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Abstract

We introduce an algorithm to interpolate sparse multivariate polynomials with integer co-

efficients. Our algorithm modifies Ben-Or and Tiwari’s deterministic algorithm for interpo-

lating over rings of characteristic zero to work modulo p, a smooth prime of our choice. We

present benchmarks comparing our algorithm to Zippel’s probabilistic sparse interpolation

algorithm, demonstrating that our algorithm makes fewer probes for sparse polynomials.

Our interpolation algorithm requires finding roots of a polynomial in GF(p)[x], which

in turn requires an efficient polynomial GCD algorithm. Motivated by this observation, we

review the Fast Extended Euclidean algorithm for univariate polynomials, which recursively

computes the GCD using a divide-and-conquer approach. We present benchmarks for our

implementation of the classical and fast versions of the Euclidean algorithm demonstrating a

good speedup. We discuss computing resultants as an application of the fast GCD algorithm.
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Chapter 1

Introduction

In this thesis, we are interested in efficient algorithms for polynomial manipulation, partic-

ularly interpolation of sparse polynomials and computing the greatest common divisor of

two polynomials.

1.1 Polynomial interpolation

The process of determining the underlying polynomial from a sequence of its values is re-

ferred to as interpolating a polynomial from its values. Polynomial interpolation is an area

of great interest due to its application in many algorithms in computer algebra that manip-

ulate polynomials such as computing the greatest common divisor (GCD) of polynomials or

the determinant of a matrix of polynomials.

Example 1.1. Let F be a field. Consider an n× n matrix M , whose entries are univariate

polynomials in F [x] of degrees at most d, and let D = detM . Then degD ≤ nd. In

order to compute D, one can use the cofactor expansion, which requires O(n2n) arithmetic

operations in F [x] (see [13]) and can be expensive in case the coefficients of the entries and

n are large.

Alternatively, we can compute the determinant using the Gaussian Elimination (GE).

However, the standard form of GE requires polynomial division, so we often must work over

the fraction field F (x). In this approach, we need to compute the GCD of the numerator

and the denominator for each fraction that appears in the computation in order to cancel

common factors, and this need for the polynomial GCDs drives up the cost. To avoid

1



CHAPTER 1. INTRODUCTION 2

working over the fraction field, we can use the Fraction-Free GE due to Bareiss [1]. It reduces

the given matrix M to an upper triangular matrix and keeps track of the determinant as

it proceeds so that D = ±Mnn. The algorithm requires O(n3) multiplications and exact

divisions in F [x]. The degrees of the polynomials in the intermediate matrices increase as the

algorithm proceeds and can be as large as nd+(n−2)d, so a single polynomial multiplication

and division can cost up to O(n2d2) arithmetic operations in F . The average degree of the

entries is O((n/2)d). Thus total cost of the Fraction-Free GE is O(n2d2)×O(n3) = O(n5d2)

arithmetic operations in F .

A nice way to compute the determinant of M is to use evaluation and interpolation.

First, we evaluate the polynomial entries of M for x = α0 ∈ F using Horner’s method, the

cost for which can be shown to be n2O(d) arithmetic operations in F . Next, we compute the

determinant of the evaluated matrix to obtain D(α0) using the GE over F , which costs O(n3)

arithmetic operations in F . We repeat these steps for nd distinct points x = α1, . . . , αnd ∈ F
to obtain D(α1), . . . , D(αnd). We then interpolate D(x) from D(α0), D(α1), . . . , D(αnd),

which costs O(n2d2) arithmetic operations in F . The overall cost of the evaluate and

interpolate approach is O((nd + 1)n2d + (nd + 1)n3 + n2d2) = O(n3d2 + n4d), which is an

improvement of two orders of magnitude over Fraction-Free GE.

In designing an efficient algorithm for multivariate polynomial computations, it is often

crucial to be mindful of the expected sparsity of the polynomial, because an approach that

is efficient for dense polynomials may not be for sparse cases. Let us first clarify what sparse

polynomials are.

Definition 1.2. Let R be a ring, and let f ∈ R[x1, x2, . . . , xn]. Suppose f has t nonzero

terms and deg f = d. The maximum possible number of terms f can have is Tmax =
(
n+d
d

)
.

We say f is sparse if t� Tmax.

Example 1.3. Suppose f = xd1 + xd2 + · · · + xdn. To interpolate f , Newton’s interpolation

algorithm requires (d + 1)n values when f only has n nonzero terms. In contrast, Zippel’s

sparse interpolation algorithm requires O(dn2) values. These values are generated by eval-

uating the underlying polynomial and are often expensive to compute. In case of a large n,

Newton’s algorithm costs much more than Zippel’s.

We now introduce the computation model of the interpolation problem. Let R be an

arbitrary ring. Black box B containing a polynomial f ∈ R[x1, x2, . . . , xn] takes in the input
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(α1, α2, . . . , αn) ∈ Rn and returns f(α1, α2, . . . , αn) ∈ R. The determinant of a polynomial

matrix or the GCD of two polynomials can be viewed as an instance of a black box.

B
(α1, α2, . . . , αn) ∈ Rn f(α1, α2, . . . , αn) ∈ R

Figure 1.1: Blackbox representation of function f

Kaltofen and Trager introduced this model in [21], wherein the black box represents a

subroutine or a program that computes f(α1, . . . , αn). The black box implicitly defines a

multivariate polynomial through substituting elements from a given field for the variables.

They claim that by adopting the implicit representation, the black box algorithms achieve

efficiency in space over the conventional representations [14].

Example 1.4. Let M be an n × n Vandermonde matrix, where Mij = xj−1i and D =

detM =
∏

1≤i<j≤n(xi − xj) ∈ Z[x1, . . . , xn]. The expanded polynomial D has n! nonzero

terms, so working with the expanded polynomial in conventional representation requires

O(n!) storage. On the other hand, we can use the black box to represent D as a prod-

uct of irreducible factors. Since D is a product of
∑n−1

i=1 i linear factors, the black box

representation requires O(n2) storage.

The sparse interpolation problem is to determine the nonzero coefficients ci and mono-

mials Mi = xei11 xei22 · · ·xeinn so that f =
∑t

i=1 ciMi, ci ∈ R\{0} for a given black box B with

a sparse underlying polynomial f . Sometimes the interpolation algorithm will need a bound

T ≥ t on the number of terms in f or a bound D ≥ deg f on the degree of f .

Remark 1.5. Throughout this thesis, we will interchangeably use the expression evaluating

f at α ∈ Rn with probing black box B containing f .

1.2 Polynomial GCD

Computing the GCD of two polynomials is a long studied problem with many applications.

The important problem of computing the zeros of a polynomial is closely related to the

problem of computing the GCD, which in turn creates a close relationship between com-

puting GCD and the problem of factoring polynomials. (We will explore this relationship

more closely in Chapter 3.) Computing with rational functions, as mentioned in Example
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1.1, is an example for which the ability to efficiently compute the GCD is required in or-

der to reduce the size of the functions by cancelling the GCD from the numerator and the

denominator.

There are different approaches for computing polynomial GCDs for Z[x1, . . . , xn]. Some

modern algorithms use the sparsity of the polynomials and utilize polynomial interpolation

techniques to improve the cost. Brown’s Modular GCD algorithm introduced in [7] solves

the potential problem of large coefficients in computations by projecting down the problem

to find the solution modulo a set of primes and find the GCD using the Chinese Remainder

Theorem. This is an example of a a dense method. Zippel’s sparse modular GCD algorithm

in [34] improves upon Brown’s algorithm by reducing the number of univariate images of

the target polynomial using a probabilistic technique. Zippel’s multivariate GCD algorithm

is currently used by Maple, Magma, and Mathematica. In this thesis, we will focus on

variations of the classical Euclidean algorithm for polynomial GCDs. We present a way to

speed up the computations using properties of the polynomial remainder sequence.

Remark 1.6. Zippel’s algorithm obtains univariate images of the GCD and uses interpola-

tion. The process of generating a univariate image given an evaluation point can be viewed

as a black box B : Fn−1 → F [xn].

B
(α1, . . . , αn−1) ∈ Fn−1 g(α1, . . . , αn−1, xn) ∈ F [xn]

Figure 1.2: Blackbox representation for generating univariate images of g

1.3 Outline

In Chapter 2, we review four polynomial algorithms, namely Newton’s classical algorithm,

Zippel’s probabilistic algorithm [1979], Ben-Or and Tiwari’s deterministic algorithm [1988],

and Javadi and Monagan’s algorithm [2010]. We then present a new algorithm to interpolate

a sparse polynomial within a black box with coefficients over a finite field. We base our

algorithm on Ben-Or and Tiwari’s algorithm. Our goal is to develop an algorithm that

requires as few probes to the black box as possible to interpolate sparse f with integer

coefficients in polynomial time complexity in n, d, and t, where n is the number of variables,

d is the degree of f , and t is the number of nonzero terms in f . The new algorithm performs
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O(t) probes for sparse polynomial just as the Ben-Or & Tiwari’s algorithm does, which

is a factor of O(nd) less than Zippel’s algorithm which makes O(ndt) probes. We include

timings for our implementation of the new algorithm on various inputs and compare them

against those for Zippel’s algorithm.

Ben-Or and Tiwari’s sparse interpolation algorithm, as well as our new algorithm, com-

putes the roots of a degree t polynomial Λ(z) over the field Zp, which is often cost-intensive.

The bottleneck of the root finding process is computing a series of polynomial GCDs to

identify products of linear factors of Λ(z). Motivated by this observation, we review a fast

GCD algorithm in Chapter 3. The root finding process requires O(t2 log p) field operations

when using the classical Euclidean algorithm. However, implementing the fast Euclidean

algorithm reduces the complexity to O(t log t log tp). We begin the chapter by describing

the naive versions of the Euclidean algorithm that computes the GCD of two elements of a

Euclidean domain. Next, we examine the Fast Extended Euclidean Algorithm (FEEA) [11]

for computing polynomial GCD. The fast algorithm uses a recursive process to efficiently

compute the GCD of two polynomials both of degree at most n in F [x] for some field F in

O(M(n) log n) arithmetic operations in F , where M(n) is the number of arithmetic opera-

tions required to multiply two polynomials of degree at most n. In our implementation, we

use the Karatsuba polynomial multiplication algorithm, so M(n) = O(nlog2 3) ≈ O(n1.58).

Implementing the FFT would bring M(n) down further to O(n log n). We present tim-

ings from our implementation of the algorithms to demonstrate the savings in running time

from using the FEEA over the traditional Euclidean algorithm. Finally, as another appli-

cation of the FEEA, we modify it to compute the resultant of two polynomials in F [x] in

O(M(n) log n) arithmetic operations in F .



