
Rational Expression Simplification

with Polynomial Side Relations

by

Roman Pearce
B.Sc., Simon Fraser University, 2001

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

In the Department
of

Mathematics

c© Roman Pearce 2005
SIMON FRASER UNIVERSITY

August 2005

All rights reserved. This work may not be reproduced
in whole or in part, by photocopy or other means,

without the permission of the author.

Approval

Name: Roman Pearce

Degree: Master of Science

Title of Thesis: Rational Expression Simplification
with Polynomial Side Relations

Examining Committee: Dr. Petr Lisonek
Assistant Professor
Chair

Dr. Michael Monagan
Associate Professor
Senior Supervisor

Dr. Imin Chen
Assistant Professor

Dr. Marc Rybowicz
External Examiner
l’Université de Limoges
33, rue François Mitterrand
87032 Limoges Cedex 01, France

Date Approved:

ii

Abstract

The goal of this thesis is to develop generic algorithms for computing in polyno-
mial quotient rings and their fields of fractions. We present two algorithms for
simplifying rational expressions over k[x1, . . . , xn]/I. The first algorithm uses
Groebner bases for modules to compute an equivalent expression whose largest
term is minimal with respect to a given monomial order. The second algorithm
solves systems of linear equations to find equivalent expressions and conducts a
brute force search to find an expression of minimal total degree.

iii

Dedication

To my wife Sarah,

whose tolerance and support exceeded all reasonable bounds.

iv

Acknowledgements

I would like to thank my supervisor Dr. Michael Monagan. His insights and
outlook have influenced me far more than I would care to admit, and all for the
better. The algorithm of Section 2.5 and the suggestion to use ideal quotients
are his. I am also indebted for his unwaivering support and seemingly infinite
patience, even when I didn’t deserve it.

v

Contents

Approval Page ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

1 Preliminaries 1
1.1 Introduction . 1
1.2 Definitions . 2
1.3 Gröbner Bases . 4
1.4 Ideal Operations . 10
1.5 Homogenization . 12
1.6 Modules . 14

2 Quotient Rings 18
2.1 Arithmetic in k[x1, . . . , xn]/I . 18
2.2 Polynomial Division . 19
2.3 Rational Expressions I . 21
2.4 Rational Expressions II . 24
2.5 Rational Expressions III . 28

A Implementation 32
A.1 PolynomialIdeals in Maple 10 . 32
A.2 Inverses and Exact Division . 36
A.3 Rational Expression Simplification 38

vi

Chapter 1

Preliminaries

1.1 Introduction

The manipulation of polynomials is a fundamental goal of computer algebra.
It was the purpose for which many of the first computer algebra systems were
written, and it remains an area of active research today. Presently, we have
good algorithms to factor polynomials and simplify rational expressions over
the rational numbers, finite fields, and over algebraic number fields.

The direction of our work has been somewhat different. Our goal is to develop
generic algorithms for polynomial division and rational expression simplification
in the presence of algebraic side relations. More precisely, we want to compute
in polynomial quotient rings and their fields of fractions.

The cornerstone of any approach will be Gröbner bases. Invented by Bruno
Buchberger in 1965, Gröbner bases are primarily used for ideal-theoretic com-
putations and for simplifying elements of a quotient ring to a canonical form.
They can also be used to solve linear equations modulo an ideal, which we will
use to invert elements and perform exact division.

In this thesis we present two solutions to the problem of rational expres-
sion simplification. This is a problem which arises quite naturally in computer
algebra, often in relatively simple contexts. Consider the expression below.

sin(x) + 1
sin4(x)− cos4(x) + sin(x)

This is a rational expression in sin(x) and cos(x), where the functions them-
selves satisfy the polynomial relation sin(x)2 + cos(x)2 = 1. We would like to
simplify the fraction so as to minimize the total degree of both the numera-
tor and denominator in the result. We demonstrate using an ad-hoc method.

1

Letting s = sin(x) and c = cos(x), we can rewrite the denominator as follows.

(s4 − c4) + s = (s2 − c2)(s2 + c2) + s

= (s2 − (1− s2))(1) + s

= 2s2 + s− 1
= (2s− 1)(s + 1)

From this we can cancel the numerator and obtain 1/(2 sin(x)−1). This fraction
must have minimal total degree because the expression is not a constant.

There are a number of problems confronting ad-hoc methods, not the least
of which is that factorizations may not be unique. Another more profound
difficulty is that some fractions can be simplified in a way that does not cor-
respond to the cancellation of a common divisor. This was noted by Monagan
and Mulholland in for fractions over Q[s, c]/〈s2 + c2 − 1〉 [Mul01].

What is needed is a general method; this is the topic of Chapter two. The
rest of this chapter introduces the machinery of Gröbner bases and the ideal
theoretic operations upon which our methods rely. This thesis is largely the
result of computer experiments performed using the Maple computer algebra
system and some of our own software. A sample session demonstrating this
software is contained in the appendix.

1.2 Definitions

We begin with some basic definitions. Recall from the previous section that
we had a polynomial relation s2 + c2− 1 = 0. In general we may have a number
of such relations, so let S be the set of all polynomials which are equivalent to
zero. The set S is clearly closed under addition, and any product involving an
element of S is also in S.

Definition 1.1. Let R be a commutative ring. A set I ⊆ R is an ideal if

i) f + g ∈ I for all f, g ∈ I

ii) fh ∈ I for all f ∈ I and h ∈ R

We will restrict ourselves to computing with multivariate polynomials over a
field, so that in our case R = k[x1, . . . , xn], the polynomial ring in n variables
over the field k. A generating set or basis for an ideal I is a set of elements
{f1, . . . , fs} such that every element in I can be expressed in terms of the fi. In
our previous example the generating set consisted of a single element: s2+c2−1.
In general we write 〈f1, . . . , fs〉 to denote the ideal generated by {f1, . . . , fs}.

2

Lemma 1.2. Let I ⊆ R be an ideal where R is a commutative ring with identity.
Define a relation ∼ on the elements of R by a ∼ b ⇔ a− b ∈ I. Then ∼ is an
equivalence relation.

Proof a − a = 0 ∈ I so ∼ is reflexive. If a ∼ b then a − b ∈ I so b − a =
(−1)(a − b) ∈ I and ∼ is symmetric. Now suppose a ∼ b and b ∼ c. Then
a− c = (a− b) + (b− c) ∈ I and ∼ is transitive. �

If a−b ∈ I we say that a and b are congruent modulo I and write a ≡ b mod I.
The congruence relation partitions the elements of R into equivalence classes,
where everything in I is equivalent to zero.

Definition 1.3. Let I ⊆ R be an ideal where R is a commutative ring with
identity. The quotient ring R/I is the ring whose elements are the equivalence
classes of R modulo I, under the ring operations of R.

Example 1.4. From the earlier example with polynomials in Q[s, c]:

s4 − c4 + s = 2s2 + s− 1 + (s2 − c2 − 1)(s2 + c2 − 1)
≡ 2s2 + s− 1 mod 〈s2 + c2 − 1〉

Thus s4 − c4 + s and 2s2 + s − 1 are in the same equivalence class modulo
〈s2 + c2 − 1〉. In the quotient ring Q[s, c]/〈s2 + c2 − 1〉 they correspond to the
same element.

In addition to computing in k[x1, . . . , xn]/I we would like to simplify elements
of its field of fractions. Fractions over k[x1, . . . , xn]/I can be represented as
ordered pairs (a, b) where b 6∈ I, so that two fractions (a, b) and (c, d) are
equivalent if ad ≡ bc mod I. The binary operations are (a, b) + (c, d) = (ad +
bc, bd) and (a, b) · (c, d) = (ac, bd).

The definition above admits a troublesome possibility. Let I = 〈x2 − 1〉
and consider 1/(x − 1) + 1/(x + 1) = 2x/(x2 − 1). Since x2 − 1 ≡ 0 mod I
the result is not a valid fraction. This problem arises whenever two non-zero
elements multiply to give zero; such elements are called zero-divisors. Notice
that a and b are zero-divisors of k[x1, . . . , xn]/I if and only if ab ∈ I and a, b 6∈ I.

Definition 1.5. An ideal I (R is prime if ab ∈ I ⇒ a ∈ I or b ∈ I.

Definition 1.6. A commutative ring with identity is an integral domain if it
does not contain zero-divisors.

It should be clear that k[x1, . . . , xn]/I is an integral domain if and only if
I is a prime ideal. In our approach to simplifying rational expressions we will
assume that I is prime so as to avoid the problems caused by zero-divisors.

3

1.3 Gröbner Bases

Gröbner bases are a fundamental tool of algebraic geometry. They generalize
the ideas behind the Euclidean algorithm and Gaussian elimination to systems
of multivariate polynomials and provide canonical representatives for elements
of a quotient ring. This allows us simplify expressions and detect zero.

A key ingredient of linear algebra and univariate polynomial computations
is that an order is imposed on the monomials which may appear. In Gaussian
elimination the monomials are variables, ordered a priori or incrementally by
a pivoting strategy. In the Euclidean algorithm powers of a single variable are
ordered by their degree. The definition below generalizes both of these concepts.

Definition 1.7. A monomial order is a relation < such that

i) < is a total order on the monomials of k[x1, . . . , xn]

ii) a < b =⇒ ac < bc for monomials a, b, and c

iii) 1 is the smallest monomial under <

Example 1.8. In lexicographic order with x1 > x2 > · · · > xn monomials are
compared first by their degree in x1, then by their degree in x2, and so on,
continuing as long as there is a tie.

Example 1.9. In graded lexicographic order with x1 > x2 > · · · > xn mono-
mials are first compared by their total degree with ties broken by lexicographic
order as above. To illustrate we have written the terms of the polynomial below
in descending graded-lexicographic order with x > y > z.

f(x, y, z) = x3 + x2z + xy2 + x2 + xy + xz + y2 + x + y + z + 1

Example 1.10. In graded-reverse lexicographic order with x1 > x2 > · · · > xn

monomials are again compared first by their total degree but ties are broken
by preferring monomials with least degree in the smallest variables. We have
rewritten the polynomial above so that its terms are in descending graded-
reverse lexicographic order with x > y > z.

f(x, y, z) = x3 + xy2 + x2z + x2 + xy + y2 + xz + x + y + z + 1

Observe that x3 is again the largest monomial, only this time because its degree
in z and then y is smallest among its competitors. For the same reason, xy2 is
now greater than x2z and y2 is greater than xz.

Example 1.11. In an elimination order with {x1, . . . , xi−1} � {xi, . . . , xn}
monomials are first compared using a monomial order on {x1, . . . , xi−1}, with
ties broken by a second order on {xi, . . . , xn}. As a result, the monomials

4

containing {x1, . . . , xi−1} are all greater than the monomials involving only
{xi, . . . , xn}. Elimination orders can also have multiple groups of variables.
The extreme case where {x1} � {x2} � · · · � {xn} is lexicographic order.

Definition 1.12. Let f ∈ k[x1, . . . , xn]. The leading term of f , denoted LT(f),
is the term whose monomial is greatest with respect to a monomial order. The
coefficient and monomial of this term are called the leading coefficient and lead-
ing monomial respectively.

Monomial orders lead to a natural generalization of polynomial division. Here
a single polynomial is divided by a set of polynomials producing a remainder
and optionally a sequence of quotients. When our choice of monomial order is
clear we write f ÷ G → r to denote the division of a polynomial f by a list of
polynomials G producing a remainder r.

Algorithm 1.13 (The Division Algorithm).
Input a polynomial f , a list of polynomials G, a monomial order <
Output a polynomial r where no term of r is divisible by an LT(Gi),

(optionally) a list of polynomials Q with f −
∑|G|

i=1 QiGi = r
(p, r)← (f, 0)
Q← (0, . . . , 0)
while p 6= 0 do

select the first Gi where LT(Gi) divides LT(p)
if no such Gi exists move LT(p) to the remainder

r ← r + LT(p)
p← p− LT(p)

else cancel LT(p) using Gi

Qi ← Qi + (LT(p)/LT(Gi))
p← p− (LT(p)/LT(Gi))Gi

end if
end loop
return r, Q

We would like to use the division algorithm to test for membership in an ideal,
but doing so poses a problem. Consider I = 〈x2 + 1, xy + 1〉. The polynomial
x(xy+1)−y(x2 +1) = x−y is clearly a member of the ideal, however it can not
be reduced by either x2 + 1 or xy + 1 using any monomial order. The problem
is remedied by the following condition.

