B 7→ (Bi)i so that aA + bB = h. Since h | g, we can multiply through by the quotient to
write g as a linear combination of a and b.

Corollary 21. Let T be a radical triangular set of k[z1, . . . , zn]. Then every nonzero element
in R is either a zero-divisor or a unit.

Proof. Since T is a radical triangular set, so is Tn−1. In particular, g = gcd(a, tn) (mod Tn−1)
exists. Note that there exists a ∈ R where ga = a. If g is a zero-divisor with cofactor h,
then ah = gah = 0 (mod T). If g is a unit with gh = 1, then Corollary 20 gives polynomials
A,B ∈ R where aA+ tnB = g (mod Tn−1) and so a(hA) + tn(Bh) = 1 (mod Tn−1). Mod-
ding out by tn gives a(hA) = 1 (mod T). Therefore, it is enough to show that g is either a
unit or zero-divisor.

As g | tn, there exists q ∈ R where gq = tn (mod Tn−1). Well, this gives g is a zero-
divisor unless q ≡ 0 (mod T). This in turn would imply tn | q (mod Tn−1), and hence there
exists Q ∈ R where gtnQ = tn (mod Tn−1). However, tn is monic and so can not be a
zero-divisor modulo Tn−1 which means gQ− 1 = 0 (mod Tn−1). Therefore, g is a unit and
a is either a unit or zero-divisor.

Corollary 21 can also be proven by noting that R is a finite-dimensional algebra over
a field. In particular, the radical assumption is not actually required. It can also be seen
trivially in the radical case by examining elements in a product of fields. However, our proof
reveals the connection between gcds and zero-divisors.

Corollary 22 (Division Algorithm). Let T ⊂ k[z1, . . . , zn] be a radical, zero-dimensional
triangular set and R = k[z1, . . . , zn]/T . Let a, b ∈ R[x] with deg(a) ≥ deg(b) ≥ 1. Suppose
b is not a zero-divisor. Then there exists a quotient q and remainder r satisfying a = bq+ r

and deg(r) < deg(b). The remainder r is unique if and only if lc(b) is a unit.

27

Proof. Note that R ∼=
∏
Fi is isomorphic to a product of fields, and we can extend this to

R[x] ∼=
∏
Fi[x]. Let a 7→ (ai)i and b 7→ (bi)i under this isomorphism. Note that all bi 6= 0

or else b would a zero-divisor. Apply the division algorithm over a field to get qi, ri ∈ Fi[x]
with ai = qibi + ri and ri = 0 or deg(ri) < deg(bi). The element r 7→ (ri)i will have degree
less than b since all of its images do. This shows existence.

For uniqueness, first let lc(b) be a unit. Suppose a = bq1 + r1 and a = bq2 + r2. Then,
b(q1−q2) = r2−r1. Since lc(b) is a unit, deg(b(q1−q2)) ≥ deg(b) unless q1−q2 = 0. Clearly,
deg(r2−r1) < deg(b) which leaves q1−q2 = 0 as the only possibility. It follows that r1 = r2.
Conversely, suppose lc(b) is not a unit, and hence a zero-divisor by Corollary 21. Let v ∈ R
be such that with lc(b)v = 0. Note that deg(bv) < deg(b). Given a remainder r and quotient
q, algebraic manipulation gives

a = bq + r = (q − v)b+ bv + r.

Since deg(bv+ r) < deg(b), this gives two distinct remainders as long as bv 6= 0, which must
be the case as b is not a zero-divisor.

We now move to the special cases when k = Q and k = Zp. To motivate, suppose we are
working with a radical triangular set T ⊂ Q[z1, . . . , zn]. The modular algorithm presented
later will work by turning a problem over Q into problems modulo multiple prime numbers
pi. However, because we would like to use the powerful corollaries above, we need T mod pi

to still be radical. This does not always occur. For example, the triangular set {z2
1 − 3} is

radical over Q, but is not over Z3 or Z2. This motivates the definition of a radical prime.

Definition 13. Let T ⊂ Q[z1, . . . , zn] be a radical triangular set. A prime number p is
a radical prime with respect to T if p does not appear as a denominator of any of the
polynomials in T , and if T mod p ⊂ Zp[z1, . . . , zn] remains radical.

If there were an infinite family of nonradical primes, it would present a problem for
the algorithm. We prove this can not happen. This has also been proven with quantitative
bounds in section 3 of [10]. We need the following lemma, which is a restatement of Corollary
7.3 of [17], but we give an original proof that uses Theorem 18. It also serves as the main
idea of our algorithm for testing if a prime is radical; see IsRadicalPrime below.

Lemma 23. Let T ⊂ k[z1, . . . , zn] be a triangular set where k is a finite field or of charac-
teristic 0. Then T is radical if and only if gcd(ti, t′i) = 1 (mod Ti−1) for all i.

Proof. (=⇒) Let j ≤ n be a positive integer. Note that Tj−1 is radical so

k[z1, . . . , zj]/Tj−1 ∼=
∏

Fi[zj]

for some finite field extensions k → Fi. Let tj 7→ (tji) under this isomorphism. I claim tji is
square-free over Fi. If it were not, then Fi[zj]/〈tji〉 would contain a nilpotent element and

28

so k[z1, . . . , zj]/Tj would as well, contradicting that Tj is radical. Since k is a finite field
or of characteristic 0, so is each Fi as k → Fi is finite. For the sake of contradiction, let
g ∈ Fi[zn] be an irreducible factor of both tji and t′ji. Then we may write t = ga for some
a ∈ Fi[zn]. Applying the derivative operator gives t′ = a′g + g′a. Since g | t′, we get g | g′a.
If Fi is of characteristic 0, then gcd(g, g′) = 1 because g is irreducible. This gives g | a, but
then g2 | tji, contradicting that tji is square-free. Now suppose Fi is a finite field and so has
prime characteristic p. We can apply the same proof unless g′ = 0. This can only happen
if g is of the form g = g0 + g1z

p
j + · · · + gmz

pm
j for some positive integer m. Note that the

Frobenius mapping ϕ : Fi → Fi where ϕ(x) = xp is a homomorphism. Further, it is injective
since Fi is a field and surjective because Fi is a finite field. Thus, there exists hl ∈ Fi where
hpl = gl. In particular, g = (h0 + h1zj + · · · + hmz

m
j)p, contradicting that g is irreducible.

Thus, the only possible case is gcd(tji, t′ji) = 1 over Fi.
(⇐=) Proceed by induction on n. If n = 1, then T = {t1(z1)}. If t1 and t′1 are relatively

prime, then t1 is square-free and so T is radical. Now, the induction hypothesis asserts
Tn−1 is radical, and so k[z1, . . . , zn−1/Tn−1 ∼=

∏
Fi where Fi are finite extensions of k. Let

tn 7→ (tni) under this isomorphism. Let gi = gcd(tni, t′ni) over Fi and g ∈ R satisfy g 7→ (gi)
under the isomorphism. Then, g would be a common divisor of gcd(tn, t′n) = 1 and so would
be a unit. Since homomorphisms preserve units, gi is a unit and we may assume gi = 1
without loss. It follows that tni is square-free over Fi by the base case. Then, Fi[zn]/tni
contains no nilpotent elements, and so k[z1, . . . , zn]/T ∼=

∏
Fi[zn]/tni contains no nilpotents

as well.

Lemma 23 also gives an algorithm for testing if a prime p is radical. It may not always
output True or False as Lemma 23 uses a gcd computation, which, if computed using the
monic Euclidean algorithm over a ring, may encounter a zero-divisor. If this happens, we
output the zero-divisor with an error message. This case is caught later in the modular gcd
and inversion algorithms, of which IsRadicalPrime is a subroutine.

Algorithm 3: IsRadicalPrime
Input : A zero-dimensional, radical triangular set T ⊂ Q[z1, . . . , zn] and a prime

number p that does not divide any denominator of any coefficient of any
ti ∈ T .

Output: A boolean indicating if T remains radical modulo p, or a zero-divisor.
1 for i = 1, . . . , n do
2 dt := ∂

∂zi
T [i];

3 g := gcd(T [i], dt) over Zp[z1, . . . , zi]/Ti−1;
4 if g = [“ZERODIVISOR”, u] then return [“ZERODIVISOR”, u];
5 if g 6= 1 then return False;
6 end
7 return True;

29

Lastly, we now prove that all but finitely many primes are radical. This is important
since our modular gcd and inversion algorithms will skip nonradical primes.

Theorem 24. Let T ⊂ Q[z1, . . . , zn] be a radical, zero-dimensional triangular set. All but
finitely many primes are radical primes.

Proof. By Lemma 23, gcd(ti, t′i) = 1. By the extended Euclidean representation (Corol-
lary 20), there exist polynomials Ai, Bi ∈ (Q[z1, . . . , zi−1]/Ti−1)[zi] where Aiti + Bit

′
i = 1

(mod Ti−1). Take any prime p that does not divide the denominator of any Ai, Bi, ti, t′i. This
means one can reduce this equation modulo p and so Aiti+Bit

′
i (mod Ti−1, p). This implies

gcd(ti, t′i) = 1 (mod Ti−1, p) and so T remains radical modulo p by Lemma 23. There is
only a finite number of primes that divide the denominator of any of these polynomials.

30

Chapter 4

Resolving Zero-Divisors

The point of this section is to go over the ways we have to handle zero-divisors. We give two
methods: one based on Hensel lifting and one based on fault tolerant rational reconstruction.
Suppose we encounter a zero-divisor w modulo a prime p. We call the process of bringing
this to a zero-divisor u over Q resolving w.

4.1 Hensel Lifting

We turn our attention to lifting a factorization f = ab (mod T, p) for a, b, f ∈ R[x] where
R = Q[z1, . . . , zn]/T . This will generalize the Hensel lifting technique outlined in section
2.4. Instead of lifting p-adic representations, we just lift to a specified bound B; that is, until
pj ≥ B. Then, we apply rational reconstruction to get a polynomial over Q since factors
may have fractions.

A general factorization will not be liftable; certain conditions are necessary for existence
and uniqueness of each lifting step. For one, we will need gcd(a, b) = 1 (mod p) (as is
required in the case with no extensions) to satisfy existence. Further, we will need both a
and b to be monic to satisfy uniqueness. The following lemma gives a uniqueness criterion
for the extended Euclidean representation. It generalizes Theorem 2.6 in [14] from k[x] to
R[x] and follows the same proof. Note that a and b being monic is essential.

Lemma 25. Let T ⊂ k[z1, . . . , zn] be a radical triangular set and R = k[z1, . . . , zn]/T . Let
a, b ∈ R[x] be monic and relatively prime. Then, for any polynomial c ∈ R[x], there exist
unique polynomials σ, τ ∈ R[x] such that

aσ + bτ = c, deg(σ) < deg(b).

Proof. Existence: The extended Euclidean representation (Corollary 20) gives A,B ∈ R[x]
where aA+bB = 1. Multiplying through 1 = Aa+Bb by c gives a(cA)+b(cB) = c. Dividing
cA by b, which we can do since b is monic, gives cA = qb+ r with r = 0 or deg(r) < deg(b).

31

Define σ = r and τ = cB + qa. Observe that

aσ+bτ = ar+b(cB+qa) = ar+bcB+abq = a(r+bq)+bcB = acA+bcB = c(aA+bB) = c

thus σ and τ satisfy the conditions of the Lemma.
Uniqueness: Suppose both pairs σ1, τ1 and σ2, τ2 satisfy aσi + bτi = c with the desired

degree constraint. This yields

(σ1 − σ2)a = b(τ2 − τ1).

Since gcd(a, b) = 1 the extended Euclidean representation (Corollary 20) reveals there are
A,B ∈ R[x] where Aa + Bb = 1. Multiplying through by σ1 − σ2 reveals that b | σ1 − σ2.
However, since b is monic and deg(σ1 − σ2) < deg(b), this is only possible if σ1 − σ2 = 0.
Thus 0 = b(τ2 − τ1). Next, since b is not a zero-divisor (because it is monic), this can only
happen if τ2 − τ1 = 0 as well.

We are particularly interested in trying to factor tn modulo Tn−1 because encountering a
zero-divisor may lead to such a factorization; that is, if w is a zero-divisor with main variable
zn, we can write u = gcd(tn, w) and then tn = uv mod 〈Tn−1〉 by the division algorithm.
As long as T is radical, the next lemma shows we automatically get gcd(u, v) = 1.

