
Computing Characteristic Polynomials of
Matrices of Structured Polynomials

by

Marshall Law

B.Sc., Simon Fraser University, 2014

Dissertation Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
Department of Mathematics

Faculty of Science

c© Marshall Law 2017
SIMON FRASER UNIVERSITY

Spring 2017

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,
research, education, satire, parody, criticism, review and news reporting is likely

to be in accordance with the law, particularly if cited appropriately.

Approval

Name: Marshall Law

Degree: Master of Science (Mathematics)

Title: Computing Characteristic Polynomials of Matrices
of Structured Polynomials

Examining Committee: Chair: Luis Goddyn
Professor

Michael Monagan
Senior Supervisor
Professor

Marni Mishna
Supervisor
Associate Professor

Nils Bruin
Examiner
Professor

Date Defended: April 13, 2017

ii

Abstract

We present a parallel modular algorithm for finding characteristic polynomials of matrices
with integer coefficient bivariate monomials. For each prime, evaluation and interpolation
gives us the bridge between polynomial matrices and matrices over a finite field so that the
Hessenberg algorithm can be used. After optimizations, we are able to save a significant
amount of work by incremental Chinese remaindering and early termination.

Keywords: Exact Linear Algebra, Characteristic Polynomial, High Performance Parallel
Algorithms

iii

Dedication

To my Lord and Saviour, the one who died for me though I am still unworthy.

iv

Acknowledgements

I don’t believe this list could ever be complete, but I have so much to be grateful for:

• Dr. Michael Monagan: For your kindness, patience, guidance and generosity. My time
in graduate school has certainly been extremely valuable, I have learned so much.

• Dr. JF Williams: The Math461 course you taught spiked my interest in mathematics.

• Dr. David Muraki: Your invaluable advice has helped me a lot during my undergrad-
uate studies.

• Drs. Marni Mishna and Nils Bruin: For excellent comments/suggestions for this
thesis.

• Peter Cho Ho Lam: Your immense biblical knowledge is always an encouragement,
and thanks for inspiring Theorem 4.

• John Kluesner: You are a great and helpful friend, it’s always fun to work/chat with
you.

• My dad, mom, and brother: Your unconditional love and support.

• My pastor and his wife: I am extremely honoured and privileged to be in your flock.

• My church: You are my home away from home.

• Romans 5:18, Ephesians 4:30.

v

Table of Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Algorithms viii

List of Figures viii

List of Tables viii

1 Introduction 1
1.1 Motivation . 3
1.2 Thesis Outline . 3
1.3 Original Contribution . 4
1.4 Related Presentations . 4

2 Background 5
2.1 Algebra . 5

2.1.1 Brief History . 5
2.1.2 Linear Algebra . 5
2.1.3 Abstract Algebra . 7

2.2 Algorithms for Computing Characteristic Polynomials 8
2.2.1 The Bareiss Fraction-Free Algorithm 8
2.2.2 The Berkowitz Method . 11
2.2.3 The Hessenberg Algorithm . 14

2.3 Other Algorithms and Tools . 17
2.3.1 Polynomial Evaluation . 17
2.3.2 Polynomial Interpolation . 17

vi

2.3.3 Fast Evaluation and Interpolation 18
2.3.4 Chinese Remainder Theorem and Algorithm 18

2.4 Size of Characteristic Polynomial . 19
2.4.1 Degree Bounds . 19
2.4.2 P-Norms . 20
2.4.3 Coefficient Bound . 20

2.5 Prime Numbers . 21
2.5.1 Primality Testing . 21

3 The Bivariate Routine 23
3.1 The Modular Algorithm . 23

3.1.1 Bounds on Characteristic Polynomial 24
3.1.2 Cost of Modular Algorithm . 27

3.2 Overview of Routine . 28
3.2.1 Structures of C(λ, x, y) . 28
3.2.2 High Level Description . 28

3.3 Phase 1 – Query . 29
3.3.1 Lowest Degree Factors . 30
3.3.2 Non-Zero Factors . 30
3.3.3 Required Points . 31
3.3.4 Unlucky Evaluations . 32

3.4 Phase 2 – Optimizations . 33
3.4.1 Lowest Degree . 33
3.4.2 Even Degree . 34
3.4.3 Non-zero Factors . 34
3.4.4 Savings with Combined Optimizations 34
3.4.5 Chinese Remainder Algorithm (CRA) 35

4 Implementation 42
4.1 Data Structures . 42
4.2 Parallelization . 44
4.3 Space . 44
4.4 Prime Numbers . 48
4.5 Partial Code . 48

5 Output 52
5.1 Validation . 52
5.2 Benchmarks . 55
5.3 General Routine . 57
5.4 Conclusion and Further Work . 58

vii

List of Algorithms

1 Bareiss Fraction Free Determinant . 9
2 Berkowitz Method . 12
3 Hessenberg Method . 15
4 Characteristic Polynomial on Bivariate Matrices 24

List of Figures

Figure 2.1 Berkowitz algorithm in Maple code. 13

Figure 3.1 Modular algorithm homomorphism diagram. 23

Figure 4.1 Main Functions in C Code (part 1/3). 49
Figure 4.2 Main Functions in C Code (part 2/3). 50
Figure 4.3 Main Functions in C Code (part 3/3). 51

List of Tables

Table 2.1 Summary of algorithms. 16

Table 3.1 Bounds on the specific characteristic polynomials C = C(λ, x, y). . . 25
Table 3.2 Data for the coefficients of C(λ, x, y) for n = 16. 29

Table 5.1 Bivariate routine timings in seconds (s), minutes (m) or hours (h). . 56
Table 5.2 Maple and Magma timings in seconds (s), minutes (m) or hours (h). 56
Table 5.3 Time spent in parallel algorithm for n = 256. 56

viii

Chapter 1

Introduction

Computing the characteristic polynomial of a matrix is a classical and fundamental problem
in mathematics. For numerical matrices, there are many optimized algorithms to compute
eigenvalues. Finding the characteristic polynomial of symbolic matrices, however, is usually
more difficult and requires more computation power and memory.

The central goal of this thesis is to compute characteristic polynomials of matrices of poly-
nomials. We start by considering matrices whose entries are monomials in two variables
with integer coefficients. Since these matrices can be highly structured, we also exploit
possible extra structures for optimizations. A typical computer today contains multiple
cores, which when utilized properly, provides a significant speed up. By combining the
above ideas to compute characteristic polynomials, we have developed an optimized and
parallel routine that may be used for general matrices of bivariate monomials. Our routine
is probabilistic, as it computes the characteristic polynomial correctly with high probability.

Let A(x, y) be an n by n matrix with entries of the form

c xayb

where c is an integer and the exponents a, b are non-negative integers. Let C(λ, x, y) ∈
Z[λ, x, y] be the characteristic polynomial of A(x, y), which is

C(λ, x, y) = det (λIn −A(x, y))

by definition, where In is the n× n identity matrix.

On the next page, we give an example of a matrix with bivariate monomial entries.

1

Matrix Example

x8 x5y x5y x4y2 x5y x2y2 x4y2 x3y3 x5y x4y2 x2y2 x3y3 x4y2 x3y3 x3y3 x4y4

x7 x6y x4y x5y2 x4y x3y2 x3y2 x4y3 x4y x5y2 xy2 x4y3 x3y2 x4y3 x2y3 x5y4

x7 x4y x6y x5y2 x4y xy2 x5y2 x4y3 x4y x3y2 x3y2 x4y3 x3y2 x2y3 x4y3 x5y4

x6 x5y x5y x6y2 x3y x2y2 x4y2 x5y3 x3y x4y2 x2y2 x5y3 x2y2 x3y3 x3y3 x6y4

x7 x4y x4y x3y2 x6y x3y2 x5y2 x4y3 x4y x3y2 xy2 x2y3 x5y2 x4y3 x4y3 x5y4

x6 x5y x3y x4y2 x5y x4y2 x4y2 x5y3 x3y x4y2 y2 x3y3 x4y2 x5y3 x3y3 x6y4

x6 x3y x5y x4y2 x5y x2y2 x6y2 x5y3 x3y x2y2 x2y2 x3y3 x4y2 x3y3 x5y3 x6y4

x5 x4y x4y x5y2 x4y x3y2 x5y2 x6y3 x2y x3y2 xy2 x4y3 x3y2 x4y3 x4y3 x7y4

x7 x4y x4y x3y2 x4y xy2 x3y2 x2y3 x6y x5y2 x3y2 x4y3 x5y2 x4y3 x4y3 x5y4

x6 x5y x3y x4y2 x3y x2y2 x2y2 x3y3 x5y x6y2 x2y2 x5y3 x4y2 x5y3 x3y3 x6y4

x6 x3y x5y x4y2 x3y y2 x4y2 x3y3 x5y x4y2 x4y2 x5y3 x4y2 x3y3 x5y3 x6y4

x5 x4y x4y x5y2 x2y xy2 x3y2 x4y3 x4y x5y2 x3y2 x6y3 x3y2 x4y3 x4y3 x7y4

x6 x3y x3y x2y2 x5y x2y2 x4y2 x3y3 x5y x4y2 x2y2 x3y3 x6y2 x5y3 x5y3 x6y4

x5 x4y x2y x3y2 x4y x3y2 x3y2 x4y3 x4y x5y2 xy2 x4y3 x5y2 x6y3 x4y3 x7y4

x5 x2y x4y x3y2 x4y xy2 x5y2 x4y3 x4y x3y2 x3y2 x4y3 x5y2 x4y3 x6y3 x7y4

x4 x3y x3y x4y2 x3y x2y2 x4y2 x5y3 x3y x4y2 x2y2 x5y3 x4y2 x5y3 x5y3 x8y4

As seen above, the matrix is dense as it does not contain any zeroes. The entries also have
low degrees in the two variables x and y. Note that our routine is not limited to matrices
where the elements have identical unit coefficients.

2

1.1 Motivation

The choice of matrix elements (bivariate monomials with integer coefficients) arises from
specific matrices that occur in the Ising model [21] of statistical physics. This model seeks
to explain phase transitions – when substance changes from one state to another. These
substance molecules may be in one of two possible states. Their transition depends on their
current state and neighbouring molecules, which are represented by the matrix elements.
We have specific transfer matrices for the square Ising model wrapped around a torus ob-
tained from M. Kauers, which were generated automatically by a combinatorial procedure.
The variables x and y represent the temperature and magnetic field, respectively. As n (the
dimension) approaches infinity, the largest eigenvalue of the matrices (as a function of x
and y) approaches a limiting function. This limiting function has cusps which correspond
to temperatures where phase transitions occur. M. Kauers and D. Zeilberger proposed to
find the first few characteristic polynomials, then detect some interesting pattern in the
eigenvalues, and finally predict for the limiting function.

We have five square matrices with the dimensions 16, 32, 64, 128 and 256 obtained from
M. Kauers [10]. The smallest matrix with dimension 16 is shown on the previous page.
Computer algebra systems (CAS) such as Maple and Magma have general purpose routines
for computing characteristic polynomials. To compute the characteristic polynomial of the
size 64 matrix, Magma takes about 15 hours, Maple takes three hours, and our routine
takes less than a minute. Based on the complexity of the algorithm used by Maple, the
characteristic polynomial of the size 128 and 256 matrices should be solved in two days
and one month, respectively. But for the size 128 matrix, Maple is still computing for the
answer even after running for one week. On the other hand, our optimized and parallel
algorithm can compute the size 256 matrix in four hours on a 6-core 3.2 GHz machine.

1.2 Thesis Outline

In Chapter 2, we discuss background material regarding characteristic polynomials, algo-
rithms for computing them and other algorithms that will be needed. Chapter 3 is our
new routine in two phases, query and optimization. Chapter 4 involves implementation
details, including our parallel algorithm in Cilk C. Chapter 5 contains output validation,
comparisons and benchmarks/timings. After Chapter 5 are the Appendix and Bibliography.

3

1.3 Original Contribution

Within the process of optimizing a modular algorithm to solve for characteristic polynomials,
we have discovered the following which we believe to be original.

• For a general matrix, the number of terms in the characteristic polynomial follows a
well defined pattern. Theorem 4 on page 26 gives more details.

• For any system of congruences, the solution in mixed radix form has a constant tail
under some conditions. Theorem 8 on page 37 has more details.

• A modular algorithm for computing the characteristic polynomial of a matrix with
bivariate monomials. The algorithm may be generalized to a matrix of bivariate
polynomials.

• A parallel implementation (in C code) of our modular algorithm which incorporates
various optimizations. The optimizations (if applicable) are automatically detected
and applied for any user-input matrices. After computing the characteristic polyno-
mial, it also validates the solution independently and probabilistically.

1.4 Related Presentations

This work has also been published and presented on other occasions as written below.

• Published and presented as a paper [11] at the 19th International Workshop on Com-
puter Algebra in Scientific Computing (CASC), a conference held in Bucharest, Ro-
mania in September 2016.

• Presented as a poster at the 41st International Symposium on Symbolic and Algebraic
Computation (ISSAC), a conference held in Waterloo, Canada in July 2016.

• Presented at the poster competition on the SFU Symposium on Mathematics and
Computation day in August 2016. This poster also won the runner up prize in the
graduate student category.

4

Chapter 2

Background

In this chapter, we present and recall background material on algebra, algorithms in com-
puter algebra and relevant mathematical tools.

2.1 Algebra

2.1.1 Brief History

Matrices and determinants were studied as early as 3 B.C. as seen in the Chinese mathemat-
ics textbook The Nine Chapters on the Mathematical Art [24]. The same idea behind
matrices existed in array methods for solving simultaneous equations. The determinant was
considered to be the property of a linear system of equations, as it determines whether the
system has a unique solution. A system has a unique solution if and only if the determinant
is non-zero. It was not until around 1600 A.D. when matrices and determinants received
much more attention from many famous mathematicians. The 2 by 2 determinant was
given by Cardano, and larger dimensions by Leibniz. Matrices (arrays) were further used
to represent linear transformations/mappings.

2.1.2 Linear Algebra

An m by n matrix is a rectangular array consisting of elements (numbers or variables) with
m rows and n columns. A vector is a matrix with only one row or one column. We are
primarily working with square matrices, meaning m = n. Let A be an n by n matrix and
k < n. The k by k matrix composed of the first k rows and k columns of A is called the
principal k by k submatrix of A .

Definition 1 (Determinant). Let A = (aij) for 1 ≤ i, j ≤ n be a square matrix with
dimension n. The determinant for n = 2 is

detA = |A| =
∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣ = a11a22 − a12a21.

5

When n > 2, the determinant by expanding along the top row (i = 1) is

detA = |A| =
n∑
j=1

(−1)i+jaijM [i, j]

where M [i, j] is the determinant of a square matrix of dimension n−1 obtained by removing
the ith row and jth column from the matrix A.

As an example, consider the 3 by 3 matrix A =

a b c

d e f

g h i

 . The determinant by expand-

ing along the first row is given by

detA =
3∑
j=1

(−1)1+ja1jM [1, j]

= (−1)1+1a

∣∣∣∣∣ e f

h i

∣∣∣∣∣+ (−1)1+2b

∣∣∣∣∣ d f

g i

∣∣∣∣∣+ (−1)1+3c

∣∣∣∣∣ d e

g h

∣∣∣∣∣
= a(ei− fh)− b(di− fg) + c(dh− eg).

If the determinant of a square matrix is zero, the matrix is said to be singular (or degenerate)
and the matrix inverse does not exist. Two other key objects of matrices are are the
eigenvalues and eigenvectors.

Definition 2 (Eigenvalue and Eigenvector). A non-zero vector v is an eigenvector of a
matrix A if and only if there exists a scalar λ such that

Av = λv.

The scalar of λ is the corresponding eigenvalue of the eigenvector v.

Every matrix may be viewed as a linear transformation. Applying a matrix to an eigenvector
v gives a scalar multiple (λ) of v. As taught in a first course in linear algebra, one method
to compute the eigenvalues is to first solve det(λIn −A) = 0 for λ. Then substitute each λ
into (λIn −A)v = 0 and solve for the corresponding (non-zero) eigenvector v.

Definition 3 (Characteristic Polynomial/Matrix). The characteristic polynomial C(λ) of
a matrix A is obtained by taking the determinant of the characteristic matrix λIn−A, that
is

C(λ) = det(λIn −A).

6

The characteristic polynomial of our running example matrix A is

C(λ) = det(λI3 −A)

= (λ− a) ((λ− e)(λ− i)− fh)− b (d(λ− i)− fg) + c (dh− (λ− e)g)

= λ3 − (a+ e+ i)λ2 + (ae+ ai− bd− cg + ei− fg)λ− detA.