Definition 1.14. Let I ⊆ k[x1, . . . , xn] be an ideal and let < be a monomial
order. A set G is a Gröbner basis for I with respect to < if for every f ∈ I,
LT(f) is divisible by LT(g) for some g ∈ G.

Example 1.15. Let I = 〈x3−1, x2−x〉 in Q[x]. From the Extended Euclidean
algorithm we obtain gcd(x3−1, x2−x) = (1)(x3−1)−(x+1)(x2−x) = x−1 ∈ I.

5

Every element of I is of the form p(x3−1)+q(x2−x) which is divisible by x−1
so I = 〈x− 1〉 and {x− 1} is a Gröbner basis.

Theorem 1.16. Let G be a Gröbner basis for I ⊆ k[x1, . . . , xn]. Then

i) f ÷G→ r implies f ≡ r mod I

ii) f ≡ g mod I and f ÷G→ r implies g ÷G→ r

Proof (i) By Algorithm 1.13 we have f − r =
∑|G|

i=1 QiGi ≡ 0 mod I. (ii) If
f ÷G→ r and g ÷G→ r′ then no term of r (respectively r′) is divisible by a
leading term of G. Then no term of r − r′ is divisible by a leading term of G,
and since r − r′ ∈ I and G is a Gröbner basis this implies r − r′ = 0. �

Corollary 1.17.

i) f ÷G→ 0 if and only if f ∈ I

ii) if f ÷G→ r then the remainder r is unique

For a given monomial order, Theorem 1.16 associates each equivalence class
of k[x1, . . . , xn]/I with a unique remainder, called a normal form, which can be
computed by division with a Gröbner basis for I. Thus we can perform addi-
tion and multiplication in k[x1, . . . , xn]/I using the operations of k[x1, . . . , xn],
followed by a reduction to the normal form.

Having demonstrated the usefulness of Gröbner bases we turn now to their
construction. Previously we discovered x − y ∈ 〈x2 + 1, xy + 1〉 by inducing a
cancellation of the leading terms of x2 + 1 and xy + 1. This is called a syzygy,
and to compute a Gröbner basis for an arbitrary ideal it will suffice to compute
these syzygies one at a time and add them, when necessary, to the generating set.

Definition 1.18. Let f and g be polynomials and let < be a monomial order.
The syzygy polynomial of f and g is

S(f, g) =
LT(g)f − LT(f)g
gcd(LT(f),LT(g))

Theorem 1.19 (Buchberger’s Syzygy Criterion). Let I be an ideal with
generating set G and let < be a monomial order. G is a Gröbner basis for I
with respect to < if and only if S(f, g)÷G→ 0 for all f, g ∈ G.

Proof See [Cox96].

6

We present a crude version of Buchberger’s algorithm based on Theorem 1.19.
The algorithm terminates when S(f, g)÷G→ 0 has been verified for all f, g ∈ G.
This is guaranteed to happen by the ascending chain condition; every strictly
increasing sequence of ideals in k[x1, . . . , xn] is finite. Observe that when a non-
zero remainder r is added to G the ideal of leading monomials of G is strictly
enlarged. The ACC also implies that every ideal of k[x1, . . . , xn] has a finite set
of generators, so that Algorithm 1.20 implies the existence of Gröbner bases.

Algorithm 1.20 (Buchberger’s Algorithm).
Input a set of generators F , a monomial order <
Output a Gröbner basis G with respect to <
G← F
P ← {(f, g) | f, g ∈ F}
while |P | > 0 do

select a pair (f, g) ∈ P
P ← P \ {(f, g)}
r ← S(f, g)÷G
if r 6= 0

P ← P ∪ {(h, r) | h ∈ G}
G← G ∪ {r}

end if
end loop
return G

Example 1.21. We compute a Gröbner basis for 〈xy + 1, x2 + 1〉 ⊆ Q[x, y]
using lexicographic order with x > y. Our initial basis consists of just these
polynomials, but we have a syzygy.

S(xy + 1, x2 + 1) = x(xy + 1)− y(x2 + 1) = x− y

This polynomial can not be reduced by either x2 + 1 or xy + 1 so we add it to
the basis unchanged and two new syzygies are created.

S(x2 + 1, x− y) = (x2 + 1)− x(x− y) = xy + 1

S(xy + 1, x− y) = (xy + 1)− y(x− y) = y2 + 1

The first polynomial is already in the basis and thus reduces to zero. The second
one doesn’t reduce, so it is added to the basis and its syzygies are constructed.

S(x2 + 1, y2 + 1) = y2(x2 + 1)− x2(y2 + 1) = −x2 + y2

S(xy + 1, y2 + 1) = y(xy + 1)− x(y2 + 1) = −x + y

S(x− y, y2 + 1) = y2(x− y)− x(y2 + 1) = −x− y3

One can easily verify that all of these syzygies reduce to zero. The algorithm
terminates with {xy + 1, x2 + 1, x− y, y2 + 1} which is a Gröbner basis.

7

Observe that the initial generators xy + 1 and x2 + 1 in Example 1.21 are no
longer needed in the final Gröbner basis. To see this, we can sort the basis into
descending order and divide each element by its successors using Algorithm 1.13.
We find that x2 + 1 = x(x− y) + (xy + 1) and xy + 1 = y(x− y) + (y2 + 1), so
{x− y, y2 + 1} is also a Gröbner basis.

Definition 1.22. Let G be a Gröbner basis, G is reduced if 0 6∈ G and each
g ∈ G is in normal form with respect to G \ {g}.

A particularly useful property of reduced Gröbner bases is that their elements
are unique up to a constant multiple [Cox96]. Starting from the output of
Buchberger’s algorithm one can construct a reduced Gröbner basis by dividing
as above, although more efficient methods exist. Some variants of Buchberger’s
algorithm also partially reduce the basis as new polynomials are added [Geb88].

With regards to a practical implementation Algorithm 1.20 is dreadfully slow.
In practice it is not necessary to consider every S(f, g) and criteria have been
developed to omit superfluous ones [Buc79][Geb88]. Still the vast majority
of time in Buchberger’s algorithm is spent reducing syzygies to zero [Buc85].
Subsequent algorithms by J.C. Faugère improve on this by considering several
syzygies at once [Fau99][Fau02].

One redeeming property of Algorithm 1.20 is that we can easily modify it to
express the resulting Gröbner basis elements in terms of the initial generators.
The idea is to attach a vector C to each g ∈ G with the property that

g =
|F |∑
i=1

CiFi

Whenever polynomial arithmetic is performed, the vectors are updated with the
analogous operation. We illustrate the technique by repeating Example 1.21.

Example 1.23. Let F = [xy + 1, x2 + 1] ⊂ Q[x, y] be our generating set, again
using lexicographic order with x > y. We begin by attaching the identity vectors
[1, 0] and [0, 1] to xy + 1 and x2 + 1. The first syzygy

S(xy + 1, x2 + 1) = x(xy + 1)− y(x2 + 1) = x− y

is assigned the vector x[1, 0]− y[0, 1] = [x,−y]. Continuing, we assign

S(xy + 1, x− y) = y2 + 1 1[1, 0]− y[x,−y] = [1− xy, y2]

S(x2 + 1, x− y) = xy + 1 1[0, 1]− x[x,−y] = [−x2, 1 + xy]

Were we to reduce these polynomials we would have to update their vectors in
Algorithm 1.13 as well, but for now we are done. The remaining syzygies all

8

reduce to zero and [xy + 1, x2 + 1, x − y, y2 + 1] is a Gröbner basis. From the
vectors we obtain the following relations.

xy + 1 = 1 (xy + 1) + 0 (x2 + 1)
x2 + 1 = 0 (xy + 1) + 1 (x2 + 1)
x− y = x (xy + 1)− y (x2 + 1)

y2 + 1 = (1− xy) (xy + 1) + y2 (x2 + 1)

1.4 Ideal Operations

In addition to membership testing, Gröbner bases also can be used to compute
many ideal-theoretic operations. Because surveys of this area usually constitute
a volume, we present a minimum amount of material and defer to [Cox96] and
[BW93] for additional treatment. We begin with the intersection of an ideal
and a subring of k[x1, . . . , xn].

Theorem 1.24 (The Elimination Theorem). Let I ⊆ k[x1, . . . , xn] be an
ideal and let G be a Gröbner basis for I with respect to an elimination order <
with {x1, . . . , xi−1} � {xi, . . . , xn}. Then G ∩ k[xi, . . . , xn] is a Gröbner basis
for I ∩ k[xi, . . . , xn] under the restriction of < to {xi, . . . , xn}.

Proof Note that G ∩ k[xi, . . . , xn] ⊂ I ∩ k[xi, . . . , xn] since G ⊂ I. Now for
f ∈ I ∩ k[xi, . . . , xn] we have f ÷ G → 0 under < but no term of f contains
{x1, . . . , xi−1} so only elements of G∩ k[xi, . . . , xn] can be used in the division.
The same argument applied to {S(gi, gj) : gi, gj ∈ G∩ k[xi, . . . , xn]} shows that
G ∩ k[xi, . . . , xn] is a Gröbner basis. �

Example 1.25. In Example 1.21 we found that {x2 + 1, xy + 1, y − x, y2 + 1}
is a Gröbner basis for I = 〈x2 + 1, xy + 1〉 ⊂ Q[x, y] under lexicographic order
with x > y. Since this is an elimination order I ∩Q[y] = 〈y2 + 1〉.

Definition 1.26. Let I = 〈f1, . . . , fs〉 and J = 〈g1, . . . , gt〉. Then

i) The ideal sum I + J = 〈f1, . . . , fs, g1, . . . , gt〉.

ii) The ideal product IJ = 〈f1g1, . . . , figj , . . . , fsgt〉

iii) The intersection I ∩ J = {f : f ∈ I and f ∈ J}

A clever trick reduces the computation of ideal intersections to the subring
intersection of Theorem 1.24. Let I ⊆ k[x1, . . . , xn] be an ideal and let t be an
extra variable. We let tI denote the ideal product of 〈t〉 and I in k[x1, . . . , xn, t].

Lemma 1.27. Let I and J be ideals of k[x1, . . . , xn]. Then I ∩ J =
(tI + (1− t)J) ∩ k[x1, . . . , xn].

9

Proof Suppose f ∈ I ∩ J ⊆ k[x1, . . . , xn]. Then tf ∈ tI and (1 − t)f ∈
(1 − t)J so f = tf + (1 − t)f ∈ (tI + (1 − t)J) ∩ k[x1, . . . , xn]. Now let
f ∈ (tI + (1 − t)J) ∩ k[x1, . . . , xn]. Then 〈tf〉 ⊆ (tI + (1 − t)J) so we can
add 〈1 − t〉 to both sides and obtain f ∈ 〈tf, 1 − t〉 ⊆ I + 〈1 − t〉 and intersect
with k[x1, . . . , xn] to get f ∈ I. A similar argument shows f ∈ J . �

Example 1.28. Let I = 〈x − 1, y − 1〉 and J = 〈x − 1, y + 1〉. We eliminate
t from {t(x − 1), t(y − 1), (1 − t)(x − 1), (1 − t)(y + 1)} using a lexicographic
Gröbner basis with t > x > y. The Gröbner basis is {y2 − 1, x− 1, 2t− y − 1}
so I ∩ J = 〈y2 − 1, x− 1〉.

The most important task of this section is to describe the quotient operation
for ideals. Analogous to cancelling out a GCD, it forms the basis of one of our
methods for simplifying rational expressions over k[x1, . . . , xn]/I.

Definition 1.29. Let I, J ⊆ k[x1, . . . , xn] be ideals. The ideal quotient I : J is
the set {f ∈ k[x1, . . . , xn] : fh ∈ I for all h ∈ J}.

We show that I : J is an ideal. Note that it trivially contains I. If f, g ∈ I : J
and h ∈ J then (f + g)h = fh + gh ∈ I so (f + g) ∈ I : J . Likewise if f ∈ I : J ,
h ∈ J and g ∈ k[x1, . . . , xn] then fgh ∈ I since fh ∈ I, so fg ∈ I : J .