Chapter 2

Sparse Polynomial Interpolation

In this section, we focus on techniques for interpolating sparse polynomials. First, we review

four known algorithms, the first of which is the classical algorithm due to Newton. This

is a dense algorithm, in that the number of evaluations required depends solely on the

degree bound and the number of variables regardless of the number of nonzero terms in the

target polynomial. The next three algorithms of Zippel [34], Ben-Or and Tiwari [3], and

Javadi and Monagan [16] were created for sparse polynomials. Finally, we introduce a new

sparse interpolation algorithm which performs computations over a finite field. We discuss

the runtime cost of the new algorithm and present timings of our implementation of the

algorithm, which is compared against the algorithms by Zippel and Javadi and Monagan.

2.1 Previous Works

2.1.1 Newton’s Algorithm

Let F be a field and f ∈ F [x]. Newton and Lagrange’s interpolation algorithms are classical

methods for interpolating f . They are examples of dense interpolation and are inefficient

for sparse polynomials due to the number of evaluations they make, as observed in Example

1.3 with Newton interpolation.

Lagrange interpolation uses the Lagrange interpolation formula, which for a degree d

univariate target polynomial f(x) = c0 + c1x+ · · ·+ cdx
d with evaluation points α0, . . . , αd

6



CHAPTER 2. SPARSE POLYNOMIAL INTERPOLATION 7

is

fj(x) =
∏
i 6=j

0≤i≤d

x− αi
αj − αi

, 0 ≤ j ≤ d,

so that f(x) =
∑

0≤j≤d fj(x)vj , where vj = f(αj), 0 ≤ j ≤ d.

Newton’s interpolation algorithm first expresses the univariate solution of degree d in

the form

f(x) = v0 + v1(x− α0) + v2(x− α0)(x− α1) + · · ·+ vd

d−1∏
i=0

(x− αi), (2.1.1)

where the evaluation points α0, α1, . . . αd ∈ F are pairwise distinct and the Newton coeffi-

cients v1, v2, . . . , vd ∈ F are unknown. Then the coefficients vi are determined by

vi =

 f(α0), i = 0(
f(αi)− [v0 + · · ·+ vi−1

∏i−2
k=0(αi − αk)]

)(∏i−1
k=0(αi − αk)

)−1
, i = 1, . . . , d.

(2.1.2)

Note that computing fj+1(x) in the Lagrange interpolation does not utilize the previously

determined f0(x), . . . , fj(x), whereas the Newton interpolation algorithm determines the

target polynomial by building directly upon the results from the previous steps.

In the univariate case, both algorithms require d+1 points and require O(d2) arithmetic

operations in F to interpolate a polynomial of degree at most d. ([36], Chapter 13).

For a multivariate polynomial f in x1, x2, . . . , xn, Newton’s algorithm proceeds by inter-

polating for one variable at a time with vi and f(αi), which are multivariate polynomials

themselves. We illustrate the multivariate version of Newton’s interpolation algorithm with

the following example.

Example 2.1. Suppose F = Z7 and that we are given a black box with an underlying

polynomial f(x, y) = x2y + 5y + 1 ∈ Z7[x, y] and know that degx f = 2 and degy f = 1.

First, we fix x = 0 and interpolate in y. That is, we will interpolate f(0, y). Since degy f = 1,

we need two evaluations. So, we take α0 = 0, α1 = 1 and get f(0, α0) = 1, f(0, α1) = 6 from

the black box. Using (2.1.2), we compute v0 = 1 and v1 = 5. We substitute these values

into (2.1.1) and find

f(0, y) = 1 + 5(y − 0) = 5y + 1.

This f(0, y) ∈ Z7[y] constitutes a single evaluation of f(x, y) at x = 0.
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Now, let f(x, y) = a1(x)y+a0(x). Since degx f = 2, we need two more images of f(x, y)

in Z[y] to determine a0(x) and a1(x). Repeating the process of interpolating f in y with

x = 1 and x = 2, we obtain the following result.

αi f(αi, y)

0 5 y+ 1

1 6 y+ 1

2 2 y+ 1

Table 2.1: Univariate images of f

At this point, we can take {a1(0) = 5, a1(1) = 6, a1(2) = 2} and interpolate in x to

obtain a1(x) = x2 + 5. Likewise, we find a0(x) = 1 with the constant terms of f(αi, y).

Finally, we have

f(x, y) = (x2 + 5)y + 1 = x2y + 5y + 1,

which is the desired polynomial in the domain Z7[x, y].

Remark 2.2. The total number of evaluation points needed to interpolate a multivariate

polynomial f using the Newton interpolation algorithm is

n∏
i=1

(di + 1) < (d+ 1)n, (2.1.3)

for some degree bound d, d ≥ di = degxi f, i = 1, 2, . . . , n. This is exponential in n and will

grow very quickly as n and d increase, which is inefficient for sparse polynomials.

2.1.2 Zippel’s Sparse Interpolation Algorithm

Zippel’s multivariate polynomial interpolation algorithm is probabilistic with expected run-

ning time that is polynomial in the number of terms in f . The solution is built up by

interpolating one variable at a time: First, the structure (or form) of the polynomial is

determined by using dense interpolation such as Newton’s algorithm. This structure is used

as the basis for generating values for a series of sparse interpolations.

Before we present more details of Zippel’s algorithm, we consider the following lemma.

Lemma 2.3. (Schwartz [31]) Let K be a field and f ∈ K[x1, x2, . . . , xn] nonzero. Let

d = deg f . Let S be a finite subset of K, and let r1, . . . , rn be random evaluation points
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chosen from S. Then

Pr(f(r1, r2, . . . , rn) = 0) ≤ d

|S|
.

In particular, if K = Zp for some prime p, Pr(f(α) = 0) ≤ d
p for a randomly chosen α ∈ Znp .

Remark 2.4. The above lemma is commonly known as the Schwartz-Zippel Lemma. There

is some controversy as to who was the first to produce this result, as there are up to

three possible sources, Schwartz [31], Zippel [34], and DeMillo and Lipton. The first to be

published was DeMillo and Lipton in 1978, and unaware of this work, Schwartz and Zippel

presented their independent results in 1979. ([36], Chapter 12)

The key idea of Zippel’s algorithm lies in the assumption that at every stage of in-

terpolating in xi and updating the skeleton of the target polynomial, the first image of f

is computed with a good starting point. Consider the structure of f after k steps of the

algorithm, which can be written as

f(x1, . . . , xn) = f1,k(xk+1, . . . , xn)xe111 · · ·x
e1k
k + · · ·+ ft,k(xk+1, . . . , xn)xet11 · · ·x

etk
k .

If some fi,k vanishes at the starting evaluation point of the next step, then the new structure

produced is strictly smaller than it should be and the interpolation fails. On the other hand,

if none of fi,k evaluates to zero at the starting point, the new structure is a correct image

of the form of f . Fortunately, the probability of any fi,k vanishing at a point is small for a

large enough p, as shown in Lemma 2.3, provided that the evaluation point α is chosen at

random. (Zero, as I had the misfortune to learn firsthand, is not the best choice out there.)

We will describe the algorithm in more detail through the following example.

Example 2.5. Let p = 17. Suppose we are given a black box that represents the polynomial

f = x5 − 7x3y2 + 2x3 + 6yz − z + 3 ∈ Zp[x, y, z]. Suppose further we somehow know

dx = degx f = 5, dy = degy f = 2, and dz = degz f = 1.

We begin by choosing at random β0, γ0 ∈ Zp and interpolating for x to find f(x, β0, γ0)

by making dx + 1 = 6 probes to the black box. Suppose β0 = 2 and γ0 = −6. We

evaluate f(αi, β0, γ0) mod p with αi ∈ Zp chosen at random for i = 0, 1, . . . , dx = 5 to find

f(x, 2,−6) mod p. Suppose we have α0 = 0, α1 = 1, . . . , α5 = 5. Then we have

f(0, 2,−6) = 5; f(1, 2,−6) = −3; f(2, 2,−6) = −1;

f(3, 2,−6) = 5; f(4, 2,−6) = −6; f(5, 2,−6) = −1.



CHAPTER 2. SPARSE POLYNOMIAL INTERPOLATION 10

With these six points, we use a dense interpolation algorithm such as the Newton or La-

grange’s algorithm to find

f(x, 2,−6) = x5 + 0x4 + 8x3 + 0x2 + 0x+ 5.

The next step shows how the probabilistic assumption of Zippel’s algorithm is used

to find the structure of f . We assume that if some power of x had a zero coefficient in

f(x, β0, γ0), it will have a zero coefficient in f(x, y, z) as well. That is, there is a high

probability that the target polynomial is f(x, y, z) = a5(y, z)x
5 + a3(y, z)x

3 + a0(y, z) for

some a5, a3, a0 ∈ Zp[y, z].
The algorithm proceeds to interpolate each of the three coefficients for variable y. Since

dy = 2 in this example, we need two more images of f to interpolate for variable y. Pick

β1 from Zp at random. We find f(x, β1, γ0) by interpolating, and the only coefficients we

need to determine are the nonzero ones, namely a5(β1, γ0), a3(β1, γ0), and a0(β1, γ0) in this

example, since we expect that the other ones are identically zero. Note that in general, we

have at most t of these unknown coefficients.

We can find the coefficients by solving a system of linear equations of size at most t× t.
Here, we have three nonzero unknown coefficients, so we need three evaluations for the

system of equations instead of the maximum t = 6. Suppose β1 = 3. Then three new

evaluations give

f(α0, β1, γ0) = 0a5(β1, γ0) + 0a3(β1, γ0) + a0(β1, γ0) = 3,

f(α1, β1, γ0) = a5(β1, γ0) + a3(β1, γ0) + a0(β1, γ0) =−6,

f(α2, β1, γ0) =−2a5(β1, γ0) + 8a3(β1, γ0) + a0(β1, γ0) = 6.

Solving this system of equations shows a5(β1, γ0) = 1, a3(β1, γ0) = 7, and a0(β1, γ0) = 3.

Hence

f(x, 3,−6) = x5 + 7x3 + 3.

Note that there is a chance the linear equations developed in this step are linearly

dependent if random αi, βj , γk ∈ Zp are used, in which case the resulting system is singular.

If so, we evaluate at more points until a linearly independent system is formed. As well,

consider the case where our zero coefficient assumptions are incorrect in some step in the

algorithm so that some nonzero coefficient is assumed to be zero. The final solution will be

incorrect, and so the algorithm fails. Thus we need to check our assumptions about the zero

coefficients are true throughout the interpolation process. We can check for the correctness
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of the assumptions made in the previous steps by using d + 2 evaluation points instead of

d+ 1. The extra evaluations will detect with a high probability the unlucky assumption by

making the system inconsistent.