Lemma 26. Let T ⊂ k[z1, . . . , zn] be a radical, zero-dimensional triangular set. Suppose
tn ≡ uv (mod Tn−1). Then, gcd(u, v) = 1 (mod Tn−1).

Proof. Let g be a common divisor of u and v over Tn−1 so that u = ug (mod Tn−1) and
v = vg (mod Tn−1). Note that tn ≡ uvg2 (mod Tn−1). This would imply (uvg)2 ≡ 0
(mod T); that is, uvg is a nilpotent element. However, since nilpotent elements do not
exist modulo a radical ideal, uvg ≡ 0 (mod T). This would imply uvg ≡ qtn (mod Tn−1)
for some polynomial q. Then,

(gq − 1)tn ≡ gqtn − tn ≡ guvg − tn ≡ 0 (mod Tn−1).

Since tn is monic in zn, it can not be a zero-divisor modulo Tn−1. Therefore, gq − 1 ≡ 0
(mod Tn−1). Thus, g is a unit modulo Tn−1 and so indeed gcd(u, v) = 1 (mod Tn−1).

Finally, the next proposition shows that lifting is possible. The proof given is simply the
Hensel construction.

Proposition 27. Let T ⊂ Zp[z1, . . . , zn] be a zero-dimensional radical triangular set with p
a prime number. Suppose tn ≡ u0v0 (mod Tn−1, p) where u0 and v0 are monic. Then, there
exist unique monic polynomials uj , vj ∈ Zpj [z1, . . . , zn] such that tn ≡ ujvj (mod Tn−1, p

j)
and uj ≡ u0 mod (mod Tn−1, p) and vj ≡ v0 mod (mod Tn−1, p) for all j ≥ 1.

32

Proof. (by induction on j): The base case is clear. For the inductive step, we want to be able
to write uj = uj−1 + pj−1a (mod Tn−1, p

j) and vj = vj−1 + pj−1b (mod Tn−1, p
j) satisfying

tn ≡ ujvj (mod Tn−1, p
j).

Multiplying out uj , vj gives

tn ≡ ujvj ≡ uj−1vj−1 + pj−1(avj−1 + buj−1) (mod Tn−1, p
j).

Subtracting uj−1vj−1 on both sides and dividing through by pj−1 gives

tn − uj−1vj−1
pj−1 ≡ av0 + bu0 (mod Tn−1, p).

Let c = tn−uj−1vj−1
pj−1 . By Lemma 25 using Tn−1 as the triangular set and zn as the indeter-

minate, there exists unique polynomials σ, τ such that u0σ + v0τ ≡ c (mod Tn−1, p) with
deg(σ) < deg(v0) and deg(τ) < deg(u0) since certainly deg(c) = deg(tn − uj−1vj−1) <
deg(tn) = deg(u0) + deg(v0). Set a = τ and b = σ. Because of these degree constraints,
uj = uj−1 + apj−1 has the same leading coefficient as uj−1 and hence u0; in particular uj
is monic. Similarly, vj is monic as well. By uniqueness of σ and τ , we get uniqueness of uj
and vj .

What follows is a formal presentation of the Hensel construction. The algorithm Hensel-
Lift takes input u0, v0, f ∈ R/〈p〉[x] where u0, v0 are monic and f = u0v0 (mod p). It also
requires a bound B that is used to notify termination of the Hensel construction and out-
put FAIL. A crucial part of the Hensel construction is solving the Diophantine equation
σu0 +τv0 = c (mod T, p). This is done using the extended Euclidean algorithm and Lemma
25. It is possible that a zero-divisor is encountered in this process. This has to be accounted
for. Therefore, we allow the HenselLift algorithm to also output [“ZERODIVISOR”, u] if it
encounters a zero-divisor u ∈ R/〈p〉. See Algorithm 4 for pseudo-code.

In general the input f will have fractions thus the error e in our Hensel lifting algorithm
will also have fractions and hence it can never become 0, which is why we have to use
rational reconstruction in line 5.

The standard implementation of Hensel lifting requires a bound on the coefficients of
the factors of the polynomial f ∈ R[x]. For the base case n = 0 where R[x] = Q[x] one
can use the Mignotte bound (see [13]). For the case n = 1 Weinberger and Rothschild
[26] give a bound but note that it is large. We do not know of any bounds for the general
case n > 1 and hypothesize that they would be bad. Therefore a more “engineering”-esque
approach is needed. Since we do not know whether the input zero-divisor a0 is the image
of a monic factor of f , we repeat the Hensel lifting each time a zero-divisor is encountered
in our modular GCD algorithm, first using a bound of 260, then 2120, then 2240 and so

33

Algorithm 4: HenselLift
Input : A zero-dimensional radical triangular set T ⊂ Q[z1, . . . , zn], a radical prime

p, polynomials f ∈ R[x] and a0, b0 ∈ R/〈p〉[x] where R = Q[z1, . . . , zn]/T ,
and a bound B. Further, assume f ≡ a0b0 (mod p) and gcd(a0, b0) = 1.

Output: Either polynomials a, b ∈ R[x] where f = ab, FAIL if the bound B is
reached, or [“ZERODIVISOR”, w] if a zero-divisor w ∈ R/〈p〉 is
encountered.

1 Solve sa0 + tb0 = 1 using the monic extended Euclidean algorithm for s, t ∈ R/〈p〉[x];
2 if a zero-divisor w is encountered then return [“ZERODIVISOR”, w];
3 Initialize u = a0, v = b0 and lift u and v from R/〈p〉 to R;
4 for i = 1, 2, . . . do
5 Set a :=RationalReconstuction(u (mod pi));
6 if a 6= FAIL, and a|f then return a,f/a;
7 if pi > 2B then return FAIL;
8 Compute e := f − uv as polynomials over Q;
9 Set c := (e/pi) mod p ;

10 Solve σa0 + τb0 = c for σ, τ ∈ R/〈p〉[x] using sa0 + tb0 = 1;
11 Lift σ and τ from R/〈p〉 to R and set u := u+ τpi and v := v + σpi;
12 end

on, until the coefficients of any monic factor of f can be recovered using rational number
reconstruction.

The prime application of Hensel lifting will be as a solution to the zero-divisor problem.
This is the goal Algorithm 5, HandleZeroDivisorHensel. The algorithm assumes a zero-
divisor modulo a prime p has been encountered by another algorithm. It attempts to lift this
zero-divisor using HenselLift. If HenselLift encounters a new zero-divisor w, it recursively
calls HandleZeroDivisorHensel(w). If lifting fails (i.e., a bound is reached), it instructs the
algorithm using it to pick a new prime, and a bigger bound will be used for the next
zero-divisor. If lifting succeeds in finding a factorization tn = uv (mod Tn−1) over Q, then
the algorithm using it works recursively on new triangular sets T (u) and T (v) where tn is
replaced by u and v, respectively. Note that T (u) and T (v) are comaximal by Lemma 26 and
hence both T (u) and T (v) are radical by Lemma 7.

It should be made clear that this is not the first case of using p-adic lifting techniques
on triangular sets. In particular, lifting the triangular decomposition of a regular chain has
been used by Dahan, Maza, Schost, Wu, Xie in [10].

4.2 Fault Tolerant Rational Reconstruction

When trying to recover a polynomial from Zp to Q, the techniques often employed in
computer algebra are Chinese remaindering and Hensel lifting. Using Chinese remaindering
here is not straightforward. To motivate, consider the following example:

34

Algorithm 5: HandleZeroDivisorHensel
Input : A zero-dimensional radical triangular set T ⊂ Zp[z1, . . . , zn] modulo a

prime p and a zero-divisor u0 ∈ R where R = Zp[z1, . . . , zn]/T . Assume
mvar(u) = n.

Output: A message indicating the next steps that should be carried out, including
any important parameters;

1 Set v0 :=Quotient(tn, u0) (mod Tn−1, p);
2 if v0 = [“ZERODIVISOR”, w] then return HandleZeroDivisorHensel(w);
3 if the global variable B is unassigned then set B := 260 else set B := B2;
4 Set u, v :=HenselLift(tn, u0, v0, B);
5 if u = [“ZERODIVISOR”, w] then return HandleZeroDivisorHensel(w);
6 else if u = FAIL then return FAIL. This indicates that a new prime or bigger

bound is needed;
7 else return u and v;

Example 4. Consider the triangular set T = z2 + 14z + 24 and polynomials a = x4 + x3 +
(z + 3)x2 + (z + 4)x+ 3 z+ 1 and b = x2 + x+ z. The remainder of a divided by b modulo
T is (z + 1)x + 1. Here, z + 1 is not a zero-divisor since z2 + 14z + 24 = (z + 2)(z + 12).
But, if we are working modulo 11, it becomes a zero-divisor. Any attempt at combining
zero-divisors using Chinese remaindering would fail if p = 11 was one of the chosen primes.

Abbott’s new algorithm Fault Tolerant Rational Reconstruction in [1] circumvents this
problem. It can still find the desired value if there are enough correct images. In particular,
we use the heuristic algorithm HRR given in [1] which requires a 2-to-1 lucky to unlucky
prime ratio. We would like to illustrate the algorithm with an example.
Example 5. Suppose we are trying to use the CRT and rational reconstruction to recover
f = 5

3x
2− 14

9 x−
59
18y

3− 3
2y

2 + 8
9y−

5
6z

2 from multiple modular images. Suppose the primes
71, 73, 79, 83, 89, 97, 101 were used and all but 71 computed correct modular images of f .
Let us say 71 computed 51x2 + (54y+ 21)x+ 23y2 + 53yz+ 43 (mod 71) instead. Assuming
x is the main variable, we cannot use degree constraints to determine that 71 is an unlucky
prime. No matter how many primes are chosen, the CRT and rational reconstruction will
never recover f if we include this unlucky prime. However, using the HRR algorithm from
[1] circumvents this. We will demonstrate this with the following Maple session which uses
Monagan’s recden package. The phirpoly(f,p) command reduces f mod a prime p.

> f;

−59
18y

3 + 5
3x

2 − 3
2x

2 − 5
6z

2 − 14
9 x+ 8

9y

> m;
[71, 73, 79, 83, 89, 97, 101]

> f_p := [seq(phirpoly(f,m[i]), i = 1..7)]:
> f_p[1] := rpoly(51*x^2 + (54*y + 21)*x + 23*y^2 +53*y*z + 43, [x,y,z], 71);

fp[1] :=
(
(51x2 + (54y + 21)

)
x+ 23y2 + 53yz + 43 mod 71

35

> a := ichremrpoly(f_p):
> hrrrpoly(a);

−59
18y

3 + 5
3x

2 − 3
2x

2 − 5
6z

2 − 14
9 x+ 8

9y

In regards to our use, recall the example from the introduction where z1−z2 and z1 +z2

are zero-divisors, and the EA was run on inputs that results in the polynomial remainder
sequence r1, r2 where lc(r1) = z1 +18z2 and lc(r2) = z1−z2. For any prime p besides 17, the
monic Euclidean algorithm would terminate with the zero-divisor z1 − z2 (mod p). When
p = 17, we instead terminate with z1 +z2 (mod 17) since lc(r1) is a zero-divisor modulo 17.
Normally, we couldn’t successfully combine these zero-divisors into one over Q using the
CRT and RR. However, HRR allows us to correctly combine these to a zero-divisor Q; it
would output z1 + z2 once enough primes are used.

A similar technique for using bad primes in rational reconstruction was developed by
Boehm et al [3], but Abbott’s is better suited for our application since we require the
heuristic algorithm HRR that he developed. Pseudo-code for the HRR algorithm in Abbott’s
paper follows. It is the rational reconstruction algorithm as presented in section 2.3 with
a couple key differences. First, it completes the Euclidean algorithm over Z and finds the
maximal quotient qmax with respect to absolute values along with smax and tmax that occur
at the same index in the integer remainder sequence; this is an idea developed in [23].
Second, it returns u+M smax

tmax
rather than just ri/ti = uti+Msi

ti
. This is the crucial step that

allows it to use bad and unlucky primes.

Algorithm 6: HRR
Input : Positive integers u and M .
Output: A fraction N/D where gcd(N,D) = 1, D > 0, and N/D ≡ u (mod M).