Note that some definitions may write det(A − λIn). It differs from the above by a scalar
of (−1)n, and we will use them interchangeably. It can also be verified easily for a square
matrix A = (aij) with dimension n that

C(λ) = λn + (−1)n−1trace(A)λn−1 + · · ·+ (−1)n det(A)

where trace(A) =
∑n
i=1 aii by definition. The roots of the polynomial C(λ) are the eigen-

values of A. The Caley–Hamilton theorem states that any square matrix satisfies its own
characteristic polynomial. By substituting the matrix into the characteristic polynomial,
the result is C(A) = 0, the zero matrix. Hence the minimal polynomial of A is a factor of
the characteristic polynomial, another useful property.

2.1.3 Abstract Algebra

Abstract algebra (or modern algebra) is a general term for the study of algebraic structures,
such as rings, fields and vector spaces. Their terminology will be used throughout this thesis,
thus we define them here for clarity.

Definition 4 (Commutative Ring with Identity). A commutative ring R with identity is a
set with two binary operations + (addition) and × (multiplication) satisfying the following
axioms.

1. There is an element 0R ∈ R such that a+ 0R = a for all a ∈ R (additive identity).

2. For all a ∈ R there exists −a ∈ R such that a+ (−a) = 0R (additive inverse).

3. (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R (+ is associative).

4. a+ b = b+ a for all a, b ∈ R (+ is commutative).

5. There is an element 1R ∈ R such that 1R 6= 0R and a× 1R = 1R× a = a for all a ∈ R
(multiplicative identity).

6. (a× b)× c = a× (b× c) for all a, b, c ∈ R (× is associative).

7. a× b = b× a for all a, b ∈ R (× is commutative).

8. (a + b) × c = a × c + b × c and c × (a + b) = c × a + c × b for all a, b, c ∈ R (× is
distributive with respect to +).

7

An example of a commutative ring with identity is the integers Z = {. . . ,−2,−1, 0, 1, 2, . . . }.
Note that a general non-commutative ring without identity would satisfy all the axioms
above except for axioms 5 and 7. An example of a non-commutative ring would be ma-
trices, as matrix multiplication is generally not commutative. Rings are one of the most
fundamental structures, and the following structures are obtained by introducing more re-
quirements.

Definition 5 (Integral Domain). An integral domain is a commutative ring with identity
where the product of any two non-zero elements is non-zero.

Definition 6 (Field). A field F is a commutative ring with identity where every non-zero
element has a multiplicative inverse, that is: For all a ∈ F there exists a−1 ∈ F such that
a× a−1 = 1F .

The set of all integers Z is an integral domain. Common examples of fields include the
rational numbers Q, real numbers R and complex numbers C. Suppose there are two non-
zero elements a, b in a field F and that ab = 0F . Multiplying by a−1b−1 on both sides
gives b−1a−1ab = 1F = 0F , which is a contradiction. Thus it follows that all fields are also
integral domains.

Our algorithm will be using finite fields where there are only a finite number of elements.
The integers modulo a prime p form a finite field, denoted by Zp = {0, 1, . . . , p − 1}. We
use the common notation K[x] to represent polynomials over K in variable x: that is,
polynomials with coefficients in K. So Z[x] represents polynomials over the integers: i.e.,
with integer coefficients. Similarly, Z[x]m×n represents m by n matrices whose entries are
from Z[x].

2.2 Algorithms for Computing Characteristic Polynomials

In the following subsections we describe several methods for computing C(λ), which are
currently implemented in common CAS (computer algebra systems). We give a summary
of these algorithms in Table 2.1 on page 16.

Chapter 2 in [4] also gives two more methods for computing characteristic polynomials.
One of them uses adjoint matrices and the other uses Lagrange interpolation.

2.2.1 The Bareiss Fraction-Free Algorithm

The Bareiss fraction-free algorithm [2, 12] is currently implemented and used to compute the
determinant and characteristic polynomial in Magma [20]. It does exact divisions (hence
the adjective fraction-free) for matrices over an integral domain D, such as polynomials

8

Algorithm 1 Bareiss Fraction Free Determinant
Input: n× n matrix A = (aij), entries from an integral domain D.
Output: The determinant of the matrix A.

1: function BareissDet(A)
2: Initialize a00 ← 1
3: for k = 1, 2, . . . , n− 1 do . Assume diagonals/pivots are non-zero.
4: for i = k + 1, . . . , n do
5: for j = k + 1, . . . , n do
6: aij ← (akkaij − akjaik)/ak−1,k−1 . Divisions are exact in D.
7: end for
8: end for
9: end for

10: return ann
11: end function

with integer coefficients. This method computes the determinant of a matrix by modifying
Gaussian elimination based on Sylvester’s determinant identity. The identity computes the
determinant for a matrix partitioned into blocks, namely∣∣∣∣∣ A11 A12

A21 A22

∣∣∣∣∣ =
∣∣∣∣∣ A11 0
A21 In−k

∣∣∣∣∣ ·
∣∣∣∣∣ Ik A−1

11 A12

0 A22 −A21A
−1
11 A12

∣∣∣∣∣ = |A11| · |A22 −A21A
−1
11 A12|

where A11 is a square matrix with dimension k < n. Since the core routine is similar to
that of Gaussian elimination, it does O(n3) arithmetic operations in the integral domain
D. Each iteration builds up the determinant of leading principal submatrices and they are
stored as entries on the main diagonal.

This method may be applied directly on the characteristic matrix (λIn−A(x, y)), as it has
polynomial entries in Z[λ, x, y]. Alternatively, one may evaluate λ at {0, 1, . . . , n}, for n+ 1
matrices, apply the algorithm to obtain n+ 1 determinants and interpolate λ for C(λ, x, y).

Ignoring the details of pivoting for simplicity, the algorithm works as follows. Let A = (aij)
be an n by n matrix. Let A(k) denote the matrix after k iteration(s), so A(0) = A. Initialize
a

(−1)
00 = 1, and for k = 1, 2, . . . n− 1, compute A(k) using

a
(k)
ij =

a
(k−1)
kk a

(k−1)
ij − a(k−1)

kj a
(k−1)
ik

a
(k−2)
k−1,k−1

for k + 1 ≤ i ≤ n, and k + 1 ≤ j ≤ n assuming pivots (diagonals) a(k−2)
k−1,k−1 are non-zero.

Pseudo-code is given in Algorithm 1. Assuming no pivoting, one can show for 0 ≤ k < n

that A(k)
k+1,k+1 is the determinant of the principal (k + 1) by (k + 1) submatrix of A. After

9

k > 1 steps we have this intermediate expansion

a
(k−1)
kk a

(k−1)
ij − a(k−1)

kj a
(k−1)
ik = a

(k−2)
k−1,k−1a

(k)
ij (2.1)

where the right hand side is larger than the result a(k)
ij . So each step of the algorithm com-

putes a determinant by dividing Equation (2.1) by a previously computed determinant.

Here is this algorithm on the running example matrix A =

a b c

d e f

g h i

. We obtain

A(1) =

a b c

d ae− bd af − cd
g ah− bg ai− cg

 and A(2) =

a b c

d ae− bd af − cd
g ah− bg (detA)a/a

 .
Notice in A(1) the second diagonal entry ae − bd is the determinant of the principal 2
by 2 submatrix. Also in A(2) the bottom right entry is the determinant of A, and the
exact division of a previous diagonal term is shown for illustration. For larger matrices,
all iterations starting from the second one will require quotients. At the last step, the
intermediate expansion is given by

a
(n−2)
n−1,n−1a

(n−2)
n,n − a(n−2)

n−1,na
(n−2)
n,n−1 = a

(n−3)
n−2,n−2 detA.

Because our matrix entries contain polynomials, the product a(n−3)
n−2,n−2 detA will be much

larger (in degree and terms) than detA. Effectively, the algorithm computes a large multi-
ple of the answer and involves expensive divisions that become the bottleneck.

One method to reduce work in the divisions is to use lazy and forgetful polynomial arithmetic
[22]. The two products in the numerator of

a
(n−2)
n−1,n−1a

(n−2)
n,n − a(n−2)

n−1,na
(n−2)
n,n−1

a
(n−3)
n−2,n−2

= detA

may be computed separately. Dividing the two products by a(n−3)
n−2,n−2 may also be computed

simultaneously.

10

2.2.2 The Berkowitz Method

The Berkowitz method [3, 1] is currently implemented in Maple, and works for all matrices
over a commutative ring R with identity. It is used when the CharacteristicPolynomial
routine in the LinearAlgebra package is called. This algorithm does O(n4) arithmetic
operations in the ring R, but has no divisions. Here we show the mathematical idea behind
this method, an algorithm, an example and our implementation in Maple.

Consider the matrix A = (aij), where aij ∈ R for 1 ≤ i, j ≤ n. Let Ar = (aij), 1 ≤ i, j ≤ r

be the principal r by r submatrix of A. Suppose the characteristic polynomial of Ar is

Cr(λ) = det(Ar − λIr) =
r∑

k=0
cr,r−kλ

k = cr,r + cr,r−1λ+ · · ·+ cr,0λ
r.

Let F = (fij) be the cofactor matrix of A, meaning fij = (−1)i+jM [i, j], where M [i, j] is
the determinant of the matrix A after removing the ith row and jth column (as previously
stated in Definition 1). The adjoint matrix is the matrix transpose of the cofactor matrix
F . The adjoint of the characteristic matrix satisfies

Adj(Ar − λIr) = −
r−1∑
i=0

r−i−1∑
j=0

cr,r−i−j−1A
j
rλ
i = −

r∑
k=1

r−k∑
j=0

cr,r−k−jA
j
rλ
k−1 (2.2)

= −
r∑

k=1

(
cr,r−kIr + cr,r−k−1Ar + cr,r−k−2A

2
r + · · ·+ cr,0A

r−k
r

)
λk−1.

Consider the matrix Ar+1 written in terms of Ar, the diagonal term ar+1,r+1, row vector
Rr and column vector Sr, as seen in Equation (2.3). The determinant is given by

detAr+1 = det
(
Ar Sr

Rr ar+1,r+1

)
= det(Ar)ar+1,r+1 −RrAdj(Ar)Sr. (2.3)

Combining Equations (2.2) and (2.3) on the characteristic matrix gives a recurrence formula
for Cr+1(λ) in terms of Cr(λ) and matrix entries, which is

Cr+1(λ) = Cr(λ)(ar+1,r+1 − λ) +
r∑

k=1

r−k∑
j=0

cr,r−k−j
(
RrA

j
rSr

)
λk−1.

The Berkowitz algorithm may be implemented using matrix and vector multiplications.
Given a polynomial Cr(λ) =

∑r
k=0 cr,kλ

r−k, let the coefficients be encoded in the vector

~Cr = (cr,0, cr,1, . . . , cr,r)T .

11

Algorithm 2 Berkowitz Method
Input: n× n matrix A = (aij), entries from a commutative ring with identity.
Output: The characteristic polynomial of the matrix A (in vector form).

1: function Berkowitz(A)
2: Initialize: C ←

(−1
a11

)
3: for i = 1, 2, . . . n− 1 do
4: Obtain row vector Ri, column vector Si and principal matrix Ai
5: Q← −λi+1 + ai+1,i+1λ

i +
∑i
j=1RiA

j−1
i Siλ

i−j

6: C ← Toep(Q)× C
7: end for
8: return C
9: end function

Also with Cr(λ) =
∑r
k=0 cr,kλ

r−k, we define the special lower triangular Toeplitz matrix as

Toep(Cr) =

cr,0 0 0 . . . 0
cr,1 cr,0 0 . . . 0
cr,2 cr,1 cr,0 . . . 0
...

...
... . . . 0

cr,r−1 cr,r−2 cr,r−3 . . . cr,0

cr,r cr,r−1 cr,r−2 . . . cr,1

which has dimension (r + 1)× r. The equivalent recurrence formula for ~Cr+1 is now

~Cr+1 = Toep(Qr+1)× ~Cr, where

Qr+1 = −λr+1 +ar+1,r+1λ
r+(RrSr)λr−1 + · · ·+(RrAirSr)λr−1−i+ · · ·+(RrAr−1

r Sr). (F1)

Hence the algorithm computes the characteristic polynomial by

~Cn = Toep(Qn)× · · · × Toep(Q3)× Toep(Q2)× ~C1. (F2)

The pseudo-code is given in Algorithm 2. Here is the algorithm applied on the running
example matrix

A =

a b c

d e f

g h i

 .
The first step is to initialize ~C1 = (−1, a)T from C1 = a− λ. The next step is to compute

Q2 = −λ2 + eλ + bd, and obtain Toep(Q2) =

−1 0
e −1
bd e

. For ~C2 we compute a matrix-

12

vector product as follows:

~C2 = Toep(Q2)× ~C1 = (1,−a− e, ae− bd)T .

One may easily check the correctness as the second and third term in ~C2 are the negative
trace and determinant of the principal 2 by 2 matrix, respectively. For ~C3 we compute

Q3 = −λ3 + iλ2 + (g, h) (c, f)T λ+ (g, h)A2 (c, f)T

to obtain

Toep(Q3) =

−1 0 0
i −1 0

cg + fh i −1
acg + cdh+ bgf + efh cg + fh i

 .

Then finally we have

~C3 = Toep(Q3)× ~C2

= (−1, a+ e+ i,−ae− ai+ bd+ cg − ei+ fh,detA)T

which is correct. We have implemented this algorithm with Maple code in Figure 2.1.

Toep := proc(F, x) local n, C; ## Input: Polynomial F, variable x
n := degree(F, x);
C := [0, seq(coeff(F,x,n-i), i=0..n)]; # C = [0,c_n,...,c_1,c_0]
return Matrix(n+1, n, (i,j) -> C[max(i-j+2 , 1)]);

end proc: ## Returns the special Toeplitz matrix

charpoly := proc(M, n, x) local i, j, A, C, Q, R, S, T;
Input: Matrix M, dimension n, variable x

C := Vector([-1 , M[1,1]]); # Initialize
for i from 1 to n-1 do

R := M[i+1,1..i]; # Row vector
A := M[1..i,1..i]; # Principal matrix
S := M[1..i,i+1]; # Column vector
Q := M[i+1,i+1]*x^i - x^(i+1);
for j from 1 to i do # F1 loop (multiplications):

Q := Q + R . S * x^(i-j); # Vector-vector product (i)
S := A . S; # Matrix-vector product (i^2)

od;
C := Toep(Q, x) . C; # F2: Matrix-vector product

od; # ((i+1)*(i+2) multiplications)
return C; ## Returns the characteristic polynomial in vector form

end proc: Figure 2.1: Berkowitz algorithm in Maple code.

13

The following theorem on the complexity is found in [1]. Here we present our proof with
complete details.

Theorem 1 (Berkowitz Algorithm Complexity). The number of multiplications in the com-
mutative ring R with identity for the Berkowitz algorithm is

1
4n

4 + 1
6n

3 + 3
4n

2 + 5
6n− 2 ∈ O(n4). (2.4)

Proof. The most expensive step in the algorithm is computing Qr+1 in Equation (F1,
p.12) because, for r > 2, it involves computing the matrix power Ar−1

r . We may avoid
matrix-matrix multiplications when computing matrix powers in RrA

j
rSr for 1 ≤ j ≤

r − 1 by computing instead matrix-vector products. As seen in Figure 2.1, the F1 double
loop involves matrix-vector multiplications only. Equivalently, it computes for RrAjrSr =
Rr(Ar . . . (Ar(ArSr))). For dimension r, matrix-vector products require r2 multiplications.
The number of multiplications in the ring R for the F1 double loop (excluding line F2 in
Figure 2.1) is

n−1∑
i=1

 i∑
j=1

i+ i2

 = 1
4n

4 − 1
6n

3 − 1
4n

2 + 1
6n ∈ O(n4). (2.5)

The next step is Equation (F2, p.12), that is, to multiply n − 1 special Toeplitz matrices
obtained from Qr with one vector. Similarly, we only need matrix-vector products. In this
step, we multiply dimension (i + 2) by (i + 1) matrix with dimension (i + 1) vector, for
1 ≤ i ≤ n− 1. Thus the number of multiplications in the ring R for (F2) is

n−1∑
i=1

(i+ 1)(i+ 2) = 1
3n

3 + n2 + 2
3n− 2 ∈ O(n3). (2.6)

Adding Equations (2.5) and (2.6) gives the result in Equation (2.4).

Preliminary timings show that it is faster than the O(n3) fraction-free method for our
matrices. This is because the Berkowitz method is division-free whereas the Bareiss fraction
free method involves large divisions.

2.2.3 The Hessenberg Algorithm

For matrices over a field F , the Hessenberg algorithm [4] computes for the characteristic
polynomial from leading principal submatrices. This algorithm requires O(n3) arithmetic
operations in the field F . We use this method as the base algorithm of our modular routine.
CAS such as Maple and LinBox [13] also use this Hessenberg method to compute the char-
acteristic polynomial over a finite field Zp. For a matrix of integers, Maple uses a modular
Hessenberg algorithm [14] to compute C(λ), otherwise it uses the Berkowitz algorithm.