So far, we have two images f(x, β0, γ0) and f(x, β1, γ0), so we proceed to generate the

third image. We repeat the process of picking y = β2 at random, setting up a linear

system and solving the system to find the image f(x, β2, γ0). Suppose β2 = 7. We obtain

f(x, 7,−6) = x5 − x3 − 5.

Now, we interpolate each coefficient for y: From

{a3(2,−6) = 2, a3(3,−6) = 7, a3(7,−6) = −1},

we compute a3(y,−6) = −7y2+2. We determine in the same manner a5(y,−6) and a0(y,−6)

using the other two sets of coefficients and see

a5(y, γ0) = 1,

a3(y, γ0) =−7y2 + 2,

a0(y, γ0) =−2y − 8,

from which we get

f(x, y,−6) = x5 − 7x3y2 + 2x3 − 2y − 8.

Next, we proceed again with the probabilistic sparse interpolation for variable z. First,

we update the form of the solution:

f(x, y, z) = b5,0(z)x
5 + b3,2(z)x

3y2 + b3,0(z)x
3 + b0,1(z)y + b0,0(z),

where b5,0, b3,2, b3,0, b0,1, b0,0 ∈ Zp[z]. There are five terms in this form, so we need five

evaluations to set up the system of linear equations as before. Let γ1 = −4. Then by

evaluating f(λi, θi, γ1) for i = 0, 1, . . . , 4, where (λi, θi) ∈ Z2
p are chosen at random, and

solving the resulting system of equations, we see

b5,0(γ1) = 1, b3,2(γ1) = −7, b3,0(γ1) = 2, b0,1(γ1) = −7, b0,0(γ1) = 7

and thus

f(x, y,−4) = x5 − 7x3y2 + 2x3 − 7y + 7.

Interpolating for z using the coefficients from f(x, y,−6) and f(x, y,−4), we finally obtain

f(x, y, z) = x5 − 7x3y2 + 2x3 + 6yz − z + 3.



CHAPTER 2. SPARSE POLYNOMIAL INTERPOLATION 12

Zippel’s algorithm makes 17 probes to the black box for Example 2.5. Newton’s inter-

polation algorithm would have made 36 probes given the same black box. In general, if all

probabilistic assumptions hold, Zippel’s algorithm makes O(ndt) probes to the black box

for some degree bound d.

2.1.3 Ben-Or and Tiwari’s Sparse Interpolation Algorithm

Ben-Or and Tiwari’s interpolation algorithm for multivariate sparse polynomials over rings

with characteristic zero is a deterministic algorithm, in that it does not use randomization.

Assume f(x1, . . . , xn) ∈ Z[x1, . . . , xn] has t nonzero terms. In contrast to the last two

algorithms, Ben-Or and Tiwari’s algorithm does not interpolate a multivariate polynomial

one variable at a time. To run Ben-Or and Tiwari’s algorithm, we need a term bound

T ≥ t, which is an extra requirement over that for Zippel’s algorithm. On the other hand,

Ben-Or and Tiwari’s algorithm does not require a bound on the partial degrees di = degxi f ,

1 ≤ i ≤ n.

Write f = c1M1 + c2M2 + · · · + ctMt, where Mi = xei11 xei22 · · ·xeinn are the monomials

of f and the exponents eij and the nonzero coefficients ci are unknown. Given the number

of variables n and the term bound T ≥ t, Ben-Or and Tiwari’s algorithm uses the first n

primes p1 = 2, p2 = 3, . . . , pn in the 2T evaluation points αi = (2i, 3i, . . . , pin), 0 ≤ i ≤ 2T−1.

The algorithm can be divided into two phases. In the first phase, we determine eij using a

linear generator, and then in the second phase we determine ci by solving a linear system

of equations over Q.

We introduce here a direct way to find the linear generator. Suppose for simplicity T = t.

(We will deal with the case T > t later.) Let vi be the output from a probe to the black

box with the input αi, i.e., vi = f(αi) for 0 ≤ i ≤ 2t−1, and let mj = Mj(α1) for 1 ≤ j ≤ t.
The linear generator is defined to be the monic univariate polynomial Λ(z) =

∏t
i=1(z−mi),

which when expanded forms Λ(z) =
∑t

i=0 λiz
i with λt = 1. Once the coefficients λi are

found, we compute all integer roots of Λ(z) to obtain mi.

We find λi by creating and solving a linear system as follows:

Since Λ(mi) = 0 for any 1 ≤ i ≤ t, we have

0 = cim
l
iΛ(mi) = ci(λ0m

l
i + λ1m

l+1
i + · · ·+ λtm

t+l
i ).
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Summing over i gives

0 = λ0

t∑
i=1

cim
l
i + λ1

t∑
i=1

cim
1+l
i + · · ·+ λt

t∑
i=1

cim
t+l
i . (2.1.4)

Note
ml
i = 2ei1l3ei2l · · · peinln

= (2l)ei1(3l)ei2 · · · (pln)ein

= Mi(2
l, 3l, . . . , pln)

= Mi(αl),

(2.1.5)

so
t∑
i=1

cim
l
i =

t∑
i=1

ciMi(αl) = f(αl) = vi.

Then from (2.1.4), we have

0 = λ0vl + λ1v1+l + · · ·+ λtvt+l ⇐⇒ λ0vl + λ1v1+l + · · ·+ λt−1vt−1+l = −λtvt+l.

Recall also that Λ(z) is monic and so λt = 1. Hence we have

λ0vl + λ1v1+l + · · ·+ λt−1vt+l−2 + vt+l−1 = −vt+l.

Since we need to determine t coefficients λ0, λ1, . . . , λt−1, we need t such linear relations.

Letting l = 0, 1, . . . , t−1, we see we need v0, v1, . . . , v2t−1, so we make 2t probes to the black

box. Once we have these evaluations, we can solve V λ̄ = −v̄, where

V =


v0 v1 · · · vt−1

v1 v2 · · · vt
...

...
. . .

...

vt−1 vt · · · v2t−2

 , λ̄ =


λ0

λ1
...

λt−1

 , and −v̄ =


−vt
−vt+1

...

−v2t−1

 . (2.1.6)

We had assumed until now T = t. If we are given T > t, we can find t by computing

rank(V ), correctness of which comes from the following theorem and its corollary.

Theorem 2.6 ([3], Section 4). Let Vl denote the square matrix consisting of the first l rows

and columns of V . If t is the exact number of monomials appearing in f , then

detVl =


∑

S⊂{1,2,...,t},|S|=l

∏
i∈S

ci
∏

i>j,i,j∈S
(mi −mj)

2

 l ≤ t

0 l > t.
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Corollary 2.7 ([3], Section 4). If the number of nonzero coefficients in f is bounded by T ,

then the number of nonzero coefficients in f equals max
Vj is nonsingular,j≤T

{j}.

The above method of finding a linear generator Λ(z) for f costs O(T 3) arithmetic oper-

ations in Q. In our implementation, we use the Berlekamp-Massey process [25], a technique

from coding theory, to reduce the runtime to O(T 2) arithmetic operations in Q.

Next, we need to find the integer roots of Λ(z), which can be achieved in O(t3dn log n)

operations, where d = deg f , using a Hensel lifting based p-adic root finding algorithm by

Loos (1983). Once we have found mi, we use the fact mi = Mi(α1) = 2ei13ei2 · · · peinn and

find exponents eij by factoring each of mi into products of primes, which can be done by

trial divisions.

Finally, the coefficients ci are found easily by solving the t× t system of linear equations

c1M1(αi) + · · ·+ ctMt(αi) = vi, 0 ≤ i ≤ t− 1. (2.1.7)

Recall from (2.1.5) that Mj(αi) = mi
j . Thus the system in (2.1.7) can be written as Ac̄ = v̄,

where

A =


1 1 · · · 1

m1
1 m1

2 · · · m1
t

...
...

. . .
...

mt−1
1 mt−1

2 · · · mt−1
t

 , c̄ =


c1

c2
...

ct

 , and v̄ =


v0

v1
...

vt−1

 . (2.1.8)

Solving the system above is easy, because A is a transposed Vandermonde matrix. Inverting

A can be done in O(t2) time complexity [18].

We demonstrate the algorithm in the following example.

Example 2.8. Suppose we are given a black box B representing f = 3x5− 5xy2 + 2y2z+ 6

along with term bound T = t = 4. We will use three primes p1 = 2, p2 = 3, and p3 =

5. Evaluating f at 2T = 8 evaluation points αi = (2i, 3i, 5i), i = 0, . . . , 7 gives {v0 =

6; v1 = 102; v2 = 5508; v3 = 251400; v4 = 10822104; v5 = 460271712; v6 = 19658695608; v7 =

847357021200}.
The corresponding linear generator is

Λ(z) = z4 − 96z3 + 2921z2 − 28746z + 25920,

whose integer roots are

R = {45 = 32 × 51, 1, 32 = 25, 18 = 2× 32}.
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Hence we can deduce

M1 = y2z;M2 = 1;M3 = x5;M4 = xy2.

To compute the coefficients ci, we solve the system of linear equations

c1M1(αi) + · · ·+ c4M4(αi) = vi, 0 ≤ i ≤ 3.

We find c1 = 2, c2 = 6, c3 = 3, and c4 = −5. Putting together the monomials and the

coefficients, we find the correct target polynomial

f(x, y, z) = 3x5 − 5xy2 + 2y2z + 6.

Definition 2.9. An interpolation algorithm is nonadaptive if it determines all of the eval-

uation points based solely on the given bound, T , on the number of monomials.

Definition 2.10. Let f be a polynomial with at most T distinct monomials. Then f is

called T -sparse.

Theorem 2.11 ([3], Section 7). Any nonadaptive polynomial interpolation algorithm which

determines a T -sparse polynomial in n variables must perform at least 2T evaluations.

Proof. The proof of the theorem is based on the observation that every nonzero l-sparse

polynomial f , where l < 2T , can be rewritten as the sum of two distinct T -sparse polynomi-

als. We will show the proof of the univariate case here. Suppose the interpolation algorithm

chooses l < 2T points α1, . . . , αl for the given T -sparse polynomial to evaluate. Construct

the polynomial

p(x) =
l∏

i=1

(x− αi) =
l∑

i=0

cix
i,

and let

p1(x) =

bl/2c∑
i=0

cix
i and p2(x) = −

l∑
i=bl/2c+1

cix
i.