1 Set Acrit := 106, qmax := 0, and i := 2;
2 if gcd(u,M)2 > AcritM then return 0;
3 Set s1 := 1, s2 := 0, t1 := 0, t2 := 1;
4 Set r1 := M , r2 := u;
5 while ri 6= 0 do
6 Set q := bri−1/ric;
7 Set ri+1 := ri−1 − riq, ti+1 := ti−1 − tiq, and si+1 := si−1 − siq;
8 Set i := i+ 1;
9 if |q| ≥ |qmax| then set smax := si, tmax := ti, and qmax := q;

10 end
11 if qmax < Acrit then return FAIL;
12 return u+M smax

tmax

Algorithm HRR uses a convinceness criteria in the form of a value Acrit. Abbott notes
that the value 106 has worked well for him in practice, so we use that here as well. Note that
when the algorithm does not output failure, it returns u+M smax

tmax
. This does not imply N =

tmaxu+M and D = tmax are the integer outputs for numerator and denominator. In fact,

36

cancellation in these values is a major result of Abbott when bad primes are encountered.
Please see [1] for further details.

An algorithm for resolving zero-divisors using Abbott’s HRR algorithm is now straight-
forward. If a zero-divisor is encountered, combine it with any past zero-divisors if any, and
try using the HRR algorithm on the result. After that, if a zero-divisor is successfully lifted
to Q, split the triangular sets. The difference between handling zero-divisors with Hensel
lifting and HRR is that Hensel lifting only needs 1 prime while HRR will require multiple.

Algorithm 7: HandleZeroDivisorHRR
Input : A zero-dimensional, radical triangular set T ⊂ Zp[z1, . . . , zn] and a

zero-divisor u ∈ R where R = Zp[z1, . . . , zn]/T . Assume mvar(u) = n.
Output: A message indicating the next steps that should be carried out, including

any important parameters;
1 Use CRT to combine u with previous zero-divisors (if any);
2 Set w = HRR(u); // Note, HRR works on the coefficients of u.
3 if w = FAIL then return FAIL. This indicates that more primes are needed;
4 if w | tn over Q then
5 return w and tn/w. This indicates that a splitting should be done;
6 end
7 return FAIL. This indicates that more primes are needed;

37

Chapter 5

A Modular GCD Algorithm

The main content of this section is to fully present and show the correctness of our modular
gcd algorithm. We start with the variant using Hensel lifting and treat fault tolerant ratio-
nal reconstruction as a small alteration (as it is). In the process of proving the algorithm
returns correct output, we prove a lemma about the prime numbers that may appear in the
denominator of a monic factor of a monic polynomial modulo a radical triangular set. This
is a generalization of known results from algebraic number theory, see Theorem 3.2 from
[12] for instance. We conclude with timing tests and an asymptotic analysis.

5.1 Overview with Hensel lifting

First, we consider what happens when a zero-divisor is encountered. In particular, suppose
a zero-divisor w over Q is found while running the modular algorithm. It will be used to
factor tk = uv (mod Tk−1) where u and v are monic with main variable zk; it is possible
that u = w or v = w, but is not always the case. From here, the algorithm proceeds to
split T into T (u) and T (v) where tk is replaced with u in T (u) and v in T (v). Of course ti is
reduced for i > k as well. The algorithm then continues recursively. Once the recursive calls
are finished, we could use the CRT to combine gcds into a single gcd, but this would be very
time consuming. Instead, we just return both gcds along with their associated triangular
sets. This approach is similar to Hubert’s in [17] which she calls a pseudo-gcd. Here, we
refer to this as a component-wise gcd, or c-gcd for short:

Definition 14. Let R be a commutative ring with unity such that R ∼=
∏r
i=1Ri and a, b ∈

R[x]. Let πi : R → Ri be the natural projections. A component-wise gcd of a and b is a
tuple (g1, . . . , gr) ∈

∏r
i=1Ri[x] where each gi = gcd(πi(a), πi(b)) and lc(gi) is a unit.

The modular algorithm’s goal will be to compute c-gcd(a, b) given a, b ∈ R[x] where
R = Q[z1, . . . , zn]/T and T ⊂ Q[z1, . . . , zn] is a radical triangular set. As with all modular
gcd algorithms, it is possible that some primes are unlucky. We also prove this only happens
for a finite number of cases.

38

Definition 15. Let T ⊂ Q[z1, . . . , zn] be a radical triangular set, and R = Q[z1, . . . , zn]/T .
Let a, b ∈ R[x] and g = c-gcd(a, b). A prime number p is an unlucky prime if g does not
remain a componentwise greatest common divisor of a and b modulo p. Additionally, a
prime is bad if it divides any denominator in T , any denominator in a or b, or lc(a)lc(b)
vanishes mod p.

For example, define T = {t1 = z2 + 1
3}, a = x4 + 4x3 + 3x2 + (z + 3)x + 3z + 9,

and b = 3x3 + 9x2 − x − 3, . Then, gcd(a, b) = x + 3 (mod T). Note that 3 would be
a bad prime since 3 divides a denominator in t1 and lc(b) vanishes modulo 3. Also, 5
and 2 would be unlucky primes since gcd(a, b) = x2 + (3z + 3)x + 4z (mod T, 5) and
gcd(a, b) = x2 + (z + 1)x+ z (mod T, 2).

Theorem 28. Let T ⊂ Q[z1, . . . , zn] be a radical triangular set, and R = Q[z1, . . . , zn]/T .
Let a, b ∈ R[x] and g = c-gcd(a, b). Only finitely many primes are unlucky.

Proof. Let R[x] ∼=
∏
Ri[x] where g = (gi) and gi = gcd(ai, bi) ∈ Ri[x] is monic or 0. Let

a 7→ (ai) and b 7→ (bi). If gi = 0, then ai = 0 and bi = 0 and no primes are unlucky since,
gcd(0, 0) ≡ 0. Suppose gi = gcd(ai, bi) is nonzero and monic. Let ai and bi be the quotients
so that ai = giai and bi = gibi. I claim gcd(ai, bi) = 1. To show this, consider a common
divisor f of ai and bi. Note that fgi | ai and fgi | bi. Since gi = gcd(ai, bi), it follows that
fgi | gi; so there exists q ∈ Ri[x] where fgiq = gi. Rewrite this equation as (fq − 1)gi = 0.
Well, gi is monic in x, and so can not be a zero-divisor. This implies fq−1 = 0 and so indeed
f is a unit. Thus, gcd(ai, bi) = 1. By the extended Euclidean representation (Corollary 20),
there exists Ai, Bi ∈ Ri[x] where aiAi + biBi = 1.

Let p be a prime where p does not divide any of the denominators in ai, ai, Ai, bi, bi, Bi, gi.
Then, we can reduce the equations

aiAi + biBi = 1 (mod p), (5.1)

ai = giai (mod p), bi = gibi (mod p). (5.2)

We will now show that gi = gcd(ai, bi) (mod p). By (5.2), we get gi is a common divisor of ai
and bi modulo p. Consider a common divisor c of ai and bi modulo p. Multiplying equation
(5.1) through by gi gives aiAi + biBi = gi (mod p). Clearly, c | gi modulo p. Thus, gi is
indeed a greatest common divisor of ai and bi modulo p. As there are finitely many primes
that can divide the denominators of fractions in the polynomials ai, ai, Ai, bi, bi, Bi, gi, there
are indeed finitely many unlucky primes.

The crux of ModularC-GCD is an algorithm to compute gcd(a, b) for two polynomials
a, b ∈ (Zp[z1, . . . , zn]/T)[x]. The algorithm we will be using for this is MonicEuclideanC-
GCD. It is a variant of the monic Euclidean algorithm from section 2.2. For computing
inverses, the extended Euclidean algorithm can be used; modifying MonicEuclideanC-GCD
to do this is straightforward and is done using the recurrences (2.1) and (2.2).

39

Algorithm 8: MonicEuclideanC-GCD
Input : A zero-dimensional, radical triangular set T ⊂ k[z1, . . . , zn] and two

polynomials a, b ∈ R[x] where R = k[z1, . . . , zn]/T . Assume
deg(a) ≥ deg(b) ≥ 0.

Output: Either monic gcd(a, b) (mod T) or a zero-divisor.
1 if b = 0 then
2 Compute s := lc(a)−1 (mod Tn−1) using the EEA;
3 if s =[“ZERODIVISOR”, u] then return [“ZERODIVISOR”, u];
4 return s× a
5 end
6 Initialize r0 := a, r1 := b and i := 1;
7 while ri 6= 0 do
8 Compute s := lc(ri)−1 (mod Tn−1) using the EEA;
9 if s =[“ZERODIVISOR”, u] then return [“ZERODIVISOR”, u] else

ri := s× ri;
10 Let ri+1 be the remainder of ri−1 divided by ri;
11 i = i+ 1;
12 end
13 return ri−1

A short discussion about the zero-divisors that may appear is warranted. To compute
an inverse, the modular algorithm will be using the extended Euclidean algorithm. The first
step would be to invert a leading coefficient u of some polynomial. This requires a recursive
call to ExtendedEuclideanC-GCD(u, tk) (mod Tk−1) where zk = mvar(u). If u is not monic,
then it would again attempt to invert lc(u). Because of the recursive nature, it will keep
inverting leading coefficients until it succeeds or a monic zero-divisor is found. The main
point is that we may assume that the zero-divisors encountered are monic.

We would like to give a high level overview of the algorithm since looking at pseudo-code
is not always the best way to understand it. Please see Algorithm 9 for pseudo-code. The
inputs are a, b ∈ R[x] where T is a radical triangular set and R = Q[z1, . . . , zn]/T ,

1. Pick a new prime p that is not bad.

2. Test if p is a radical prime.
2.1 If a zero-divisor is encountered, resolve it using HandleZeroDivisorHensel.

2.2 If p is not radical, go back to step 1. Otherwise, continue as p is a radical prime.
3. Use the monic Euclidean algorithm to compute gp = gcd(a, b) (mod p).

3.1 If a zero-divisor is encountered, resolve it using HandleZeroDivisorHensel.

3.2 Combine all gcds computed modulo primes of lowest degree using Chinese remain-
dering and rational reconstruction into a polynomial h over Q.

3.3 Test if h | a and h | b. If the division test succeeds, return h. Otherwise, we need
more primes, so go back to step 1.

40

Example 6. This example illustrates how the IsRadical function can run into a zero-divisor.
Consider T = {z2

1−1, z3
2 +9z2

2 + 3z1+51
2 z2− 53z1+3

2 }. We will be running the algorithm over Q
to illustrate. First, it would determine that T1 = {z2

1−1} is radical. Now, when it is running
the Euclidean algorithm on t2 = z3

2 + 9z2
2 + 3z1+51

2 z2 − 53z1+3
2 and t′2 = 3z2

2 + 18z2 + 3z1+51
2 ,

the first remainder would be (z1− 1)z2− 28z1− 27. However, z1− 1 is a zero-divisor, so the
algorithm would output [“ZERODIVISOR”, z1 − 1]. This same zero-divisor will show up
for every odd prime (2 appears in the denominator of t2 and so should not be considered).
This explains why we can not just simply pick a new prime in ModularC-GCD if IsRadical
encounters a zero-divisor. We instead have to resolve the zero-divisor when encountered
modulo a prime using Hensel lifting or fault tolerant rational reconstruction.

In lines 23-32 of ModularC-GCD, we use heuristics to determine if a prime p is lucky
or unlucky. This method was developed by Brown in [5] and used in every modular gcd
algorithm henceforth. To justify our use of them in this ring, we need a uniqueness criterion
for gcds to show that what we are combining is the modular image of the same unique
polynomial. This assumes all units are of zero degree in x, which is verified by in Proposition
3; if there were a unit of positive degree, we have no way of knowing if a gcd modulo a
prime were multiplied by it.

Lemma 29. Let R = k[z1, . . . , zn]/T where T is a radical zero-dimensional triangular set
and let a, b ∈ R[x]. If g = gcd(a, b) is monic, any other gcd(a, b) has the same degree. In
particular, g is the unique monic gcd(a, b).

Proof. Let h be a gcd(a, b). Then, h | g and g | h. This implies the existence of u, v where
hu = g and gv = h. Basic algebraic manipulation gives g(uv−1) = 0. Since g is monic, it can
not be a zero-divisor. Therefore, v is a unit and so degx(v) = 0. Thus, degx(h) = degx(g).
In particular, if h were monic, then v = 1 by comparing leading coefficients of gv = h.