14

Algorithm 3 Hessenberg Method
Input: n× n matrix H = (hij), entries from a field F .
Output: The characteristic polynomial of the matrix H.

1: function Hessenberg(H,λ)
Stage 1 - Decomposition

2: for m = 2, 3, . . . , n− 1 do
3: if hi,m−1 = 0 for i > m then
4: Continue loop for next value of m
5: else
6: t← hi,m−1 for smallest index i ≥ m
7: if i > m then
8: Swap row Hi with row Hm, and swap column Hi with column Hm

9: end if
10: end if
11: for i = m+ 1, . . . , n do
12: u← hi,m−1/t, row Hi ← Hi − uHm and column Hm ← Hm + uHi

13: end for
14: end for

Stage 2 - Recurrence
15: Initialize: C0(λ)← 1
16: for m = 1, 2, . . . , n do
17: t← 1 and Cm(λ)← (λ− hm,m)Cm−1(λ)
18: for i = 1, . . . ,m− 1 do
19: t← thm−i+1,m−i and Cm(λ)← Cm(λ)− thm−i,mCm−i−1(λ)
20: end for
21: end for
22: return Cn(λ)
23: end function

There are two stages to the Hessenberg algorithm. The first stage decomposes the input
matrix A into a matrix H in Hessenberg form, while preserving the characteristic polyno-
mial. In the second stage, a recurrence is used to compute the characteristic polynomial of
H. The first part involves divisions but the second part does not. The pseudo-code is given
in Algorithm 3. The following matrix H below is in upper Hessenberg form as all entries
under the sub-diagonal are zeroes:

H =

h1,1 h1,2 h1,3 . . . h1,n

k2 h2,2 h2,3 . . . h2,n

0 k3 h3,3 . . . h3,n
...
0 . . . 0 kn hn,n

15

The recurrence begins with C0(λ) = 1 and iterates using the formula

Cm(λ) = (λ− hm,m)Cm−1(λ)−
m−1∑
i=1

hi,mCi−1(λ)
m∏

j=i+1
kj

for 1 ≤ m ≤ n. Here is the Hessenberg algorithm applied on the running example matrix

A =

a b c

d e f

g h i

 .
The first part of the algorithm reduces the matrix to the upper Hessenberg form:

H =

a bd+cg

d c

d de+fg
d f

0 d2h−deg+dgi−fg2

d2
di−fg
d

 .
The eigenvalues (and hence characteristic polynomial) are preserved. Next, in the second
stage, the recurrence is iterated:

C1(λ) = λ− a,

C2(λ) = λ2 − ad+ de+ fg

d
λ+ ade+ afg − bd2 − cgd

d
,

C3(λ) = λ3 − (a+ e+ i)λ2 + (ae+ ai− bd− cg + ei− fg)λ− detA.

Notice the intermediate polynomial C2(λ) does not correspond to the characteristic poly-
nomial of the original principal 2 by 2 submatrix.

Summary of Algorithms

Table 2.1 below gives a summary of these algorithms.

Algorithm CAS Complexity Entries Remarks

Bareiss Magma O(n3) Integral Gaussian elimination
fraction-free domain Expensive & exact divisions
Berkowitz Maple O(n4) Commutative Matrix-vector products

ring Division free
Hessenberg (Maple) O(n3) Field Decomposition & recurrence

LinBox Some divisions

Table 2.1: Summary of algorithms.

16

2.3 Other Algorithms and Tools

This section contains other building blocks required in our routine.

2.3.1 Polynomial Evaluation

Our code evaluates polynomials. Consider a degree d polynomial f(x) =
∑d
i=0 aix

i. A
common way to evaluate polynomials is Horner’s method, which rewrites the polynomial
into the more computationally efficient form

f(x) = a0 + x(a1 + x(a2 + · · ·+ x(ad−1 + x · ad) . . .)).

To evaluate this polynomial at some value α, we obtain

f(α) = a0 + α(a1 + α(a2 + · · ·+ α(ad−1 + α · ad) . . .)).

By multiplying from right to left, evaluation for degree d polynomial requires d multiplica-
tions and d additions.

Square and Multiply

Our specific matrices only contain monomial entries with one term. A more efficient way to
evaluate a monomial g(x) = xd than Horner’s method is the square and multiply method.
Suppose d = 10, Horner’s method would require d = 10 multiplications to obtain g(α).
While the square and multiply method computes for g(α) = α10 =

(
α(α2)2)2, which is only

four multiplications. In general to evaluate the polynomial g(x), the square and multiply
algorithm requires no more than 2 log2 d multiplications. So for d > 4, the square and mul-
tiply method is more efficient than Horner’s method. Thus for our matrices of monomials,
we evaluate by the square and multiply method.

2.3.2 Polynomial Interpolation

Polynomial interpolation returns a polynomial when given pairs of points. Our presentation
follows page 185 in [8].

Theorem 2 (Interpolation [8]). Let F be a field. Given a set of d+1 data points (xi, yi) ∈ F 2

with distinct xi, there exists a unique polynomial f(x) over F of at most degree d such that
f(xi) = yi for all 0 ≤ i ≤ d.

The Newton interpolation algorithm is a common method for polynomial interpolation. It
computes the polynomial by using Newton form, that is,

f(x) = c0 + c1(x− x0) + c2(x− x0)(x− x1) + · · ·+ cd

d−1∏
i=0

(x− xi)

17

where c0 = y0, and ci =
(
yi −

∑i−1
j=0 cj

∏j−1
k=0(xi − xk)

) (∏i−1
j=0(xi − xj)

)−1
for 1 ≤ i ≤ d.

We have implemented this method in C code. For degree d, Newton interpolation requires
O(d2) arithmetic operations in the field F .

We use the calling sequence Interpolate([x0, . . . , xd], [y0, . . . , yd], z) to obtain a polynomial
in the variable of the third argument.

2.3.3 Fast Evaluation and Interpolation

The fast Fourier transform (FFT) is a method for doing fast evaluations and interpolations.
More details can be found in Section 4.5 of [8]. The FFT evaluates and interpolates a
polynomial of degree < n with O(n logn) field operations. If the problem involves large
degrees, the FFT would be faster than regular evaluation and interpolation. We have
experimented by using the FFT for evaluation and interpolation, but we were not able to
adapt all optimizations in Chapter 3 to the FFT. We will proceed without them.

2.3.4 Chinese Remainder Theorem and Algorithm

Part of our algorithm uses the Chinese remainder algorithm (CRA) which arises from the
Chinese remainder theorem (CRT). Our presentation follows page 175 in [8], where addi-
tional details can be found.

Theorem 3 (CRT [8]). Consider a set of congruences x ≡ ci (mod pi) where the pi are
pairwise relatively prime, for 1 ≤ i ≤ m. For any a ∈ Z, there exists a unique integer u
that satisfies

u ≡ ci (mod pi) and a ≤ u < a+ (p1p2 . . . pm).

We will use CRA([c1, . . . , cm], [p1, . . . , pm]) as the calling sequence to obtain the solution in
the range 0 ≤ u < Πm

i=1pi. One method to compute the solution is based on the mixed
radix representation, that is

u = v1 + v2M1 + v3M2 + · · ·+ vmMm−1

where Mk =
∏k
i=1 pi and 0 ≤ vi < pi. Garner’s algorithm solves for u in this form by

starting with v1 ≡ c1 (mod p1), and then using the recurrence

vi ≡

ci − i−1∑
j=1

vjMj−1

M−1
i−1 (mod pi) for 2 ≤ i ≤ m. (2.7)

Note that there is an alternative approach using the Lagrange representation:

u = v1
Mm

p1
+ v2

Mm

p2
+ · · ·+ vm

Mm

pm
.

18

This method is not compatible with our optimizations as we will explain in Chapter 3. We
proceed with the mixed radix representation.

2.4 Size of Characteristic Polynomial

In general, the characteristic polynomial coefficients and degrees are larger than that of the
original matrix entries. Our matrices consist of polynomials, so we must ensure sufficient
primes and evaluation/interpolation points to recover the result correctly. In this section,
we provide details on how to obtain degree and coefficient bounds for the characteristic
polynomial.

2.4.1 Degree Bounds

For any polynomial f , let degx f represent the degree of f in x. The total degree of f
is represented by just deg f without any subscripts. Let A = (aij) be a dimension n

square matrix, where the entries are bivariate polynomials in x and y. The degrees of the
determinant are bounded by the following:

deg detA ≤ Dtot = min

 n∑
i=1

nmax
j=1

deg aij ,
n∑
j=1

nmax
i=1

deg aij

degx detA ≤ Dx = min

 n∑
i=1

nmax
j=1

degx aij ,
n∑
j=1

nmax
i=1

degx aij

degy detA ≤ Dy = min

 n∑
i=1

nmax
j=1

degy aij ,
n∑
j=1

nmax
i=1

degy aij

In each equation, the first and second sums add the largest degree in each row and columns,
respectively. Then we take the minimum of the two to obtain the lower degree bound in
that variable.

The above bounds on the determinant also work for the characteristic polynomial C(λ) =∑n
i=0 ciλ

i = det (λIn −A). In general, many of the coefficients such as cn−1 = (−1)n−1trace(A)
have degrees much lower than the bound.

Kronecker Substitution

A Kronecker substitution is a common tool when working with multiple variables. The
problem will be simpler if the matrices of interest only contain univariate polynomials.
This can be achieved by a Kronecker substitution.

19

Definition 7 (Kronecker Substitution). A Kronecker substitution on A(x, y), denoted by
Kb(A(x, y)), replaces the variable y by xb, giving

Kb(A(x, y)) = A(x, y = xb).

To ensure an invertible substitution, take b > degxC(λ, x, y). Then C(λ, x, y) can be re-
covered from the characteristic polynomial of A(x, y = xb).

The smallest possible value for a reversible substitution would be b = Dx+1. After applying,
the degrees of the polynomial entries in A(x, y = xb) become quite large. Now the problem
has effectively become solving for

det(λIn −A(x, xb)) = C(λ, x, xb).

Note that we only use this for determining a coefficient bound on C(λ, x, y = xb).

2.4.2 P-Norms

We will use a p-norm to bound the size of the largest integer coefficient in C(λ, x, y).

Definition 8 (p-norm). Let a1, a2, . . . , at denote the coefficients of any given multivariate
polynomial f (with t terms). The p-norm of f , denoted by ||f ||p for p ≥ 1, is defined by

||f ||p =
(

t∑
i=1
|ai|p

)1/p

.

When p = 1 we add up the absolute value of each coefficient, so ||f ||1 =
∑t
i=1 |ai|. When

p = 2 we have the Euclidean norm, that is ||f ||2 =
√∑t

i=1 |ai|2. When p = ∞ we have
||f ||∞ = maxi |ai|, called the maximum norm or height. It is also clear that

||f ||∞ ≤ · · · ≤ ||f ||2 ≤ ||f ||1.

2.4.3 Coefficient Bound

The Hadamard inequality for a n by n integer matrix M = (mij) asserts the bound

|detM | ≤ H(M) =
n∏
i=1

 n∑
j=1
|mij |2

1/2

.

A similar bound [15] exists for matrices with polynomial entries. Let M(x) = (mij(x)),
where mij(x) are polynomials in Z[x]. Let s0, s1, s2, · · · represent the coefficients of the
determinant, so detM(x) = s0 +s1x+s2x

2 + · · · . Let T = (tij) be the n by n matrix where

20

each entry is defined by tij = ||mij(x)||1. Then the similar bound states that

||detM(x)||2 =
(∑

|si|2
)1/2

≤ H(T) =
n∏
i=1

 n∑
j=1
|tij |2

1/2

.

So the equivalent bound on the height is given by

||detM(x)||∞ ≤ H(T) =
n∏
i=1

 n∑
j=1
||mij(x)||21

1/2

. (2.8)

Here is an example with a 2 by 2 matrix with bivariate monomial entries.

M(x, y) =
[

2x2y xy2

3xy y

]
, detM(x, y) = 2x2y2 − 3x2y3.

If we proceed with Kb(M(x, y)) where b = 3 we obtain

M(x, y = x3) =
[

2x5 x7

3x4 x3

]
and T =

[
2 1
3 1

]
.

Thus the bound on height of the determinant clearly satisfies

||detM(x, y)||∞ = 3 ≤ H(T) =
√

(22 + 1)(32 + 1) =
√

50 ≈ 7.071.

2.5 Prime Numbers

A prime number p is a positive integer with only two divisors, one and itself. Prime numbers
are vital to our routine because we compute for characteristic polynomial over multiple finite
fields.

Definition 9 (Prime Counter). Let π(x) denote the prime number counting function, that
is, the number of primes less than or equal to x.

A useful bound from [6] showed that

π(x) > x

ln x(1 + 1
ln x + 2

ln2 x
) for x ≥ 88, 783. (2.9)

2.5.1 Primality Testing

The Miller–Rabin test [23] tells us whether an integer is a composite (non-prime). Given
an odd integer n = 2qs+ 1 > 2, this test picks another integer 1 < a < n−1 to be the base.
If

as 6≡ 1 (mod n) and a2rs 6≡ −1 (mod n)

21

for some 1 ≤ r < q, then n is not prime. A prime n will pass this test for all a. It is
possible for the the above condition to hold even when n is composite, then the integer n
is a strong pseudo–prime with respect to base a. Thus for large n, it is common to choose
several integers as the base.

Our routine generates primes p in the range 230 < p < 231 (assuming machine word size is
32 bits). In that range, if an integer n passes the Miller-Rabin test for bases a = 2, 3, 5, 7,
then n is proven to be prime (see [17]).

22

Chapter 3

The Bivariate Routine

This chapter contains the mathematical ideas required for computing characteristic poly-
nomials with bivariate entries. We start with the core modular algorithm in our routine.
As mentioned in the Introduction, there is much structure to our characteristic polyno-
mials. Hence, we identify how to take advantage of this structure. By combining all the
optimizations, our routine saves a very significant amount of work.

3.1 The Modular Algorithm

As the modular name suggests, we compute the image of the characteristic polynomial mod-
ulo a sequence of primes p1, p2, . . . , pm. Finding m, the required number of primes will be
addressed in the next subsection regarding bounds. The modular routine takes in a matrix
and returns an image of the characteristic polynomial. With sufficient number of images,
the CRA recovers the solution over the integers. We give the homomorphism diagram in
Figure 3.1 and the pseudo-code in Algorithm 4 for C(λ, x, y) (without optimizations).

A(x, y) ∈ Z[x, y]n×n C(λ, x, y) ∈ Z[λ, x, y]

Zp[x, y]n×n Zp[λ, x, y]

A(αi, βj) ∈ Zn×np C(λ, αi, βj) ∈ Zp[λ]

Characteristic Polynomial

p ∈ {p1, p2, . . . , pm}Mod p,

x = αi, y = βjEvaluate

CRA

Hessenberg Algorithm
O(n3) arithmetic operations in Zp

Interpolate y, x

Figure 3.1: Modular algorithm homomorphism diagram.

23

Algorithm 4 Characteristic Polynomial on Bivariate Matrices
Input: n × n matrix M(x, y) = (mij(x, y)), positive integers α1, . . . , αex , β1, . . . , βey

and primes p1, . . . , pm.
Output: Characteristic polynomial C(λ, x, y) of the input matrix.

1: for k = 1, 2, . . . ,m do . Assume m primes are sufficient
2: for i = 1, 2, . . . , ex do . Assume ex > degxC(λ, x, y)
3: for j = 1, 2, . . . , ey do . Assume ey > degy C(λ, x, y)
4: Tj ← Hessenberg(M(αi, βj), λ) mod pk
5: end for
6: Si ← Interpolate([β1, . . . , βey], [T1, . . . , Tey], y) mod pk
7: end for
8: Ck ← Interpolate([α1, . . . , αex], [S1, . . . , Sex], x) mod pk
9: end for

10: return CRA([C1, . . . , Cm], [p1, . . . , pm])

The following paraphrases the core algorithm above with more details.

1. For each prime p ∈ {p1, p2, . . . pm} do the following.

(a) For each αi ∈ {α1, . . . , αex}, evaluate the matrix at x = αi to obtain A(αi, y)
mod p, and do:

i. Evaluate the matrix at all βj ∈ {β1, . . . , βey} to obtain A(αi, βj) mod p;
ii. Apply the Hessenberg algorithm on A(αi, βj) mod p for C(λ, αi, βj) mod p;
iii. Interpolate the coefficients of λ in y for C(λ, αi, y) mod p from the points βj

and values C(λ, αi, βj);

(b) Interpolate the coefficients of λ in x for C(λ, x, y) mod p from the points αi and
values C(λ, αi, y) mod p;

2. Recover the integer coefficients of C(λ, x, y) using the Chinese remainder algorithm.

3.1.1 Bounds on Characteristic Polynomial

In the previous chapter, we gave degree and coefficient bounds for determinant computa-
tions. The degree bound remains the same as given on 19. Table 3.1 below shows the
various degree bounds based on our specific matrices.