Since p(x) has at most l + 1 ≤ 2T nonzero coefficients, p1(x) and p2(x) are both T -sparse.

Moreover, by construction, p(αi) = p1(αi) − p2(αi) = 0 for 1 ≤ i ≤ l, so p1(αi) = p2(αi)

for all 1 ≤ i ≤ l. We need an additional evaluation point α for which p(α) 6= 0 so that

p1(α) 6= p2(α). That is, for any set of l < 2T evaluation points, we can construct two distinct

T -sparse polynomials that return the identical sets of outputs and require at least one more
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additional evaluation. Therefore, 2T is a lower bound for the number of evaluations needed

to interpolate a T -sparse polynomial.

Theorem 2.11 shows that Ben-Or and Tiwari’s interpolation algorithm makes the mini-

mum possible number of probes with the given bound T on the number of terms given the

algorithm’s nonadaptive approach to the interpolation problem.

Remark 2.12. The size of the evaluations f(2i, 3i, . . . , pin), i = 0, 1, . . . , 2T − 1 can be as

big as p
d(2T−1)
n , which is O(Td log pn) bits long. As the parameters grow, this bound on the

output grows quickly, making the algorithm very expensive in practice and thus not very

useful.

2.1.4 Javadi and Monagan’s Parallel Sparse Interpolation Algorithm

A drawback of Ben-Or and Tiwari’s algorithm is that it cannot be used in modular algo-

rithms such as GCD computations modulo prime p, where p is chosen to be a machine

prime, as the prime decomposition step (mi = 2ei13ei2 · · · peinn ) does not work over a finite

field. The parallel sparse interpolation algorithm due to Javadi and Monagan [17] modifies

Ben-Or and Tiwari’s algorithm to interpolate polynomials over Zp. Given a t-sparse poly-

nomial, the algorithm makes O(t) probes to the black box for each of the n variables for a

the total of O(nt) probes. The cost increase incurred by the extra factor of O(n) number

of probes is offset by the speedup in overall runtime from the use of parallelism.

Let f =
∑t

i=1 ciMi ∈ Zp[x1, . . . , xn], where p is a prime, ci ∈ Zp\{0} are the coefficients,

and Mi = xei11 xei22 · · ·xeinn are the pairwise distinct monomials of f . Let D ≥ d = deg f

and T ≥ t be bounds on the degree and the number of nonzero terms of f . Initially, the

algorithm proceeds identically to Ben-Or and Tiwari’s algorithm, except instead of first n

integer primes, randomly chosen nonzero α1, . . . , αn ∈ Zp are used for the input points. The

algorithm probes the black box to obtain vi = f(αi1, . . . , α
i
n) for 0 ≤ i ≤ 2T − 1 and uses

the Berlekamp-Massey algorithm to generate the linear generator Λ1(z), whose roots are

R1 = {r1, . . . , rt}, where ri ≡Mi(α1, . . . , αn) mod p for 1 ≤ i ≤ t.
Now follows the main body of the algorithm. To determine the degrees of the monomials

in the variable xj , 1 ≤ j ≤ n, the algorithm repeats the initial steps with new input points

(αi1, . . . , α
i
j−1, β

i
j , α

i
j+1, . . . , α

i
n), 0 ≤ i ≤ 2T − 1, where βj is a new value chosen at random

and βj 6= αj . Thus αj is replaced with βj to generate Λj+1(z), whose roots are Rj+1 =



CHAPTER 2. SPARSE POLYNOMIAL INTERPOLATION 17

{r̄1, . . . , r̄t} with r̄k ≡ Mi(α1, . . . , αj−1, βj , αj+1, . . . , αn) mod p for some 1 ≤ i, k ≤ t. The

algorithm uses bipartite matching to determine which ri and r̄k are the roots corresponding

to the monomial Mi. Then eij = degxj Mi is determined using the fact r̄k/ri = (βj/αj)
eij

and thus r̄k = ri (βj/αj)
eij is a root of Λj+1(z): since 0 ≤ eij ≤ D, we try eij = 0, 1, . . . , D

until Λj+1(ri (βj/αj)
eij ) = 0 while maintaining

∑n
j=1 eij ≤ D. This process of computing

Λj+1(z) and its roots and then determining the degrees of xj can be parallelized to optimize

the overall runtime.

The coefficients ci can be obtained from solving one system of linear equations

vi = c1r
i
1 + c2r

i
2 + · · ·+ ctr

i
t, for 0 ≤ i ≤ t− 1,

where vi are the black box output values used for Λ1(z) and ri are the roots of Λ1(z) as in

Ben-Or and Tiwari’s algorithm.

Note that this algorithm is probabilistic. If Mi(α1, . . . , αn) = Mj(α1, . . . , αn) for some

1 ≤ i 6= j ≤ t, then deg Λ1(z) < t. Since there will be fewer than t roots of Λ1(z), the

algorithm fails to correctly identify the t monomials of f . Likewise, the algorithm requires

deg Λk+1(z) = t for all 1 ≤ k ≤ n so that the bipartite matching of the roots can be

found. The algorithm guarantees that the monomial evaluations will be distinct with high

probability, by requiring choosing p � t2. To check if the output is correct, the algorithm

picks one more point α ∈ Znp at random and tests if B(α) = f(α). If B(α) 6= f(α), then we

know the output is incorrect. Otherwise, it is correct with probability at least 1− d
p .

2.2 A Method Using Discrete Logarithms

Let p be a prime, and let B : Zn → Z be a black box that represents an unknown sparse

multivariate polynomial f ∈ Z[x1, x2, . . . , xn]\{0} with t nonzero coefficients. We can write

f =

t∑
i=1

ciMi, where Mi =

n∏
j=1

x
eij
j and ci ∈ Z\{0}.

Our goal is to efficiently find f by determining the monomials Mi and the coefficients ci

using values obtained by probing B.

In general, probing the black box is a very expensive operation, and making a large

number of probes can create a bottleneck in the interpolation process. Therefore, if we can

reduce the number of probes made during interpolation, we can significantly improve the
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running time of the computation for sparse f . In Example 1.3, Newton’s algorithm required

(d + 1)n evaluations for the sparse polynomial xd1 + xd2 + · · · + xdn. For large d, we have

t = n� (d+1)n = (d+1)t, so Ben-Or and Tiwari’s algorithm that makes 2T ∈ O(t) probes

to B given a term bound T ∈ O(t) is much more efficient than Newton’s algorithm.

One important factor to consider in designing an algorithm is feasibility of implementa-

tion. When implementing sparse polynomial interpolation algorithm, it is often necessary

to work with machine integer limitations.

Example 2.13. Recall from Remark 2.12 that the output from B generated by Ben-Or and

Tiwari’s algorithm may be as large as p
d(2T−1)
n , where pn is the n-th prime. Thus, as the

parameters grow, the size of the output increase rapidly, past the machine integer limits.

One approach would be to work modulo a prime p. If p > pdn, we can use Ben-Or and

Tiwari’s algorithm directly. However, pdn can be very large. For example, if n = 10 and

d = 100, pdn has 146 digits.

Kaltofen et al. in [19] present a modular algorithm that addresses the intermediate

number growth problem in Ben-Or and Tiwari’s algorithm by modifying the algorithm to

work over pk, where p is a prime and pk is sufficiently large. In particular, pk > pdn. However,

pdn, again, can be very large, so this approach does not solve the size problem.

Our algorithm for sparse interpolation over finite field Zp is a different modification of

Ben-Or and Tiwari’s approach, wherein we select a prime p > (d + 1)n and perform all

operations over Zp. If p < 231 or p < 263, we can avoid potential integer overflow problems

in common computing situations: numbers that arise in the computation processes that are

too large for the computer hardware are reduced to fit within 32 or 64 bits.

Note that our algorithm returns fp, where fp ≡ f (mod p). If |ci| < p
2 for all i, then

we have fp = f . Otherwise, we interpolate f modulo more primes and apply the Chinese

Remainder algorithm to recover the integer coefficients ci. We will describe how to obtain

these additional images in more detail in Remark 2.21.

2.2.1 Discrete Logs

Adapting the integer algorithm to work over Zp presents challenges in retrieving the mono-

mials, as we are no longer able to use the prime decomposition of the roots of the linear

generator to determine the exponents of each variable in the monomials. We address this

problem by using discrete logarithms.
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Definition 2.14. Let α, β ∈ G = 〈α〉, where G is a cyclic group of order n. Given β ∈ 〈α〉,
the discrete logarithm problem is to find the unique exponent a, 0 ≤ a ≤ n − 1, such that

αa = β. The integer a is denoted a = logα β.

Let G be a cyclic group of order n and α, β ∈ G, where G = 〈α〉. An obvious way to

compute the discrete log is to compute all powers of α until β = αa is found. This can be

achieved in O(n) multiplications in G and O(1) space by saving the previous result αi−1 to

compute αi = α · αi−1.
The discrete log algorithm due to Shanks [32], also known as Shanks’ baby-step giant-step

algorithm, makes a time-memory tradeoff to improve the runtime. Let m = d
√
ne. Shanks’

algorithm assembles a sorted table of precomputed O(m) pairs (j, αj) for 0 ≤ j < m and uses

a binary search to find i such that β(α−m)i = αj (mod p), 0 ≤ i < m. The algorithm then

returns a = im+ j. By making clever precomputations and using a fast sorting algorithm,

Shanks’ algorithm solves the discrete logarithm problem in O(m) multiplications and O(m)

memory. A detailed description of the algorithm is presented as Algorithm 6.1 in [33].

The Pohlig-Hellman algorithm [28], first expresses n as a product of distinct primes so

that n =
∏k
i=1 p

ci
i . Next, we compute a1 = logα β (mod pc11 ), . . . , ak = logα β (mod pckk ).

This can be done by examining all the possible values between 0 and p1 or using another

discrete logarithm algorithm such as Shanks’ algorithm. Finally, we use the Chinese Re-

mainder algorithm to determine the unique a. A detailed description of the algorithm is

presented as Algorithm 6.3 in [33].

A straightforward implementation of the Pohlig-Hellman algorithm runs in time O(cipi)

for each logα β (mod pcii ). However, using Shanks’ algorithm (which runs in time O(
√
pi))

to compute the smaller instances of the discrete log problem, we can reduce the overall

running time to O(ci
√
qi). In our implementation, we use this strategy of using Pohlig-

Hellman algorithm in conjunction with Shanks’ algorithm for the runtime optimization.