Now that all algorithms have been given, we give a proof of correctness for ModularC-
GCD. First, we show that a finite number of zero-divisors can be encountered. This ensures
that the algorithm terminates. After that, we prove a lemma about the primes that may
occur in a monic factorization modulo the triangular set; note this is nontrivial by example
3. This a key step in the proof that the returned value of ModularC-GCD is correct. The
proof will require the concept of localization, the formal process of including denominators
in a ring; see section 1.2 of [4] for details. For notation purposes, we let S be a set of
prime numbers and define RS as the localization of R with respect to S. Note that when
R = Q[z1, . . . , zn]/T , it is required that any prime dividing any den(ti) must be included in
S for RS to be a ring. We will also need the concept of resultants and iterated resultants.

41

Algorithm 9: ModularC-GCD
Input : A zero-dimensional, radical triangular set T ⊂ Q[z1, . . . , zn] and two

polynomials a, b ∈ R[x] where R = Q[z1, . . . , zn]/T . Assume
deg(a) ≥ deg(b) ≥ 0.

Output: A tuple consisting of comaximal triangular sets T (i) such that T =
⋂
T (i)

and gi = gcd(a, b) mod 〈T (i)〉 where gi = 0 or lc(gi) is a unit.
1 Initialize dg := deg(b), M = 1;
2 Main Loop: Pick a prime p that is not bad; // See definition 15.
3 Test if p is a radical prime, N := isRadicalPrime(T, p);
4 if N = [“ZERODIVISOR”, u] then
5 K := HandleZeroDivisorHensel(u);
6 if K = FAIL then Pick a new prime, go to Main Loop;
7 else if K is a factorization tk = wv (mod Tk−1) then
8 Create triangular sets T (w) and T (v) where tk is replaced by w and v,

respectively;
9 return ModularC-GCD(a, b) (mod T (w)), ModularC-GCD(a, b) (mod T (v))

10 end
11 else if N = False then
12 Pick a new prime: Go to Main Loop;
13 end
14 Set g := gcd(a, b) mod 〈T, p〉 using algorithm MonicEuclideanC-GCD;
15 if g = [“ZERODIVISOR”, u] then
16 K := HandleZeroDivisorHensel(u);
17 if K = FAIL then Pick a new prime: Go to Main Loop;
18 else if K is a factorization tk = wv (mod Tk−1) then
19 Create triangular sets T (w) and T (v) where tk is replaced by w and v,

respectively;
20 return ModularC-GCD(a, b) (mod T (w)), ModularC-GCD(a, b) (mod T (v))
21 end
22 else
23 if deg(g) = dg then
24 The chosen prime seems to be lucky;
25 Use CRT to combine g with other gcds (if any), store the result in G and set

M := M × p;
26 else if deg(g) > dg then
27 The chosen prime was unlucky, discard g;
28 Pick a new prime: Go to Main Loop;
29 else if deg(g) < dg then
30 All previous primes were unlucky, discard G;
31 Set G := g, M := p, and dg := deg(g);
32 end
33 Set h := RationalReconstruction(G (mod M));
34 if h 6= FAIL and h | a and h | b then return h;
35 Pick a new prime: Go to Main Loop;
36 end

42

Definition 16. Let a, b ∈ R[x] where R is a ring. Let a = a0 + a1x + · · · + anx
n and

b = b0 + b1x+ · · ·+ bmx
m. Then the resultant of a and b with respect to x is

resx(a, b) := det
(

an bm

an−1
. . . bm−1

. . .
... an

... bm

a0 an−1 b0 bm−1
.

a0 b0

)

where the entries that are blank are all zero and there are m columns of coefficients from a

and n columns of coefficients from b.

Resultants are intimitely related to gcds when R is a unique factorization domain. For
instance, see page 288 of [14] for the result degx(gcd(a, b)) = 0 if and only if resx(a, b) 6= 0
for a, b ∈ R[x].

Definition 17. Given a triangular set T of k[z1, . . . , zn], the iterated resultant of f ∈
k[z1, . . . , zn] with respect to T is

iterres(f, {t1}) = resz1(f, t1), iterres(f, T) = iterres(reszn(f, tn), Tn−1).

In the language of polynomial system solving, the iterated resultant of f ∈ k[z1, . . . , zn]
with respect to T is first eliminating zn, then eliminating zn−1, and so on; the word “elimi-
nate” is used because resx(a, b) no longer has any term with x in it while resx(a, b) ∈ 〈a, b〉,
see Chapter 4 of [8] for more details. The main point is that iterres(f, T) ∈ k.

One important property of iterated resultants is that if f, T ∈ R′[x] ⊂ R[x] where R′ is a
subring, then there exist A,B1, . . . , Bn ∈ R′[x] where Af+B1t1 + · · ·+Bntn = iterres(f, T).
This follows from the same proof as given in Theorem 7.1 of [14] using induction on n.
Another interesting property is that iterres(f, T) = 0 if and only if f is a zero-divisor for
f 6∈ 〈T 〉, see Lemma 4 of [6]. Let α ∈ R and m(x) = iterres(x−α, T). Then degx(m(x)) = δ

where δ is the degree of T . This can be proven easily using the definition and induction on
n.

Proposition 30. Let R = Q[z1, . . . , zn]/T where T is a radical zero-dimensional trian-
gular set. Let a, b ∈ R[x]. A finite number of zero-divisors are encountered when running
ModularC-GCD(a, b).

Proof. We use induction on the degree of the extension δ = d1 · · · dn where di = mdeg(ti).
If δ = 1, then R = Q so no zero-divisors occur.

First, there are a finite number of non-radical primes. So we may assume that T remains
radical modulo any chosen prime.

43

Second, consider (theoretically) running the monic Euclidean algorithm over Q where
we split the triangular set if a zero-divisor is encountered. In this process, a finite number of
primes divide either denominators or leading coefficients; so we may assume the algorithm
is not choosing these primes without loss of generality; in particular, the monic Euclidean
algorithm over Q consists of a finite amount of divisions and the monic Euclidean algorithm
over Zp (for any chosen prime p) consists of the modular image of the same divisions. This
relies on Corollary 22 since we only divide by monic polynomials.

Now, suppose a prime p is chosen by the algorithm and a zero-divisor up is encountered
modulo p at some point of the algorithm. This implies gcd(up, tk) 6≡ 1 (mod Tk−1, p). We
may assume that up = gcd(up, tk) (mod Tk−1, p) and that up is monic; this is because the
monic Euclidean algorithm will only output such zero-divisors. If up lifts to a zero-divisor
over Q, the algorithm constructs two triangular sets, each with degree smaller than δ. So by
induction, a finite number of zero-divisors occur in each recursive call. Now, suppose lifting
fails. This implies there is some polynomial u over Q that reduces to up modulo p and
appears in the theoretical run of the Euclidean algorithm over Q. Note that gcd(u, tk) = 1
(mod Tk−1) over Q since we are assuming the lifting failed. By Theorem 28, this happens for
only a finite amount of primes. Thus, a finite number of zero-divisors are encountered.

We will also make multiple uses of this result by Encarnacion to prove Lemma 32. It
can be found as Theorem 3.2 in [12].

Theorem 31 (Encarnacion, 1995). Let α be an algebraic number with minimal polynomial
t ∈ Q[z]. Let f ∈ Z[α][x]. If u is a monic divisor of f , then u is in the coset 1

rdZ[α][x] where
d2 divides the discriminant ∆(t), and r = resz(lc(f), t) where r is computed by first doing
the substitution α 7→ z.

Lemma 32. Let T be a radical, zero-dimensional triangular set overQ,R = Q[z1, . . . , zn]/T ,
and F = Z[z1, . . . , zn]. Suppose f, u ∈ R[x] are monic such that u | f . Let

S = {prime numbers p ∈ Z : p is a nonradical prime with respect to T , or p | den(f)}.

Then, u ∈ FS [x]/T . Recall that any p | denom(ti) would be included in S by the definition
of radical prime. In particular, the primes appearing in denominators of a monic factor of
f are either nonradical primes or divisors of den(f).

Proof. Proceed by induction on n. Consider the base case n = 1. Let t1 = a1a2 · · · as be
the monic irreducible factorization. Note that ai, aj are relatively prime since t1 is square-
free and a1, a2 ∈ FS by Gauss’s lemma (since S contains any primes dividing den(t1), see
Proposition 5 of section 9.3 in [11] for Gauss’s Lemma). Let ui = u mod ai and fi = f

mod ai. Now, clear fi of any denominator so it has an integer leading coefficient. We can
apply Theorem 31 noting that r = lc(fi)degz1 (ai); this gives ui ∈ 1

r∆(ai)Z[α][x]. Make fi
monic again for the remainder of this proof. This shows den(ui) consists of primes dividing

44

the discriminant ∆(ai) or den(fi). Note that any prime p | ∆(ai) would force ai, and hence
t1, to not be square-free modulo p. This would imply p is nonradical and so is contained in
S; in particular, ui ∈ FS/〈ai〉 [x].

The last concern is if combining (u1, u2, . . . , us) 7→ u using the CRT introduces a new
prime p into the denominator. We prove this can only happen if p is nonradical. It is
sufficient to show that combining two extensions is enough since we can simply combine
two at a time until the list is exhausted; so we will show this for a1 and a2. Now, consider
the resultant r = resz1(a1, a2). There are polynomials A,B ∈ FS where Aa1 + Ba2 = r.
Note that any prime p | r forces gcd(a1, a2) 6= 1 (mod p) and so t1 would not be square-free
mod p; in particular, A/r,B/r ∈ FS . Now, let v = (A/r)a1u2 + (B/r)a2u1. Note that

v mod a1 = (B/r)a2u1 = (1− (A/r)a1)u1 = u1.

Similarly, v mod a2 = u2. Since the CRT gives an isomorphism, u = v and indeed u ∈
FS/T [x]. This completes the base case.

For the inductive step, we will generalize each step used in the base case. Instead of
just factoring t1, we decompose T as a product of comaximal triangular sets known as its
triangular decomposition. We will end up working with fields defined by multiple extensions
and use the theorem of the primitive element to simplify to the single extension case. Finally,
for the combining, iterated resultants are used instead of resultants.

With that in mind, start by decomposing T into its triangular decomposition, which
can be done in the the following way:

1. Factor t1 = a1a2 · · · as1 into relatively prime monic irreducibles over Q as in the base
case. This gives Q[z1]/T1 is isomorphic to the product of fields

∏
iQ[z1]/ai. By Gauss’s

lemma, a prime dividing the den(ai) must also divide den(f). In particular, ai ∈ FS .

2. We can factor the image of t(i)2 over each Q[z1]/ai into monic relatively prime irre-
ducibles t(i)2 = b

(i)
1 b

(i)
2 · · · b

(i)
s2 . Note that changing rings from Q[z1]/t1 to Q[z1]/ai only

involves division by ai, and hence the only primes introduced into denominators can
come from den(ai).

3. By the induction hypothesis, any prime p dividing den(b(i)j) is either not a radical
prime of the triangular set {ai} or comes from den(t(i)2). If {ai} is not radical modulo
p, then neither is {t1}, clearly.

4. Use this to decompose k[z1, z2]/T2 into fields Q[z1, z2]/〈ai, b(i)j 〉 where ai ∈ FS and
b
(i)
j ∈ FS/〈ai〉.

5. Repeat to get Q[z1, . . . , zn]/T ∼=
∏

Q[z1, . . . , zn]/T (i) where each Q[z1, . . . , zn]/T (i) is
a field and T (i) ⊂ FS using the induction hypothesis.

45

Let f (i) = f mod T (i) and similarly u(i) = u mod T (i). By the construction above, these
reductions can only introduce primes in S into denominators.