Example 1.30. Let I = 〈x2 − y2〉 and J = 〈x− y〉. Then I : J = 〈x + y〉.

Example 1.31. Let f, g ∈ k[x]. The quotient 〈f〉 : 〈g〉 contains all polynomials
whose product with g is a multiple of f . In particular, a minimal element is
lcm(f, g)/g = f/ gcd(f, g) which also generates the ideal.

The properties below are noted by Cox et al [Cox96]. The third property
combined with the subsequent lemma provides an algorithm to compute I : J .

Lemma 1.32. Let I, J , and K be ideals of k[x1, . . . , xn]. Then

i) I : J = k[x1, . . . , xn] if and only if J ⊆ I

ii) IJ ⊆ K if and only if I ⊆ K : J

iii) I : (
∑s

i=1 Ji) =
⋂s

i=1(I : Ji)

Proof See [Cox96].

Lemma 1.33. Let G be a Gröbner basis for I ∩ 〈f〉. Then {g/f : g ∈ G} is a
Gröbner basis for I : 〈f〉 with respect to the same monomial order.

10

Proof First observe gi ∈ 〈f〉 so each gi/f is a polynomial. Then gi/f ∈ I : 〈f〉
since (gi/f)f = gi ∈ I. Now let h ∈ I : 〈f〉. We know LT(fh) is divisible by
some LT(gi) since {g1, . . . , gt} is a Gröbner basis. Then LT(h) is divisible by
LT(gi/f), and since h was arbitrary {g1/f, . . . , gt/f} is a Gröbner basis. �

Example 1.34. Let I = 〈x2, y2 − 1〉 and J = 〈x, y − 1〉 in Q[x, y]. Then
I ∩ 〈x〉 = 〈x2, x(y2 − 1)〉 and I ∩ 〈y − 1〉 = 〈x2(y − 1), y2 − 1〉 so

I : J = (I : 〈x〉) ∩ (I : 〈y − 1〉)
= 〈x, y2 − 1〉 ∩ 〈x2, y + 1〉
= 〈x2, x(y + 1), y2 − 1〉

1.5 Homogenization

Next we present a few interesting results about homogeneous Gröbner bases
from [Fro97]. A generalization to arbitrary gradings appears in §10.2 of [BW93].

Definition 1.35. A polynomial f ∈ k[x1, . . . , xn] is homogeneous if all of its
non-zero terms have the same total degree.

Lemma 1.36. Let f and G = [g1, . . . , gt] be homogeneous polynomials. If we
compute f ÷ G → r using Algorithm 1.13, then the remainder r and all of the
quotients are also homogeneous.

Proof Upon entering the main loop p (which is initially f) is homogeneous
and we take one of two actions. If LT(p) is divisible by some LT(gi) then we
subtract pnew ← p− (LT(p)/LT(gi))gi. Since gi is homogeneous pnew is homo-
geneous and deg(pnew) = deg(p) if pnew 6= 0. Otherwise we move the leading
term of p to the remainder r. Because the degree of p is invariant while p 6= 0
the terms of r all have degree deg(f). Similarly, the non-zero terms of each
quotient Qi must have degree deg(f)− deg(gi). �

Lemma 1.37. Let I be an ideal generated by homogeneous polynomials. Then
a reduced Gröbner basis for I with respect to any monomial order consists of
homogeneous polynomials.

Proof Observe that syzygies of homogeneous polynomials are homogeneous
and by Lemma 1.36 so are their remainders. Thus the Buchberger algorithm
adds only homogeneous polynomials to the generating set. To reduce a Gröbner
basis it suffices to divide each g ∈ G by G \ {g} and remove zero. Again by
Lemma 1.36 the result is a set of homogeneous polynomials. �

An ideal with homogeneous generators is said to be homogeneous also. Note
that the class of homogeneous ideals is closed under the operations of Section 1.4,

11

although we have omitted some of the requisite details.

Definition 1.38. Let f ∈ k[x1, . . . , xn] and let y be a new variable. The ho-
mogenization of f in y is the polynomial f (y) = ydeg(f)f(x1/y, . . . , xn/y).

Example 1.39. Let f = x3 + x + 1 ∈ Q[x]. We introduce y to homogenize f .
Applying Definition 1.38 we obtain f (y) = x3 + xy2 + y3.

Homogenization is an injective map from k[x1, . . . , xn] to k[x1, . . . , xn, y] which
can be inverted by evaluating y = 1. It is not a ring homomorphism since
(f + g)(y) 6= f (y) + g(y) when f and g have different total degree. Nevertheless,
using Gröbner basis theory we can recover some of the results for homogeneous
polynomials, provided we accept the following condition.

Definition 1.40. Let < be a monomial order on k[x1, . . . , xn] and let y be
a new variable. We say that <′ is a good extension of < to k[x1, . . . , xn, y] if
LT<(f) = LT<′(f (y)) for all f ∈ k[x1, . . . , xn].

Example 1.41. Let < and <′ denote graded lexicographic order with x > y
and x > y > z respectively. We show that <′ is not a good extension of <. Let
f = x + y2. Then LT<(f) = y2 but LT<′(f (z)) = LT<′(xz + y2) = xz.

Example 1.42. Let < and <′ denote graded reverse lexicographic order with
x1 > x2 > . . . xn and x1 > x2 > · · · > xn > y respectively. We show that
<′ is a good extension of <. If f (y) is the homogenization of f ∈ k[x1, . . . , xn]
then all of its terms have degree deg(f) and to compute LT<′(f (y)) we first
select the terms with lowest degree in y. These terms have degree zero in y and
degree deg(f) in {x1, . . . , xn} so they are initially selected by < as well. Then
LT<′(f (y)) = LT<(f) since subsequent ties are broken in an identical manner.

Not all monomial orders have good extensions. In fact, LT<(f) = LT<′(f (y))
requires deg(LT<(f)) = deg(f) for all f so only graded orders can be extended.
The purpose of good extensions is simple: as we will see in the following theo-
rem, the property of being a Gröbner basis is preserved under homogenization
and dehomogenization. This has numerous applications in projective geometry,
see [Cox96] for examples.

Definition 1.43. Let I ⊆ k[x1, . . . , xn] be an ideal. The homogenization of I
in y is the ideal I(y) generated by {f (y) : f ∈ I} in k[x1, . . . , xn, y].

Example 1.44. Let I = 〈y − 1, xy − 1〉. If we homogenize y − 1 and xy − 1
using a new variable z we obtain I ′ = 〈y − z, xz − z2〉. However x − 1 ∈ I so
x− z ∈ I(z) but x− z 6∈ I ′. This shows that we can not simply homogenize the
generators of I to obtain I(z).

12

Theorem 1.45. Let I ⊆ k[x1, . . . , xn] be an ideal, and let G be a reduced
Gröbner basis for I with respect to a monomial order <. If y is a new variable
and <′ is a good extension of < to {x1, . . . , xn, y}, then G(y) = {g(y) : g ∈ G}
is a reduced Gröbner basis for I(y) under <′.

Proof See [Fro97].

Example 1.46. Let I = 〈y − 1, xy − 1〉 as in Example 1.44. We homogenize
I using graded reverse lexicographic order with x > y > z, which is a good
extension of the same order with x > y. A reduced Gröbner basis for I is
{y−1, x−1} so a reduced Gröbner basis for I(z) is {y−z, x−z} by Theorem 1.45.

1.6 Modules

For our final section of preliminary material, we introduce Gröbner bases for
modules. Modules over rings are similar to vector spaces over fields, although
our presentation focuses entirely on developing Gröbner basis techniques. For
a more comprehensive treatment of modules refer to [Cox98].

Definition 1.47. Let R be a ring with unity. A module over R or R-module is a
set M together with operations for addition and scalar multiplication satisfying

i) (M,+) is an Abelian group

ii) 1f = f for all f ∈M

iii) (ab)f = a(bf) ∈M for all a, b ∈ R and f ∈M

iv) (a + b)f = af + bf for all a, b ∈ R and f ∈M

v) a(f + g) = af + ag for all a ∈ R and f, g ∈M

When R is not commutative the definition above is that of a left R-module,
however we are only concerned with the case R = k[x1, . . . , xn]. In fact, we will
only consider modules which are a subset of Rm. These are submodules of Rm,
since Rm is itself an R-module.

Example 1.48. Let R = k[x, y] and consider the set of all possible combinations

of
[

x
1

]
and

[
y
0

]
in R2. For example,

[
0
y

]
= y

[
x
1

]
− x

[
y
0

]
is in the

set while
[

y
1

]
is not. It is easy to see that this set is a module over R and

thus a submodule of R2.

Observe that submodules of R1 correspond to ideals. With this in mind it is
natural to ask whether Gröbner basis techniques can be extended to work with
submodules of Rm. The only suprising fact is that it all works out so easily.

13

Our first task is to extend monomial orders to elements of Rm. Following
[Cox98], we write f ∈ Rm as a linear combination of monomials in R and
standard basis vectors ei. For example:[

x2 + y
2y

]
=

[
x2

0

]
+

[
y
0

]
+

[
0
2y

]
= x2 e1 + y e1 + 2y e2

Then monomials of Rm are all of the form α ei where α is a monomial in R.
Given a monomial order < on R = k[x1, . . . , xn] there are two natural ways to
extend it to a monomial order on Rm [AL94].

Definition 1.49. Let < be a monomial order on R. The position over term
monomial order <POT is defined by a ei >POT b ej if i < j or i = j and a > b.

Definition 1.50. Let < be a monomial order on R. The term over position
monomial order <TOP is defined by a ei >TOP b ej if a > b or a = b and i < j.

Example 1.51. Let < denote graded lexicographic order with x > y and let
f = xy e1 + x2 e2 + x2 e3 =

[
xy x2 x2

]T . Then the largest (or leading)
monomial of f is xy e1 under <POT and x2 e2 under <TOP .

All that remains is to define division and syzygies for monomials of Rm be-
fore we can run the algorithms of Section 1.3 unchanged. Quite naturally, if a
monomial a ei divides b ej we expect to find q with b ej = qa ei. This is possible
if and only if i = j and a divides b in R. Similarly, one constructs syzygies by
inducing a cancellation of the leading terms.

Definition 1.52. Let f, g ∈ Rm with leading terms a ei and b ej respectively.

The syzygy vector of f and g is S(f, g) =
bf − ag

gcd(a, b)
if i = j or 0 ∈ Rm otherwise.

Example 1.53. Let f = x e1 + e2 and g = y e1 from Example 1.48. We use
<TOP extending graded lexicographic order with x > y. The leading monomials
are x e1 and y e1, so S(f, g) = yf − xg = y e2.

Example 1.54. Building on the previous example, we apply Algorithm 1.13 to
divide p = (xy + y) e1 + x e2 by G = {x e1 + e2, y e1, y e2} using <TOP . The
leading monomial of p is xy e1, which is reducible by G1. We subtract

p ←
[

xy + y
x

]
− y

[
x
1

]
=

[
y

x− y

]
Since we are using a term over position order the new leading term of p is x e2.
This is not divisible by any element of G, so we move it to the remainder. The
next term of p is y e1, which is reducible by G2 so

p ←
[

y
−y

]
−

[
y
0

]
=

[
0
−y

]

14

Finally the leading term −y e2 is cancelled by adding G3 and we obtain zero.
The algorithm terminates, returning the remainder r = x e2 and optionally the
list of quotients Q = [−y,−1, 1].

The characterization of Gröbner bases is the same for modules as it is for
polynomial ideals, and one can show that Buchberger’s criterion (Theorem 1.19)
carries over as well [Cox98]. That is, a set G is a Gröbner basis if and only if
S(f, g)÷G→ 0 for all f, g ∈ G. Observe that this condition is satisfied by the
set G of Example 1.54, and that it was obtained by running the Buchberger
algorithm in Example 1.53.

Similarly Lemma 1.2, Theorem 1.16, and Corollary 1.17 all continue to hold
when ideals I ⊆ R are replaced by modules M ⊆ Rm. As a result, Gröbner bases
can be used to test for membership in submodules of Rm. This is illustrated in
Example 1.54, where p = (xy + y) e1 + x e2 was found not to be an element of
the module 〈x e1 + e2, y e1〉.