In general, no efficient algorithm (i.e., polynomial time in log n) is known for computing

the discrete logarithm. In our setting, we will need to compute discrete logarithms in Zp. If

p− 1 =
∏
pcii , the discrete logs will cost O(

∑
ci
√
pi) arithmetic operations in Zp. This will

be intractable if p− 1 has a large prime factor. (E. g., p− 1 = 2q, where q is a large prime.)

We will choose p so that p − 1 has small prime factors, keeping the cost of computing the

discrete logarithms low.
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2.3 The Idea and an Example

In this section, we give a sequential description of our algorithm. Let f =
∑t

i=1 ciMi be a

polynomial, where Mi = xei11 xei22 · · ·xeinn are the t distinct monomials of f and ci ∈ Z\{0},
with partial degrees dj = degxj f , 1 ≤ j ≤ n. Let Dj ≥ dj denote the degree bounds for the

respective variables and T ≥ t the term bound. For simplicity, we will assume T = t as well

as Dj = dj in this section. As in Ben-Or and Tiwari’s algorithm, we proceed in two phases:

The monomials Mi are determined in the first phase using probes to the black box and a

linear generator based on those evaluations. Next, the coefficients ci are determined in the

second phase.

Let q1, . . . , qn be n pairwise relatively prime integers so that qi > Di for 1 ≤ i ≤ n and

p = (
∏n
i=1 qi) + 1 is a prime. For a given set of D1, . . . , Dn, such a prime is relatively easy

to construct: Let q1 be the smallest odd number greater than D1. For 2 ≤ i ≤ n−1, choose

qi to be the smallest odd number greater than Di such that gcd(qi, qj) = 1 for 1 ≤ j < i.

Now, let a = q1 · · · qn−1. Then we need a prime of the form p = a · qn + 1. By Dirichlet’s

Prime Number Theorem, we know that there are infinitely many primes in the arithmetic

progression ab+ 1 [10]. So we just pick the smallest even number qn > Dn that is relatively

prime to a and a · qn + 1 is prime.

Let ω be a primitive element of Z∗p, which can be found with a quick search: Choose

a random ω ∈ Z∗p and compute ω(p−1)/pi (mod p) for each prime divisor pi of p − 1. If

ω(p−1)/pi 6≡ 1 (mod p) for each pi, then ω is a primitive element. We already have the

partial factorization p− 1 =
∏n
i=1 qi with pairwise relatively prime qi, so finding the prime

decomposition p − 1 =
∏k
i=1 p

ei
i is easy. Note that this is the method currently used by

Maple’s primroot routine.

Given q1, . . . , qn, p, and ω as above, our algorithm starts by defining αi = ω(p−1)/qi mod p

for 1 ≤ i ≤ n. The αi are primitive qi-th roots of unity in Zp. We probe the black box to

obtain 2T evaluations

vi = f(αi1, α
i
2, . . . , α

i
n) mod p for 0 ≤ i ≤ 2T − 1.

We then use these evaluations as the input for the Berlekamp-Massey algorithm [25] to

obtain the linear generator Λ(z) whose t roots are mi = Mi(α1, α2, . . . , αn) (mod p), for

1 ≤ i ≤ t. To find the roots of Λ(z) ∈ Zp[z], we use a root finding algorithm such as Rabin’s

probabilistic algorithm presented in [29].
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Now, take mi for some 1 ≤ i ≤ t and note

mi = Mi(α1, . . . , αn) = αei11 × · · · × α
ein
n (mod p).

Then we have

logωmi = ei1 logω α1 + · · ·+ ein logω αn (mod (p− 1)),

and since logω αi = p−1
qi

from the construction αi = ω(p−1)/qi , we see

logωmi = ei1

(
p− 1

q1

)
+ · · ·+ ein

(
p− 1

qn

)
(mod (p− 1)).

Moreover, consider p−1
qj

= (
∏n
k=1 qk) /qj =

∏n
k=1,k 6=j qk and recall qi are pairwise coprime.

Thus qj | p−1qk for any 1 ≤ k 6= j ≤ n, i.e., p−1
qk
≡ 0 (mod qj) for any k 6= j. Then it follows

logωmi ≡ eij
(
p− 1

qj

)
(mod qj).

Now, since the qi are relatively prime, p−1
qj

is invertible modulo qj , and we have

eij =

(
p− 1

qj

)−1
logωmi (mod qj) (2.3.1)

for 1 ≤ i ≤ t, 1 ≤ j ≤ n. Hence we obtain all monomials of f .

Here, we need to make an important observation. If Mi(α1, . . . , αn) = Mj(α1, . . . , αn)

(mod p) for some 1 ≤ i 6= j ≤ t, we say the two monomials collide. If some monomials

do collide, the rank of the linear system required to generate the linear generator Λ(z) will

be less than t, and in turn deg Λ(z) < t. This creates a problem, because our algorithm

depends on the degree of Λ(z) to find the actual number of nonzero terms t. Fortunately,

no monomial collision occurs in our algorithm, as we will show in Theorem 2.16. We will

need the following lemma.

Lemma 2.15 ([26], Section 9.3.3). Let q1, . . . , qk be positive pairwise relatively prime inte-

gers, Q =
∏k
i=1 qi, and Qi = Q/qi. Then the map

ψ : Z/QZ −→
k∏
i=1

(Z/qiZ) : x 7−→ (x mod q1, . . . , x mod qk)

is an isomorphism with

ψ−1(a1, . . . , ak) = (a1y1Q1 + · · ·+ akykQk) mod Q,

where yiQi ≡ 1 mod qi.
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Theorem 2.16. Mi(α1, . . . , αn) 6= Mj(α1, . . . , αn) (mod p) for 1 ≤ i 6= j ≤ t.

Proof. Suppose Mi(α1, . . . , αn) = Mj(α1, . . . , αn) for some 1 ≤ i, j ≤ t. We will show i = j.

Let Qk = p−1
qk

= (
∏n
h=1 qh) /qk for 1 ≤ k ≤ n. We have

Mi(α1, . . . , αn) = αei11 × · · · × α
ein
n

= (ω(p−1)/q1)ei1 × · · · × (ω(p−1)/qn)ein

= ωei1Q1+···+einQn .

Hence Mi(α1, . . . , αn) = Mj(α1, . . . , αn) (mod p) if and only if

ωei1Q1+···+einQn ≡ ωej1Q1+···+ejnQn (mod p)

⇐⇒ ei1Q1 + · · ·+ einQn ≡ ej1Q1 + · · ·+ ejnQn (mod (p− 1)).

Let aik = eikQk (mod qk) and yk = Q−1k (mod qk) for 1 ≤ k ≤ n. (Note yk exists for all

k, because qk are pairwise coprime and thus gcd(qk, Qk) = 1.) Let ψ be the isomorphism

from Lemma 2.15. Then

ei1Q1 + · · ·+ einQn = ai1y1Q1 + · · ·+ ainynQn = ψ−1(ai1, . . . , ain) (mod (p− 1)),

and similarly,

ej1Q1 + · · ·+ ejnQn = aj1y1Q1 + · · ·+ ajnynQn = ψ−1(aj1, . . . , ajn) (mod (p− 1)).

Thus

ψ−1(ai1, . . . , ain) = ψ−1(aj1, . . . , ajn).

However, ψ is an isomorphism, so

ψ−1(ai1, . . . , ain) = ψ−1(aj1, . . . , ajn)⇐⇒ (ai1, . . . , ain) = (aj1, . . . , ajn).

Moreover, (ai1, . . . , ain) = (aj1, . . . , ajn) ⇐⇒ aik = eikQk ≡ ejkQk = ajk (mod qk) for all

1 ≤ k ≤ n. Therefore

eikQk ≡ ejkQk (mod qk)⇐⇒ eikQk − ejkQk ≡ 0 (mod qk)

⇐⇒ (eik − ejk)Qk ≡ 0 (mod qk).

Again, gcd(qk, Qk) = 1, so it follows that eik − ejk ≡ 0 (mod qk), i.e., qk | (eik − ejk). Now,

by the choice of qk, we have 0 ≤ eik, ejk ≤ Dk < qk for 1 ≤ k ≤ n. Hence eik − ejk = 0.

That is, eij = ejk for all 1 ≤ k ≤ n and Mi(x1, . . . , xn) = Mj(x1, . . . , xn). Finally, recall

that Mi are distinct monomials. Therefore, i = j, as claimed.
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Once we have found all the monomials of f , we proceed to determine the coefficients ci

by setting up the transposed Vandermonde system Ac̄ = v̄ described in (2.1.8) for Ben-Or

and Tiwari’s algorithm.

We demonstrate our algorithm with the following example.

Example 2.17. Let f = 72xy6z5+37x13+23x3y4z+87y4z3+29z6+10 ∈ Z[x, y, z]. Suppose

we are given a black box B that computes f . Here n = 3, d1 = degx f = 13, d2 = degy f =

6, d3 = degz f = 6, and t = 6. We will use the partial degree bounds D1 = 13, D2 = 6, and

D3 = 6 for the degrees dx, dy, and dz, respectively as well as the term bound T = t = 6.

We pick three pairwise relatively prime numbers so that qi > Di and p = q1q2q3 + 1 is

prime. Let our three numbers be q1 = 15, q2 = 17, and q3 = 14. This determines our prime

p = 15 · 17 · 14 + 1 = 3571. From now on, we proceed with all arithmetic operations modulo

p. We then find ω, a random generator of Z∗p, using a simple search described earlier. Here,

ω = 2 is primitive modulo p. We compute

α1 = ω
p−1
q1 = 1121, α2 = ω

p−1
q2 = 1847, and α3 = ω

p−1
q2 = 2917.

Our evaluation points sent to B are

βi = (αi1, α
i
2, α

i
3) for 0 ≤ i ≤ 2T − 1

as before. Let vi = f(βi) mod p. The 2T = 12 evaluations are

v0 = 258; v1 = 3079; v2 = 2438; v3 = 493;

v4 = 3110; v5 = 2536; v6 = 336; v7 = 40;

v8 = 2542; v9 = 2884; v10 = 2882; v11 = 201.

Given these evaluations, we use the Berlekamp-Massey algorithm to compute the linear

generator

Λ(z) = z6 + 3554z5 + 144z4 + 3077z3 + 2247z2 + 3492z + 1769.

We compute the roots in Zp using Rabin’s algorithm to obtain

R = {3191, 3337, 2913, 3554, 1305, 1}.
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Let m1 = M1(α1, α2, α3) = 3191 and compute l1 = logωm1 = 2773. Then by (2.3.1),

the exponents of x, y and z in the first monomial M1 are

e11 =
(

q1
p−1

)
l1 (mod q1) =

(
1

17·14
)

(2773) (mod 15) = 1,

e12 =
(

q2
p−1

)
l1 (mod q2) =

(
1

15·14
)

(2773) (mod 17) = 6,

e13 =
(

q3
p−1

)
l1 (mod q3) =

(
1

15·17
)

(2773) (mod 14) = 5.