Note that Q[z1, . . . , zn]/T (i) is an algebraic number field. Using the theorem of the
primitive element, one can write Q[z1, . . . , zn]/T (i) = Q(α) for some α ∈ Q[z1, . . . , zn]/T (i).
Further, we may assume α = λ1z1 + · · · + λnzn for integers λi using the same proof as in
page 119 of Theorem 5.4.1 in [9] (since the only property Cox used of the base field was that
it is infinite and the defining polynomials of the extension are square-free). Next, we claim
the minimal polynomial mα,Q(z) equals m(z) := iterres(z − α, T (i)). This can be verified
easily: m(α) = 0 clearly, and degz(iterres(z − α, T (i))) is bounded above by the degree of
T (i). Well, the fields Q(α) and Q[z1, . . . , zn]/T (i) are equal and so have the same degree
over Q, which implies deg(mα,Q) equals the degree of Q[z1, . . . , zn]/T (i). Because both are
monic, uniqueness of the minimal polynomial gives m(z) = mα,Q(z). This result was used
in the single extension case by Trager in [24]. Also, iterres(z−α, T (i)) is computed without
introducing any prime into denominators other than those in the defining polynomials of
T (i). We now prove that there are mappings Q(α)←→ Q[z1, . . . , zn]/T (i) that only introduce
primes that are contained in S. First, α 7→ λ1z1+· · ·+λnzn clearly gives us one such map. For
the other direction, note that t(i)1 certainly has a root in Q(α). This implies (z1−b1(α)) | t(i)1 .
In particular, the base case guarantees z1 − b1(α) only has primes in the denominator that
are contained in S. We will use z1 7→ b1(α). For t(i)2 , first substitute z1 = b1(α) and then use
the same idea as with t(i)1 to get a map z2 7→ b2(α). Repeat n−2 more times to get maps for
each zi that is a function of α that does not introduce any primes into denominators besides
those in S. This shows that only primes in S can be introduced into the denominator of
u(i) when being mapped between the rings Q(α)[x] and Q[z1, . . . , zn]/T (i) [x]. Now, using
31 again shows that u(i) ∈ F/T (i) [x].

Of course den(u(i)) 6= den(u). It remains to show that going from
∏

Q[z1, . . . , zn]/T (i)

to Q[z1, . . . , zn]/T only introduces primes in the denominators that are divisors of den(f)
or nonradical. This will follow from using iterated resultants similarly to the resultants in
the base case. Suppose we are trying to combine T (i) and T (j) where all t(i)k = t

(j)
k besides

t
(i)
n 6= t

(j)
n . Now, perform the iterated resultant and write

r = iterres(res(t(i)n , t(j)n), T (i)
n−1) = At(i)n +Bt(j)n (mod T

(i)
n−1)

with A,B ∈ FS/T (i)
n−1 [zn] since t(i)n , t(j)n are contained in FS/T (i)

n−1[x] by construction. Well,
any prime p that divides r would have the property of gcd(t(i)n , t(j)n) 6= 1 (mod p). Hence tn
would not be square-free and so T would not be radical mod p. Thus, after recovering all
splittings into the ring Q[z1, . . . , zn]/T [x], we indeed get u ∈ FS/T [x].

Lemma 32 also confirms our use of rational reconstruction. Recall that the rational
reconstruction algorithm takes u,M as input and finds n, d ∈ Z where n/d ≡ u (mod M)
with gcd(d,M) = 1 and gcd(n, d) = 1. The condition gcd(d,M) = 1 has to be enforced by

46

the algorithm using rational reconstruction. Lemma 32 indeed enforces this as it shows only
bad and nonradical primes (which the algorithm checks for and disregards) are used in the
modular gcd computations. It is also a vital step in proving the modular c-gcd algorithm
returns correct output.

Theorem 33. Let R = Q[z1, . . . , zn]/T where T is a radical zero-dimensional triangular
set and let a, b ∈ R[x]. The modular algorithm using Hensel lifting to handle zero-divisors
outputs a correct c-gcd if run on a and b.

Proof. It is enough to prove this for a single component of the decomposition. For ease
of notation, let T ⊂ R be the triangular set associated to this component. Let h be the
monic polynomial returned from the modular algorithm modulo T (at line 34) and define
g = gcd(a, b) (mod T) over Q.

First, we may assume that b is monic. If lcx(b) is a unit, divide through by its inverse
and this does not change gcd(a, b). If lcx(b) is a zero-divisor, the EA mod p would catch
it and cause a splitting, contradicting that the EA mod p did not encounter a zero-divisor
in this component of the c-gcd. Since h passed the trial division in step 34, it follows that
h | g and hence deg(h) ≤ deg(g) since h is monic.

Suppose lc(g) is invertible. If so, make g monic without loss of generality. Let p be a
prime used to compute h. Since g is monic and divides b which is also monic, any prime
appearing in den(g) is either nonradical or a divisor of den(b) by Lemma 32. In particular,
since the prime p was used successfully to compute h, it can not occur in the denominator
of g. So, we may reduce g modulo p. Let f denote the reduction of a polynomial f ∈ R[x]
mod p. Since g | a and g | b, it follows that g | h and so deg(g) ≤ deg(h). Since h | g,
they have the same degree, and both are monic, it must be that h = g and so indeed h is a
greatest common divisor of a and b.

Suppose lc(g) was a zero-divisor and that mvar(lc(g)) = zn without loss. Inspect lczn(lc(g));
if this is a unit, make it monic. If it is a zero-divisor, inspect lczn−1(lczn(g))). Continue un-
til u = lczk+1(· · · (lczn(lcx(g)) · · ·) is a monic zero-divisor. Further, if gcd(u, tk) 6= u, then
u/ gcd(u, tk) is a unit and so we can divide through by it to ensure gcd(u, tk) = u. Let
tk = uv (mod Tk−1) be a monic factorization. Note that Lemma 32 guarantees that the
same factorization uv = tk (mod Tk−1, p) occurs modulo p. Hence, we can split T into
triangular sets T (u) and T (v) where tk is replaced by u and v, respectively, and this same
splitting occurs modulo p.

Let gu = g mod T (u) and gv = g mod T (v) and similarly for other relevant polynomials.
By Lemma 10 hu is still a gcd of au and bu and gu for au and bu. Now, we consider
both triangular sets T (u) and T (v). First, in T (v), u is invertible otherwise T would not
be radical. So, multiply gv by u−1 so that lczk+1(· · · (lczn(lcx(g)) · · ·) = 1. Reinspect w =
lczk+2(· · · (lczn(lcx(gv))) · · ·). If w is not a zero-divisor, multiply through by its inverse and
repeat until a zero-divisor is encountered as a leading coefficient. Do the same computations

47

to find another splitting and be in the same situation as that of u in T . Otherwise, in T (u),
u = 0 and so lczk+1(· · · (lczn(lcx(gu)) · · ·) has changed; if it is invertible, multiply through
by its inverse until a monic zero-divisor is found in the leading coefficient chain. We again
wind up in the situation with a monic factorization of tj that is reducible modulo p.

The process described in the last paragraph must terminate with a splitting in which
the image of g is monic since lcx(g) has finite degree in each variable. We have already
shown that the image of h would be an associate of the image in g in this case. Since being
a gcd persists through isomorphisms in the sense of Lemma 10, this gives indeed that h is
a gcd(a, b) modulo T over Q, as desired.

5.2 Overview with FTRR

We now show how to make a modular algorithm that uses Abbott’s Fault Tolerant Rational
Reconstruction to handle zero-divisors. The only change to ModularC-GCD that requires
change is that HandleZeroDivisorHRR is used in place of HandleZeroDivisorHensel. Proving
this variant of the modular algorithm works is based mostly on the idea of the Euclidean
algorithm over Q agreeing with the Euclidean algorithm over Zp for all but finitely many
primes. We give a proof of this.

Lemma 34. Let T be a radical triangular set overQ in n variables. LetR = Q[z1, . . . , zn]/T .
Running the Euclidean algorithm on two polynomials in R[x] agrees with the Euclidean
algorithm in R/〈p〉[x] for all but finitely many primes p.

Proof. Note that the Euclidean algorithm consists of a finite amount of divisions; so it
enough to show that a single division over Q agrees with a single division modulo all but
finitely many primes. In symbols, let a, b ∈ R[x] with degx(b) ≤ degx(a) and let r be the
remainder when a is divided by b.

Work by induction on n, the number of extensions. Consider the base case n = 0. Let
a = bq + r and p be a prime number. As long as p does not divide any of the relevant
denominators, this equation can be reduced modulo p. Further, if p 6 | lc(b), then deg(r
mod p) < deg(b mod p). Since there are finitely many primes that cause these issues, the
base case is satisfied.

Now consider the nth case. In the process of dividing a by b over Q, numerous smaller
degree divisions must be done, in particular, they all only use n− 1 or less extensions. Use
the induction hypothesis here to rule out a set of finitely many primes S. Take a prime
number p 6∈ S. If a zero-divisor is encountered in one of the smaller divisions, the algorithm
would terminate both over Q and Zp with the same zero-divisor after reduction modulo p.
So suppose no zero-divisors are encountered in any of these smaller divisions. In particular,
lc(b) is a unit over Q and Zp. Next, degx(b mod p) < degx(b) is only true for primes
p | lc(b), which happens for finitely many primes. We may safely disregard these. After

48

that, the uniqueness of remainders in Corollary 22 establishes that the remainders are the
same after reduction by p.

Lemma 34 establishes that if g = EuclideanC-GCD(a, b) over Q, then gp =EuclideanC-
GCD(a, b) over Zp satisfies g ≡ gp (mod p) for all but finitely many primes p; whether g is a
c-gcd of a and b or a zero-divisor. This is the exact scenario where the fault tolerant rational
reconstruction applies. Thus, we have shown that the modular c-gcd algorithm works when
using fault tolerant rational reconstruction to handle zero-divisors. We should still show
that the output is an actual gcd, but the proof is the same as Theorem 33.

Theorem 35. Let R = Q[z1, . . . , zn]/T where T is a radical zero-dimensional triangular
set and let a, b ∈ R[x]. The modular algorithm using fault tolerant rational reconstruction
to handle zero-divisors outputs a correct c-gcd if run on a and b.

5.3 Implementation and Timing Results

We have implemented algorithm ModularC-GCD with both methods of resolving zero-divisors
as presented above using Maple’s recden package which uses a recursive dense data struc-
ture for polynomials with extensions. Details can be found in Monagan and van Hoeij’s
paper [15]. The reader may find our Maple code for our software there together with several
examples and their output at http://www.cecm.sfu.ca/CAG/code/MODGCD.

The remainder of this section will be used to compare our algorithm with the RegularGcd

algorithm (see [19]) which is in the RegularChains package of Maple. Algorithm RegularGcd

computes a subresultant polynomial remainder sequence and outputs the last non-zero el-
ement of the sequence. We highlight three differences between the output of RegularGcd

and ModularC-GCD.

1. The algorithms may compute different decompositions of the input triangular set.

2. RegularGcd returns the last non-zero subresultant but not reduced modulo T ; it of-
ten returns a gcd g with degzi

(g) > mdeg(ti). To compute the reduced version, the
procedure NormalForm is required. ModularC-GCD uses the CRT and rational recon-
struction on images of the c-gcd modulo multiple primes, so it computes the reduced
version of the c-gcd automatically.

3. RegularGcd computes gcds up to units, and for some inputs the units can be large.
ModularC-GCD computes the monic gcd which may have large fractions.

49

Example 7. We would like to illustrate the differences with an example provided by an
anonymous referee of a paper that this thesis is based upon. Let

T = {x3 − x, y2 − 3
2yx

2 − 3
2yx+ y + 2x2 − 2},

a = z2 − 8
3zyx

2 + 3zyx− 7
3zy −

1
3zx

2 + 3zx− 5
3z + 25

6 yx
2 − 13

2 yx+ 10
3 y + 16

3 x
2 − 2x− 10

3 ,

b = z2 + 29
12zyx

2 + 7
4zyx−

11
3 zy −

8
3zx

2 + 3zx+ 2
3z + 67

12yx
2 − 11

4 yx−
13
3 y −

13
3 x

2 − 2x+ 19
3 .

When we run our algorithm to compute c-gcd(a, b) (mod T), it returns

z2 + (3x− 2)z − 2x+ 2 (mod y, x2 − 1),

z + 1
2x−

3
2 (mod y − 3

2x−
1
2 , x

2 − 1),

z + 5 (mod y + 2, x),

1 (mod y − 1, x).

The same example using RegularGcd returns

(−96 y + 168) z − 552 y + 696 (mod y + 2, x),

154368 y3 − 117504 y2 − 559872 y + 585216 (mod y − 1, x),

z2 + (2
3 −

8
3x

2 + 3x)z (mod y, x− 1),

(366x2 − 90x− 96)yz + (102x2 + 270x− 552)y (mod y − 2, x− 1),

z2 + (2
3 −

8
3x

2 + 3x)z + 19
13 −

13
3 x

2 − 2x (mod y, x+ 1),

(366x2 − 90x− 96)yz + (102x2 + 270x− 552)y (mod y + 1, x+ 1).