We conclude with two interesting applications of Gröbner bases for modules.
First we show how a module computation can express a Gröbner basis for an
ideal I ⊆ k[x1, . . . , xn] in terms of the generators, like the extended Buchberger
algorithm of Section 1.3. We demonstrate using Example 1.23.

Example 1.55. Let F = [xy + 1, x2 + 1] and let < denote lexicographic order
with x > y. We compute a Gröbner basis for 〈F1 e1 + e2, F2 e1 + e3〉 using
<POT . Our initial basis is G = {(xy + 1) e1 + e2, (x2 + 1) e1 + e3} and

S(G1, G2) = xG1 − yG2 = (x− y) e1 + x e2 + (−y) e3

Written in <POT order, the monomials are x e1, −y e1, x e2, and −y e3. None
of them are reducible by G1 or G2, so we add this element unchanged as G3

and construct its syzygies

S(G1, G3) = G1 − yG3 = (y2 + 1) e1 + (−xy + 1) e2 + y2 e3

S(G2, G3) = G2 − xG3 = (xy + 1) e1 + (−x2) e2 + (xy + 1) e3

The latter is reducible by G1, and we add G4 = (y2+1) e1+(−xy+1) e2+y2 e3

and G5 = (−x2 − 1) e2 + (xy + 1) e3 to the basis. There are no syzygies
involving G5 at this point because no other Gi has a leading monomial in e2.
The remaining syzygies are

S(G1, G4) = (−x + y) e1 + (x2y − x + y) e2 + (−xy2) e3

S(G2, G4) = (−x2 + y2) e1 + (x3y − x2) e2 + (−x2y2 + y2) e3

S(G3, G4) = (−x− y3) e1 + (x2y + xy2 − x) e2 + (−xy2 − y3) e3

15

all of which reduce to zero. The elements of G are written in vector form below.

G =

 xy + 1

1
0

 ,

 x2 + 1
0
1

 ,

 x− y
x
−y

 ,

 y2 + 1
1− xy

y2

 ,

 0
−x2 − 1
xy + 1

Notice that the first row of G contains a Gröbner basis for 〈F 〉 and the remaining
rows express this basis in terms of F . Compare this to Example 1.23.

Finally we show how Gröbner bases for modules can be used to compute
an ideal quotient I : 〈g〉. This technique (from [CT98]) is substantially faster
than the method of Section 1.4 because it avoids the construction of I ∩ 〈g〉.
By Lemma 1.33 the generators of the intersection are a factor of g larger than
those of the quotient.

Lemma 1.56. Let R = k[x1, . . . , xn], let g ∈ R, and let I ⊆ R be an ideal. If
M = 〈Ie1, Ie2, g e1 + e2〉 ⊆ R2 then I : 〈g〉 = M ∩ e2.

Proof We first show M ∩e2 ⊆ I : 〈g〉. Every element a e1 + b e2 ∈M satisfies
a− bg ≡ 0 mod I so if b ∈M ∩ e2 then bg ≡ 0 mod I and b ∈ I : 〈g〉. Now let
f ∈ I : 〈g〉. Then fg ∈ I so fg = q1f1 + · · ·+ qsfs for some {qi} ⊂ R and[

0
f

]
= f

[
g
1

]
− q1

[
f1

0

]
− q2

[
f2

0

]
− . . . − qs

[
fs

0

]
expresses f as an element of M ∩ e2.

Example 1.57. Let I = 〈y2−x, x2−xy〉 and let g = y. We use <POT where < is
graded-reverse lexicographic order with x > y. The module 〈I e1, I e2, y e1+e2〉
is generated by

G =
{[

y2 − x
0

]
,

[
x2 − xy

0

]
,

[
0

y2 − x

]
,

[
0

x2 − xy

]
,

[
y
1

]}
The pairs {S(G1, G2),S(G3, G4),S(G1, G5),S(G2, G5)} are the only syzygies
which are not identically zero under Definition 1.52. However S(G1, G2) and
S(G3, G4) must reduce to zero since {y2 − x, x2 − xy} is a Gröbner basis for I
with respect to <. Thus we compute

S(G1, G5) = (y2 − x) e1 − y(y e1 + e2) = −x e1 − y e2

S(G2, G5) = y(x2 − xy) e1 − x2(y e1 + e2) = −xy2 e1 − x2 e2

The first syzygy doesn’t reduce so it is added to the basis as G6. The second
reduces to (−xy + x) e2 following the steps below.

−xy2 e1 − x2 e2
+xG1−−−−→ −x2 e1 − x2 e2

+xG2−−−−→ −xy e1 − x2 e2

+xG5−−−−→ (−x2 + x)e2

+G4−−−→ (−xy + x)e2

16

So (−xy + x) e2 is added to the basis as G7. The remaining syzygies all reduce
to zero so G is a Gröbner basis for 〈I e1, I e2, y e1 + e2〉 with respect to <POT .
In vector form the elements of G are[

y2 − x
0

]
,

[
x2 − xy

0

]
,

[
0

y2 − x

]
,

[
0

x2 − xy

]
,

[
y
1

]
,

[
−x
−y

]
,

[
0

−xy + x

]
Then I : 〈g〉 = G ∩ e2 = 〈y2 − x, x2 − xy,−xy + x〉, which is also a Gröbner
basis with respect to <.

17

Chapter 2

Quotient Rings

2.1 Arithmetic in k[x1, . . . , xn]/I

Recall Theorem 1.16 and Corollary 1.17; using Algorithm 1.13 and a Gröbner
basis for I we can simplify polynomials to a unique representative of their equiv-
alence class modulo I. Thus we can add and multiply in k[x1, . . . , xn]/I using
the operations of k[x1, . . . , xn], reducing to a canonical form as desired.

Example 2.1. Let I = 〈x2 + y, y2 + 1〉. We use graded lexicographic order
with x > y. Observe that the generators of I are already a Gröbner basis since
S(x2 + y, y2 + 1) = y2(x2 + y) − x2(y2 + 1) = y3 − x2 reduces to zero. Let
f = xy + 1 and let g = x + y. Then f + g = xy + x + y + 1 and

fg = x2y + xy2 + x + y

≡ (−y)y + x(−1) + x + y mod I

≡ y + 1 mod I

Our first interesting task is the computation of inverses in k[x1, . . . , xn]/I.
This method is from §6.1 of [BW93]. Let f be an element of k[x1, . . . , xn]/I.
Then f is invertible if and only if there exists an f−1 ∈ k[x1, . . . , xn] with
ff−1 ≡ 1 mod I, or equivalently 1 = ff−1 + h for some h ∈ I.

The key observation is that this is equivalent to 1 ∈ 〈f〉 + I ⊆ k[x1, . . . , xn],
where 〈f〉 + I is the ideal generated by f together with the generators of I.
Then {1} is a reduced Gröbner basis for 〈f〉+I and we can compute the inverse
using the extended Buchberger algorithm of Section 1.3.

Example 2.2. Let I = 〈x2 + y, y2 + 1〉 and let f = x. To compute the inverse
of f modulo I we run the extended Buchberger algorithm on 〈x, x2 + y, y2 + 1〉
using graded lexicographic order with x > y. We assign vectors [1, 0, 0], [0, 1, 0],
and [0, 0, 1] to x, x2 + y, and y2 + 1, respectively, and compute the syzygies

18

S(x, x2 + y) = x(x)− 1(x2 + y) = −y assigned [x,−1, 0]

S(−y, y2 + 1) = y(−y) + 1(y2 + 1) = 1 assigned [xy,−y, 1]

Then 1 = (xy)(x) + (−y)(x2 + y) + 1(y2 + 1). Since x2 + y and y2 + 1 are in I
1 ≡ (xy)(x) mod I and x−1 = xy mod I.

2.2 Polynomial Division

We can extend the method of computing inverses in k[x1, . . . , xn]/I to describe
polynomial division modulo I in general. Once again we exploit the connection
between representatives f ∈ k[x1, . . . , xn]/I and ideals 〈f〉 + I ⊆ k[x1, . . . , xn],
which we denote by 〈f, I〉. Our approach is based on two lemmas.

Lemma 2.3. Let f be a polynomial and let I be an ideal. If {g1, . . . , gt} is a
Gröbner basis for 〈f, I〉 then there exist qi ∈ k[x1, . . . , xn] with gi ≡ qif mod I.

Proof The statement is actually trivial, but our goal is to compute the qi. Let
I = 〈h1, . . . , hs〉. From the extended Buchberger algorithm we obtain quotients
expressing each gi in terms of {f, h1, . . . , hs}, i.e.:

gi = qi0f + qi1h1 + qi2h2 + . . . qishs

Since all of the hi are equivalent to zero we have gi ≡ qi0f mod I. �

Example 2.4. Let f = xy + 1 and let I = 〈x2 + 1〉 ⊂ Q[x, y]. In Example 1.23
we computed a Gröbner basis for 〈f, I〉 using lexicographic order with x > y.
We obtained the basis {xy + 1, x2 + 1, x− y, y2 + 1} and the relations

xy + 1 = 1 (xy + 1) + 0 (x2 + 1)
x2 + 1 = 0 (xy + 1) + 1 (x2 + 1)
x− y = x (xy + 1)− y (x2 + 1)

y2 + 1 = (1− xy) (xy + 1) + y2 (x2 + 1)

Then x− y ≡ xf mod I and y2 + 1 ≡ (1− xy)f mod I.

Example 2.5. We illustrate how to do the computation of Lemma 2.3 using
Gröbner bases for modules. Let < be a monomial order and let I = 〈h1, . . . , hs〉.
If we compute a Gröbner basis for the module

M =
〈[

h1

0

]
, . . . ,

[
hs

0

]
,

[
f
1

]〉
using <POT we will obtain a Gröbner basis for 〈f, I〉 in the first coordinate.
The second coordinate must contain the desired relations {qi}, because every
element [a, b] ∈M satisfies a ≡ bf mod I.

19

Lemma 2.6. Let f and g be elements of k[x1, . . . , xn]/I and suppose g ∈ 〈f, I〉.
Then there exists some q ∈ k[x1, . . . , xn] with g ≡ qf mod I, and we say that
f divides g in k[x1, . . . , xn]/I.

Proof Let G = {g1, . . . , gt} be a Gröbner basis for 〈f, I〉 with respect to some
monomial order. Then g ÷ G → 0 using Algorithm 1.13 and we obtain a set
of quotients {ci} with g =

∑t
i=1 cigi. Let {q1, . . . , qs} be the polynomials from

Lemma 2.3 with gi ≡ qif mod I. Then g ≡ (
∑t

i=1 ciqi) f mod I. �

Example 2.7. Let g = 4sc2−s−4c2 +2 and f = 2s−1 in Q[s, c]/〈s2 + c2−1〉.
We will divide g by f using lexicographic order with s > c. Our first task is
to compute a Gröbner basis for 〈f, I〉 expressed in terms of f and s2 + c2 − 1.
From the extended Buchberger algorithm (see Example 1.23) we obtain the
basis {4c2 − 3, f} and the relation

4c2 − 3 = (−2s− 1)f + 4(s2 + c2 − 1)

Next we apply Algorithm 1.13 to write g in terms of this basis.

g = (s− 1)(4c2 − 3) + (1)(f)

Since the normal form of g is zero, we know that f divides g modulo I. We
substitute for 4c2 − 3 to obtain

g ≡ (s− 1)(−2s− 1)f + f mod I

≡ (−2s2 + s + 2)f mod I

The quotient −2s2 + s + 2 is not reduced modulo I. It reduces to s + 2c2.

Note that f divides g modulo I if and only if 〈g, I〉 ⊆ 〈f, I〉. We say that f is
a proper divisor of g if 〈f, I〉 is proper and the containment is strict. A natural
question to ask is whether this also implies deg(g) > deg(f). As we will see in
the next example, the somewhat suprising answer is no.

Example 2.8. Let f = xy3 + x + 1 and let I = 〈xy5 − x− y〉. We use graded
lexicographic order with x > y. The element y2f ≡ xy2 + y2 + x + y mod I
has total degree three, however 〈y2f, I〉 ⊂ 〈f, I〉 ⊂ Q[x, y] strictly.