We find M1 = xy6z5. We repeat the process for the rest of the roots of Λ(z) to find the

monomials of f to be xy6z5, x13, x3y4z, y4z3, z6, and 1.

For the coefficients of f , we set up the transposed Vandermonde system of linear equa-

tions described in (2.1.8). That is, given m1 = 3191,m2 = 3337, . . . ,m6 = 1, let

A =


m0

1 = 1 m0
2 = 1 · · · m0

6 = 1

m1
1 = 3191 m1

2 = 3337 · · · m1
6 = 1

...
...

. . .
...

m5
1 = 3157 m5

2 = 3571 · · · m5
6 = 1

 and v̄ =


v0 = 258

v1 = 3079
...

v5 = 2536

 .

Solving the system Ac̄ = v̄ for c̄ = [c1, . . . , c6]
T finds the coefficients

c1 = 72, c2 = 37, c3 = 23, c4 = 87, c5 = 29, and c6 = 10.

Hence we have completely determined our target polynomial

f(x, y, z) = 72xy6z5 + 37x13 + 23x3y4z + 87y4z3 + 29z6 + 10,

which is the correct interpolation for the given B.

Remark 2.18. We chose p = 3571 in the above example, but in practice, we would choose

p to be less than 231 but as large as possible.

2.4 The Algorithm

Remark 2.19. Choosing inputs q1, q2, . . . , qn, and p can be achieved quickly by sequentially

traversing through numbers from Di + 1, as described in Section 2.3. As well, choosing the

primitive element ω ∈ Z∗p can be done quickly using the method also described in Section

2.3. In our implementation, we use Maple’s primroot routine to find ω.
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Algorithm 2.1 Sparse Interpolation

Input: B: a black box B representing an unknown polynomial f ∈ Z[x1, . . . , xn]\{0}
(D1, . . . , Dn): partial degree bounds, Di ≥ degxi f
(q1, . . . , qn): n pairwise relatively prime integers, qi > Di and (

∏n
i=1 qi) + 1 prime

p: a prime number, p = (
∏n
i=1 qi) + 1

ω: a primitive element modulo p
T : a bound on number of terms of f with nonzero coefficients, T > 0

Output: fp, where fp ≡ f (mod p)

1: Let αi = ω
p−1
qi for 1 ≤ i ≤ n.

2: Evaluate the black box B at (αj1, α
j
2, . . . , α

j
n) ∈ Znp for 1 ≤ j ≤ 2T − 1.

Let vj = B(αj1, α
j
2, . . . , α

j
n) mod p.

3: Apply the Berlekamp-Massey algorithm on the sequence vj and obtain the linear gen-
erator Λ(z). Set t = deg Λ(z).

4: Compute the set of t distinct roots {m1, . . . ,mt} ∈ Ztp of Λ(z) modulo p using Rabin’s
algorithm.

5: for i = 1→ t do

6: Compute li = logωmi using the Pohlig-Hellman algorithm.

7: Let eij =
(

qj
p−1

)
li (mod qj) for 1 ≤ j ≤ n.

8: end for

9: Solve the linear system S = {c1mi
1 + c2m

i
2 + · · · + ctm

i
t = vi | 0 ≤ i ≤ t − 1} for

ci ∈ Zp, 1 ≤ i ≤ t. Here, mi = Mi(α1, . . . , αn).

10: Define fp =
∑t

i=1 ciMi, where Mi =
∏n
j=1 x

eij
j .

return fp

Remark 2.20. Given that in all likely cases p > 2, we can assume the input p to be an odd

prime without any significant consequence. In this case, p− 1 =
∏n
i=1 qi is even, so exactly

one qi will be even.

Remark 2.21. Our algorithm returns fp ≡ f mod p for the given prime p. To fully recover

the integer coefficients of f , we can obtain more images of f modulo other primes and apply

the Chinese Remainder algorithm to each of the t sets of coefficients. Assuming our initial

choice of p does not divide any coefficient of f so that the number of terms in fp is the same

as the number of terms in f , we can generate the additional images without running the full

algorithm again: Choose a new prime p∗ and a random set of values α1, . . . , αn ∈ Zp∗ . Make t

probes to the black box to obtain v∗j = B(αj1, . . . , α
j
n) mod p∗ for 0 ≤ j ≤ t−1, where t is the

number of terms in fp. Compute m∗i = Mi(α1, . . . , αn) mod p∗ for 1 ≤ i ≤ t, and solve the



CHAPTER 2. SPARSE POLYNOMIAL INTERPOLATION 26

transposed Vandermonde linear system S∗ = {c∗1mi
1+c∗2m

i
2+ · · ·+c∗tm

i
t = v∗i | 0 ≤ i ≤ t−1}

as in Step 9 for c∗i ∈ Zp∗ , 1 ≤ i ≤ t. This method of finding an additional image of f requires

t evaluations and solving a t× t system.

If fp has fewer terms than f because p does divide some nonzero coefficient of f ,

making an extra evaluation v∗t = B(αt1, . . . , α
t
n) mod p∗ and testing if v∗t indeed equals∑t

i=1 c
∗
iMi(α

t
1, . . . , α

t
n) mod p∗ will detect any inconsistency caused by the missing mono-

mial with high probability (Lemma 2.3). If an inconsistency is detected, we simply run the

full algorithm again using another smooth prime p∗.

2.5 Complexity

In this section, we discuss the complexity of Algorithm 2.1. Let d = max{di}. We will

choose p > (d+1)n and count operations in Zp. Since p > (d+1)n an arithmetic operations

in Zp is not constant cost.

Theorem 2.22. The expected total cost of our algorithm is

O(TP (n, d, t) + nT + T 2 + t2 log p+ t

n∑
i=1

√
qi) arithmetic operations in Zp.

Proof. Step 1 does not contribute significantly to the overall cost of the algorithm.

For Step 2, the total cost of computing the evaluation points is O((2T − 1)n). Next, we

need to count the cost of the probes to the black box. Let P (n, d, t) denote the cost of one

probe to the black box. Since the algorithm requires 2T probes, the total cost of the probes to

the black box is 2TP (n, d, t). Hence the total cost of Step 2 is O(2TP (n, d, t)+(2T −1)n) =

O(TP (n, d, t) + nT ).

In Step 3, the Berlekamp-Massey process as presented in [20] for 2T points costs O(T 2)

arithmetic operations modulo p using classical algorithm. It is possible to accelerate it to

O(M(T ) log T ) using the Fast Euclidean algorithm, which we will discuss in Chapter 3. (See

[11], Chapter 7).

In Step 4, in order to find the roots of Λ(z) with deg Λ(z) = t, we use Rabin’s Las

Vegas algorithm from [29], which we will review in more detail in Chapter 3. The algorithm

tries to split Λ(z) into linear factors by computing g(z) = gcd((z+α)(p−1)/2− 1,Λ(z)) with

randomly generated α ∈ Zp. If we use the classical polynomial arithmetic, computing the

power (z+α)(p−1)/2 for the initial GCD computation dominates the cost of the root-finding
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algorithm. Thus if the implementations of polynomial multiplication, division and GCD use

classical arithmetic, the cost of the step is O(t2 log p) arithmetic operations modulo p.

In Step 6, we compute one discrete log li = logωmi using the Pohlig-Hellman algorithm

which uses the known prime decomposition of p−1. We need a prime decomposition of p−1

before we can compute li. The factorization can be found quickly, since we already have the

partial decomposition p−1 =
∏n
i=1 qi. So this factorization does not significantly contribute

to the overall cost of the step, especially since we only need to compute the factorization

once for all li. Now, suppose

p− 1 =

n∏
j=1

qj =
n∏
j=1

kj∏
h=1

r
sjh
jh ,

where rjh are distinct primes, sjh > 0, kj > 0, and qj =
∏kj
h=1 r

sjh
jh . The Pohlig-Hellman

algorithm computes a series of smaller discrete logs ljh = logωmi (mod r
sjh
jh ) and applies the

Chinese Remainder algorithm to find li. Each of the smaller discrete logs costs O(sjh
√
rjh).

Therefore, the cost of computing li is O(
∑kj

h=1 sjh
√
rjh) plus the cost of the Chinese Re-

mainder algorithm with
∑n

j=1 kj moduli. Note rjh ≤ qj . If for some j and h, rjh is large

in relation to qj , then sjh is small, and it follows kj must also be small. In this case,

O(
∑kj

h=1 sjh
√
rjh) ∈ O(

√
qj). On the other hand, if qj is smooth and rjh are small, then

O(
∑kj

h=1 sjh
√
rjh) is close to O(log qj). Hence, we have O(

∑
j,h sjh

√
rjh) ∈ O(

∑n
j=1
√
qj) .

The cost of the Chinese Remainder theorem is O(N2), where N is the number of moduli,

and we have N =
∑n

j=1 kj , the number of distinct prime factors of p − 1. There are at

most log2(p − 1) factors of p − 1, so the maximum cost of the Chinese remaindering step

is O((log2(p − 1))2). But we have dlog2(p − 1)e = dlog2(
∏n
j=1 qj)e ≤

∑n
j=1dlog2 qje, and

(
∑n

j=1 log2 qj)
2 <

∑n
j=1

√
(qj) for large qj . Thus the expected cost of Step 6 is O(

∑n
j=1
√
qj).

In Step 7 we multiply li by
qj
p−1 to obtain eij for 1 ≤ j ≤ n. We can compute and

store
qj
p−1 for 1 ≤ j ≤ n before the for-loop, which requires one inversion for (p − 1)−1

and n multiplications overall. These operations can be done in O(n) time. As well, the

n multiplications for eij =
(

qj
p−1

)
li mod qi for 1 ≤ j ≤ n cost n multiplication in Zp per

iteration of the for-loop.

Adding the costs of Steps 6 and 7, we see that the total cost of the t iterations of the

for-loop in Step 5 is O(t(
∑n

j=1
√
qj + n)). But qj > 1 for all j and

∑n
j=1
√
qj > n, so the

total cost is O(t
∑n

j=1
√
qj) ∈ O(tn

√
q), where q ≥ qi.

The transposed Vandermonde system of equations in Step 9 can be solved in O(t2) [34].
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The expected total cost of our algorithm is therefore, as claimed,

O(TP (n, d, t) + nT + T 2 + t2 log p+ t

n∑
i=1

√
qi).