Now we derive the coefficient bound based on Equation (2.8) for the characteristic poly-
nomial. The bound is applied on the determinant of M(λ, x, y) = λIn − A(x, y), where
the entries of the matrix A(x, y) are bivariate monomials. The T matrix is obtained by
taking the 1-norm for each element in M(λ, x, y), so we have tii = ||λ − xayb||1 = 2 and
tij = ||xayb||1 = 1 for 1 ≤ i 6= j ≤ n. Thus the height of C(λ, x, y) = detM(λ, x, y) is

24

bounded by

||C(λ, x, y)||∞ ≤
n∏
i=1

 n∑
j=1

t2ij

1/2

=
n∏
i=1

(4 + n− 1)1/2 = (n+ 3)n/2. (3.1)

This bound tells us how many primes are needed at most to recover the integer coefficients
of C(λ, x, y). Allowing for positive and negative coefficients, we need

∏m
i=1 pi > 2(n+ 3)n/2.

Since the standard integer word size is 32 bits, we use signed integers for primes between
30 and 31 bits. Thus the number of primes needed is given by

m ≤ dlog230 2(n+ 3)n/2e. (3.2)

Note that with optimizations to be presented, the integer coefficients can be recovered with
fewer primes.

n degC degxC degy C ||C||∞(bits)
16 128 96 32 34
32 288 208 80 83
64 768 576 192 195
128 1664 1216 448 451
256 4096 3072 1024 1027

Table 3.1: Bounds on the specific characteristic polynomials C = C(λ, x, y).

We suspected a smaller/tighter bound on the characteristic polynomial C(λ) =
∑n
i=0 ciλ

i

of an integer matrix A. After experimenting on matrices with random integers, we spotted
a trend of

|cn| ≤ |cn−1| ≤ · · · ≤ |c1| ≤ |c0| ≤ H(A).

Because c0 = C(0) = detA we suspected that ||C(λ)||∞ ≤ H(A). Thus for our matrices,
we thought we could replace the above bound (n + 3)n/2 with the Hadamard bound nn/2

on C(λ, x, y). But in [5], there is a matrix

M =

1 1 1 1 1
1 1 −1 −1 −1
1 −1 1 −1 −1
1 −1 −1 1 −1
1 −1 −1 −1 1

with characteristic polynomial

λ5 − 5λ4 + 40λ2 − 80λ+ 48.

25

This is a counter example to our conjecture as |c1| = 80 > dH(M)e = 56 > |c0| = 48.
However, in an attempt to prove the conjecture, we found Theorem 4 on the number of
terms within C(λ).

Number of Terms in the Characteristic Polynomial

Consider the square matrix A = (aij) for 1 ≤ i, j ≤ n. Let the characteristic polynomial be
cnλ

n+cn−1λ
n−1 + · · ·+c1λ+c0. We know that c0 = detA a sum of n! terms since each term

in the determinant is a product n elements from distinct rows and columns. The trace is a
sum of the n elements on the main diagonal. The middle coefficients, ck for 0 < k < n− 1
is a sum of n!

k! terms, as shown here with an example.

Take n = 5 and k = 2. In order to contribute to the coefficient of λ2, pick the first two
elements on the diagonal as λ:

det

λ a12 a13 a14 a15

a21 λ a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

= λ2 × det

a33 a34 a35

a43 a44 a45

a53 a54 a55

 .

After removing the corresponding rows and columns, the remaining matrix has dimension
3 by 3. The determinant of the 3 by 3 matrix is a sum of 3! terms. There are

(5
2
)
ways to

pick two λs, and 3! terms in the remaining submatrix determinant. So the number of terms
for λ2 is

(5
2
)
(5− 2)! = 5!

2! . Now we prove in general for the other coefficients.

Theorem 4 (Terms in C(λ)). Let cnλn + · · ·+ c1λ+ c0 be the characteristic polynomial of
a square matrix A = (aij) of dimension n. The coefficient of λk, that is ck, is a sum of n!

k!
terms from the original matrix entries aij, for 0 ≤ k ≤ n.

Proof. Each term in the determinant is a product of n elements from distinct rows and
columns. Choose k < n diagonal elements from the characteristic matrix and consider the
terms which have λk. There are

(n
k

)
ways to choose 0 ≤ k ≤ n diagonal elements to get λk.

After removing the corresponding rows and columns, the remaining matrix has dimension
n − k. The determinant of the remaining matrix has (n − k)! terms without λ. So the
number of terms with λk is (

n

k

)
(n− k)! = n!

k! .

26

3.1.2 Cost of Modular Algorithm

Recall Dx ≥ degxC(λ, x, y) and Dy ≥ degy C(λ, x, y). Let d be the largest exponent in the
input matrix, so Dx, Dy ∈ O(nd). Let T = (Dx + 1)(Dy + 1) ∈ O(n2d2) denote maximum
number of terms (for each λi). Here we give the cost of the core algorithm based on n

(matrix dimension), m (number of 31 bit primes) and d (largest degree of polynomials in
matrix).

Theorem 5 (Core Algorithm Cost). The cost of the core modular algorithm is

O(mn5d2 +mn4d3 +m2n3d2) (3.3)

arithmetic operations of at most size 31 bits.

Proof. We give the arithmetic operations by the stages of the core algorithm: evaluation,
Hessenberg algorithm, interpolation and CRA.

1. Reduce modulo pi, for 1 ≤ i ≤ m. This step is trivial as the matrices have unit
coefficients as entries. But the following (sub) steps are to be computed m times.

(a) Evaluation: Since the input matrix entries are of the form xayb, we compute
them by the square and multiply algorithm. The maximum degree in either
variable is d for all matrix entries. Computing two exponents costs 2O(log d)
multiplications, and their product requires one more. Evaluation is needed on
n2 entries and for total of T integer matrix images. Thus this evaluation stage
with m primes has a cost of

mn2T (1 + 2O(log d)) ∈ O(mn4d2 log d). (3.4)

(b) Hessenberg: The Hessenberg algorithm is called mT times, for m primes and T
matrix images. Thus the cost is

mTO(n3) ∈ O(mn5d2). (3.5)

(c) Interpolation: With T matrix images, we obtain T characteristic polynomial
images, namely C(λ, αi, βj). We interpolate for C(λ, αi, y) first. There are n
coefficients to interpolate from Z[λ] to Z[λ, y]. Each coefficient becomes a poly-
nomial in y with degree up to Dy, so interpolation on y costs nO(D2

y). Then from
Z[λ, y] to Z[λ, x, y], there are at most n(Dy + 1) coefficients. Each coefficient has
degree at most Dx, so interpolation on x costs n(Dy + 1)O(D2

x). The total cost
to interpolate both variables for m primes is

mnO(D2
y) +mn(Dy + 1)O(D2

x) ∈ O(mn4d3). (3.6)

27

2. Chinese remaindering form congruences does O(m2) arithmetic operations. The total
number of coefficients is at most nT , so the cost is

nTO(m2) ∈ O(m2n3d2). (3.7)

Combining the above Equations (3.5), (3.6) and (3.7) gives the cost in Equation (3.3) as
stated in the Theorem. Note that Equation (3.4) is not included in the Theorem because
it is dominated by (3.6).

3.2 Overview of Routine

There is much structure in our matrices, as they are generated by a combinatorial process.
This section will discuss the structure in the characteristic polynomials, and establish our
two–phase routine.

3.2.1 Structures of C(λ, x, y)

To see the structure, let C(λ, x, y) =
∑n
i=0 ci(x, y)λi. Now the coefficients of λi of the

characteristic polynomial factors:

ci(x, y) = xfiygi(x2 − 1)hisi(x, y)

where the exponent values fi, gi, hi ∈ N ∪ {0}, for 0 ≤ i < n, and the si(x, y) are bivari-
ate polynomials with even degrees in x. These exponents are large enough such that we
can speed up the computation by a significant factor. See Appendix A1 and A2 for some
coefficients in the characteristic polynomial of the size 16 matrix. Table 3.2 contains the
values for these parameters fi, gi, hi for the size 16 matrix and also other information about
ci(x, y). Notice that the largest coefficients in ci(x, y) in magnitude (see column ||ci||∞)
decrease as i increases but those in si (see column ||si||∞) increase and decrease.

As the structure suggests, the most complicated factors to recover are the bivariate poly-
nomials si(x, y). In the next two sections, we split into two phases to compute C(λ, x, y).
The first phase is to find fi, gi, hi for 0 ≤ i < n and the number of evaluation points ex and
ey. The second phase is to recover the “cofactor” polynomials si(x, y).

3.2.2 High Level Description

The following list indicates how our entire routine works.

• Phase 1: Find the key values of fi, hi, gi, ex, ey by making queries in the two variables.

28

i fi gi hi degx ci degy ci ||ci||∞ degx si degy si ||si||∞
0 32 32 32 96 32 601080390 0 0 1
1 32 28 28 92 32 160466400 4 4 4
2 24 25 25 88 31 28428920 14 6 31
3 26 22 22 82 30 16535016 12 8 128
4 20 19 19 76 29 3868248 18 10 382
5 22 16 16 70 28 946816 16 12 684
6 16 14 14 64 26 183648 20 12 1948
7 18 12 12 58 24 82492 16 12 3738
8 12 10 10 52 22 35264 20 12 4730
9 14 8 8 46 20 10876 16 12 3740
10 8 6 6 40 18 3242 20 12 2116
11 10 4 4 34 16 1556 16 12 806
12 4 3 3 28 13 322 18 10 454
13 6 2 2 22 10 108 12 8 142
14 0 1 1 16 7 22 14 6 31
15 4 0 0 8 4 4 4 4 4

Table 3.2: Data for the coefficients of C(λ, x, y) for n = 16.

• Phase 2: Compute the polynomial images si(x, y) modulo prime(s) with optimizations
based on the previously computed exponents.

– Apply the CRA incrementally on the image coefficients.

• Phase 3: Validate solution independently (details provided in Chapter 5).

3.3 Phase 1 – Query

This query phase scouts out the size of the problem, namely it determines various degrees
within the characteristic polynomial. The factor degrees are applicable to each coefficient
of λ, which are the exponents in

xfiygi(x2 − 1)hi .

Then we also require the other degrees within the characteristic polynomial, degx si(x, y)
and degy si(x, y) so that we have sufficient number of evaluation/interpolation points.

Since the matrix entries are bivariate, we make two queries. In each query, we evaluate one
variable of the matrix A(x, y) to obtain an image of the characteristic polynomial in the
other variable. Let p be a prime. We use p = 231 − 1 in our C implementation because
it is the largest prime for a 32-bit signed integer. Let γ be chosen at random from Zp for
evaluation. We evaluate the matrix A(x, y) to obtain the two matrices where the entries

29

are univariate monomials with integer coefficients in Zp, namely

A(x, γ) mod p and A(γ, y) mod p.

Their respective characteristic polynomials are

C(λ, x, y = γ) mod p and C(λ, x = γ, y) mod p.

This is a much simpler problem, as there is one less variable to work with and it is in mod
p. Even for our large matrices, the characteristic polynomial of univariate matrices can
solved within minutes. The query phase concludes by finding the necessary parameters for
phase 2, which include the exponents fi, gi, hi for 0 ≤ i < n, and the minimal number of
evaluation/interpolation points ex and ey.

Due to two random evaluations, there is a possibility of failure in this phase. The probability
of failure is small and will be addressed in Section 3.3.4. Thus assume correctness for now.

3.3.1 Lowest Degree Factors

After making the two queries, we have images C(λ, x, y = γ) mod p and C(λ, x = γ, y) mod
p. For each coefficient of λ, we require the degrees of the first and last non-zero coefficient
in x and y. Let the lowest degrees be fi, gi in x, y respectively for 0 ≤ i < n. Let the largest
degrees be f̄i, ḡi in x, y respectively for 0 ≤ i < n. Thus we have fi ≤ f̄i and gi ≤ ḡi for all
0 ≤ i < n. To see it in perspective, the coefficient of λi in C(λ, x, y = γ) has the form

ci(x, γ) mod p = •xf̄i + •xf̄i−1 + · · ·+ •xfi+1 + •xfi

where the symbol • represents integers modulo p. Similarly for C(λ, x = γ, y),

ci(γ, y) mod p = •yḡi + •yḡi−1 + · · ·+ •ygi+1 + •ygi

where the symbol • represents integers modulo p. The key values f̄i, fi, ḡi, gi can be found
easily by searching for first and last non-zero coefficients.

3.3.2 Non-Zero Factors

For our characteristic polynomials, most coefficients of λ have a factor of (x2 − 1)hi with
large hi. Removing this reduces the number of evaluation points needed and the integer
coefficient size of ci(x, y)/(x2 − 1)hi , hence also the number of primes needed. For our ma-
trices it happens that hi = gi. Otherwise, to find hi, we divide ci(x, γ) by (x2 − 1) modulo
p repeatedly.

30

In general, to determine if (ax± b) is a factor of a coefficient of ci(x, y), for small integers
a > 0, b, we could compute the roots of ci(x, γ) mod p, a polynomial in Zp[x], using Rabin’s
algorithm [18]. From each root, we try to reconstruct a small fraction ∓ b

a using rational
number reconstruction ([7] Section 5.10). We have not implemented this.

Definition 10 (Small Unlucky Root). The value α is a small unlucky root if it can be
written as α ≡ b

a (mod p) where 1 ≤ a ≤ q � p, 1 ≤ |b| ≤ q and for some i

ci(α, γ) mod p = 0 but ci(α, y) 6= 0.

Note if b = 0 then the root is zero, which corresponds to the lowest degree factor.

Theorem 6 (Unlucky Roots). With bound q ≤ d r
√
pe � p, for r ≥ 3, the probability of

small unlucky roots occurring is < 1%

Proof. There are q and 2q choices for a and b respectively. The total number of possible
unlucky roots with these restrictions is 2q2. We are working in Zp, so without restrictions
there are at most p roots. So the probability of unlucky roots is given by

Pr[f(±b
a
, γ) mod p = 0] ≤ 2q2

p
= 2p

2
r
−1

If we take r = 3, then the probability of unlucky roots is 2p−1/3. Since we use p = 231 − 1,
the probability of unlucky roots is under 1%. One could restrict unlucky roots to be smaller
by taking r > 3. The larger the value r, the lower the probability.

3.3.3 Required Points

After finding the factor degrees, we determine the minimal number of points required to
recover all si(x, y), for 0 ≤ i < n. Since we have already computed the largest, smallest and
factor degrees, we can know the maximal degrees of si(x, y) in both variables. In particular,
the degree in x to be interpolated is at most max0≤i<n degx si(x, y). So the number of
points needed to interpolate in x is given by

ex := max 1
2{f̄i − fi − 2hi}+ 1, for 0 ≤ i < n. (3.8)

The subtraction of 2hi corresponds to the factor (x2− 1)hi . The scalar of half is due to the
even powers in x, which will be addressed later in Section 3.4.2 with more details. Similarly
for y, the degree is at most max0≤i<n degy si(x, y). So the number of points for y is

ey := max{ḡi − gi}+ 1, for 0 ≤ i < n. (3.9)

31

3.3.4 Unlucky Evaluations

As mentioned earlier, random evaluations may cause the algorithm to fail by returning an
incorrect answer. Without loss of generality, consider one query of randomly evaluating at
y = γ for random γ ∈ [0, p− 1]. Let di = degx ci(x, y). We have

ci(x, y) =
di∑
j=0

cij(y)xj , where cij(y) ∈ Z[y].

If ci0(γ) mod p = 0, then the value returned is greater than fi (the correct lowest degree),
which is incorrect. If the algorithm continues, the target for interpolation is compromised,
and the final answer will be incorrect.

If cidi
(γ) mod p = 0, then the largest degree becomes less than f̄i. This may affect ex,

the required number of evaluation points, as defined by taking the maximum of a set in
Equation (3.8). But the final answer will still be correct as long as ex is correct.

Definition 11 (Unlucky Evaluation). Let p be a prime, 0 ≤ γ < p, and dy = maxij degy aij(x, y)
be the largest degree in y from the matrix of interest. γ is an unlucky evaluation if for any
0 ≤ i < n

ci0(γ) ≡ 0 (mod p) or cidi
(γ) ≡ 0 (mod p).

Theorem 7 (Unlucky Evaluations). If γ is chosen from [0, p− 1] at random, then

Pr[γ is unlucky] ≤ n(n+ 1)dy
p

.

Proof. Since ci0 and cidi
are part of the coefficient of λi, their degrees in y are at most

dy(n− i). So for each 0 ≤ i < n there are at most 2dy(n− i) choices for γ such that

ci0(γ) ≡ 0 (mod p) or cidi
(γ) ≡ 0 (mod p).