From the examples in this section we see that when f divides g we can not
say anything about the degree of the quotient. However, if f , g, and I are all
homogeneous then we have the following result.

Lemma 2.9. Let I be a homogeneous prime ideal and let f and g be homoge-
neous polynomials with g 6∈ I. If g ≡ qf mod I then the normal form of q with
respect to any monomial order is also homogeneous with degree deg(g)−deg(f).

20

Proof Let q = q1 + q2 where q1 consists of precisely the terms of degree
deg(g)− deg(f). Then g − q1f − q2f ≡ 0 mod I implies q2f ≡ 0 mod I since
the terms of q2f can not be cancelled by any terms of g − q1f . Finally I prime
and f 6∈ I implies q2 ∈ I, so the normal form of q is equal to the normal form
of q1. This is homogeneous with degree deg(g)− deg(f) by Lemma 1.36. �

Example 2.10. In general the requirement that I is prime in Lemma 2.9 can
not be dropped. Let I = 〈(x − y)(x2 + y2)〉, f = x2 + y2 and q = x2 + x − y.
Then q is reduced modulo I but g = x2y2 + y4 ≡ qf mod I. It is true that
there exist homogeneous q with g ≡ qf mod I and deg(q) = deg(g) − deg(f).
For instance, q = x2 or q = y2 in this example.

2.3 Rational Expressions I

Finally we consider the problem of rational expression simplification over
k[x1, . . . , xn]/I. Our goal is simple: given a fraction a/b compute c/d with
ad ≡ bc mod I and deg(c) + deg(d) minimal. In this section we show how
to construct equivalent fractions using the ideal quotient operation. We will
assume that I is prime.

We proceed as follows. Let c 6∈ I be an element of 〈a, I〉 : 〈b〉. Then bc ∈ 〈a, I〉
by Definition 1.29 so a divides bc in k[x1, . . . , xn]/I. If d is the quotient from
Lemma 2.6 then bc ≡ ad mod I and a/b is equivalent to c/d. Our first lemma
shows that every equivalent fraction can be obtained in this way.

Lemma 2.11. If a/b ≡ c/d mod I then c ∈ 〈a, I〉 : 〈b〉 and d ∈ 〈b, I〉 : 〈a〉.

Proof It suffices to show bc ∈ 〈a, I〉 and ad ∈ 〈b, I〉. Since bc ≡ ad mod I we
have bc = ad + h for some h ∈ I, and the right hand side expresses bc as an
element of 〈a, I〉. Likewise ad = bc−h expresses ad as an element of 〈b, I〉. �

Example 2.12. We illustrate with an example from [Mul01]. Consider

sc− c2 + s + 1
c4 − 2c2 + s + 1

over Q[s, c]/〈s2 + c2 − 1〉

We first compute 〈sc − c2 + s + 1, s2 + c2 − 1〉 : 〈c4 − 2c2 + s + 1〉 = 〈s, c + 1〉
using Lemmas 1.27 and 1.33 or alternatively Lemma 1.56. Our numerator is
chosen from this ideal, so we pick s + c + 1 following [Mul01]. Next we divide
(s + c + 1)(c4 − 2c2 + s + 1) by sc− c2 + s + 1 modulo 〈s2 + c2 − 1〉 and obtain
the quotient s− sc2 + 1 from Lemma 2.6. Then

sc− c2 + s + 1
c4 − 2c2 + s + 1

→ s + c + 1
s− sc2 + 1

mod 〈s2 + c2 − 1〉

Of course it was not necessary to choose the numerator s+ c+1, we can choose
any f ∈ 〈s, c + 1〉 which is not a multiple s2 + c2 − 1. The following fractions

21

were obtained from choosing f = s and f = c + 1 respectively:

−2s

sc2 − c3 − sc− s + 2c− 1
−2(c + 1)

sc2 + c3 + sc− s− 2c− 1

Example 2.13. To better understand the method we examine it in a more
familiar setting. Let a, b ∈ k[x] and let I = 〈0〉. Then 〈a, I〉 : 〈b〉 = 〈a/ gcd(a, b)〉
(see Example 1.31) and choosing c = a/ gcd(a, b) we obtain the denominator
d = bc/a = b/ gcd(a, b), effectively cancelling a greatest common divisor.

Monagan and Mulholland observed that fractions over Q[s, c]/〈s2 + c2 − 1〉
can be simplified in a way that does not correspond to the cancellation of a
common divisor [Mul01]. This phenomenon actually occurs quite frequently in
general, as in the following example.

Example 2.14. Let a = y5 +x+ y, b = x− y, and I = 〈xy5−x− y〉 ⊂ Q[x, y].
We simplify a/b mod I using graded lexicographic order with x > y. A Gröbner
basis for 〈a, I〉 : 〈b〉 is {x2 + xy + x + y, y5 + x + y, xy4 + y4}, and if we select
c = x2 + xy + x + y we obtain d = x2 − xy from Lemma 2.6. Then

y5 + x + y

x− y
→ x2 + xy + x + y

x2 − xy
mod 〈xy5 − x− y〉

We show that c does not divide a and d does not divide b in Q[x, y]/I. A
Gröbner basis for 〈c, I〉 is {x2 + xy + x + y, y6 + xy + y2, xy5 − x− y}, and by
examining the leading terms we see that a 6∈ 〈c, I〉. Likewise a Gröbner basis
for 〈d, I〉 is {xy − y2, x2 − y2, y6 − x− y} and it is easy to see that b 6∈ 〈d, I〉.

So why does this happen? Notice how we have used a correspondence between
ideals J ⊆ k[x1, . . . , xn]/I and ideals J + I ⊆ k[x1, . . . , xn]. See §5.2 of [Cox96]
for more details. By Lemma 1.32 〈a, I〉 : 〈b〉 = 〈a, I〉 : 〈b, I〉 so our method
computes 〈a〉 : 〈b〉 in k[x1, . . . , xn]/I. We make two remarks. First, although we
started with principal ideals 〈a〉 and 〈b〉 in k[x1, . . . , xn]/I we have no guarantee
that their quotient is principal. Second, even if it were and 〈a〉 : 〈b〉 = 〈f〉,
extracting f from a basis of 〈f, I〉 is a non-trivial problem. Thus we should
expect to find c ∈ 〈a, I〉 : 〈b〉 with 〈a, I〉 6⊆ 〈c, I〉, producing the situation above.

So far we have simplified fractions a/b by choosing a numerator c ∈ 〈a, I〉 : 〈b〉
with minimal total degree. However this strategy may not produce c/d with
deg(c) + deg(d) minimal, as illustrated in the next example.

Example 2.15. Consider Example 2.14 again, only this time we will attempt
to simplify b/a. A Gröbner basis for 〈b, I〉 : 〈a〉 is {x − y, y5 − 2}, so choosing
a numerator of minimal degree simply reconstructs the original fraction. This
fraction has total degree six, however in Example 2.14 we constructed one with
total degree four.

22

We mention one important case where choosing a numerator with minimal
degree does produce a fraction with minimal degree.

Theorem 2.16. Let I be a homogeneous prime ideal and suppose a, b 6∈ I are
homogeneous polynomials. Let G be a reduced Gröbner basis for 〈a, I〉 : 〈b〉
with respect to a graded monomial order <. If we choose c ∈ G, c 6∈ I with
deg(c) minimal and compute d = bc/a mod I, then c/d is equivalent to a/b
and deg(c) + deg(d) is minimal.

Proof Observe that c is homogeneous by Lemma 1.37 and d is homogeneous
with degree deg(b)+deg(c)−deg(a) by Lemma 2.9. Now since a 6∈ I the normal
form of a has degree deg(a) by Lemma 1.36, so any homogeneous a′ ≡ a mod I
has deg(a′) = deg(a). Similarly for b, so that deg(a) and deg(b) are fixed. Then
deg(c) minimal implies deg(d) = deg(b) + deg(c)− deg(a) is minimal as well.

Example 2.17. Let a = x3 + x2y, b = 2xy + y2, and let I = 〈x3 + xy2 + y3〉.
We use graded lexicographic order with x > y. A Gröbner basis for 〈a, I〉 : 〈b〉
is {xy, x2− y2, y3}, so if we let c = xy and compute d = b c/a ≡ −x + y mod I
using Lemma 2.6 then

x3 + x2y

2xy + y2
→ xy

−x + y
mod I

Alternatively, we could choose c = x2 − y2 and compute d = x + 2y so that

x3 + x2y

2xy + y2
→ x2 − y2

x + 2y
mod I

Similarly, a Gröbner basis for 〈b, I〉 : 〈a〉 is {y, x}. If we choose d = y then we
obtain c = (x2 + xy − y2)/3 and

x3 + x2y

2xy + y2
→ x2 + xy − y2

3y
mod I

Finally if d = x then c = (x2 − 2xy − y2)/3 and

x3 + x2y

2xy + y2
→ x2 − 2xy − y2

3x
mod I

Example 2.18. We homogenize Example 2.14 using a new variable z and
graded reverse lexicographic order with x > y > z. Our goal is to simplify

y5 + xz4 + yz4

x− y
mod 〈xy5 − xz5 − yz5〉

A Gröbner basis for the quotient 〈y5 + xz4 + yz4, xy5 − xz5 − yz5〉 : 〈x − y〉
is {y5 + xz4 + yz4, x2z4 + xyz4 + xz5 + yz5, xy4z4 + y4z5}, indicating that
the original fraction has minimal total degree. This is in sharp contrast to
Example 2.14, and it suggests that there is little hope of using homogenization
to extend Theorem 2.16 to non-homogeneous problems.

23

2.4 Rational Expressions II

In this section we will use Gröbner bases for modules to reduce fractions
over k[x1, . . . , xn]/I to a minimal canonical form. The result is analogous to
the normal form for ordinary polynomials produced by Theorem 1.16. Observe
that if a/b is a fraction over k[x1, . . . , xn]/I then the set of pairs [x, y] satisfying
bx− ay ≡ 0 mod I is a module over k[x1, . . . , xn].

Lemma 2.19. Let I = 〈h1, . . . , hs〉 be a prime ideal and let a/b be a fraction
over k[x1, . . . , xn]/I. If 〈a, I〉 : 〈b〉 = 〈c1, . . . , ct〉 and di = bci/a mod I then{[

c1

d1

]
, . . . ,

[
ct

dt

]
,

[
0
h1

]
, . . . ,

[
0
hs

]}
generates M = {[x, y] : bx− ay ≡ 0 mod I} as a k[x1, . . . , xn]-module.

Proof By construction, the generators above all satisfy bx − ay ≡ 0 mod I.
Let [f, g] ∈M . By Lemma 2.11 f ∈ 〈c1, . . . , ct〉 so f = p1c1 + · · ·+ptct for some
pi ∈ k[x1, . . . , xn]. Then

a(g − (p1d1 + · · ·+ ptdt)) ≡ b(f − (p1c1 + · · ·+ ptct)) ≡ 0 mod I

and since I is prime g − (p1d1 + · · · + ptdt) ≡ 0 mod I. Then there exist
qi ∈ k[x1, . . . , xn] with

g − (p1d1 + · · ·+ ptdt) = q1h1 + · · ·+ qshs

and
[

f
g

]
= p1

[
c1

d1

]
+ · · ·+ pt

[
ct

dt

]
+ q1

[
0
h1

]
+ · · ·+ qs

[
0
hs

]
. �

Our approach is to compute a reduced Gröbner basis for this module using a
term over position monomial order. Then we will select the smallest [c, d] under
the module order with c, d 6∈ I to be our simplified fraction. This minimizes the
largest monomial appearing in c/d under the original monomial order. We call
this monomial the leading monomial of c/d.