As can be seen, our algorithm only decomposes T into 4 triangular sets while RegularGcd

decomposes T into 6. Further, it is easy to notice that each component in our output is
reduced, while the output of RegularGcd is not. Applying the NormalForm command to
reduce the output of RegularGcd returns

360z + 1800 (mod y + 2, x), 62208 (mod y − 1, x),

z2 + z (mod y, x− 1), 360z − 360 (mod y − 2, x− 1),

z2 − 5z + 4 (mod y, x+ 1), −360z + 720 (mod y + 1, x+ 1).

Notice that RegularGcd also circumvents fractions. In general, the output of our algorithm
deals with smaller numbers. This can certainly be seen as an advantage for a user.

Finally, we would like to conclude with some timing tests which show the power of using
a modular GCD algorithm that recovers the monic c-gcd from images modulo primes using
rational reconstruction.

50

We first construct random triangular sets where each ti is monic in zi and dense in
z1, . . . , zi−1 with random two digit coefficients. We then generate a, b, g ∈ R[x] with degrees
6, 5, and 4, respectively. Then, compute c-gcd(A,B) where A = ag and B = bg. Maple code
for generating the test inputs is included on our website.

extension ModularC-GCD RegularGcd
n degrees time divide #primes time real cpu #terms
1 [4] 0.013 0.006 3 0.064 0.064 170
2 [2, 2] 0.029 0.022 3 0.241 0.346 720
2 [3, 3] 0.184 0.138 17 1.73 4.433 2645
3 [2, 2, 2] 0.218 0.204 9 10.372 29.357 8640
2 [4, 4] 0.512 0.391 33 12.349 40.705 5780
4 [2, 2, 2, 2] 1.403 1.132 33 401.439 758.942 103680
3 [3, 3, 3] 2.755 1.893 65 413.54 1307.46 60835
3 [4, 2, 4] 1.695 1.233 33 39.327 86.088 19860
1 [64] 6.738 5.607 65 43.963 160.021 3470
2 [8, 8] 13.321 11.386 129 1437.76 5251.05 30420
3 [4, 4, 4] 17.065 14.093 129 7185.85 22591.4 196520

Table 5.1: The first column is the number of algebraic variables, the second is the degree of the
extensions, the third is the CPU time it took to compute c-gcd of the inputs for ModularC-GCD,
the fourth is the CPU time in ModularC-Gcd spent doing trial divisions over Q, the fifth is the
number of primes needed to recover g, the sixth is the real time it took for RegularGcd to do the
same computation, the seventh is the total CPU time it took for RegularGcd and the last is the
number of terms in the unnormalized gcd output by RegularGcd. All times are in seconds.

In the previous data-set, g is not created as a monic polynomial in x, but ModularC-GCD
computes the monic gcd(A,B). Since lc(g) is a random polynomial, its inverse in R will likely
have very large rational coefficients, and so additional primes have to be used to recover
the monic gcd. This brings us to an important advantage of our algorithm: it is output-
sensitive. In Table 2 below g is a monic degree 4 polynomial with a and b still of degree 6
and 5. Notice that our algorithm finishes much faster than the earlier computation, while
RegularGcd takes about the same amount of time. This happens because the coefficients of
subresultants of A and B are always large no matter how small the coefficients of gcd(A,B)
are. Note that the timing tests are only done with using Hensel lifting to handle zero-
divisors, but both approaches will have the same running time since zero-divisors are rarely
encountered when generating random polynomials.

Let da = degx a, db = degx b with da ≥ db and let dg = degx g. In Table 3 below we
increased da and db from 6 and 5 in Table 1 to 9 and 8 leaving the degree of g at 4. By
increasing db we increase the number of steps in the Euclidean algorithm which causes an
expression swell in RegularGcd in the size of the integer coefficients and the degree of each
z1, . . . , zn, that is, the expression swell is (n+1) dimensional. The number of multiplications
in R that the monic Euclidean algorithm does is at most (da − db + 2)(dg + db) for the first

51

extension ModularC-GCD RegularGcd
n degrees time divide #primes time real cpu #terms
1 [4] 0.01 0.006 2 0.065 0.065 170
2 [2, 2] 0.02 0.016 2 0.238 0.329 715
2 [3, 3] 0.048 0.041 2 1.771 4.412 2630
3 [2, 2, 2] 0.05 0.041 2 11.293 31.766 8465
2 [4, 4] 0.077 0.068 2 11.521 36.854 5750
4 [2, 2, 2, 2] 0.117 0.097 2 321.859 431.368 99670
3 [3, 3, 3] 0.222 0.201 2 508.465 1615.28 57645
3 [4, 2, 4] 0.05 0.032 2 34.358 71.351 16230
1 [64] 0.304 0.282 2 27.55 98.354 3450
2 [8, 8] 0.482 0.455 2 1628.7 5979.51 29505
3 [4, 4, 4] 0.525 0.477 2 2989.18 4751.04 192825

Table 5.2: The columns are the same as for Table 5.1. Here, the gcd of the inputs has much smaller
coefficients than in Table 5.1

division and
∑dg+db−1
i=dg

2i = db(db+2dg−1) for the remaining divisions. The trial divisions of
A by g and B by g cost dadg and dbdg multiplications in R respectively. Increasing da, db, dg
from 6, 5, 4 in Table 1 to 9, 8, 4 increases the number of multiplications in R in the monic
Euclidean algorithm from 87 to 156 and from 24 + 20 = 44 to 36 + 32 = 68 for the trial
divisions but the monic gcd remains unchanged. Comparing Table 1 and Table 3 the reader
can see that the increase in ModularC-GCD is less than a factor of 2.

extension ModularC-GCD RegularGcd
n degrees time divide #primes time real cpu #terms
1 [4] 0.021 0.011 5 0.124 0.13 260
2 [2, 2] 0.043 0.031 5 0.968 1.912 1620
2 [3, 3] 0.214 0.163 17 10.517 34.513 6125
3 [2, 2, 2] 0.287 0.204 9 64.997 173.53 29160
2 [4, 4] 0.638 0.427 33 67.413 245.789 13520
4 [2, 2, 2, 2] 2.05 1.613 33 2725.13 3528.41 524880
3 [3, 3, 3] 3.35 2.731 33 3704.61 11924.0 214375
3 [4, 2, 4] 2.399 1.793 33 334.201 869.116 68940
1 [64] 10.097 8.584 65 171.726 658.518 5360
2 [8, 8] 21.890 18.086 129 10418.4 38554.9 72000
3 [4, 4, 4] 37.007 31.369 129 > 50000 – –

Table 5.3: The columns are the same as for Table 5.1. Here, the degree of the input polynomials
are raised to 9 and 8 while their gcd still has degree 4.

52

5.4 Asymptotic Analysis

We will do an asymptotic analysis for the modular c-gcd algorithm that uses Hensel lifting
to handle zero-divisors. The running time of the algorithm is dominated by running the
Euclidean algorithm modulo multiple primes and the division test. This is verified in the
previous section’s timing results. Because of this, we will only consider the running time
based on these two parts of the algorithm. Also, the expected case is that no zero-divisors are
encountered. Further, not encountering a zero-divisor is arguably the worst case scenario.
This is because if a zero-divisor is successfully lifted to Q, then the degree of each component
will smaller. Therefore, reduction by the triangular set takes less operations. This can also
be seen in the timing tests by observing the running time with degrees [4, 4, 4] and [4, 2, 4]
in Table 5.1 gives a ratio of about 10.

Now, suppose M primes are needed to successfully compute g = gcd(a, b). Since there
are only finitely many unlucky primes, we assume the algorithm doesn’t encounter any of
these. This implies we need M runs of the Euclidean algorithm modulo primes. This part
takes a total of O(M deg(a) deg(b)δ2) field multiplications modulo primes by Proposition
17. We could find a bound on M , but we do not think it is worthwhile because our algo-
rithm is output sensitive and any bound will be bad since it has to handle the worst case.
Next, the implementation of the algorithm does not perform the division test at after each
prime. We have coded it so that division is only tested O(log(M)) times. Each division takes
O(deg(g) deg(b)δ2) operations over Q for a total of O(log(M) deg(g) deg(b)δ2) multiplica-
tions in Q. Because we’re assuming no unlucky primes are encountered, this is an expected
case analysis.

We would like to discuss an optimization for the division test. It does not avoid the worst
case, but it does improve the expected case. Suppose rational reconstruction successfully
outputs a polynomial h ∈ Q[z1, . . . , zn]/T [x]. Instead of going straight into the division
test, we can make use of a check prime. That is, we pick one more prime p where p is not
bad or radical. Then, compute g = gcd(a, b) (mod p). If a zero-divisor is encountered in the
radical test or in the computation of g, we pick a new check prime. Next, we check if h ≡ g
(mod p). If it is, we proceed to the division test. If it is not we go back to the main loop and
pick more primes starting with p. More rigorously, we replace lines 33-35 of ModularC-GCD
with the following pseudo-code.

This optimization only performs the division test once in the expected case. Since there
are finitely many unlucky primes by Theorem 28, the algorithm expects to always pick a
lucky prime. Therefore, the only time the division test can be needlessly performed in the
expected case, is if not enough primes are picked to exceed the bounded needed by rational
reconstruction. The use of a check prime supersedes this since the check prime is expected
to be lucky as well. Thus, we have the following theorem.

53

1 Set h := RationalReconstruction(G (mod M));
2 if h 6= FAIL then
3 Check-Prime Loop: Pick a new prime p that is not bad or radical;
4 if a zero-divisor is encountered then pick a new prime, go to Check-Prime Loop;
5 Compute g := gcd(a, b) (mod p);
6 if a zero-divisor is encountered then pick a new prime, go to Check-Prime Loop;
7 if g 6≡ h (mod p) then pick a new prime, go to Main Loop;
8 if h | a and h | b then return h;
9 end

10 Pick a new prime: Go to Main Loop;

Theorem 36. The ModularC-GCD algorithm performs O(M deg(a) deg(b)δ2) operations
in Zp. Additionally, it uses O(deg(g) deg(b)δ2) operations over Q in the expected case, and
O(log(M) deg(g) deg(b)δ2) operations in the worst case.

54

Chapter 6

An Inversion Algorithm

We would like to present a second application of the use of Hensel lifting for resolving zero-
divisors: the inversion problem. The inversion problem takes as input a zero-dimensional
triangular set T ⊂ Q[z1, . . . , zn] and a ∈ Q[z1, . . . , zn]/T and computes a−1 or determines
a−1 does not exist. This can be done using the Inverse command in the RegularChains

library of Maple. We present a new algorithm that is based on the Newton iteration in
section 6.1. We conclude with time tests in section 6.2.

6.1 Overview and Analysis

We would like to start with motivating the use of Newton iteration. With that in mind,
computing a−1 can be phrased as computing a root of the equation f(x) = a− 1

x . Then this
is a fixed-point of g(x) = x− f(x)

f ′(x) as long as f ′(a−1) 6= 0. Therefore, we can use the Newton
fixed-point iteration scheme xn+1 := xn− f(xn)

f ′(xn) . Well, f ′(x) = 1
x2 and so xn+1 := 2xn−ax2

n.
It is well known that Newton iteration is quadratically convergent, which is verified in the
succeeding lemma.

Lemma 37. Let T ⊂ Q[z1, . . . , zn] be a triangular set and a ∈ R = Q[z1, . . . , zn]/T .
Suppose xk ∈ Zpk [z1, . . . , zn] satisfies axk ≡ 1 (mod T, pk). Then the next term in the
Newton iteration scheme xk+1 := 2xk − ax2

k satisfies axk+1 = 1 (mod T, p2k).

Proof. First, note that we can write 1− axk ≡ fpk (mod T) for some f ∈ R. Then,

1− axk+1 = 1− a(2xk − ax2
k) = 1− 2axk − (axk)2 = (1− axk)2 = f2p2k (mod T).

Therefore, 1− axk+1 ≡ 0 (mod T, p2k).