Suppose T ∈ O(t) and qi ∈ O(Di) with Di ∈ O(d) for 1 ≤ i ≤ n. (Remark 2.24 outlines

how to find a term bound of O(t).) Then O(log p) ∈ O(n log d) from log(p− 1) =
∑

log qi,

and we can further simplify the cost of the algorithm to

O(tP (n, d, t) + nt2 log d+ nt
√
d).

Given term bound T , Algorithm 2.1 makes exactly 2T probes. Therefore, if T ∈ O(t), the

algorithm makes O(t) probes, which is a factor of nd smaller than the number of probes made

in Zippel’s algorithm and O(n) smaller than that of Javadi and Monagan’s. Moreover, the

number of probes required is solely dependent on T . That is, Algorithm 2.1 is nonadaptive.

Theorem 2.11 states that 2T is the fewest possible probes to the black box we can make while

ensuring our output is correct given our nonadaptive approach. Therefore the algorithm is

optimal in the number of evaluations it makes, minimizing one of the biggest bottlenecks in

running time in interpolation algorithms.

Remark 2.23. The complexity of the algorithm shows that the black box evaluation, the

root finding, and the discrete log steps dominate the running time. However, in practice,

the discrete log step takes very little time at all. We will verify this claim later in Section

2.7, Benchmark #5.

Remark 2.24. Our algorithm requires a term bound T ≥ t. However, it is often difficult in

practice to find a good term bound for a given black box or be certain that an adequately

large term bound was used. One way to solve this problem is to iterate Steps 1 ∼ 3 while

increasing the term bound until the degree of the linear generator Λ(z) in Step 3 is strictly

less than the term bound. This strategy stems from the observation that deg Λ(z) is the

rank of the system generated by vi = f(αi1, α
i
2, . . . , α

i
n) mod p for 0 ≤ i ≤ 2T − 1. In fact,

this is exactly the linear system V λ̄ = v̄ described in (2.1.6). By Theorem 2.6, if T ≤ t then

rank(V ) = T , so deg Λ(z) = T for T ≤ t. That is, if we iterate until we get deg Λ(z) < T

for some T , we can be sure the term bound is large enough and that we have found all t

nonzero monomials.
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To minimize redundant computation, the algorithm can be implemented to incorporate

the previous evaluations, i.e., only compute the additional evaluation points (αi1, . . . , α
i
n)

for 2Told ≤ i ≤ 2Tnew − 1 and probe the black box. In this way, the algorithm makes

exactly 2T probes to the black box in total, where T is the first tried term bound that

gives deg Λ(z) < T . If we use T = 1, 2, 4, 8, 16, . . ., then we use at most double the number

of probes necessary and T ∈ O(t). For this method, the only significant additional cost is

from generating the intermediate linear generators, which is O(t2 log t). (Note t ≤ (d+ 1)n,

so this O(t2 log t) is overshadowed by the cost of the root finding step, O(t2 log p), in the

overall complexity.)

2.6 Optimizations

Let F be a field. Given a primitive N -th root of unity ω ∈ F and a univariate polynomial

f ∈ F [x] of degree at most N − 1, the discrete Fourier transform (DFT) of f is the vector

[f(1), f(ω), f(ω2), . . . , f(ωN−1)]. The fast Fourier transform (FFT) efficiently computes the

DFT in O(N logN) arithmetic operations in F . Due to its divide-and-conquer nature, the

algorithm requires ω to be a 2k-th root of unity for some k such that 2k ≥ N . Thus, for

F = Zp, we require 2k | p− 1. If p = 2kr + 1 is a prime for some k, r ∈ N, r small, then we

say p is a Fourier prime.

By Remark 2.20, exactly one qi, namely qn, is even for any given black box. If qn > Dn

is chosen so that qn = 2k > 2t for some k ∈ N then p is a Fourier prime, and we can use

the FFT in our algorithm, particularly in computing g(z) = gcd((z + α)(p−1)/2 − 1,Λ(z))

for roots of Λ(z) in Step 4.

Another approach to enable the use of the FFT in our algorithm is to convert the

given multivariate polynomial into a univariate polynomial using the Kronecker substitution

outlined in the following lemma.

Lemma 2.25 ([5], Lemma 1). Let K be an integral domain and f ∈ K[x1, . . . , xn] a poly-

nomial of degree at most d. Then the substitution xi 7→ X(d+1)i−1
maps f to a univariate

polynomial g ∈ K[X] of degree at most (d + 1)n such that any two distinct monomials M

and M ′ in f map to distinct monomials in g.

That is, given a multivariate f and partial degree bounds Di > degxi f , 1 ≤ i ≤ n, we

can convert it to a univariate polynomial g by evaluating f at (x, xD1 , xD1D2 , . . . , xD1···Dn−1)
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while keeping the monomials distinct. Then we need to find only a single integer q1 so that

q1 = 2kr >
∏n
i=1Di, k sufficiently large, and p = q1 + 1 is a prime to use the FFT in our

algorithm. Once the t nonzero terms of g are found, we can recover the monomials of f by

inverting the mapping we used to convert f into g.

In Chapter 3, we introduce the Fast Extended Euclidean Algorithm (FEEA), which is

a fast algorithm for finding the GCD of two polynomials. The polynomial Λ(z) in Step 3

can be computed using FEEA to reduce the cost from O(t2) using the classical algorithm to

O(M(t) log t) operations in Zp, where M(t) is the cost of multiplying polynomials of degree

at most t in Zp[z] ([11], Chapter 7). If p is chosen to be a Fourier prime, then Λ(z) can be

computed in O(t log2 t) operations.

The fast Fourier polynomial multiplication algorithm ([12], Algorithm 4.5) utilizes the

FFT to compute the product of two polynomials of degreesm and n inO((m+n) log (m+ n)).

The cost of O(t2 log p) for computing the roots of Λ(z) in Step 4 can be improved to

O(M(t) log t(log t+ log p)) using fast multiplication and fast division (as presented in Algo-

rithm 14.15 of [11]). Again, if p is chosen to be a Fourier prime, then M(t) ∈ O(t log t) and

the roots of Λ(z) can be computed in O(t log2 t(log t + n logD)) time. If D ∈ O(d), then

the total cost of Algorithm 2.1 is reduced to

O(tP (n, d, t) + t log3 t+ nt log2 t log d+ nt
√
d)).

However, t ≤ (d+ 1)n, so log t ∈ O(n log d). Hence t log3 t ∈ O(nt log d log2).

2.7 Timings

In this section, we present the performance of our algorithm and compare it against Zippel’s

algorithm. The new algorithm uses a Maple interface that calls the C implementation of the

algorithm. Some of the routines are based on Javadi’s work for [16], which we optimized for

speed. Zippel’s algorithm also uses a Maple interface, which accesses the C implementation

by Javadi. In addition, we include for the first three test sets the number of probes used

for the Javadi and Monagan’s algorithm as they appear in [16]. The rest of the test results

for Javadi and Monagan’s algorithm are not presented here due to testing environment

differences. (In particular, the tests in [16] were run with a 31-bit prime p = 2114977793.)

Note that the black box model for the new algorithm is slightly different from that of the

Zippel’s. In both models, B : Zn 7→ Zp for a chosen p, but our algorithm requires a smooth
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p that has relatively prime factors that are each greater than the given degree bounds.

To address this difference, we first use our new algorithm to interpolate the underlying

polynomial of a given black box modulo p of our choice and then proceed to interpolate the

polynomial again with Zippel’s algorithm with the same prime p.

We present the results of five sets of tests with randomly generated polynomials. We

report the processing time and the number of evaluations made during the interpolation

by each algorithm. All timings are in CPU seconds and were obtained using Maple’s time

routine for the overall times and the time.h package for C for individual routines. All tests

were executed using Maple 15 on a 64 bit AMD Opteron 150 CPU 2.4 GHz with 2 GB

memory running Linux.

We randomly generated for each test case a multivariate polynomial with coefficients in

Z using Maple. The black box B takes in the evaluation point α as well as p and returns

the polynomial evaluated at the given point of our choice, modulo p. In order to optimize

computation time, the black box evaluation routine first computes all of xij for j = 1, . . . , n

and i = 0, . . . , dj , which takes O(
∑n

i=1 di) arithmetic operations in Zp. Then the routine

proceeds to compute each of the t terms of f by accessing the exponents of each variable

and using values computed in the previous step before adding the t computed values and

finally returns the values. This latter part of the routine can be done in O(nt) arithmetic

operations in Zp. Thus in our implementation P (n, d, t), the cost of a single probe to the

black box, is O(nd+ nt) arithmetic operations in Zp, where d = max{di}.

Benchmark #1

In the first set of tests, we examine the impact the number of terms has on the computation

time given a black box B for a polynomial f in n = 3 variables and of a relatively small

degree d = 30. The multivariate polynomial for the i-th test polynomial is generated to have

approximately t = 2i nonzero terms for 1 ≤ i ≤ 13 using the following Maple command:

> f := randpoly( [x[1], x[2], x[3]], terms = 2^i, degree = 30);

For the i-th test, we use D = 30 and T = 2i as the degree and term bounds. The results

are presented in Table 2.2. Our algorithm generally performs comparably to or better than

Zippel’s initially for i ≤ 10 but becomes slower for 11 ≤ i ≤ 13. This is due to the fact

that although Zippel’s algorithm does O(nDt) probes for sparse polynomials, it does O(t)

for dense polynomials.
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Table 2.2: Benchmark #1: n = 3, d = 30 = D = 30, p = 34721

i t T
New Algorithm Zippel Javadi

Time
Probes

Time
Probes Probes

(2T ) (O(nDt)) (2nT + 1)

1 2 2 0.001 4 0.003 217 13
2 4 4 0.001 8 0.006 341 25
3 8 8 0.001 16 0.009 558 49
4 16 16 0.003 32 0.022 899 97
5 32 32 0.002 64 0.022 1518 193
6 64 64 0.007 128 0.060 2604 385
7 128 128 0.021 256 0.176 4599 769
8 253 256 0.066 512 0.411 6324 1519
9 512 512 0.229 1024 1.099 9672 3073
10 1015 1024 0.788 2048 2.334 12493 6091
11 2041 2048 2.817 4096 4.849 16182 12247
12 4081 4096 10.101 8192 9.127 16671 24487
13 5430 8192 21.777 16384 12.161 16927 32581

The data shows that the new algorithm makes fewer probes to the black box than both

of the other two algorithms. As i increases, the respective polynomials become denser. In

particular, for i = 13, the maximum possible number of terms is tmax =
(
n+d
d

)
=
(
33
30

)
= 5456.