Example 2.20. We repeat Example 2.15 using this new method. Let a = x−y
and b = y5+x+y, and consider a/b modulo I = 〈xy5−x−y〉. We let < be graded
lexicograpghic order with x > y. A Gröbner basis for 〈a, I〉 : 〈b〉 is {x−y, y5−2}
and from Lemma 2.6 we obtain the denominators {y5 + x + y,−y9 − y5 + y4}.
We construct the module〈[

x− y
y5 + x + y

]
,

[
y5 − 2

−y9 − y5 + y4

]
,

[
0

xy5 − x− y

]〉
and compute a Gröbner basis using <TOP{[

x2 − xy
x2 + xy + x + y

]
,

[
x− y

y5 + x + y

]
,

[
xy4 − 2
xy4 + y4

]}

24

The elements of this basis are all valid fractions because their numerators and
denominators are not in I. We conclude that (x2 − xy)/(x2 + xy + x + y) has
the smallest leading monomial among all fractions equivalent to a/b.

Example 2.21. We repeat Example 2.12 where the goal was to simplify

sc− c2 + s + 1
c4 − 2c2 + s + 1

mod I = 〈s2 + c2 − 1〉

We use graded lexicographic order with s > c. A reduced Gröbner basis for
〈sc − c2 + s + 1, s2 + c2 − 1〉 : 〈c4 − 2c2 + s + 1〉 is {s, c + 1}, so the module is
generated by [s,− 1

2 (sc2−c3−sc−s+2c−1)], [c+1,− 1
2 (sc2+c3+sc−s−2c−1)],

and [0, s2+c2−1]. Note that the first two elements are the fractions constructed
for s and c + 1 at the end of Example 2.12. A Gröbner basis for the module is{[

0
s2 + c2 − 1

]
,

[
s2 + c2 − 1

0

]
,

[
s− c− 1

c3 + sc− 2c

]
,

[
−s− c− 1
sc2 − s− 1

]}
so (s− c− 1)/(c3 + sc− 2c) has a minimal leading monomial with respect to <.

Unfortunately having a minimal leading monomial does not guarantee that
the fraction itself has minimal total degree, even when a graded order is used.

Example 2.22. Let I = 〈x5+xy−1〉, a = x3y3−x4+x−1, and b = x2−y2+1.
We use graded lexicographic order with x > y. A Gröbner basis for the module
of Lemma 2.19 with respect to <TOP is{ [

xy4 − x3 − x2y − y3 + x2 + x
−x4 + x2y2 − x2

]
,

[
0

x5 + xy − 1

]
,

[
x5 + xy − 1

0

]
,[

x3y3 − x4 + x− 1
x2 − y2 + 1

]
,

[
−x2y3 + x4 + x3 + y − 1
x4y2 − x4 + y3 − x− y

]}
The first element has the smallest leading term, however its numerator is degree
five and its denominator is degree four. This compares poorly with the original
fraction, which has degrees six and two, respectively.

Another possible objection to this method is that it does not detect when the
denominator is invertible or when it divides the numerator. In those cases we
might prefer to get a polynomial of higher degree instead of a fraction.

Example 2.23. Let I = 〈xy2 − 1〉 and consider the fraction (x + 1)/x2. One
can easily verify that x2y4 ≡ 1 mod I so that the inverse of x2 is y4. Then
(x + 1)/x2 ≡ (x + 1)y4 mod I which reduces to y4 + y2. However, we will
compute 〈x + 1, xy2 − 1〉 : 〈x2〉 = 〈x + 1, y2 + 1〉 and construct the module〈[

x + 1
x2

]
,

[
y2 + 1

x

]
,

[
0

xy2 − 1

]〉
whose generators are already a Gröbner basis with respect to term over position
graded lexicographic order with x > y. The smallest valid fraction is (y2 +1)/x.

25

At this point we need to offer a solution. One possibility is to minimize
the leading term of the denominator rather than the largest term in the entire
fraction. This computation does not require modules at all. To simplify a/b
modulo I one can simply choose d ∈ 〈b, I〉 : 〈a〉, d 6∈ I minimal and compute
c ≡ ad/b mod I, inverting the method of Section 2.3. Whenever b is invertible
or b divides a modulo I we will obtain d = 1 and c ≡ a/b mod I.

An alternative solution is to adapt the method of this section to detect this
case and deal with it at no extra cost. We can invert Lemma 2.19 so that we
compute 〈b, I〉 : 〈a〉 = 〈d1, . . . , dt〉 and ci = adi/b mod I. If b is invertible or
if b divides a modulo I we will obtain 〈b, I〉 : 〈a〉 = 〈1〉 and c1 = a/b mod I.
Otherwise we can proceed with the computation for modules. As a pleasant
side effect we can extend Lemma 2.19 to the case where I is not prime.

Lemma 2.24. Let I = 〈h1, . . . , hs〉 be an ideal and let a/b be a fraction over
k[x1, . . . , xn]/I where b is not a zero-divisor. If 〈b, I〉 : 〈a〉 = 〈d1, . . . , dt〉 and
ci = adi/b mod I then{[

c1

d1

]
, . . . ,

[
ct

dt

]
,

[
h1

0

]
, . . . ,

[
hs

0

]}
generates M = {[x, y] : bx− ay ≡ 0 mod I} as a k[x1, . . . , xn]-module.

Proof Again by construction, all of the generators satisfy bx−ay ≡ 0 mod I.
Let [f, g] ∈ M . By Lemma 2.11 g ∈ 〈d1, . . . , dt〉 so g = p1d1 + · · · + ptdt for
some pi ∈ k[x1, . . . , xn]. Then

b(f − (p1c1 + · · ·+ ptct)) ≡ a(g − (p1d1 + · · ·+ ptdt)) ≡ 0 mod I

and since b is not a zero-divisor f − (p1c1 + · · ·+ ptct) ≡ 0 mod I. Then there
exist qi ∈ k[x1, . . . , xn] with

f − (p1c1 + · · ·+ ptct) = q1h1 + · · ·+ qshs

and
[

f
g

]
= p1

[
c1

d1

]
+ · · ·+ pt

[
ct

dt

]
+ q1

[
h1

0

]
+ · · ·+ qs

[
hs

0

]
. �

Example 2.25. Let a = 4sc2−s−4c2 +2 and b = 2s−1 in Q[s, c]/〈s2 +c2−1〉
from Example 2.7. We will simplify a/b using lexicographic order with s > c.
We first compute a Gröbner basis for 〈b, I〉 : 〈a〉 = 〈1〉 using Lemma 1.56. This
indicates that b divides a modulo I, so we take 1 to be the denominator and
compute s + 2c2 ≡ a/b mod I.

We present this modified method in the form of an algorithm, which computes
a reduced canonical form for a fraction over k[x1, . . . , xn]/I with respect to a
given monomial order. The total degree of the output may not be minimal,
however the monomials which appear will be as small as possible under the
ordering. As a corollary, the algorithm must cancel any common divisor.

26

Algorithm 2.26 (Rational Expression Normal Form).
Input I = 〈h1, . . . , hs〉 a prime ideal of k[x1, . . . , xn],

a/b with a, b 6∈ I, and a monomial order <
Output (optionally) a quotient c = a/b if b divides a modulo I

c/d with ad ≡ bc mod I, c and d are reduced, and the
largest monomial in c/d minimal with respect to <

{d1, . . . , dt} ← a reduced Gröbner basis for 〈b, I〉 : 〈a〉 (Lemma 1.56)
{c1, . . . , ct} ← the quotients adi/b mod I (Lemma 2.6)
(optional) if {d1, . . . , dt} = {1} then return the normal form of c1

M ← the module 〈[c1, d1], . . . , [ct, dt], [h1, 0], . . . , [hs, 0]〉
G← a reduced Gröbner basis for M with respect to <TOP

return the smallest [f, g] ∈ G with respect to <TOP with f, g 6∈ I

Additional examples are given in the appendix. We will conclude this section
with a remark on the difficulties of extending this method to work with fractions
over non-integral domains. Lemma 2.24 poses no problem, however we must be
careful that in simplifying a/b→ c/d we do not choose d to be a zero-divisor.

Lemma 2.27. f 6∈ I is a zero-divisor modulo I if and only if I : 〈f〉 6⊆ I.

Proof Let f be a zero-divisor modulo I. Then fq ∈ I for some q 6∈ I and
q ∈ I : 〈f〉. Now let I : 〈f〉 = 〈q1, . . . , qs〉 6⊆ I. Then some qi 6∈ I but fqi ∈ I by
Definition 1.29.

Observe that we can test for zero-divisors efficiently using Lemma 1.56. To
compute I : 〈f〉, we will compute a Gröbner basis for M = 〈I e1, I e2, f e1 +e2〉
using a position over term monomial order <POT . However, if the generators
for I are a Gröbner basis with respect to < then we can identify zero-divisors
by a remainder r with leading monomial in e2 being added to the basis for M .

Example 2.28. Let I = 〈x2 − y, y2 − x, xy − 1〉 and f = x + y + 1. Let <
denote graded lexicographic order with x > y, since the generators of I are
already a Gröbner basis with respect to that order. A Gröbner basis for the
module 〈I e1, I e2, f e1 + e2〉 with respect to <POT is{[

0
y − 1

]
,

[
0

x− 1

]
,

[
x + y + 1

1

]
,

[
y2 + y + 1

1

]}
We can see by inspection that I : 〈f〉 = 〈y− 1, x− 1〉 6⊆ I so f is a zero-divisor.
One might also note that I = 〈y − 1, x− 1〉 ∩ 〈x + y + 1, y2 + y + 1〉, where the
generating sets are Gröbner bases with respect to <.

Although we can detect zero-divisors in the denominator using Lemma 2.27,
it is not at all clear what our algorithm should do when this actually happens.
We leave this as a topic for future research.

27

2.5 Rational Expressions III

We conclude this chapter with an alternative method for simplifying rational
expressions over k[x1, . . . , xn]/I which is guaranteed to produce an expression
with minimal total degree. Given a/b with a, b 6∈ I, we will conduct a global
search for equivalent expressions with lower total degree. At each step we set
c and d to be linear combinations of monomials with undetermined coefficients
and attempt to solve ad − bc ≡ 0 mod I with c, d 6≡ 0 mod I. We will use a
Gröbner basis for I with respect to a graded monomial order.

Lemma 2.29. Let I ⊆ k[x1, . . . , xn] be an ideal and let a, b ∈ k[x1, . . . , xn]
with a, b 6∈ I. If c =

∑s
i=1 ci xi and d =

∑t
j=1 dj xj, where xi and xj are

monomials of k[x1, . . . , xn] and the ci and dj are unknowns, then the coefficients
of the normal form of ad − bc mod I with respect to any monomial order are
homogeneous linear polynomials in the ci and dj.

Proof The coefficients of bc and ad are multiples of ci and dj respectively,
so the coefficients of ad − bc are linear and homogeneous in ci and dj . Now
consider what happens in Algorithm 1.13. In a reduction step we will subtract
pnew ← p− (LT(p)/LT(g)) g. If p has linear homogeneous coefficients in ci and
dj then (LT(p)/LT(g)) g and pnew will have this property also. Moving LT(p)
to the remainder r retains this property for both p and r, so the coefficients of
the remainder are linear and homogeneous in ci and dj as well.

Example 2.30. From Example 2.14 let a = y5 + x + y, b = x − y, and let
I = 〈xy5 − x − y〉. We will attempt to construct c/d ≡ a/b mod I using
monomials of up to degree two. Let c = c1 + c2y + c3x+ c4y

2 + c5xy + c6x
2 and

d = d1 + d2y + d3x + d4y
2 + d5xy + d6x

2. The normal form of ad − bc under
graded lexicographic order with x > y is

d4y
7 + d2y

6 + d1y
5 + (d6 − c6)x

3 + (d5 + d6 − c5 + c6)x
2y + (c5 − c4 + d4 + d5)xy2

+ (d4 + c4)y
3 + (d6 + d3 − c3)x

2 + (d5 + c3 + d2 − c2 + d6 + d3)xy

+ (d5 + c2 + d2)y
2 + (d1 − c1 + d3)x + (c1 + d1 + d3)y

Equating each coefficient to zero, we obtain a 12 × 12 system of homogeneous
linear equations with the general solution c1 = 0, c2 = t, c3 = t, c4 = 0, c5 = t,
c6 = t, d1 = 0, d2 = 0, d3 = 0, d4 = 0, d5 = −t, d6 = t. For any t 6= 0 we can
substitute these values into c/d an obtain (x2 + xy + x + y)/(x2 − xy).