This leads us to an inversion algorithm. Let a ∈ Q[z1, . . . , zn]/T be the input. We first
show how we determine non-invertibility. For this purpose, suppose a ∈ Q[z1, . . . , zn]/T is
a zero-divisor and mvar(a) = zi. Then gcd(a, ti) (mod Ti−1) is nontrivial by Corollary 21.
Therefore, we can use a modular gcd algorithm similar to ModularC-GCD to compute the

55

c-gcd(a, ti) (mod Ti−1). Otherwise, a is invertible, so we can compute the inverse modulo
a lucky prime p, and using the Newton iteration in Lemma 37 and rational reconstruction,
then lift it to Q. If the rational reconstruction returns a polynomial b ∈ R, we of course still
have to test if ab ≡ 1 (mod T).

A complication occurs if a zero-divisor is encountered in the EEA of a and ti. If this
happens, we simply use the HandleZeroDivisorHensel algorithm. One could also use FTRR
for this purpose, but we have not pursued this. If a zero-divisor is encountered and lifts to
Q, we split the triangular set and compute a−1 modulo each. We give pseudo-code below.

One weakness of our algorithm is that we have only succeeded in proving it works
when the triangular set is radical. This only comes into play since we do a modular gcd
computation when a is not invertible. The algorithm in [21] works more generally for radical
and nonradical ideals. We would like to note that for actually computing the inverse the
radical assumption is not required. So if the user knows that the inverse exists by some
other means, they can still use our algorithm. The timing tests that follow show that it is
worthwhile.

Theorem 38. Let T ⊂ Q[z1, . . . , zn] be a radical zero-dimensional triangular set. Let
a ∈ Q[z1, . . . , zn]/T . Then running Inversion(a) terminates with correct output.

Proof. First, suppose the input a was a zero-divisor over Q. This implies the gcd(a, tn)
(mod Tn−1) is nontrivial over Q, and so gcd(a, tn) (mod Tn−1, p) must be nontrivial for
any chosen prime p as well. Then, using the same proof as in the proof of modularC-GCD
Theorem 33, we will successfully recover c-gcd(a, tn) (mod Tn−1).

Otherwise, suppose a is a unit. By Theorem 28, 1 = gcd(a, tn) (mod Tn−1, p) for all but
finitely many primes p. We may suppose the algorithm picks these primes without loss of
generality. Using the same proof as Proposition 30, we may conclude that 1 = gcd(a, tn)
(mod Tn−1, p) is successfully computed by the EA mod p. From here, the algorithm com-
putes a−1 with higher and higher accuracy. We can compute a−1 over Q using linear algebra
and so the integers appearing in the rational numbers of its coefficients must be bounded.
This bound will be reached by Lemma 37, and once this bound has been reached, the ra-
tional reconstruction will succeed. Since the inverse is unique, (over Q and over Zpk for any
positive integer k), the algorithm will successfully compute a−1 over Q.

We now justify the use of rational reconstruction for the invertible case. Let a and T be
the inputs and suppose the algorithm is using the prime number p. Recall that the algorithm
checks if p is a bad prime so a and T are reducible by p and a 6≡ 0 (mod T, p). The only
concern is if p appears in the denominator of the rational coefficients of a−1. Suppose pk

is the largest power of p appearing as such. Then, pka−1 is reducible by p. Notice that
a(pka−1) = pk and so a becomes a zero-divisor modulo p. This shows that p is an unlucky
prime; i.e., gcd(a, ti) 6= 1 (mod T, p) while gcd(a, ti) = 1 (mod T). The algorithm would

56

Algorithm 10: Inversion
Input : A radical, zero-dimensional triangular set T ⊂ Q[z1, . . . , zn] and an element

a ∈ R with mvar(a) = zn.
Output: a−1 or a message indicating that a is a zero-divisor.

1 Initialize dg := deg(b), M = 1;
2 Main Loop: Pick a nonbad prime p; // See definition 15.
3 Test if p is a radical prime, N := isRadicalPrime(T, p);
4 if N = [“ZERODIVISOR”, u] then
5 H := HandleZeroDivisorHensel(u);
6 if H = FAIL then pick a new prime, go to Main Loop;
7 else if H is a factorization tk = wv (mod Tk−1) then
8 Create triangular sets T (w) and T (v) where tk is replaced by w and v;
9 return Inversion(a, b) (mod T (w)), Inversion(a, b) (mod T (v))

10 end
11 else if N = False then Pick a new prime: Go to Main Loop ;
12 Use the EEA on tn and a to compute g = gcd(a, tn) (mod Tn−1, p) and b where

ab ≡ 1 (mod T, p);
13 if b =[“ZERO-DIVISOR”, u] then
14 Call H = HandleZeroDivisor(u);
15 if H = FAIL then pick a new prime, go to Main Loop;
16 else if H is a factorization tk = wv (mod Tk−1) then
17 Create triangular sets T (w) and T (v) where tk is replaced by w and v;
18 return Inversion(a) (mod T (w)), Inversion(a) (mod T (v))
19 end
20 else if g 6= 1 (mod Tn−1, p) then
21 if deg(g) = dg then
22 The chosen prime seems to be lucky;
23 Use CRT to combine g with other gcds (if any) and store the result in G;
24 Set M := M × p;
25 else if deg(g) > dg then
26 The chosen prime was unlucky, discard g and pick a new prime. Go to Main

Loop;
27 else if deg(g) < dg then
28 All previous primes were unlucky, discard G;
29 Set G := g, M := p, and dg := deg(g);
30 end
31 Set h := RationalReconstruction(G (mod M));
32 if h 6= FAIL and h | a and h | tn then return “a is not a unit.”;
33 Pick a new prime: Go to Main Loop;
34 else if g = 1 (mod Tn−1, p) then
35 Set k := 1;
36 while true do // Newton iteration: see Lemma 37.
37 Set h := RationalReconstruction(b (mod pk));
38 if h 6= FAIL and ah ≡ 1 (mod T) then return h;
39 Set k := 2k and b := 2b− ab2 (mod T, pk);
40 end
41 end

57

catch this before the inversion loop is started. Thus, rational reconstruction can be safely
used.

Lastly, we would like to give a quick asymptotic analysis. The analysis for noninvertible
elements is the same as ModularC-GCD since we were using the same algorithm, so we will
focus on the case where the input is an invertible element. With that in mind, the algorithm’s
running time will be dominated by the multiplication test over Q and the iterations over
Zpk , so this is what we count.

Proposition 39. Let a ∈ Q[z1, . . . , zn]/T be an invertible element. Suppose the numerators
of the fractions in a−1 are bounded by N add the denominators by D. The Inversion
algorithm computes a−1 in O(log2(logp(ND))δ2) multiplications in Zpk where k is varying
powers of 2, and O(log2(logp(ND))δ2) multiplications in Q in the worst case and O(δ2)
multiplications in Q in the expected case.

Proof. Note that the recurrence xk+1 := 2xk − ax2
k will take 2 ring multiplications. These

will cost O(δ2) multiplications each by Proposition 14. This has to be iterated until rational
reconstruction does not fail and returns the correct fractions; that is, until p2k ≥ 2ND. Thus,
O(log2(logp(ND)) iterations are required. In total, O(log2(logp(ND))δ2) multiplications are
done in Zpk and similarly for over Q. For the expected case, we can make use of check primes
as in ModularC-GCD to only have to do the multiplication test in line 38 once.

6.2 Implementation and Timing Results

We have implemented algorithm Inversion as presented above using Maple’s recden
package, as in the ModularC-GCD implementation. The reader may find our Maple code
for our software there together with several examples and their output at

http://www.cecm.sfu.ca/CAG/code/MODGCD

The remainder of this section will be used to compare our algorithm with the Inverse

procedure in the RegularChains package of Maple. The algorithm that Inverse uses works
by using an extended subresultant polynomial remainder sequence algorithm if there is more
than 1 extension. If there is only 1, it uses a basic modular extended greatest common
divisor algorithm. It is coded this way because one needs to only use gcdex(a, t1) (mod T0)
to compute a−1 if there is only 1 extension. Because of this, their procedure outperforms
ours in the single extension case. However, multiple extensions are the main point of interest
in this thesis and by those wishing to compute modulo triangular sets, so this should not
be viewed as a weakness.

Note that for testing invertibility Inverse uses the same algorithm as RegularGcd and
Inversion uses the same algorithm as ModularC-GCD. Because of this, we do not bother

58

making timing tests for this case. Please refer to tables 5.1, 5.2, 5.3 for the results that
would be found.

Finally, we would like to conclude with some timing tests for computing inverses. We
first construct random triangular sets where each ti is monic in zi and dense in z1, . . . , zi−1

with random two digit coefficients. We then generate a ∈ R that is dense in all variables
again with two digit coefficients. Because of the random generation, it is likely that a is
invertible, so we compute a−1 using our Inversion procedure. We then compute a−1 using
the Inverse command. Maple code for generating the test inputs is included the appendix.

n degree Inversion Inverse
1 [64] 0.181 0.068
1 [128] 1.32 0.237
1 [300] 17.174 3.748
2 [2, 64] 4.288 61.834
3 [5, 5, 5] 9.747 14.676
4 [3, 3, 3, 3] 6.536 112.987
3 [2, 2, 2] 0.013 0.026
4 [2, 2, 2, 2] 0.086 0.126
5 [2, 2, 2, 2, 2] 0.586 28.637
6 [2, 2, 2, 2, 2, 2] 8.197 > 10000

Table 6.1: The first column is the number of algebraic variables, the second is the degree of the
extensions, the third is the CPU time it took to compute the inverse of the inputs for Inversion, the
fourth is the CPU time it took to compute the inverse of the inputs for Inverse. All times are in
seconds.

The time tests confirm that Inverse is faster for a single extension. However, as soon
as there is a second extension, Inversion is faster. This can be seen succinctly by viewing
the time tests for extensions of degree [128] and [2, 64] in Table 6.1. Similarly to the time
tests for gcd computation, the RegularChains package is very bad at handling multiple
extensions.

59

Chapter 7

Conclusion and Future Work

In summary, creating algorithms for computation modulo triangular sets is difficult because
of zero-divisors. We have applied two new techniques to resolve this difficulty: fault tolerant
rational reconstruction and Hensel lifting. We have developed two applications using these
techniques, namely, a modular gcd algorithm and an inversion algorithm. Using timing
tests, we have shown that our approach gives a practical improvement over the algorithms
used in Maple’s RegularChains package. There is plenty of room for improvement with our
algorithms that should be discussed. For the modular gcd algorithm:

1. We could perhaps avoid the radical prime test as done in the algebraic number field
case in [15]. This would not be a large gain as the radical prime test takes a small
fraction of the running time.

2. The division test is a large bottleneck of the algorithm and should be the first place to
optimize. We have attempted to create a modular division algorithm for this; However,
it did not present a large gain, if any at all, unless we were willing to give up a proof of
correctness in the algorithm. The difficulty comes in bounding the rational coefficients
of gcd(a, b) for a, b ∈ R[x] where R = Q[z1, . . . , zn]/T . We have researched bounds on
these, but they are far from tight.

3. The algorithm only works with univariate polynomials. The obvious way to handle
multivariate polynomials would be to use evaluations and interpolation as is done by
Brown over Q with no extensions, see [5]. This would require proving results about
uniqueness of interpolation over products of fields. We could also make use of sparse
interpolation techniques here, see [16] and [27].

For the inversion algorithm:

1. We can likely ignore the radical prime test. We could not construct a proof that does
not require it though.

2. Similarly to the modular gcd algorithm, testing if ab = 1 (mod T) is a large bottle-
neck. We are not sure how to get around this besides proving a tight bound on the

60

rational numbers appearing in a−1. However, no bound will be tight. We randomly
generated a dense triangular set T = {t1, t2} where mdeg(t1) = mdeg(t2) = 3 and
integer coefficients only consisting of two digits. We then randomly generated a dense
element modulo T again with with only 2 digit coefficients. Well, a−1 is dense and con-
sists of fractions with 46 digits in the numerator and denominator. This is the worst
case that the bound would have to cover for. However, the same bound on (a−1)−1

would be a gross overestimation. Because these examples are so easy to construct, we
think it is best to do the multiplication test.

3. An optimization could be to use a modular algorithm to compute a−1 rather than a
lifting algorithm based on Newton iteration. This would certainly help the univariate
case. It could be worth it to code it as a special case, similarly to the Inverse function.