There are n of these cases, so adding them up gives a total of at most
∑n−1
i=0 2dy(n − i) =

dyn(n + 1) unlucky evaluations. Therefore the probability of an unlucky evaluation (for
0 ≤ i < n) is given by

Pr [ci0(γ) ≡ 0 (mod p) or cidi
(γ) ≡ 0 (mod p)] ≤ dyn(n+ 1)

p
.

For our largest matrix, the parameters are n = 256, dx = 16 and dy = 8. Our algorithm
makes two queries with prime p = 231 − 1, and the probability of an unlucky evaluation is
less than 0.001.

32

3.4 Phase 2 – Optimizations

The structure for each λ coefficient is already known, namely the factor degrees (fi, gi, hi)
and degree of interpolation target (ex, ey). In this section we show how to apply the op-
timizations on the characteristic polynomials. We have implemented each of the following
optimizations with Newton interpolation.

We illustrate the optimizations on the size 16 matrix, so Table 3.2 (page 29) will be ref-
erenced frequently. Without optimization, the target is c0(x, y) because it is the largest
coefficient in terms of degree and height. But with optimization, the target becomes s8(x, y)
as its degrees and height are larger than all other si(x, y). s8(x, y) contains 93 terms (see
Appendix A1) and is irreducible over Z. The savings are shown in the next paragraph.

Without optimizations, we require 97 and 33 evaluation/interpolation points for x and y,
respectively (since max degx ci(x, y) + 1 = 97 and max degy ci(x, y) + 1 = 33). So for each
prime, there would be would be 97 × 33 = 3201 calls to the Hessenberg algorithm. Two
31-bit primes are needed because the coefficient bound is log2(n+3)n/2 = log2(16+3)8 = 34
bits. With optimization through two phases, we only need to interpolate for s8(x, y). Thus
we have ex = 11 = max degx si(x, y)/2 + 1 and ey = 13 = max degy si(x, y) + 1. The num-
ber of calls to the Hessenberg algorithm is now 11× 13 = 143 (previously 3201). Only one
prime is required since the target height is now max ||si(x, y)||∞ = 4730, which is only 13
bits (previously 34).

In the next few subsections, consider the step of interpolating x after y is interpolated
within the second phase. Let E = {α1, α2, . . . } be the evaluation points, and Vi =
{ci(α1, y), ci(α2, y), . . . } be the values. We will illustrate savings by referencing the co-
efficient of c8(x, y) = x12y10(x2 − 1)10s8(x, y). By the end of this section, we will only
require (10 + 1)(12 + 1) = 143 points, which gives a gain of more than a factor of 12. For
the larger matrices, the gain is even greater.

3.4.1 Lowest Degree

Since the lowest degree is known, that is f8 = 12, we need to interpolate c8(x, y)/x12. For
each αj ∈ E, divide Vi by αf8

j point wise. Proceeding with regular interpolation will give

c8(x, y)/x12 = s8(x, y)y10(x2 − 1)10.

In this example there is a saving of f8 = 12 points. This optimization also applies to the
other variable y, as g8 = 10. When applied on both variables, this optimization alone

33

reduces the total number of evaluation points from 3201 to

max(degx ci − fi + 1)×max(degy ci − gi + 1) = (64 + 1)× (12 + 1) = 845.

3.4.2 Even Degree

All the terms in ci(x, y) have even degrees in x. So if we interpolate for ci(x1/2, y) instead
of ci(x, y), the degree of the target is halved, and the number of evaluation points is also
(approximately) halved. To do so, simply square each value in E, and proceed with inter-
polation as usual. The polynomial recovered will have half of the true degree, and ci(x, y)
is recovered by doubling each exponent.

The even degrees structure for our matrices only applies to variable x. With this optimiza-
tion, the number of evaluation points decreases from (96 + 1) to (96/2 + 1).

3.4.3 Non-zero Factors

This optimization is similar to that of the lowest degree, where the factor is (x2− 1)hi . For
each αj ∈ E, we divide each Vi value by (α2

j − 1)hi . Proceeding with regular interpolation
will return

ci(x, y)/(x2 − 1)hi = si(x, y)xfiygi .

E cannot contain ±1, because there will be divisions by zero. This optimization is only
applicable to variable x, and it alone decreases the number of evaluation points from (96+1)
to max(degx ci − 2hi) + 1 = (38 + 1).

Since hi is large, ||si(x, y)||∞ will be much smaller than ||ci(x, y)||∞. Therefore the algo-
rithm needs fewer primes to recover C(λ, x, y). For the 16 by 16 case, the coefficient bound
for C(λ, x, y) is (16 + 3)8, about 34 bits. The actual height ||C(λ, x, y)||∞ is a 30 bit integer
and max ||si(x, y)||∞ = 4730 = ||s8(x, y)||∞ is a 13 bit integer. For the 64 by 64 case,
||C(λ, x, y)||∞ is bounded by 195 bits and max ||si(x, y)||∞ is 72 bits.

Due to this loose bound, the problem has effectively become much smaller in terms of
integer coefficient size. The target is max0≤i<n ||si(x, y)||∞, instead of the much larger
max0≤i<n ||ci(x, y)||∞. So C(λ, x, y) can be recovered with fewer primes, which allows ter-
minating our routine earlier than expected. More details will follow in the Section on Early
Termination on page 38.

3.4.4 Savings with Combined Optimizations

Combining all the optimizations together gives ex = (52 − 12 − 20)/2 + 1 = 11 and
ey = (22−10)+1 = 13. So the number of Hessenberg calls reduces from 3201 to 11×13 = 143

34

for the size 16 matrix (as stated previously).

Table 5.1 on page 56 contains details for the characteristic polynomial of the size 256 matrix.
The table tells us degxC(λ, x, y) = 3072 and degy C(λ, x, y) = 1024. We also need 35 primes
since the bound on C(λ, x, y) is log2(256 + 3)128 = 1027 bits. So without optimizations,
the routine will make 35 × 3073 × 1025 ≈ 110 million calls to the Hessenberg algorithm
within each prime. Our routine ended up using only 14 primes instead of 35, which is
14× 261× 281 = 1, 026, 774 Hessenberg calls. But we do not know in advance the number
of necessary primes to recover the solution. The next CRA section will address this by
introducing check primes.

3.4.5 Chinese Remainder Algorithm (CRA)

The last step of our routine involves the CRA, which was recalled in Chapter 2. So in
this section, we will show how this algorithm is optimized to produce the characteristic
polynomial. As seen previously, the optimizations of non-zero factors has lead to a loose
coefficient bound, and that there are more primes than necessary. We show in Theorem 9
a pattern in the solution of the CRA exclusively due to this loose bound. This allows us
to avoid computing additional image(s) of the characteristic polynomial, which saves time
and computation power. In other words, our routine may terminate early and still return
the correct answer.

Recall the solution for a system of congruences

u ≡ ci (mod pi) for 1 ≤ i ≤ m

in the mixed radix form is

u = v1 + v2M1 + v3M2 + · · ·+ vmMm−1 (3.10)

where Mk =
∏k
i=1 pi and 0 ≤ vi < pi. Let u(k) be the truncated solution formed by

v1, v2, . . . , vk, that is
u(k) = v1 + v2M1 + · · ·+ vkMk−1.

With this notation, the recurrence from Equation (2.7) becomes

vi ≡ (ci − u(i−1))M−1
i−1 (mod pi). (3.11)

From an implementation stand point, we avoid multi-precision arithmetic for computing
the products Mi by reducing them modulo a (31 bit) prime after each multiplication. Thus
we only require double precision arithmetic and single precision storage to compute vi. Fur-

35

thermore, no extra space is needed in this CRA stage as 0 ≤ ci, vi ≤ pi, so we may simply
overwrite ci with vi. So after computing each image of C(λ, x, y) mod p1, p2, . . . , we build
the solution in mixed radix form until it stabilizes, that is when u = u(k) for some integer
k ≤ m. This way the algorithm may terminate much earlier when the truncated solution is
correct.

Also mentioned back in Chapter 2 is the alternative Lagrange representation, where

u = v1
Mm

p1
+ v2

Mm

p2
+ · · ·+ vm

Mm

pm
.

We are unable to find a truncated solution in this representation which can return the
correct solution. But rather all values of vi must be computed first to find the solution,
thus it does not reduce any work. There is no apparent advantage with this method, thus
we proceed with the mixed radix representation.

Negative Coefficients

One way to recover negative coefficients is solve for the coefficients of C(λ, x, y) in the
symmetric range, that is −pi

2 < vi <
pi
2 and −Mm

2 < u < Mm
2 where Mm =

∏m
i=1 pi.

Suppose k primes are sufficient, meaning u = u(k). Then we would have a tail of zeroes,
that is vk+1 = vk+2 = · · · = vm = 0. This is because u = u(k) = u(k+1), and so

u(k+1) − u(k) = 0 = vk+1Mk ⇐⇒ vk+1 = 0.

Similarly vk+2 = 0 for u(k+2) and so on.

Instead, we detect negative coefficients using the positive range as follows. The positive
range restricts vi such that 0 ≤ vi < pi. The solution u ≡ u(m) (mod Mm) is also restricted
such that u(m) ∈ [0,Mm). If k primes are sufficient and u > 0, there will be a tail of zeroes
like in the symmetric case. But for u < 0, we discovered that there will be a tail of −1 or
pi − 1.

Here is an example of a system of congruences, but only two primes are sufficient to recover
the negative integer u = −7.

u ≡ 2 (mod p1 = 3)

u ≡ 3 (mod p2 = 5)

u ≡ 0 (mod p3 = 7)

u ≡ 4 (mod p4 = 11)

36

The symmetric range solution in mixed radix form is

u(4) = (−1) + (−2)p1 + 0p1p2 + 0p1p2p3 = −7

with tail consisting of two zeroes. The truncated solutions in the positive range are shown
below, along with how u is obtained from them.

u(1) = 2 =2 ≡ −1 (mod M1 = 3) 6= u

u(2) = 2 + 2p1 =8 ≡ −7 (mod M2 = 15) = u

u(3) = 2 + 2p1 + 6p1p2 =98 ≡ −7 (mod M3 = 105) = u

u(4) = 2 + 2p1 + 6p1p2 + 10p1p2p3 =1148 ≡ −7 (mod M4 = 1155) = u

Notice the tail of −1 with v3 = 6 = p3 − 1 and v4 = 10 = p4 − 1. Now we prove the tail of
-1 in the following theorem.

Theorem 8 (Coefficient Tail). Let u ≡ ci (mod pi) for 1 ≤ i ≤ m and u < 0. Consider the
solution in positive range mixed radix form, u = v1 +v2p1 +v3p1p2 + · · ·+vkp1p2 . . . pk−1. If
0 < k < m primes are sufficient, that is Mk =

∏k
i=1 pi > |u|, then vi = pi−1 for k < i ≤ m.

Proof. Note that u ≡ u(i) (mod Mi) for all 1 ≤ i ≤ m. Given |u| < Mk and u < 0, we have
the first bound

−Mk < u < 0. (3.12)

The truncated solution is defined by u(k) = v1 + v2M1 + · · ·+ vkMk−1. The largest value it
can attain is when vi = pi − 1 for 1 ≤ i ≤ k, that is

max u(k) = (p1 − 1) + (p2 − 1)M1 + · · ·+ (pk − 1)Mk−1 = Mk − 1 < Mk.

u(k) ≥ 0 because vi ≥ 0 and Mi > 0 for all i ≥ 1. If u(k) = 0, then

0 = u(k) ≡ u (mod Mk)⇒Mk | u.

But from Equation (3.12) we know that −Mk < u < 0, which contradicts the above Mk | u
and thus u(k) 6= 0. That gives us the second bound

0 < u(k) < Mk. (3.13)

Combining Equations (3.12) and (3.13), the bound on their difference is

− 2Mk < u− u(k) < 0. (3.14)

37

Consider the truncated solution with k primes in

0 > u ≡ u(k) (mod Mk)⇐⇒ u− u(k) = aMk

where a ∈ Z. The bound on the difference from Equation (3.14) tells us

−2Mk < u− u(k) = aMk < 0.

It must be the case that a = −1. Now for k + 1 primes, we have

0 > u ≡ u(k+1) (mod Mk+1)⇐⇒ u− u(k+1) = bMk+1

for some b ∈ Z. The new bound on the difference is now given by

−2Mk+1 < −Mk −Mk+1 < u− u(k+1) = bMk+1 < 0.

Similarly, b = −1. Continuing with the equality in the above bound we have:

u− u(k+1) = bMk+1

b = −1⇒ u− (u(k) + vk+1Mk) = −Mk+1

u− u(k) = −Mk ⇒ −Mk − vk+1Mk = −Mkpk+1

|Mk ⇒ −1− vk+1 = −pk+1

solve⇒ vk+1 = pk+1 − 1

The same would be true for the rest of the tails, thus vi = pi − 1 for k < i ≤ m.

Early Termination

If k < m primes are sufficient to recover C(λ, x, y), the tail in the mixed radix representa-
tion becomes a consistent value, as shown previously. With the tail being either 0 or pi− 1,
the solution has already been recovered, thus it is not necessary to compute another image
of characteristic polynomial. Therefore we alter the algorithm into an incremental one to
keep the number of required primes to a minimum.

Since we do not know in advance the minimum number of primes, we need to introduce
check primes. Let vi = −1 denote vi = pi − 1 for convenience. For l check primes, we
require vi+1 = · · · = vi+l ∈ {0,−1} for early termination. We use two check primes in our
implementation, so the routine terminates for some k > 1 on the condition

vk = vk+1 ∈ {0,−1}. (3.15)

38

It is possible for the condition in Equation (3.15) to be true for some integer k, while k
primes are still not sufficient. In that case the algorithm will return an incorrect answer,
but this too has a low probability as we will show. There are many coefficients in C(λ, x, y),
so consider only one coefficient and the corresponding system of congruences for now.

Definition 12 (False Early Termination). Let u ≡ ci (mod pi) for 1 ≤ i ≤ m. Consider the
solution in positive range mixed radix form, u = v1+v2p1+v3p1p2+· · ·+vmp1p2 . . . pm−1. For
two check primes, false early termination occurs for some k ∈ Z when vk = vk+1 ∈ {0,−1}
but u(k) 6= u 6= u(k) −Mk.

Definition 13 (Number of Primes in an Interval). Let x > y and N(x, y) be the number of
primes between the integers x and y, so

N(x, y) = |π(x)− π(y)|. (3.16)

Theorem 9 (False Early Termination Probability). Let u 6= 0 be the integer solution to a
system of congruences u ≡ ci (mod pi) for 1 ≤ i ≤ m. Let the primes pi be chosen randomly
between 2q−1 and 2q. Suppose k < m primes are necessary to recover u ∈ Z in the positive
range mixed radix representation as seen from Equation (3.10). False early termination
with two check primes has probability

≤ k2q/(q − 1)(N(2q ,2q−1)+1−k
2

) .
Proof. Since k primes are necessary, vk 6∈ {0,−1}. If vi = vi+1 ∈ {0,−1} for any 1 ≤ i ≤ k
the algorithm will terminate and return an incorrect answer. Thus the probability of early
termination is given by

k∑
i=1

Pr[vi = vi+1 ∈ {0,−1}].

Recall that v1 ≡ c1 (mod p1) and the recurrence in Equation (3.11),

vi ≡ (ci − u(i−1))M−1
i−1 (mod pi).

Consider when v1 = 0, which happens if c1 ≡ u ≡ 0 (mod p1) ⇐⇒ p1 | u. The probability
that p1 | u depends on their respective integer bit sizes. For convenience we define u(0) = 0.
For 1 ≤ i ≤ k, vi = vi+1 ∈ {0,−1} implies either vi = vi+1 = 0 or vi = vi+1 = −1. Now
when vi = vi+1 = 0 we have

vi = 0⇐⇒ u ≡ u(i−1) (mod pi)⇐⇒ pi | u− u(i−1) and

vi+1 = 0⇐⇒ u ≡ u(i) (mod pi+1)⇐⇒ pi+1 | u− u(i) = u− u(i−1) − viMi−1 = u− u(i−1).

39

Combining them gives

vi = vi+1 = 0⇐⇒ pipi+1 | u− u(i−1). (3.17)

Similarly, when vi = vi+1 = −1 we have

vi = −1⇐⇒ u ≡ u(i−1) −Mi−1 (mod pi)⇐⇒ pi | u− u(i−1) +Mi−1 and

vi+1 = −1⇐⇒ u ≡ u(i) −Mi (mod pi+1)⇐⇒ pi+1 | u− u(i) +Mi

= u− (u(i−1) + (pi − 1)Mi−1) +Mi = u− u(i−1) +Mi−1.