Example 2.31. Let a/b = y2/(x2 − y) mod I = 〈xy2 − 1〉. We will attempt
to construct an equivalent fraction c/d wit deg(c) = 2 and deg(d) = 1. Let
c = c1 + c2y + c3x + c4y

2 + c5xy + c6x
2 and d = d1 + d2y + d3x. The normal

form of ad− bc mod I under graded lexicographic order with x > y is

−c6x
4 − c5x

3y − c3x
3 + (c6 − c2)x2y + (d2 + c4)y3 − c1x

2

+ c3xy + (d1 + c2)y2 − c4x + c1y + (d3 + c5)

We can see by inspection that the linear system has only the trivial solution.

28

Having described a single step of the algorithm we turn now to the overall
strategy. The idea is to walk up through the degrees of the numerator and
denominator until either a solution is found or the total degree becomes greater
than or equal to the current minimal solution. When this happens we backtrack
recursively to examine the remaining possibilities.

Example 2.32. Suppose we are given a fraction a/b with deg(a) = 4 and
deg(b) = 1 which can not be simplified. We first try to construct c/d with
(deg(c),deg(d)) = (0, 0) and when that fails we will try (1, 1) and (2, 2), as
illustrated in the first figure below. The total degree of the next step, (3, 3), is
too high to be minimal so we split the computation (see figure 2) and continue
searching from (3, 0) and (0, 3). The empty circles in the final figure show all of
the cases which are eventually checked.

0 642
0

2

4

6

���
�

0 642
0

2

4

6

���
�

0 642
0

2

4

6

���
�

Solution No Solution No Attempt

Example 2.33. Let a = y5 + x + y, b = x − y, and I = 〈xy5 − x − y〉. To
simplify a/b mod I we will try to construct c/d with (deg(c),deg(d)) = (0, 0)
and (1, 1), both of which fail, before we succeed at (2, 2) (see Example 2.30).
We must now backtrack and check (2, 0) and (0, 2) (see figure 2) since a solution
at either of those points would produce a solution at (2, 2).

0 642
0

2

4

6

0 642
0

2

4

6

0 642
0

2

4

6

���
�

Solution No Solution No Attempt

Walking from (2, 0) we arrive at (3, 1), however it would be redundant to test
this point since we already have a solution of total degree four. We backtrack to
test (3, 0) and (2, 1) before abandoning this path. From (0, 2) we walk to (1, 3)
which is also redundant, and backtrack to test (1, 2) and (0, 3). Neither point
has a solution, so we can conclude that our solution at (2, 2) has minimal total
degree. Then (y5+x+y)/(x−y)→ (x2+xy+x+y)/(x2−xy) mod 〈xy5−x−y〉.

29

We make some quick remarks before describing the algorithm in full. First, in
our ansatz for c/d we can omit monomials which are reducible by the Gröbner
basis for I and thus construct the normal forms of c and d directly. Second, if a
simpler fraction is found it can be used in place of a/b in subsequent steps of the
algorithm. In particular, the normal form computation of ad − bc mod I will
involve polynomials lower degree so that fewer reduction steps may be needed.
One would then expect the resulting linear systems to be sparser, since their
complexity depends on the number of reduction steps.

Algorithm 2.34 (Rational Expression Simplification).
Input a non-zero fraction a/b, a Gröbner basis G for a prime ideal I

with respect to some a monomial order <
(when called recursively) an initial (N,D) = (deg(c),deg(d))

Output c/d with ad ≡ bc mod I and deg(c) + deg(d) minimal
if (N,D) was not specified then

(N,D)← (0, 0)
end if
(c, d)← (a, b)
numsteps← 0
while N + D < deg(a) + deg(b) do

M1 ← {x ∈ k[x1, . . . , xn] : deg(x) ≤ N and x not reducible by G}
M2 ← {x ∈ k[x1, . . . , xn] : deg(x) ≤ D and x not reducible by G}
c̄←

∑
xi∈M1

ci xi

d̄←
∑

xj∈M2
dj xj

r ← NormalForm(ad̄− bc̄, G, <)
S ← the set of coefficients of r as a polynomial in {x1, . . . , xn}
if S has a non-trivial solution λ then

(c, d)← substitute λ into (c̄, d̄)
break loop

end if
(N,D)← (N + 1, D + 1)
numsteps← numsteps + 1

end loop
if numsteps > 0 then

(c, d)← RatSimplify(c/d, G,<,N, D − numsteps)
(c, d)← RatSimplify(c/d, G,<,N − numsteps,D)

end if
return c/d

We show that in the worst case scenario (when the fraction doesn’t reduce)
the algorithm terminates in O(d log2(d)) steps, where d = deg(a)+deg(b). From
(0, 0) we require dd/2e steps to reach the border, at which point the computation
splits into two paths of approximately half the original length. If we follow all
of the paths simultaneously, this branching can occur at most log2(d) + 1 times
before the length of each path becomes d/(2log2(d)+1) < 1. Then the total

30

number of steps is bounded by

log2(d)+2∑
i=1

2i−1d/2i =
d

2
(log2(d) + 2) ∈ O(d log2(d))

Note however that the size of the linear systems can not be controlled. In
general there are 1

n!

∏n−1
i=0 (d+ i) monomials in n variables with degree less than

d, and potentially all of them can appear in each linear system along the border.
When d is large relative to n this number is proportional to dn, so the method
becomes impractical for problems of high degree. It is for precisely this reason
that we start at (0, 0) and walk up, as opposed to some other approach. In
the event that a/b simplifies to c/d, the size of the linear systems which we
encounter will depend on deg(c) + deg(d) instead of deg(a) + deg(b).

31

Appendix A

Implementation

A.1 PolynomialIdeals in Maple 10

We have written a new Maple 10 package for ideal theoretic computations
called PolynomialIdeals which we have used extensively to experiment with
algorithms and to develop examples for this thesis. We have implemented a
data-structure for ideals of k[x1, . . . , xn], new routines for Gröbner bases, and
various ideal-theoretic operations, including all of the operations of Section 1.4.

In this section we introduce the package and show how it can be used to
perform all of the computations in Chapter 1. In the later sections we use these
routines to implement the algorithms of Chapter 2. To begin, we first load the
package using Maple’s with command. This allows us to construct ideals using
an angled-bracket notation. The ideal J below is assumed to lie in the ring
Q[x, y, z] by default.

> with(PolynomialIdeals):

Warning, the assigned name <, > now has a global binding

Warning, the protected name subset has been redefined and unprotected

> J := <x*y-z, x^2+z>;

J := 〈xy − z, x2 + z〉

Note that Maple reserves the capital letter I for the imaginary unit, so we
will use the letters J and K to represent ideals. To compute Gröbner bases it
is necessary understand how Maple represents monomial orders. They appear
as functions of the ring variables given as an argument to the Gröbner basis
command. For example, lexicographic order with x > y > z is specified as
plex(x, y, z) in Maple syntax below.

> PolynomialIdeals:-GroebnerBasis(J,plex(x,y,z));

[z2 + y2z, yz + xz, xy − z, x2 + z]

32

The other term orders are represented similarly: ’grlex’ is graded lexicographic
order and ’tdeg’ is graded reverse lexicographic order. Below we compute a
Gröbner basis for J using graded reverse lexicographic order with z > x > y.
We first alias PolynomialIdeals:-GroebnerBasis to GroebnerBasis so that we
don’t have to type as much.

> GroebnerBasis := PolynomialIdeals:-GroebnerBasis: # alias

> GroebnerBasis(J,tdeg(z,x,y));

[xy − z, x2 + z, yz + xz, z2 + y2z]

The ’prod’ order constructs an elimination order as a product of monomial
orders. In the computation below, we compare monomials first using graded
lexicographic order with x > y with ties broken by lexicographic order on z.

> GroebnerBasis(J,prod(grlex(x,y),plex(z)));

[yz + xz, z2 + y2z, xy − z, x2 + z]

Maple’s Gröbner basis commands return the unique reduced Gröbner basis
which is primitive and fraction-free, sorted in the monomial order. We will use
the internal PolynomialIdeals command, since it implements new functionality
not yet available in the standard command. For example, to run the extended
Buchberger algorithm we can use the following syntax.

> G, C := GroebnerBasis([x*y-z, x^2+z], tdeg(z,x,y), method=extended);

G, C := [xy − z, x2 + z, yz + xz, z2 + y2z], [[1, 0], [0, 1], [−x, y], [−xy − z, y2]]

The output is two lists, the first of which is the sorted reduced Gröbner basis.
The second list defines the rows of a transformation matrix whose dot product
with the vector of generators gives the Gröbner basis, as shown below.

1 0
0 1
−x y

−xy − z y2

[
xy − z
x2 + z

]
=

xy − z
x2 + z
yz + xz
z2 + y2z

To compute normal forms we will also use an internal command which can

compute a list of quotients (see Algorithm 1.13) and assign them to an optional
fourth argument. Below we compute f ÷G→ r and assign the quotients to Q.

> NormalForm := PolynomialIdeals:-NormalForm: # alias

> f := x^3-x*y^2+x*z+y*z;

f := x3 − xy2 + xz + yz
> r := NormalForm(f, G, tdeg(z,x,y), ’Q’); Q;

r := 0
[−y, x, 0, 0]

33

> ’f’ = Q[1]*G[1] + Q[2]*G[2] + ’r’; # don’t evaluate f and r

f = −y(xy − z) + x(x2 + z) + r
> evalb(expand(%)); # evaluate and test the equation

true

The package implements all of the algorithms of Section 1.4. For example, to
intersect the ideals of Example 1.28 one would type:

> Intersect(<x-1,y-1>, <x-1,y+1>);

〈x− 1, y2 − 1〉

The Quotient command computes ideal quotients. In Example 1.34 we com-
puted 〈x2, y2 − 1〉 : 〈x, y − 1〉 as the intersection of 〈x2, y2 − 1〉 : 〈x〉 and
〈x2, y2 − 1〉 : 〈y − 1〉. We can do this in Maple as follows.

> Q1 := Quotient(<x^2, y^2-1>, x);

Q1 := 〈x, y2 − 1〉
> Q2 := Quotient(<x^2, y^2-1>, y-1);

Q1 := 〈y + 1, x2〉
> Intersect(Q1,Q2);

〈x2, xy + x, y2 − 1〉

Of course, the Quotient command can also perform these steps automatically.

> Quotient(<x^2, y^2-1>, <x,y-1>);

〈x2, xy + x, y2 − 1〉

To compute Gröbner bases for modules we will employ a useful trick. Consider
the module from Example 1.57 whose generators are given below. We will
compute a Gröbner basis for this module using position over term graded-reverse
lexicographic order with x > y.

M =
〈[

y2 − x
0

]
,

[
x2 − xy

0

]
,

[
0

y2 − x

]
,

[
0

x2 − xy

]
,

[
y
1

]〉
The trick is to introduce dummy variables for each module position, such as
{e1, e2, . . . }, and the polynomials eiej = 0 for all i 6= j. The dummy variables
prevent the different components from interacting, while eiej = 0 ensures that
S(f, g) = 0 if f and g have leading monomials in distinct components.

> M := [[(y^2-x),0], [(x^2-x*y),0], [0,(y^2-x)], [0,(x^2-x*y)], [y,1]];

M := [[(y2 − x), 0], [(x2 − xy), 0], [0, (y2 − x)], [0, (x2 − xy)], [y, 1]]
> J := <e[1]*e[2], map(inner, M, [e[1],e[2]])>;

J := 〈e1e2, (y2 − x)e1, (x2 − xy)e1, (y2 − x)e2, (x2 − xy)e2, ye1 + e2〉

34

Next we compute the Gröbner basis for this ideal. We can emulate TOP or
POT using a product order, placing the original variables first or last, respec-
tively. It does not matter what order is chosen for the dummy variables.

> G := GroebnerBasis(J, prod(plex(e[1],e[2]), tdeg(x,y))); # POT order

G := [e2y
2 − e2x, e2xy − e2x, e2x

2 − e2x, ye1 + e2, e1x + ye2, e
2
2, e1e2]

Finally we discard polynomials which are not linear in the ei. The result is
a Gröbner basis for the module, which we will convert into vector form. The
basis differs with that of Example 1.57 only because it has been reduced.