A major flaw of our algorithms when comparing them to those of Maza, Schost, Li in the
RegularChains package of Maple is in terms of robustness. In particular, their algorithms
do not require monic inputs and do much more than just the two applications we have
laid out. However, we have shown our algorithms are much faster. Because of this, the
technique of using Hensel lifting for modular algorithms is one worth pursuing and should
allow for more modular algorithms to be created. For instance, a modular algorithm for more
resultant computation (that uses the Euclidean algorithm) in R[x] would be useful. Also,
matrix computations deserve some attention. The problem of computing matrix inverses
over triangular sets has been explored in [21] without the modular approach. Both matrix
inversion and linear system solving could benefit from a modular approach.

61

Bibliography

[1] John Abbott. Fault-tolerant modular reconstruction of rational numbers. Journal of
Symbolic Computation, Volume 80, pages 707− 718. May-June 2017.

[2] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets. J. Symb.
Comp., 28: 105− 124, 1999.

[3] Janko Boehm, Wolfram Decker, Claus Fieker and Gerhard Pfister. The use of bad
primes in rational reconstruction. Math Comp 84. 3013–3027. 2015.

[4] S. Bosch. Algebraic Geometry and Commutative Algebra. Springer-Verlag London.
2013.

[5] W. S. Brown. On Euclid’s Algorithm and the Computation of Polynomial Greatest
Common Divisors. J. ACM 18: 478− 504. 1971.

[6] C. Chen, F. Lemaire, O. Golubitsky, M. Moreno Maza and W. Pan. Comprehensive
Triangular Decomposition Proceedings of CASC 2007: Computer Algebra in Scientific
Computing, pages 73–101, Lecture Notes in Computer Science, vol. 4770, Springer-
Verlag, 2007.

[7] D. Cox, J. Little, D. O’Shea. Ideals, Varieties and Algorithms. Springer-Verlag, 1991.

[8] D. Cox, J. Little, D. O’Shea. Using Algebraic Geometry. Springer-Verlag, 1998.

[9] D. Cox. Galois Theory. Wiley-Interscience, 2004.

[10] X. Dahan, M. Moreno Maza, E. Schost, W. Wu and Y. Xie. Lifting Techniques for Tri-
angular Decompositions. Proceedings of ISSAC’05, Beijing, China, ACM Press, 2005.

[11] David Dummit, Richard M. Foote. Abstract Algebra. Englewood Cliffs, N.J. Prentice
Hall, 1991.

[12] M. J. Encarnacion. Computing GCDs of Polynomials over Algebraic Number Fields,
J. Symb. Comp. 20: 299− 313, 1995.

[13] J. von zur Gathen and J. Gerhard, Modern Computer Algebra, 3rd ed., Cambridge
University Press, 2013.

[14] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for Computer Algebra. Kluwer,
1992.

62

[15] Mark van Hoeij and Michael Monagan, A modular GCD algorithm over number fields
presented with multiple extensions. Proceedings of ISSAC ’02, ACM Press, pp. 109−
116. 2002.

[16] Jiaxiong Hu and Michael Monagan, A Fast Parallel Sparse Polynomial GCD Algorithm.
Proceedings of ISSAC ’16, ACM Press, pp. 271–278. 2016.

[17] E. Hubert. Notes on Triangular Sets and Triangulation-Decomposition Algorithms I:
Polynomial Systems. In Symbolic and Numerical Scientific Computing edited by F.
Winkler and U. Langer. Lecture Notes in Computer Science 2630, pp. 1− 39. 2003.

[18] L. Langemyr, S. McCallum. The Computation of Polynomial GCDâĂŹs over an Alge-
braic Number Field, J. Symbolic Computation 8, pp. 429− 448. 1989.

[19] Xin Li, Marc Moreno Maza, and Wei Pan. Computations Modulo Regular Chains. Pro-
ceedsings of ISSAC ’09, pp. 239–246, 2009. See also https://arxiv.org/pdf/0903.3690.

[20] X. Li, M. Moreno Maza, and E Schost. Fast Arithmetic for Triangular Sets: from
Theory to Practice. Journal of Symbolic Computation, 44(7): 891-907, 2009.

[21] Marc Moreno Maza, Eric Schost, Paul Vrbik. Inversion Modulo Zero-Dimensional Reg-
ular Chains. Proceedings of Computer Algebra in Scientific Computing (CASC 2012),
Springer Verlag, LNCS 6885, pages 224-235, 2012.

[22] M. B. Monagan. In-place arithmetic for polynomials over Zn.
Proceedings of DISCO ’92, Springer-Verlag LNCS, 721, pp. 22–34, 1993.

[23] M. B. Monagan. Maximal Quotient Rational Reconstruction: An Almost Optimal Al-
gorithm for Rational Reconstruction. Proceedings of ISSAC ’2004, ACM Press, pp.
243–249, 2004.

[24] Barry Trager. Algebraic Factoring and Rational Function Integration. SYMSAC ’76
Proceedings of the third ACM symposium on Symbolic and algebraic computation.
Pages 219–226

[25] Paul S. Wang, M.J.T. Guy, and J.H. Davenport. P-adic reconstruction of rational
numbers. ACM SIGSAM Bulletin 16(2): 2–3, 1982.

[26] P.J. Weinberger and L.P. Rothschild. Factoring Polynomials over Algebraic Number
Fields. ACM Trans. on Math. Soft. 2(4): 335–350, 1976.

[27] Richard Zippel, Probabilistic Algorithms for Spare Polynomials. Proceedings of EU-
ROSAM ’79, Springer Lecture Notes on Computer Science 72, pp 216–226. 1979.

63

Appendix A

Code for Time Tests

These are for the inversion algorithm timetests
###

reduce_by_tset := proc(f,rT)
Input :: f := a polynomial in the recden format.
T := a triangular set in the recden format.
#
This method reduces f modulo T. It will work over Q or Z/p.
local F,t;

F := f;
if nops(rT) >= 1 then

for t in rT do
F := phirpoly(F,t);

od;
fi;
return F;

end proc:

randpoly_dense := proc(X,d)
Create a random dense polynomial f with deg(f,X[i]) < d[i].
The integer coefficients will have two decimal digits.
local n;

n := nops(X);
if n = 1 then

return randpoly(X[1],degree=d[1]-1,dense);
else

return randpoly(X[n], coeffs=proc() randpoly_dense(X[1..n-1], d[2..n]) end proc,
dense, degree=d[1]-1);

fi;
end proc:

64

construct_triangular_set := proc(T, Z)
Input :: T := A triangular set with variables in Z.
Z := A list of variables.
#
It is assumed that T is of the form t1(Z[-1]), t2(Z[-1],Z[-2]), etc, and that
the polynomials in T are in Maple’s format.
#
This method also turns T into a reduced triangular set.
local rT,i,n;

n := nops(Z);
rT := [rpoly(T[1],Z[-1]), seq(1..n-1)];
for i from 2 to nops(Z) do

rT[i] := rpoly(T[i], Z[n-i+1..n]);
rT[i] := reduce_by_tset(rT[i], rT[1..i-1]);

od;
return rT;

end proc:

randdensetriset := proc(X,d)
Create a random triangular set:
T[1] will be in X[-1] with degree d[1].
T[2] will be in X[-1],X[-2] with degree d[2].
etc.
#
All polies will be dense and monic in their main variable.
local n,T,R,i;

n := nops(d);
T := [seq(1..n)];
for i from 1 to n do

T[i] := X[n-i+1]^d[i] + randpoly_dense(X[n-i+1..n], d[1..i]);
od;
return construct_triangular_set(T,X);

end proc:

65

N is the list of extension degrees.
For example, [3,3] is two extensions each of degree 3.
N := [[4], [8], [16], [32], [64], [128], [256], [512], [3,3], [3,3,3],

[3,3,3,3], [2,2], [2,2,2], [2,2,2,2], [2,2,2,2,2]];

k := 1;
for d in N do

Create triangular set.
n := nops(d);
X := [seq(Z[i], i = 1..n)]:
T := randdensetriset(X, d):

Create element to be inverted.
f := randpoly_dense(X, d);
F := reduce_by_tset(rpoly(f, X), T):

Perform our procedure.
st1 := time();
H := [inversionrpoly(F)]:
et1 := time();

Perform RegularChains procedure.
R := PolynomialRing(X):
rc := Chain([seq(rpoly(T[i]),i=1..nops(T))],Empty(R),R):

st2 := time();
G := Inverse(f,rc,R):
et2 := time();

Store times in a table along with important parameters.
times_ours[k] := [n,d,et1-st1]:
times_maple[k] := [n,d,et2-st2]:
k := k + 1;

od:

66

###
These are for the cgcd time tests
###

randpolyn := proc(X,D) local i,C,f,n;
Creates a randomly generated dense polynomial.

n := nops(X);
if n=1 then C := rand(1..99); f := add(C()*X[1]^i,i=0..D[1]-1);
else f := add(randpolyn(X[2..-1],D[2..-1])*X[1]^i,i=0..D[1]-1);
fi;

end:

randtriset := proc(X,D)
Creates a randomly generated dense triangular set.

T := [];
n := nops(X);
Y := [seq(X[n-i],i=0..n-1)];
for i from 1 to n do

x := Y[i];
d := D[i];
T := [op(T),x^d+(randpolyn(Y[1..i],D[1..i]))];

od;
return construct_triangular_set(T,X);

end:

construct_triangular_set := proc(T, Z)
Input :: T := A triangular set with variables in Z.
Z := A list of variables.
#
It is assumed that T is of the form t1(Z[-1]), t2(Z[-1],Z[-2]), etc, and that
the polynomials in T are in Maple’s format.
#
This method also turns T into a reduced triangular set.
local rT,i,n;

n := nops(Z);
rT := [rpoly(T[1],Z[-1]), seq(1..n-1)];
for i from 2 to nops(Z) do

rT[i] := rpoly(T[i], [seq(Z[j],j=n-i+1..n,1)], [seq(T[j],j=1..i-1,1)]);
od;
return rT;

end proc:

67

N is the list of extension degrees.
For example, [3,3] is two extensions each of degree 3.
N := [[4], [2,2], [3,3], [2,2,2], [4,4], [2,2,2,2], [3,3,3], [4,2,4], [8,8], [4,4,4]];

k := 1;
for d in N do

n := nops(d);
X := [x,seq(Z[i], i = 1..n)]:
T := randtriset(X[2..], d):

a := add(randpolyn(X[2..],d)*x^i, i=0..6);
b := add(randpolyn(X[2..],d)*x^i, i=0..5);
g := add(randpolyn(X[2..],d)*x^i, i=0..4);

A := reduce_by_tset(rpoly(a*g, X), T):
B := reduce_by_tset(rpoly(b*g, X), T):

st_cgcd := time();
NPRIMES := 0; DIVTIME := 0;
H := [cgcd(A,B,2^30)]:
et_cgcd := time();

MAX := 0;
for h in H do MAX := max(MAX,maxratrpoly(h)) od;

R := PolynomialRing(X):
rc := Chain([seq(rpoly(T[i]),i=1..nops(T))],Empty(R),R):

A1 := rpoly(A):
B1 := rpoly(B):

st_reg := time();
G := RegularGcd(A1,B1,x,rc,R):
et1_reg := time();
for h in G do NormalForm(h[1],h[2],R): od:
et2_reg := time();
MAXG := 0;
for h in G do MAXG := max(MAXG, nops(expand(h[1]))); od;

times_cgcd[k] := [d,et_cgcd-st_cgcd,nops(H),NPRIMES,ilog10(MAX+1)+1,DIVTIME]:
times_reggcd[k] := [d,et1_reg-st_reg,nops(G),MAXG]:

od:

68

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	New Results

	Abstract Algebra
	Rings
	The Monic Euclidean Algorithm
	Rational Reconstruction
	p-adic Representations and Hensel lifting
	Fields and Extensions

	Triangular Sets
	Definitions and Examples
	Arithmetic Modulo Triangular Sets
	Radical Triangular Sets

	Resolving Zero-Divisors
	Hensel Lifting
	Fault Tolerant Rational Reconstruction

	A Modular GCD Algorithm
	Overview with Hensel lifting
	Overview with FTRR
	Implementation and Timing Results
	Asymptotic Analysis

	An Inversion Algorithm
	Overview and Analysis
	Implementation and Timing Results

	Conclusion and Future Work
	Bibliography
	Appendix Code for Time Tests