Hence
vi = vi+1 = −1⇐⇒ pipi+1 | u− u(i−1) +Mi−1. (3.18)

Consider the maximum number of divisors of the integer on the right side in Equation
(3.18), which is

pipi+1 | u− u(i−1) +Mi−1 = Mi−1 + viMi−1 + vi+1Mi + · · ·+ vkMk−1

= Mi−1(1 + vi + vi+1pi + · · ·+ vkpi . . . pk−1)

= Mi−1 S.

Clearly pipi+1 -Mi−1 = p1 . . . pi−1, so we look at whether or not

pipi+1 | S = 1 + vi + vi+1pi + · · ·+ vkpi . . . pk−1 ≤ pi . . . pk < 2(k−i+1)q.

Note that the case in Equation (3.17) is included, since the right-most side of Equation
(3.18) is greater than that of (3.17). By standard arithmetic, the number of prime pairs
pipi+1 > 22(q−1) that divide an integer S < 2(k−i+1)q is

≤ blog22(q−1) 2(k−i+1)qc = (k − i+ 1)q
2q − 2 .

The number of primes in the between 2q−1 and 2q is given by N(2q, 2q−1) from Equation
(3.16). With two check primes, the number of distinct prime pairs pi, pi+1 is given by

N̄i =
(
N(2q, 2q−1) + 1− i

2

)
,

a binomial coefficient. The addition of 1 − i is to account for repeated primes. So the
probability that vi = vi+1 ∈ {0,−1} satisfies

Pr[vi = vi+1 = 0] ≤ Pr[vi = vi+1 = −1] ≤ (k − i+ 1)q/(2q − 2)
N̄i

≤ 1
2
kq/(q − 1)

N̄k

.

40

Combining both cases gives

Pr[vi = vi+1 ∈ {0,−1}] = Pr[vi = vi+1 = 0] + Pr[vi = vi+1 = −1] ≤ kq/(q − 1)
N̄k

.

Therefore the probability of false early termination is

k∑
i=1

Pr[vi = vi+1 ∈ {0,−1}] ≤ k2q/(q − 1)
N̄k

.

In our implementation we use primes between 230 and 231. The number of primes by
the prime number theorem is estimated to be over 50 million by Equation (2.9). We
have implemented a primality test and found that the number of primes in that range
is N(230, 231) = 50, 697, 537. For the size 256 matrix, the result was computed with k = 12
primes (excluding two check primes) with optimization instead of m = 35 (by Equation
(3.2)). So for q = 31 and k = 12 the probability of false early termination is

≤
(
k2q/(q − 1)

N̄k

)
= 0.12× 10−12 < 0.1× 10−11

for one system of congruences. Now we take into account all the integer coefficients in
C(λ, x, y). Recall the number of evaluation points ex, ey as defined on page 31. Their
product exey is an upper bound on the number terms in ci(x, y), the coefficient of λi. Thus
the maximum number of terms in C(λ, x, y) is bounded by nexey. For the size n = 256
matrix, the values are ex = 261 and ey = 281. So the overall probability of false early
termination is

≤ nexey

(
k2q/(q − 1)

N̄k

)
= 0.22× 10−5.

41

Chapter 4

Implementation

In this chapter, we discuss implementation details such as data structures, parallel algorithm
and memory usage. Our entire routine is implemented in C code, and the parallel version
in Cilk C.

4.1 Data Structures

Matrix

The matrices of interest only contain monomials in two variables. To store the matrix, a
simple way would be to use array of arrays, or double arrays. Arrays in C are closely related
to pointers, as we use pointers to point to a location of memory where we can store array
elements. The malloc() command allocates memory based on the input and sizeof()

returns number of bytes for a type. The standard 32 bit integers have four bytes, and
pointers typically have eight bytes. For dimension n square matrix, it is defined by

int ** M = malloc(n * sizeof(int *));

for(int i = 0 ; i < n ; i++)

M[i] = malloc(n * sizeof(int));

Since pointers in C start from zero, the element of the ith row and jth column will be
stored in M[i-1][j-1]. The exponents in the matrices are relatively small, as each integer
exponent can be stored with much less than 16 bits. So to prevent having another double
pointer, we pack the exponents into one integer. We may store it by shifting one of the
exponents by 16 bits, achieved by «16 in C. Given the matrix element xayb, the exponents
are stored as

M[i-1][j-1] = (b<<16) + a;

Retrieving the exponents will require bitwise AND and shifting in the other direction. For
convenience, we define the macro H16 and show the extraction as follows.

42

#define H16 (1<<16)-1 // 16 tuple of 1s in binary

M[i-1][j-1] &H16; // to extract a

M[i-1][j-1] >>16; // to extract b

Characteristic Polynomial

The result C(λ, x, y) involves three variables, and it is computed fromm images (m primes).
Thus we need to store m copies of the characteristic polynomial, one for each prime. We
will need triple pointer, the first index for prime, second index for the degree of λ, and
third index for coefficient. The degrees in x and y also fit within 16 bits, thus we may pack
them into one integer size like the matrix entries. We use another double pointer to store
the monomials, where first index corresponds to degree of λ. The second index stores the
monomial that corresponds to the coefficient in the third index of the triple pointer. We
show the data structure here, where C stores the coefficients and D stores the monomial
degrees.

int *** C = malloc(m * sizeof(int **)); /* m primes */

for(int k = 0 ; k < m ; k++)

{

C[k] = malloc(n * sizeof(int *)); /* degree n for lambda */

for(int i = 0 ; i < n ; i++)

{ /* at most u terms for each lambda */

C[k][i] = malloc(u * sizeof(int));

for(int j = 0 ; j < u ; j++)

C[k][i][j] = ...;

} /* jth term coefficient of lambda^i, in kth prime */

}

int ** D = malloc(n * sizeof(int **)); /* degree n for lambda */

for(int i = 0 ; i < n ; i++)

{ /* at most u terms for each lambda */

D[i] = malloc(u * sizeof(int));

for(int j = 0 ; j < u ; j++)

D[i][j] = (deg_y << 16) + deg_x;

} /* jth term monomial of lambda^i */

To print the jth coefficient and monomial of λi in image mod pk in C, use the following
command.

printf(" %d * x^%d * y^%d \n", C[k][i][j] , D[i][j]&H16, D[i][j]>>16);

43

4.2 Parallelization

The modular algorithm was originally chosen since the computation for each prime can be
done in parallel. Each evaluation, each Hessenberg call, each interpolation and each CRA
may also be computed in parallel. We chose to run each prime sequentially and look to
parallelize within each prime for two reasons. First, we do not know how many primes
are necessary because of the loose bound from Section 3.4.3. Thus parallizing within each
prime suits the incremental algorithm better. Second, memory may become an issue for
computers with limited RAM.

The algorithm starts with two queries, which is done in parallel, as well as the work within
each query. Within each prime in phase 2, the algorithm does the x computations in par-
allel, namely steps 1a) and 1b) (from Section 3.1). After each prime, the incremental CRA
involves many coefficients, and they are computed in parallel in batches. Overall, the most
significant speed up is with parallel Hessenberg algorithm in x. Queries, interpolation and
incremental CRA only comprise of a relatively small amount of the total time. But for
larger matrices, they give a good local speed up. So our implementation does the queries,
x computations and CRA in parallel.

A portion of the code with main headers is shown starting on page 49. Note the locations
of spawn and sync to see the parallelism. These are Cilk commands to start a new task
and wait for all running tasks to finish before continuing, respectively.

For a glimpse of the impact of utilizing additional cores, please see the timings in Table 5.1
on page 56. For the smallest size 16 matrix, there is not enough work to see any significant
speed up. The larger matrices show a speed up that is near the theoretical maximum, which
will be discussed with more details in the next chapter.

4.3 Space

In this section we talk about how much space and memory are required to run the compu-
tations. We will start by counting all the storage required in terms of 32 bit integers, and
then total them at the end. Figure 4.3 will often be referenced, and it is on page 51.

Matrix

The input square matrix are stored using two double array of integers, for coefficients and
monomials. So the number of integers for a n by n matrix in this case is

2n2. (4.1)

44

Characteristic Polynomials

Suppose the modular algorithm terminates after m primes. We will need an array of m
integers to store all the primes. Recall the number of evaluation points for two variables
are ex and ey. Each coefficient of λ in C(λ, x, y) mod p has at most u = exey integers.
Each characteristic polynomial mod a prime will need nexey integers. The corresponding
monomials also require nexey integers, but this does not depend on the prime number. Thus
for a size n matrix and m primes, the number of integers needed is

m+mnexey + nexey. (4.2)

The allocation of the monomials can be found on line 31 in Figure 4.3. The allocation of
the coefficients is stated on line 37.

Query

We make two queries, and each returns a characteristic polynomial over Zp. The polyno-
mials will have degree n in λ. Since no optimizations are involved here, we must use the
degree bound D = nmax(dx, dy) + 1 ≥ max(Dx, Dy) + 1 (previously defined on page 19).

In each query, space is needed for working memory which stores evaluation points, integer
matrices and characteristic polynomial images. For evaluation points, D integers are needed.

Each integer matrix consists of n2 integers. The Hessenberg algorithm involves a recurrence
starting with one integer in C0(λ) = 1, to n+1 integers in Cn(λ). So the intermediate poly-
nomials within the Hessenberg can be stored in a “triangle”, and the number of integers
is 1 + 2 + · · · + (n + 1) = 1

2(n + 1)(n + 2). To store the “triangle” in a single array, we
use two other integer arrays to index the position and degree. That is an additional 2n
integers, which we choose to use the stack memory instead of allocating memory for more
efficiency. Cn(λ) is then copied else where so that the matrix and triangle space can be
re-used for the next evaluation point. We may ignore the leading term of λn since it has unit
coefficient. Thus we require n×D integers to store all images of Cn(λ) prior to interpolation.

Next we interpolate in either variable, then store the polynomial in a double array so the
number of integers is bounded by (n+1)D. For interpolation itself, we require an additional
temporary space of 2D integers. As mentioned earlier, both queries along with work inside
each query are done in parallel. If N cores are used, the total number of integers for two
queries is given by

2D + 2(n+ 1)D + 2
(
n2 + 2n+ 1

2(n+ 1)(n+ 2) + 2D
)
N. (4.3)

45

Line 5 of Figure 4.3 contains some space allocations for the queries. After computing the
factors, the query space is freed as indicated on line 11. The rest of the space allocations
are omitted as they are in other function calls.

Factors

The query phase continues by computing fi, gi (the lowest degrees) and f̄i, ḡi (the highest
degrees) for each ci(x, y). They are computed in line 9 of Figure 4.3. These four values are
then stored in an array for further processing. The largest degree is still under 16 bits, thus
we pack these four values to save a bit of space. We store the degrees in x as is, and degrees
in y shifted by 16. Two arrays of size n are used, so the number of integers is

2n. (4.4)

Fixed Working Memory - Evaluation/Interpolation Points

We require ex and ey integers for evaluation. Our implementation also uses another ex
integers to store the square of each, to avoid re-computation. So the number of evaluation
points uses 2ex+ey integers. This memory is allocated in the pointer T0 on line 14 of Figure
4.3.

To recover C(λ, x, y) mod a prime, we need to store the coefficients of C(λ, αi, βj), for
1 ≤ i ≤ ex and 1 ≤ j ≤ ey. Ignoring the leading unit coefficient, the polynomial C(λ, αi, βj)
mod a prime has n integers. Thus all the images of the characteristic polynomial take
up nexey integers. Even though that space does not depend on the number of cores, it is
computed in parallel because we evaluate x in parallel. Its allocation is in the triple pointer
T3 on line 28 in Figure 4.3. The integer count for the fixed working memory is

2ex + ey + nexey. (4.5)

Parallel Working Memory - Hessenberg Algorithm

An integer matrix requires n2 integers. Its characteristic polynomial has degree n, that is
n integers if we ignore the leading term. As stated previously for the Hessenberg algorithm
space required in the query phase, it involves an integer matrix, a “triangle” and some stack
space. The same amount of space is needed here, and with N cores in parallel the integer
amount is (

n2 + 2n+ 1
2(n+ 1)(n+ 2)

)
N. (4.6)

In Figure 4.3, the triangle space is allocated in the pointer T1 on line 17. The matrix space
is allocated in the pointer T2 on line 22.

46

Parallel Working Memory - Interpolation Values

To interpolate y with each x = αi, we must store C(λ, αi, βj) where 1 ≤ j ≤ ey. That
is ey polynomials, or (n + 1)ey integers which is needed to interpolate for C(λ, αi, y). Af-
ter interpolating with ey points, the maximum number of terms/integers in C(λ, αi, y) is
(n+ 1)ey. Ignoring the leading unit coefficient, the maximum number of integers becomes
ney for every core. This space is allocated in line 22 of Figure 4.3.

Furthermore, interpolation on y requires ey integers as temporary space. Interpolation on
x also requires 3ex additional integers in our implementation. The first set of ex integers is
required for optimization purposes. Another set stores the polynomial before it is copied to
the answer space. The third set is temporary space for interpolation. So the total integer
count for the images and interpolation (with N cores) is

(ney + 3ex + ey)N. (4.7)

The allocation for 3ex+ ey is on line 17, where we take the maximum and multiply by four.

Total

The fixed memory includes the input matrix, primes with characteristic polynomial images,
factors and evaluation values. Their respective integer count is given by Equations (4.1),
(4.2), (4.4) and (4.5). So the combined total integer count comes to

2n2 +m+mnexey + nexey + 2n+ 2ex + ey + nexey ∈ O(n2 +mnexey).

None of this amount is freed until the routine terminates. We label the rest as variable
memory, as it includes the query space which is freed during the routine. It also includes
parallel working memory, which depends on the number of cores used.

Theorem 10 (Variable Memory). The variable memory includes space needed for query
and parallel working working memory. Combining Equations (4.3), (4.6) and (4.7), the
integer count with N cores does not exceed

2(n+ 2)D +
(

4D + 3(n2 + 2n+ 1
2(n+ 1)(n+ 2)) + ney + 3ex + ey

)
N

∈ O(nD) +NO(D + n2 + ney).

For the largest matrix, we have dimension n = 256, m = 14 primes (including two check
primes), ex = 261 and ey = 281. The integer size in C has 32 bits, or 4 bytes. The total
fixed memory comes to about 1.2 gigabytes. The variable memory about 10 megabytes per
core, including the stack memory of about 2 kilobytes per core.

47

4.4 Prime Numbers

Our routine generates random primes in the range (230, 231). First, we generate a random
odd number r such that 0 < r < 230. Then p = r + 230 is a random value in the desired
range of 230 < p = r + 230 < 231. Now we use the Miller-Rabin test to ensure p is a prime.
Our algorithm is incremental, so we generate as many primes as needed until we terminate.

4.5 Partial Code

In the next three pages, we show the main functions of our routine in C code. The function
calls start from bottom to top, as seen in the following diagram.

The routine begins when the function findcharpoly is called, in Figure 4.3. After making
the queries and allocating sufficient memory space, the incremental algorithm begins in the
loop on line 34 (of Figure 4.3). In Figure 4.2, there are two function calls in bvmxhess.
One eventually goes to the Hessenberg algorithm and the other deals with interpolation on
x. Continuing with the first function call of uvmxhess brings us to Figure 4.1, which also
has two function calls. Similarly, the two function calls deal with he Hessenberg algorithm
and interpolation on y. In parchpy, the double loop evaluates the matrix monomial entries
with the square and multiply algorithm in Zp. After evaluation, the Hessenberg algorithm is
applied in two stages with two function calls. We only show the function call inthesschpy
for the second stage, as it involves additional stack memory.

The proper commands in Cilk Plus are _Cilk_spawn and _Cilk_sync. Another important
Cilk command to to obtain the number of available cores. We rename them using the
following macros which are the original names used in Cilk C.

#define spawn _Cilk_spawn

#define sync _Cilk_sync

#define NCORE __cilkrts_get_nworkers()

To see the parallelism, note their locations in Figure 4.2. Lines 29 and 38 contain spawn.
Lines 31 and 40 contain sync.

The stack memory allocation is found on line 4 in Figure 4.1. The other memory allocations
are shown in Figure 4.3. We call malloc through the following commands.

int * intarray(int n) { return malloc(n * sizeof(int)); }

int ** ptrarray(int n) { return malloc(n * sizeof(int *)); }

int *** mtxarray(int n) { return malloc(n * sizeof(int **)); }

These commands are found on lines 5, and 14 through 37 (in Figure 4.3).

48

Figure 4.1: Main Functions in C Code (part 1/3).