> G := remove(a -> degree(a, {e[1],e[2]}) > 1, G);

G := [e2y
2 − e2x, e2xy − e2x, e2x

2 − e2x, ye1 + e2, e1x + ye2]
> GV := map(a->map2(coeff, a, [e[1],e[2]]), G);

GV := [[0, y2 − x], [0, xy − x], [0, x2 − x], [y, 1], [x, y]]
> map(Vector, GV);[[

0
y2 − x

]
,

[
0

xy − x

]
,

[
0

x2 − x

]
,

[
y
1

]
,

[
x
y

]]
We write a short Maple program to perform these steps automatically. It

takes as arguments a list of module elements, a monomial order, and either
’TOP’ or ’POT’ for term over position or position over term order, respectively.

ModuleGB := proc(M::list(list), tord, ordertype)

local N, e, i, j, V, J, G, mtord;

N := nops(M[1]);

V := [seq(e[i], i=1..N)];

J := [op(map(inner, M, V)), seq(seq(e[i]*e[j], j=1..i-1), i=2..N)];

if ordertype=’POT’ then

mtord := ’prod’(’plex’(op(V)), tord);

else

mtord := ’prod’(tord, ’plex’(op(V)));

end if;

G := GroebnerBasis(J, mtord);

G := remove(a->degree(a,{op(V)}) > 1, G);

G := map(a->map2(coeff, a, V), G);

end proc:

We test the command on the previous example.

> ModuleGB(M, tdeg(x,y), POT);

[[0, y2 − x], [0, xy − x], [0, x2 − x], [y, 1], [x, y]]

35

This computation comes from Example 2.20. We compute a Gröbner basis
using term over position graded lexicographic order with x > y.

> M := [[x-y, y^5+x+y], [y^5-2, -y^9-y^5+y^4], [0, x y^5-x-y]]:

> map(Vector,M);[[
x− y

y5 + x + y

]
,

[
y5 − 2

−y9 − y5 + y4

]
,

[
0

xy5 − x− y

]]
> G := ModuleGB(M, grlex(x,y), TOP):

> map(Vector, G);[[
x2 − xy

x + y + x2 + xy

]
,

[
x− y

y5 + x + y

]
,

[
xy4 − 2
xy4 + y4

]]

A.2 Inverses and Exact Division

Recall from Section 2.1 how we can compute inverses in k[x1, . . . , xn]/I using
the extended Buchberger algorithm. Given f ∈ k[x1, . . . , xn]/I, we compute a
Gröbner basis G for 〈f, I〉 using any monomial order. If 1 ∈ G then f is invert-
ible, and we can write 1 as a multiple of f modulo I. We demonstrate using
f = x and I = 〈x2 + y, y2 + 1〉 from Example 2.2. The Generators command is
used to get the set of generators for the ideal.

> f := x;

f := x
> J := <x^2+y, y^2+1>;

J := 〈x2 + y, y2 + 1〉
> F := [f, op(Generators(J))];

F := [x, x2 + y, y2 + 1]
> G, C := GroebnerBasis(F, grlex(x,y), method=extended);

G, C := [1], [[xy, 1,−y]]
> finv := C[1][1];

finv := xy
> NormalForm(f*finv, J, grlex(x,y)); # check

1

The general case of polynomial division is not much more complicated. Let
f = xy3 + x + 1 and I = 〈xy5 − x − y〉 from Example 2.8. We divide
g = xy3+y3+xy+y2 by f modulo I using graded lexicographic order with x > y.

> f := x*y^3+x+1;

f := xy3 + x + 1
> g := x*y^3+y^3+x*y+y^2

g := xy3 + y3 + xy + y2

36

> J := <x*y^5-x-y>;

J := 〈xy5 − x− y〉
> F := [f, op(Generators(J))];

F := [xy3 + x + 1, xy5 − x− y]
> G,C := GroebnerBasis(F, grlex(x,y), method=extended): G;

[2x2 + 3xy + y + 3x + 2, y3 + xy + y2 − x− 1, xy2 + y2 + x + y]
> C;

[[2 + x− xy3 + xy − y4x + y + xy2, xy + xy2 − x], [−1 + y3,−y], [y2,−1]]
> r := NormalForm(g, G, grlex(x,y), ’Q’); Q;

r = 0
[− 1

2y + 1
2 , x + 1, 1

2]

At this point we have the matrix equation g = QCF , where Q and F are row
and column vectors, respectively. We verify the relation in Maple.

> expand(Vector[row](Q).Matrix(C).Vector(F));

xy3 + y3 + xy + y2

The quotient for g/f is the first component of QC.

> q := NormalForm((Vector[row](Q).Matrix(C))[1], J, grlex(x,y));

q := y3

> NormalForm(g - q*f, J, grlex(x,y));

0

Once again we write a short Maple program to automate the steps above.
However we will do a dot product of Q with the first column of C and avoid the
rest of the matrix multiplication.

Div := proc(g, f, J, tord)

local F, G, C, Q, q, i;

F := [f, op(Generators(J))];

G, C := GroebnerBasis(F, tord, method=extended);

if NormalForm(g, G, tord, ’Q’)=0 then

q := add(Q[i]*C[i][1], i=1..nops(Q));

NormalForm(q, J, tord);

else

FAIL # f does not divide g mod J

end if;

end proc;

To compute the inverse of f we can simply divide 1 by f . We test the program
on the previous examples.

37

> Div(g, f, J, grlex(x,y));

y3

> Div(1, x, <x^2+y, y^2+1>, grlex(x,y));

xy

A.3 Rational Expression Simplification

The tools we have developed make it easy to implement the algorithms for
rational expression simplification. Below we have implemented Algorithm 2.26.

RatNF := proc(a, b, J, tord)

local d, c, M, G, i;

d := GroebnerBasis(Quotient(<b,op(Generators(J))>, a), tord);

c := [seq(Div(a*i,b,J,tord), i=d)];

M := [seq([c[i],d[i]], i=1..nops(c)), seq([i,0], i=Generators(J))];

G := ModuleGB(M, tord, TOP);

G := remove(a->member(0, map(NormalForm, a, J, tord)), G);

if nops(G)=0 then 0 else G[1][1]/G[1][2]; end if;

end proc:

We verify the program on Examples 2.20 and 2.22.

> RatNF(x-y, y^5+x+y, <x*y^5-x-y>, grlex(x,y));

x2 − xy

x2 + xy + x + y

> RatNF(x^3*y^3-x^4+x-1, x^2-y^2+1, <x^5+x*y-1>, grlex(x,y));

y4x− y3 − x3 + x2 − x2y + x

−x4 + x2y2 − x2

Note that Algorithm 2.26 is a normal form algorithm which can be run using
any monomial order. Below we re-run Example 2.20, this time minimizing the
largest term of the fraction with respect to lexicographic order with x > y.

> RatNF(x-y, y^5+x+y, <x*y^5-x-y>, plex(x,y));

−y5 + 2
y9 + y5 − y4

Algorithm 2.34 is a little more complicated. We will use a subroutine to
generate the set of monomials of degree less than or equal to d which are not
reducible by a given Gröbner basis.

38

GenMon := proc(vars, d::nonnegint, G, tord)

local L, M, v, m, i;

L := map(PolynomialIdeals:-LeadingMonomial, G, tord);

M := {1};
for v in vars do

M := {seq(seq(m*v^i, i=0..d-degree(m)), m=M)};
M := remove(m->member(true, map2(divide, m, L)), M);

end do;

end proc:

RatSimp := proc(a, b, J, tord, N1, D1)

local N, D, c, d, G, vars, M1, M2, cbar, dbar, r, S, L, numsteps;

if nargs = 6 then N,D := N1,D1; else N,D := 0,0; end if;

c,d := a,b;

numsteps := 0:

G := GroebnerBasis(J, tord);

vars := indets(tord, ’name’);

while N + D < degree(a)+degree(b) do

printf("%a ",[N,D]); # print the steps

M1 := GenMon(vars, N, G, tord);

M2 := GenMon(vars, D, G, tord);

cbar := add(cat(’c’,i)*M1[i], i=1..nops(M1));

dbar := add(cat(’d’,i)*M2[i], i=1..nops(M2));

r := NormalForm(a*dbar-b*cbar, G, tord);

S := coeffs(r, vars);

L := solve(S, indets(S) minus vars);

cbar,dbar := op(subs(L, [cbar, dbar]));

if cbar <> 0 and dbar <> 0 then

substitute any left over ci or di equal to 1

S := seq(i=1, i=indets([cbar,dbar]) minus vars);

c,d := op(subs(S, [cbar,dbar]));

break;

end if;

N,D := N+1,D+1;

numsteps := numsteps + 1;

end do;

if numsteps > 0 then

(c,d) := RatSimp(c, d, J, tord, N, D-numsteps);

(c,d) := RatSimp(c, d, J, tord, N-numsteps, D);

end if;

c,d;

end proc:

39

Here is a quick example to demonstrate what the subroutine does.

> GenMon({x,y}, 3, [x*y-1], plex(x,y));

{1, x, y, x2, y2, x3, y3}

Here is the algorithm running Example 2.33.

> c,d := RatSimp(y^5+x+y, x-y, <x*y^5-x-y>, grlex(x,y)):

[0, 0] [1, 1] [2, 2] [2, 0] [3, 0] [2, 1] [0, 2] [1, 2] [0, 3]

> c/d;
x2 + xy + x + y

x2 − xy

In Example 2.22 we started with a fraction of total degree eight, and the
normal form algorithm produced a fraction of higher total degree. We verify
that the original fraction had minimal total degree.

> c,d := RatSimp(x^3*y^3-x^4+x-1, x^2-y^2+1, <x^5+x*y-1>, grlex(x,y)):

[0, 0] [1, 1] [2, 2] [3, 3] [4, 0] [5, 1] [6, 0] [7, 0] [6, 1] [4, 2]

[5, 2] [4, 3] [0, 4] [1, 5] [2, 4] [3, 4] [2, 5] [0, 6] [1, 6] [0, 7]

> c/d;

x3y3 − x4 + x− 1
x2 − y2 + 1

40

Bibliography

[AL94] W. Adams, P. Loustaunau. An Introduction to Gröbner Bases. AMS,
Providence, 1994.

[Buc79] B. Buchberger. A criterion for detecting unnecessary reductions in the
construction of Gröbner bases. Lecture Notes in Computer Science, 72, pp.
3-21, 1979.

[Buc85] B. Buchberger. Gröbner Bases: An algorithmic method in polynomial
ideal theory. in Multidimensional systems theory, pp. 184-232, Reidel, 1985.

[BW93] T. Becker, V. Weispfenning. Gröbner Bases : A Computational Ap-
proach to Commutative Algebra. Springer-Verlag, New York Berlin Heidel-
berg, 1993.

[CT98] M. Caboara, C. Traverso. Efficient Algorithms for Ideal Operations (Ex-
tended Abstract). ISSAC 1998 Proceedings, pp. 147-152, 1998.

[Cox96] D. Cox, J. Little, D. O’Shea. Ideals, Varieties, and Algorithms. Second
Edition. Springer-Verlag, New York Berlin Heidelberg, 1996.

[Cox98] D. Cox, J. Little, D. O’Shea. Using Algebraic Geometry. Springer-
Verlag, New York Berlin Heidelberg, 1998.

[Fau99] J.C. Faugère. A New Efficient Algorithm for Computing Gröbner Bases
(F4). Journal of Pure and Applied Algebra, 139, 1-3, pp. 61-88, 1999.

[Fau02] J.C. Faugère. A New Efficient Algorithm for Computing Gröbner Bases
Without Reduction to Zero (F5). ISSAC 2002 Proceedings, pp. 75-83, 2002.

[Geb88] R. Gebauer, H. Möller. On an installation of Buchberger’s algorithm.
Journal of Symbolic Computation, 6, pp. 275-286, 1988.

[Fro97] R. Fröberg. An Introduction to Gröbner Bases. Wiley & Sons, West
Sussex, 1997.

[Mul01] J. Mulholland, M. Monagan. Algorithms for Trigonometric Polynomi-
als. ISSAC 2001 Proceedings, pp. 245-252, 2001.

41