1 /* ##### Hessenberg algorithm part 2 - Recurrence ##### */
2 int inthesschpy(int ** H, int n, int * C, int p)
3 {
4 int D[n], T[n]; /* Stack memory */
5 ... /* Computes C(lambda, alpha_i, beta_j) mod p */
6 }
7
8 /* ##### Integer Hessenberg - Compute characteristic polynomial ##### */
9 void parchpy(int ** M, int ** H, int * T, int n, int e, int f,
10 int * S, int p)
11 {
12 for(int i = 0 ; i < n ; i++)
13 for(int j = 0 ; j < n ; j++)
14 {
15 int dx = powmod(e, M[i][j]&H16,p);
16 int dy = powmod(f, M[i][j]>>16,p);
17 H[i][j] = (long) dx * dy % p;
18 }
19 inthessform(H, n, p); /* Hessenberg Part 1 - Decomposition */
20 int d = inthesschpy(H, n, T, p); /* Part 2 - Recurrence */
21 for(int i = 0 ; i < n ; i++) S[i] = T[d+i];
22 }
23
24 /* ##### Univariate Hessenberg ##### */
25 void uvmxhess(struct mvpolmx M, int e, int * L, int ey, int ** C,
26 int p, int * T0, int * T1, int ** T2)
27 { ... /* Declarations */
28 int i, n, d;
29 n = M.n; d = M.d;
30 /* Evaluate y (done previously) */
31 int * F = T0;
32 /* Integer Hessenberg */
33 int ** H = T2; int ** S = T2+n; int * T = T1;
34 for(i = 0 ; i < ey ; i++)
35 parchpy(M.M, H, T, n, e, F[i], S[i], p);
36 /* Interpolate y */
37 for(i = 0 ; i < n ; i++)
38 parnerpy(S, F, C[i], ey, i, L[i]>>16, p, T1+ey);
39 }

49

Figure 4.2: Main Functions in C Code (part 2/3).

1 /* ##### Bivariate Hessenberg ##### */
2 void bvmxhess(struct mvpolmx M, int * L, int c, int ** C, int ** D,
3 int p, int * T0, int ** T1, int *** T2, int *** T3, int N)
4 {
5 int i, j, k, n, ex, ey;
6 n = M.n;
7 ex = c&H16;
8 ey = c>>16;
9
10 /* Evaluation points: x */
11 int * E = T0;
12 int * F = T0+ex;
13 for(i = 0 ; i < ex ; i++)
14 {
15 E[i] = i+2;
16 F[i] = (long) E[i] * E[i] % p;
17 }
18
19 /* Evaluation points: y */
20 int * G = T0+2*ex;
21 for(i = 0 ; i < ey ; i++)
22 G[i] = i+2;
23
24 /* Univariate Hessenberg */
25 int *** I = T3;
26 for(i = 0 ; i < ex ; i+=N)
27 {
28 for(j = 0 ; j < N && i+j < ex ; j++)
29 spawn uvmxhess(M, E[i+j], L, ey, I[i+j],
30 p, G, T1[j], T2[j]);
31 sync;
32 }
33
34 /* Interpolate x */
35 for(i = 0 ; i < n ; i+=N)
36 {
37 for(j = 0 ; j < N && i+j < n ; j++)
38 spawn parnerpx(I, E, F, L[i+j], i+j,
39 ex, ey, C[i+j], D[i+j], p, T1[j]);
40 sync;
41 }
42 }

50

Figure 4.3: Main Functions in C Code (part 3/3).

1 /* ##### Combines everything ##### */
2 int findcharpoly(struct mvpolmx M, int m, int*s , int*NC)
3 { ... /* Declarations */
4 /* Query for compression */
5 int ** X = ptrarray(M.n); int ** Y = ptrarray(M.n);
6 spawn uvmxhessxx(M, rng(2147483647), X, NCORE);
7 spawn uvmxhessyy(M, rng(2147483647), Y, NCORE);
8 sync;
9 int t = cmps(X, Y, A.G, A.F, M.n, M.d); s[0] = t;
10 int ex = t&H16, ey = t>>16; int u = ex * ey;
11 ... /* Free X and Y */
12 /* Working Memory */
13 int N = NCORE; NC[0] = N; /* Number of cores */
14 int * T0 = intarray(2*ex + ey);
15 int ** T1 = ptrarray(N); /* N x linear mem: triangle & interp temp */
16 for(int i = 0 ; i < N ; i++)
17 T1[i] = intarray(4 * max(ex,ey) + (M.n+1)*(M.n+2)/2);
18 int *** T2 = mtxarray(N); /* N x rectangle mem: int mtx & charpoly */
19 for(int i = 0 ; i < N ; i++)
20 {
21 T2[i] = ptrarray(M.n+ey);
22 for(int j = 0 ; j < M.n+ey ; j++) T2[i][j] = intarray(M.n+1);
23 }
24 int *** T3 = mtxarray(ex); /* Interpolate charpoly: ex * n * ey */
25 for(int i = 0 ; i < ex ; i++)
26 {
27 T3[i] = ptrarray(M.n);
28 for(int j = 0 ; j < M.n ; j++) T3[i][j] = intarray(ey);
29 }
30 A.D = ptrarray(M.n); /* Answer Memory - Monomials */
31 for(int i = 0 ; i < M.n ; i++) A.D[i] = intarray(u);
32 /* Modular algorithm */
33 int k = 0;
34 for(int i = 0 ; i < m ; i++)
35 {
36 A.I[i] = ptrarray(M.n); /* Answer Memory - Coefficients */
37 for(int j = 0 ; j < M.n ; j++) A.I[i][j] = intarray(u);
38 apprime(A.P, i, 30); /* Generate prime and append */
39 /* Bivariate Hessenberg */
40 bvmxhess(M, A.F, t, A.I[i], A.D, A.P[i], T0, T1, T2, T3, N);
41 /* Incremental CRA */
42 k = max(k, cramixrad(A.I, A.P, i, M.n, u));
43 if(k == i) break; /* Early termination (2 check primes) */
44 }
45 }

51

Chapter 5

Output

In this chapter, we show the correctness of our characteristic polynomials, compare our
implementation with current software and generalize our routine to multivariate polyno-
mial entries. Our routine has generated two characteristic polynomials which cannot be
computed with current CAS. Due to their immense sizes, we only show part of the results
in Appendix A3 and A4.

5.1 Validation

Let C(λ, x, y) = det(λIn − A(x, y)). Suppose our routine outputs S(λ, x, y) ∈ Z[λ, x, y].
Since we optimized our routine to involve queries and early termination, it may happen
that S(λ, x, y) 6= C(λ, x, y). Let the error be E(λ, x, y) = C(λ, x, y)− S(λ, x, y). To detect
E(λ, x, y) 6= 0, we add an additional validation phase to our routine after computing the
stabilized solution.

Only for the smaller matrices, sizes n ∈ {16, 32, 64}, is Maple able to compute C(λ, x, y).
So we also verify the correctness of our output S(λ, x, y) by reading it onto Maple, and
checking that C(λ, x, y)− S(λ, x, y) = 0.

Our additional validation phase works as follows. In outline, we choose 10 verifying primes
randomly from a large set, then for each verifying prime q we choose γ, α, β ∈ Zq randomly
and check if

E(λ = γ, x = α, y = β) mod q = det(γIn −A(α, β))− S(γ, α, β) mod q = 0.

We continue to use our random prime generator so that the verifying primes are in the
range 230 < q < 231. Let k be the number of primes used to compute S(λ, x, y) including
the two check primes. The verifying primes are q ∈ {pk+1, . . . , pk+10}, distinct from the

52

ones used to compute S(λ, x, y).

Our routine computes S(λ, x, y) in mixed radix form where each integer coefficient u is writ-
ten as u = v1 +v2p1 +v3p1p2 + · · ·+vkp1p2 . . . pk−1. After computing S(λ, x, y), we evaluate
it in C code to obtain S(γ, α, β) mod q from the mixed radix form. Then we compute
det(γIn − A(α, β)) mod q independently by Gaussian elimination, also with C code. We
computed for the 10 verifying primes that E(γ, α, β) mod q = 0. If our solution S(λ, x, y) is
incorrect, there are two possibilities where the error modulo q is zero. The first case is if the
prime q divides all the integer coefficients in E(λ, x, y). The second case is when E(λ, x, y)
mod q 6= 0 and the random triplet is a root of E(λ, x, y) mod q.

For the first case, if every coefficient in E(λ, x, y) is some multiple of the prime q, then
E(γ, α, β) mod q will be zero regardless of the random evaluation points γ, α, β. Whether
a prime q divides the error depends on the size of the prime q and the integer coefficients
of E(λ, x, y). Recall the coefficient bound ||C(λ, x, y)||∞ ≤ (n+ 3)n/2 in Equation (3.1) on
page 25. Our routine terminates after computing with k 31-bit primes. So the coefficient
bound on our output is ||S(λ, x, y)||∞ ≤ 231k(h

bh/2c
)
where h = max hi comes from the factor

(x2 − 1)hi . Then the bound on the error is

||E(λ, x, y)||∞ ≤ Eb = ||C(λ, x, y)||∞ + ||S(λ, x, y)||∞ = (n+ 3)n/2 + 231k
(

h

bh/2c

)
. (5.1)

Since our primes are > 230, there can be at most blog230 Ebc primes that divide the error.

For the largest n = 256 case, our routine used k = 14 primes to compute the solution and
h = max hi = 1024. The maximum number of 31-bit primes which can divide the error is
blog230 Ebc = 48. Back in Chapter 3, we calculated the number of primes in our specified
range, which is N(230, 231) = 50, 697, 537. So of the available number of primes, at most
48 primes cannot be chosen. Thus the probability of a verifying prime dividing the error is
given by

Pr[q | E(λ, x, y)] ≤ 48
N(230, 231)− k < 10−5.

Repeated for the 10 verifying primes, the overall probability is

10∏
i=1

Pr[pk+i | E(λ, x, y)] =
10∏
i=1

(48
N(230, 231)− (k + i)

)
< 10−59.

For the second case, the error is zero if the random triplet happens to be a root of E(λ, x, y)
mod q. We seek to bound Pr[E(γ, α, β) mod q = 0] by using the Schwartz–Zippel Lemma.

53

Theorem 11 (Schwartz-Zippel Lemma [19]). Let f(x1, . . . , xn) be a non-zero multivariate
polynomial over a field F with total degree d ≥ 0. Let α1, . . . , αn be n elements chosen
randomly and independently from a finite subset S ⊆ F . Then

Pr[f(α1, . . . , αn) = 0] ≤ d

|S|
.

Total degree bounds for the characteristic polynomials are given in Table 3.1 on page 25.
Our field is F = Zq, where 230 < q < 231.

For the size n = 256 problem, we have total degree degS(λ, x, y) = 4096. Thus we have
degE(λ, x, y) ≤ max(degC, degS) = 4096. So if our solution is incorrect, the probability
that E(γ, α, β) mod q = 0 is at most 4096

p < 4096
230 < 0.4−5. This is repeated for the 10

different verifying primes, thus the overall probability becomes at most

(4096
q

)10
<

(4096
230

)10
< 10−53.

The total time spent for validation in C code was about 7.6 seconds (see Appendix C).

Before adding a validation phase into our routine, our first attempt was to use Maple to
read and validate our solutions S(λ, x, y) for n ∈ {128, 256}. We picked the verifying primes
Q > 1

2 ||E(λ, x, y)||∞, so that it is not possible for the prime to divide the error. For the
largest case, we verified that E(γ, α, β) mod Q = 0 for 10 distinct primes Q > 21027. For
these large primes Q, it took about three minutes each. If our solution is incorrect, the
probability of obtaining zero is

(
4096
Q

)10
<
(

4096
21027

)
< 10−3000. Therefore, the output of our

routine S(λ, x, y) is correct with probability > 1− 10−3000.

Proof of Correctness

Our current validation phase with 10 runs only shows the output S(λ, x, y) is correct with
high probability. Here we outline a method to prove that the error E(λ, x, y) = 0, and hence
the output is correct. We treat the error E(λ, x, y) as a black box multivariate polynomial,
where bounds on the coefficients and each degree are known. To prove that the error is
zero, we interpolate the error for each variable to the corresponding degree bound. That
also needs to be repeated for enough primes to account for the integer coefficient bound.
If the errors at all the evaluation points and for all primes are zero, the interpolated result
will also be zero and the error is zero.

In our validation phase, we compute the error for primes in the range 230 < q < 231 by

E(λ = γ, x = α, y = β) mod = S(γ, α, β)− det(γIn −A(α, β)) mod q.

54

For the size n = 256 characteristic polynomial, the degree bounds are degλE(λ, x, y) ≤ 256,
degxC(λ, x, y) ≤ 3072 and degy C(λ, x, y) ≤ 1024. Recall Eb, the bound on the error as
defined in Equation (5.1). The error size is at most dlog230 Ebe = 49. Hence, 49 30-bit
primes are sufficient to recover the integer coefficients in E(λ, x, y) by the CRT. Thus to
prove E(λ, x, y) = 0 for n = 256, we need to compute the error

(256 + 1)× (3072 + 1)× (1024 + 1)× 49 ≈ 40× 109 = 40 billion

times and ensure they are all zero.

In Appendix C, the time to verify for 10 primes took 7.6 seconds, so each verification is
about 0.76 seconds. To prove that the error is zero for the size n = 256 largest characteristic
polynomial, we estimate the time to be 40×109×0.76 seconds, which is more than 900 years.

The time may be reduced by a factor of degλE(λ, x, y) + 1 = 257 if we do not evaluate
λ. Namely, we evaluate our output for S(λ, x = α, y = β) mod q and use the Hessenberg
algorithm to compute det(λIn −A(α, β)) mod q. Then check whether or not

E(λ, x = α, y = β) mod q = 0.

5.2 Benchmarks

On the next page, Table 5.1 consists of timings of our modular routine. Column min is the
minimum number of 31 bit primes needed to recover the integer coefficients in C(λ, x, y).
Column bnd is the maximum number of primes needed based on Equation (3.2), which
is calculated from the bound on ||C(λ, x, y)||∞. The number of calls to the Hessenberg
algorithm is (exey)(min +2) since our implementation uses two check primes. Table 5.2
includes data for Maple 2016 and Magma V2.22-2 (see Appendix B for code). Table 5.3
shows the time distribution of the algorithm for the case of n = 256. We also show the
program output for the case of n = 256 in Appendix C, which contains more information on
the timings, prime numbers and output from validation. The names and details of machines
we ran our routine on are given below and they all run Fedora 24.

• sarah: Intel Core i5-4590 quad core at 3.3 GHz (3.7 GHz turbo), 8 GB RAM

• mark: Intel Core i5-4670 quad core at 3.4 GHz (3.8 GHz turbo), 16 GB RAM

• luke: AMD FX8350 eight core at 4.0 GHz (4.2 GHz turbo), 32 GB RAM

• ant: Intel Core i7-3930K six core at 3.2 GHz (3.8 GHz turbo), 64 GB RAM

55

Our New Bivariate Routine
Size #points #primes sarah mark luke ant
n ex, ey min,bnd 1 core 4 cores 1 core 4 cores 1 core 8 cores 1 core 6 cores
16 11,13 1, 2 0.06 s 0.02 s 0.06 s 0.03 s 0.05 s 0.02 s 0.10 s 0.03 s
32 28,31 1, 3 1.06 s 0.29 s 1.03 s 0.28 s 1.09 s 0.17 s 1.12 s 0.34 s
64 67,61 3, 7 36.5 s 9.9 s 35.5 s 9.6 s 42.1 s 6.3 s 37.2 s 6.8 s
128 131,141 5, 16 22.1 m 5.9 m 21.5 m 5.7 m 31.9 m 4.6 m 23.3 m 4.1 m
256 261,281 12, 35 21.6 h 5.7 h 20.9 h 5.6 h 34.5 h 4.9 h 22.7 h 3.9 h

Table 5.1: Bivariate routine timings in seconds (s), minutes (m) or hours (h).

Maple Magma
Size sarah mark luke ant ant
n real cpu real cpu real cpu real cpu cpu
16 0.28 s 0.30 s 0.21 s 0.23 s 0.46 s 0.53 s 0.32 s 0.36 s 0.32 s
32 34.1 s 45.2 s 30.2 s 41.1 s 50.3 s 83.7 s 32.7 s 46.3 s 99.7 s
64 19.9 h 32.6 h 12.1 h 23.2 h 3.63 h 5.42 h 2.86 h 3.91 h 15.1 h
128 Not available
256 Not available
Table 5.2: Maple and Magma timings in seconds (s), minutes (m) or hours (h).

Query Evaluation Hessenberg Interpolation CRA Validation
< 4% � 1% > 95% < 2% < 1% � 1%

Table 5.3: Time spent in parallel algorithm for n = 256.

Comparison

Recall from Chapter 2, the Bareiss fraction–free algorithm and the Berkowitz method are
used by Magma and Maple, respectively. The Bareiss algorithm in Magma is implemented
in C code [20], as is ours, thus providing a fair comparison to our routine. For the Berkowitz
method on Maple, only some portions of its implementation are done in C code, namely for
polynomial multiplication. But the matrix entries are polynomials, most of the computation
time is used to multiply and expand polynomials. That is accomplished by the expand()

command, which is implemented in C code. Thus comparing our routine to that of Maple’s
is still valid. It is also worth noting that Maple computes with some parallelism, as the cpu
usage is occasionally greater than 100% during the program execution.

As reflected by the timings in Table 5.2, the quartic division–free algorithm is faster than
the cubic fraction-free algorithm since the latter involves large polynomial divisions. The
parallelism in Maple’s Berkowitz implementation is also apparent as seen in the different
times between cpu and real time. But given the available cores for use, the speed up is not
very good. For example on ant with 6 cores available at 3.2 GHz, or one core turbo at
3.8 GHz, the theoretical maximum speed up is 6×3.2

3.8 = 5.1. Maple took 2.86 hours (in real

56

time) and 3.91 hours (cpu time) to compute for the size 64 characteristic polynomial, so the
speed up does not reach a factor of two. Our implementation takes 32.6 seconds in serial,
5.9 seconds in parallel, giving a speed up of about 5.5x. The speed ups for computing the
size 128 and 256 matrices are at least 5.7x.

Another aspect worth noting is the memory usage. Even with similar clock speed, the Maple
timings are heavily affected by the amount of RAM, as seen in Table 5.2. Computing the
size n = 64 characteristic polynomial takes 19.9 hours on sarah with 8 gigabytes of RAM
but it takes only 2.86 hours on ant which has 64 gigabytes of RAM. After computing for the
characteristic polynomial on ant, the memory usage came to a maximum of 19 gigabytes.
Our routine solves the size 256 matrix with less than two gigabytes of memory, as calculated
from the previous chapter.

5.3 General Routine

As mentioned in the Introduction, our code may be adapted to solve for the characteristic
polynomial for any input matrices with bivariate polynomials. The primary differences will
be in the method of evaluating and interpolation.

If the matrix entries are no longer monomials but polynomials, alternative methods for
evaluation and interpolation should be considered. Multivariate polynomials tend to be
sparse, and if a Kronecker substitution were to be used, the degrees would be rather large.
In the case of large enough degrees, the FFT will be faster than evaluation by Horner’s
form. Similarly for interpolation, the inverse FFT will be faster than Newton’s method.
Another method for fast parallel multi-point evaluation [16] (a poster abstract) may also
be considered, instead of repeated square and multiply.

As one can see in Table 5.3, the majority of computation power is in the Hessenberg algo-
rithm. One method to reduce the total time is to use block decomposition [9]. This method
is more cache friendly, thus an improvement to the decomposition stage of the Hessenberg
algorithm.

To further generalize, consider matrices where the entries are polynomials with more than
two variables. Let A(z) = (aij(z)) be a dimension n square matrix, where each entry is
a polynomial in k variables (so z = z1, . . . , zk). The characteristic polynomial in k + 1
variables is

C(λ, z) =
n∑
i=0

ci(z)λi.

57

For simplicity, we will just outline the steps for computing characteristic polynomials of
matrices of polynomials based from this thesis.

1. Using k queries, find the factors of the univariate images of ci(z), for 0 ≤ i < n. Each
query evaluates k − 1 variables in the matrix, giving two variables (including λ) in
the characteristic polynomial. The query phase concludes after finding key values as
mentioned from Chapter 3.3.

2. Solve for the characteristic polynomial images C(λ, z) modulo primes with optimiza-
tions (if applicable) as shown from Chapter 3.4. Depending on the polynomial entries,
alternate methods for evaluation or interpolation may be more efficient.

- Apply the CRA incrementally on the image coefficients.

3. Validate solution independently.

5.4 Conclusion and Further Work

The original problem is to find the largest eigenvalues from the characteristic polynomials
of specific matrices. Our code is able to efficiently generate those polynomials of the larger
matrices, which would appear to be infeasible with current computer algebra systems. Fur-
thermore, our implementation in C can be adapted so that it may be used as a general
routine software for any matrices with bivariate polynomial entries.

The characteristic polynomials are very large, thus we only show partial solutions in Ap-
pendix A3 and A4. The text file containing the size 256 characteristic polynomial is 1.4
gigabytes. We also read it onto Maple to save it as a Maple file, which comes to 243
megabytes.

As stated in the Introduction, the next step is to solve for the largest λ(x, y) from these
polynomials which has the form

C(λ, x, y) = λn +
n−1∑
i=0

ci(x, y)λi = 0.

Given the massive sizes of these polynomials, it is unclear whether any useful information
may be extracted from them. Other approaches for solving the maximal eigenvalue which
may not require characteristic polynomials should be considered. We leave it to the readers
to further investigate how to solve for the largest eigenvalue and advance in this research
topic.

58

Appendix

A1: s8(x, y) of 16 x 16 matrix(
2x18 + 6x16 + 2x14

)
y12+(

14x18 + 46x16 + 46x14 + 14x12
)
y11+(

3x20 + 54x18 + 188x16 + 218x14 + 152x12 + 42x10 + 3x8
)
y10+(

16x20 + 154x18 + 482x16 + 670x14 + 526x12 + 252x10 + 92x8 + 8x6
)
y9+(

54x20 + 314x18 + 896x16 + 1350x14 + 1266x12 + 684x10 + 262x8 + 104x6 + 20x4
)
y8+(

96x20 + 512x18 + 1256x16 + 1988x14 + 2028x12 + 1284x10 + 492x8 + 168x6 + 72x4 + 24x2
)
y7+(

124x20 + 576x18 + 1417x16 + 2274x14 + 2365x12 + 1496x10 + 647x8 + 230x6 + 73x4 + 28x2 + 10
)
y6+(

96x20 + 512x18 + 1256x16 + 1988x14 + 2028x12 + 1284x10 + 492x8 + 168x6 + 72x4 + 24x2
)
y5+(

54x20 + 314x18 + 896x16 + 1350x14 + 1266x12 + 684x10 + 262x8 + 104x6 + 20x4
)
y4+(

16x20 + 154x18 + 482x16 + 670x14 + 526x12 + 252x10 + 92x8 + 8x6
)
y3+(

3x20 + 54x18 + 188x16 + 218x14 + 152x12 + 42x10 + 3x8
)
y2+(

14x18 + 46x16 + 46x14 + 14x12
)
y+(

2x18 + 6x16 + 2x14
)
y0

59

A2: Some coefficients of C(λ, x, y) for 16 by 16 matrix

c0(x, y) = x32y32
(
x2 − 1

)32

c1(x, y) = −x32y28
(
x2 − 1

)28 (
2x4y2 + 4x2y3 + 4x2y2 + y4 + 4x2y + 1

)
c2(x, y) = x24y25(x2 − 1)25

(
x14y3 + 8x12y4 + 9x12y3 + 8x10y5 + 8x12y2 + . . .

)
c3(x, y) = −x26y22(x2 − 1)22

(
4x12y5 + 4x12y4 + 13x10y6 + 4x12y3 + 36x10y5 + . . .

)
...

c14(x, y) = y(x2 − 1)
(
4x12y6 + x14y3 + 4x12y5 + 4x12y4 + x12y3 + . . .

)
c15(x, y) = −x4

(
x4y4 + 4x2y3 + x4 + 4x2y2 + 4x2y + 2y2

)

A3: n = 128 partial solution C(λ, x, y) = ∑n
i=0 ci(x, y)λi

c0(x, y) = x320y448(x2 − 1)448

c1(x, y) = −x321y441(x2 − 1)441s1(x, y)

s1(x, y) = y7 + 7x2y6 + (14x4 + 7x2)y5 + (7x6 + 21x4 + 7x2)y4

+(7x6 + 21x4 + 7x2)y3 + (14x4 + 7x2)y2 + 7x2y + 1

...

c127(x, y) = −x7s127(x, y)

s127(x, y) = x6y7 + 7x4y6 + (7x4 + 14x2)y5 + (7x4 + 21x2 + 7)y4

+(7x4 + 21x2 + 7)y3 + (7x4 + 14x2)y2 + 7x4y + x6

60

A4: n = 256 partial solution C(λ, x, y) = ∑n
i=0 ci(x, y)λi

c0(x, y) = x1024y1024(x2 − 1)1024

c1(x, y) = −x1024y1016(x2 − 1)1016s1(x, y)

s1(x, y) = y8 + 8x2y7 + (20x4 + 8x2)y6 + (16x6 + 32x4 + 8x2)y5

+(2x8 + 24x6 + 36x4 + 8x2)y4 + (16x6 + 32x4 + 8x2)y3 + (20x4 + 8x2)y2 + 8x2y + 1

...

c255(x, y) = −x8s255(x, y)

s255(x, y) = x8y8 + 8x6y7 + (8x6 + 20x4)y6 + (8x6 + 32x4 + 16x2)y5

+(8x6 + 36x4 + 24x2 + 2)y4 + (8x6 + 32x4 + 16x2)y3 + (8x6 + 20x4)y2 + 8x6y + x8

B1: Time size 16 matrix on Maple

with(LinearAlgebra):

A := Matrix(16, 16, [[x^8, x^5*y, ...], ...]);

C := CodeTools[Usage](CharacteristicPolynomial(A, lambda));

B2: Time size 16 matrix on Magma

P<x,y> := PolynomialRing(IntegerRing(), 2);

A := Matrix(P, 16, 16, [[x^8, x^5*y, ...], ...]);

time C := CharacteristicPolynomial(A);

61

C: Program output from computing C(λ, x, y) for n = 256

(Computed on ant: Intel Core i7-3930K six cores at 3.2 GHz, 64 GB RAM.)

Dimension n = 256
Cores: 6

Query time for x (Hess + Int): 210.658 + 59.535
Query time for y (Hess + Int): 210.735 + 60.156
Num points: ex = 261, ey = 281

Main incremental algorithm:
Run Prime Hess Int-x Total CRA
1, 1344204809 962.580 6.776 969.356 0.000
2, 1312202393 964.785 6.777 971.562 0.530
3, 1187854193 969.208 6.766 975.975 0.898
4, 1214108377 970.880 6.786 977.667 0.789
5, 1696107649 973.887 6.887 980.774 1.049
6, 1465519721 973.596 6.789 980.386 1.309
7, 1697017657 970.956 6.818 977.774 1.419
8, 1460110273 971.978 6.785 978.764 1.573
9, 1823289121 972.367 6.844 979.211 2.190
10, 1435338937 975.643 6.795 982.438 2.543
11, 1756678513 973.828 6.795 980.623 2.919
12, 1763888033 973.209 6.810 980.019 3.233
13, 1150366177 972.670 6.786 979.456 3.642
14, 1795534201 972.268 6.835 979.103 4.150
Terminate after 14 prime(s)
Total degree: 4096
Total routine time: 13990.312

Begin validation, evaluate E(lambda,x,y) mod q:
15, E(1038617224, 235486690, 789457208) mod 1409438473 = 0
16, E(1411215068, 296242329, 968697367) mod 1720266337 = 0
17, E(262280286, 1344249662, 917504038) mod 1712817233 = 0
18, E(1275030987, 1065261693, 496887487) mod 1378074017 = 0
19, E(1429560951, 88392992, 1756787157) mod 1969923041 = 0
20, E(1253418645, 114601346, 386737691) mod 1609350401 = 0
21, E(1105842539, 1004604112, 601186927) mod 1405719401 = 0
22, E(326184046, 574143466, 27482697) mod 1125705289 = 0
23, E(1413739028, 1269072384, 430579164) mod 1441551673 = 0
24, E(869820978, 1148743685, 537441089) mod 1323179281 = 0
Validation time: 7.620

Total time: 13997.934

62

Bibliography

[1] J. Abdeljaoued. The Berkowitz Algorithm, Maple and Computing the Characteristic
Polynomial in an Arbitrary Commutative Ring. MapleTech 5(1): 21–32, Birkhauser,
1997.

[2] E.H. Bareiss. Sylvester’s Identity and Multistep Integer-Preserving Gaussian Elimina-
tion. Mathematics of Computation 22(103): 565–578, 1968.

[3] S.J. Berkowitz. On Computing The Determinant in Small Parallel time using a Small
Number of Processors. Inf. Processing Letters 18(3): 147–150, 1984.

[4] C. Cohen. A Course in Computational Algebraic Number Theory. Graduate Texts in
mathematics, 138, Springer–Verlag, 1995.

[5] J.G. Dumas. Bounds on the Coefficients of the Characteristic and Minimal Polynomials.
Journal of Inequalities in Pure and Applied Mathematics 8(2): art. 31, pp.6, 2007.

[6] P. Dusart. Estimates of Some Functions Over Primes without R.H.. arXiv.org. 2007.

[7] J. von zur Gathen, J. Gerhard.Modern Computer Algebra. Cambridge University Press,
Cambridge, UK, 2003.

[8] K. Geddes, S. Czapor, G. Labahn. Algorithms for Computer Algebra. Kluwer Academic
Publishers, Boston, Massachusetts, USA, 1992.

[9] V. Jonsson. Parallel Reduction from Block Hessenberg to Hessenberg using MPI. Mas-
ters Thesis. 2013.

[10] M. Kauers. Personal Communication.

[11] M. Law, M. Monagan. Computing Characteristic Polynomials of Matrices of Structured
Polynomials. Proceedings of CASC 2016. Springer Verlag LNCS 9890, 336–348, 2016.

[12] D. Leggett. “Fraction–Free Methods for Determinants” (2011). Master’s Theses. Paper
1.

[13] The LinBox Group, LinBox – Exact Linear Algebra over the Integers and Finite Rings,
Version 1.4.2; 2017. (http://linalg.org)

63

[14] S. Lo, M. Monagan, A. Wittkopf. A Modular Algorithm for Computing the Char-
acteristic Polynomial of an Integer Matrix in Maple. Proceedings of the 2005 Maple
Conference, MapleSoft, (2005), 369–376.

[15] O.P. Lossers. A Hadamard-Type Bound on the Coefficients of a Determinant of Poly-
nomials. SIAM Rev., 16(3): 394–395 solution to an exercise by A. Jay Goldstein and
Ronald L. Graham, 2006.

[16] M. Monagan, A. Wong. [Poster abstract] Fast Parallel Multi-Point Evaluation of Sparse
Polynomials. Proceedings of ISSAC 2016, ACM Press. 2016.

[17] C. Pomerance, J. Selfridge, S. Wagstaff. The Pseudoprimes to 25 · 10109. Mathematics
of Computation. 35(151): 1003–1026, 1980.

[18] M. Rabin. Probabilistic Algorithms in Finite Fields. SIAM J. Comput., 9(2): 273–280,
1979.

[19] J. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identities. J.
ACM, 27: 701–717, 1980.

[20] A. Steel. Personal Communication.

[21] C. Stover. “Ising Model.” From MathWorld–A Wolfram Web Resource, created by Eric
W. Weisstein. Visited 12/29/2016. http://mathworld.wolfram.com/IsingModel.html

[22] P. Vrbik, M. Monagan. Lazy and Forgetful Polynomial Arithmetic and Applications.
Proceedings of CASC 2009. Springer Verlag LNCS 5743, 226–239, 2009.

[23] E. W. Weisstein. “Rabin-Miller Strong Pseudoprime Test.” From MathWorld–A
Wolfram Web Resource. Visited 12/29/2016. http://mathworld.wolfram.com/Rabin-
MillerStrongPseudoprimeTest.html

[24] Wikipedia contributors. “The Nine Chapters on the Mathematical Art.” Wikipedia,
The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 11 Jul. 2016. Web. 8 Dec.
2016.

64

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Algorithms
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Outline
	Original Contribution
	Related Presentations

	Background
	Algebra
	Brief History
	Linear Algebra
	Abstract Algebra

	Algorithms for Computing Characteristic Polynomials
	The Bareiss Fraction-Free Algorithm
	The Berkowitz Method
	The Hessenberg Algorithm

	Other Algorithms and Tools
	Polynomial Evaluation
	Polynomial Interpolation
	Fast Evaluation and Interpolation
	Chinese Remainder Theorem and Algorithm

	Size of Characteristic Polynomial
	Degree Bounds
	P-Norms
	Coefficient Bound

	Prime Numbers
	Primality Testing

	The Bivariate Routine
	The Modular Algorithm
	Bounds on Characteristic Polynomial
	Cost of Modular Algorithm

	Overview of Routine
	Structures of C(,x,y)
	High Level Description

	Phase 1 – Query
	Lowest Degree Factors
	Non-Zero Factors
	Required Points
	Unlucky Evaluations

	Phase 2 – Optimizations
	Lowest Degree
	Even Degree
	Non-zero Factors
	Savings with Combined Optimizations
	Chinese Remainder Algorithm (CRA)

	Implementation
	Data Structures
	Parallelization
	Space
	Prime Numbers
	Partial Code

	Output
	Validation
	Benchmarks
	General Routine
	Conclusion and Further Work