The bound T = 213 = 8192 is greater than the actual number of monomials t = 5430. This

inefficiency results in a significant increase in the processing time of the new algorithm. On

the other hand, Zippel’s algorithm’s performance time does not increase as dramatically

from n = 12 to n = 13. Given a completely dense polynomial, Zippel does O(t) probes to

interpolate it, and since t � 2T in this case, Zippel’s algorithm is more efficient. Given

a sparse polynomial, Javadi and Monagan’s algorithm makes (2nT + 1) ∈ O(nT ) probes,

where the extra point is to check if the output is correct. Indeed, our algorithm consistently

makes roughly a factor of n = 3 fewer evaluations for all but the last test cases.

To examine the impact of using a bad degree bound D to interpolate, we repeat the

same set of tests with a degree bound D = 100. We present the results in Table 2.3. Both

our algorithm and Javadi and Monagan’s algorithm make the same number of probes as the

first test, whereas the number of probes made by Zippel’s algorithm increases roughly by

the factor of 3, which is the increase in the degree bound, reflecting the fact Zippel makes

O(nDt) probes.
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Table 2.3: Benchmark #1: n = 3, d = 30, D = 100 (bad bound), p = 1061107

i t T
New Algorithm Zippel Javadi

Time
Probes

Time
Probes Probes

(2T ) (O(nDt)) (2nT + 1)

1 2 2 0.000 4 0.018 707 13
2 4 4 0.002 8 0.028 1111 25
3 8 8 0.001 16 0.050 1818 49
4 16 16 0.004 32 0.045 2929 97
5 32 32 0.003 64 0.085 4848 193
6 64 64 0.009 128 0.221 8484 385
7 128 128 0.028 256 0.602 14241 769
8 253 256 0.089 512 1.397 20604 1519
9 512 512 0.314 1024 3.669 31512 3073
10 1015 1024 1.112 2048 7.714 40703 6091
11 2041 2048 4.117 4096 15.944 49288 12247
12 4081 4096 15.197 8192 29.859 52722 24487
13 5430 8192 30.723 16384 38.730 53530 32581

The number of evaluations made by the new algorithm only depends on the term bound

and therefore stays the same as in the first test. Nevertheless, the overall timings of the new

algorithm increases with the bad degree bound. This is largely due to the root finding step

with cost O(t2 log p) ∈ O(t2n logD) arithmetic operations in Zp. The cost of the discrete

log step is O(n
√
D) arithmetic operations in Zp and also increases with D. However, even

the increased cost does not impact the overall timing significantly. In Benchmark #5, we

present the breakdown of the timings and verify these explanations.

Benchmark #2

The second benchmarking set uses polynomials in n = 3 variables with approximately 2i

nonzero terms for the i-th polynomial. All polynomials will be of total degree approximately

100, which is larger than the 30 in the first set. This time, the polynomials are much more

sparse than those for the first set. We will use degree bound D = 100. We generate the test

cases using the following Maple code for 1 ≤ i ≤ 13.

> f := randpoly( [x[1], x[2], x[3]], terms = 2^i, degree = 100);

Table 2.4 shows the result of the tests. The number of probes for our new algorithm

stays the same as in the first set of tests even though the total degree of the polynomials
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Table 2.4: Benchmark #2: n = 3, d = D = 100, p = 1061107

i t T
New Algorithm Zippel Javadi

Time
Probes

Time
Probes Probes

(2T ) (O(nDt)) (2nT + 1)

1 2 2 0.000 4 0.016 505 -
2 4 4 0.001 8 0.020 1111 -
3 8 8 0.000 16 0.031 1919 49
4 16 16 0.001 32 0.074 3535 97
5 31 32 0.004 64 0.145 5858 187
6 64 64 0.010 128 0.350 10807 385
7 127 128 0.029 256 0.940 18988 763
8 254 256 0.092 512 2.726 32469 1519
9 511 512 0.319 1024 8.721 57242 3067
10 1017 1024 1.129 2048 28.186 98778 6103
11 2037 2048 4.117 4096 87.397 166751 12223
12 4076 4096 15.394 8192 246.212 262802 24457
13 8147 8192 56.552 16384 573.521 363226 48883

are higher for this second set.

Benchmark #3

The third benchmarking set uses polynomials in n = 6 variables with total degree and

degree bound of 30. The i-th polynomial has roughly 2i nonzero terms. The problem set

is generated with the following Maple code for 1 ≤ i ≤ 13. Since the maximum possible

number of terms is
(
6+30
30

)
= 1947792� 8192 = 213, the test polynomials are all sparse.

> f := randpoly([x[1],x[2],x[3],x[4],x[5],x[6]], terms=2^i, degree=30);

We present the results of the timings in Table 2.5. While the overall interpolation times

increase in comparison to the second benchmarking set, the new algorithm still makes the

same number of probes to the black box. The time increases we see are again mostly due

to the increased cost of the root finding step.

Benchmark #4

To better highlight the strength of our new algorithm, we test with this set of extremely

sparse polynomials wherein we hold the number of terms of f constant and increase the
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Table 2.5: Benchmark #3: n = 6, d = D = 30, p = 2019974881

i t T
New Algorithm Zippel Javadi

Time
Probes

Time
Probes Probes

(2T ) (O(nDt)) (2nT + 1)

1 2 2 0.001 4 0.024 465 -
2 3 4 0.001 8 0.016 744 -
3 8 8 0.001 16 0.026 1333 97
4 16 16 0.002 32 0.045 2418 193
5 31 32 0.004 64 0.102 4340 373
6 64 64 0.014 128 0.298 8339 769
7 127 128 0.041 256 0.868 14570 1525
8 255 256 0.171 512 3.019 27652 3061
9 511 512 0.476 1024 10.499 50592 6133
10 1016 1024 1.715 2048 36.423 91171 12193
11 2037 2048 6.478 4096 133.004 168299 24445
12 4083 4096 24.733 8192 469.569 301103 48997
13 8151 8192 95.066 16384 1644.719 532673 97813

degrees of the polynomials. The fourth benchmarking set uses polynomials in n = 3 variables

with the number of nonzero terms t around 100. The i-th polynomial is roughly of degree

2i. We use the following Maple code to generate the polynomials.

> f := randpoly( [x[1], x[2], x[3]], terms = 100, degree = 2^i);

Table 2.6: Benchmark #4: n = 3, T = 100

i d p
New Algorithm Zippel
Time Probes Time Probes

1 2 61 0.002 200 0.000 36
2 4 211 0.007 200 0.003 121
3 8 991 0.008 200 0.019 450
4 16 8779 0.012 200 0.040 1532
5 32 43891 0.014 200 0.121 3762
6 64 304981 0.016 200 0.344 9330
7 128 2196871 0.021 200 0.954 20382
8 256 17306381 0.024 200 2.851 45746
9 512 137387581 0.031 200 8.499 94392
10 1024 1080044551 0.042 200 30.661 200900

Table 2.6 shows the results of the tests. The new algorithm makes 200 probes for each of

the ten test cases, whereas Zippel’s algorithm makes more than 200,000 probes for i = 10.
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As a result, the new algorithm is significantly faster than Zippel’s.

Benchmark #5

In this section, we present the cost of the key steps of our algorithm for two sets of tests using

the polynomials we used for Benchmark #2 (Table 2.4) and at the same time demonstrate

in detail the effect of increasing the degree bound.

Table 2.7: Benchmark #5: n = 3, d = 100, p = 1061107 = 101 · 103 · 102 + 1

i T
Total Black Box Berlekamp- Root Discrete Linear
Time Probes Massey Finding Logs Solve

1 2 0.000 0.00 0.00 0.00 0.00 0.00
2 4 0.001 0.00 0.00 0.00 0.00 0.00
3 8 0.000 0.00 0.00 0.00 0.00 0.00
4 16 0.001 0.00 0.00 0.00 0.00 0.00
5 32 0.004 0.00 0.00 0.00 0.00 0.00
6 64 0.010 0.00 0.00 0.00 0.01 0.00
7 128 0.029 0.01 0.00 0.00 0.01 0.00
8 256 0.092 0.02 0.01 0.05 0.01 0.00
9 512 0.361 0.07 0.01 0.29 0.01 0.02
10 1024 1.129 0.24 0.07 0.70 0.02 0.08
11 2048 4.117 0.94 0.27 2.52 0.04 0.30
12 4096 15.394 3.75 1.09 9.04 0.07 1.19
13 8192 56.552 14.84 4.49 32.01 0.14 4.73

Table 2.8: Benchmark #5: n = 3, d = 100, p = 1008019013 = 1001 · 1003 · 1004 + 1

i T
Total Black Box Berlekamp- Root Discrete Linear
Time Probes Massey Finding Logs Solve

1 2 0.000 0.00 0.00 0.00 0.00 0.00
2 4 0.001 0.00 0.00 0.00 0.00 0.00
3 8 0.002 0.00 0.00 0.00 0.01 0.00
4 16 0.004 0.00 0.00 0.00 0.00 0.00
5 32 0.010 0.00 0.00 0.00 0.01 0.00
6 64 0.012 0.00 0.00 0.01 0.00 0.00
7 128 0.036 0.01 0.00 0.02 0.01 0.00
8 256 0.114 0.02 0.00 0.08 0.01 0.01
9 512 0.397 0.07 0.02 0.37 0.01 0.02
10 1024 1.428 0.25 0.06 1.00 0.04 0.06
11 2048 5.337 0.95 0.23 3.81 0.07 0.23
12 4096 20.413 3.77 0.97 14.39 0.14 0.90
13 8192 77.481 14.83 3.96 54.44 0.28 3.63
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Table 2.7 presents the breakdown of the timings from Benchmark #2, where q1 =

101, q2 = 103, q3 = 102, and p = 1061107 were used. Table 2.8 shows the result of the

running the tests with a larger 31-bit prime p = 1008019013 with q1 = 1001, q2 = 1003, and

q3 = 1004. Note that the latter setup is equivalent to using a bad degree bound D = 1000

for the degree 100 polynomials.

The data shows that for i ≥ 10, the cost of the Berlekamp-Massey process, root-finding,

and linear solve steps all grow roughly by a factor of 4 as T doubles, showing a quadratic

increase. The breakdowns also verify our earlier statement for Benchmark #1 that the

increase in the runtime when using a bad degree bound D is caused by the increase in the

cost of the root-finding and discrete log steps. Moreover, the cost of root finding quickly

becomes the biggest part of the total time as t increases in both tests. In contrast, the cost

of the discrete log step remains very small compared to the overall cost, so the growth in

the discrete log step does not contribute significantly to the overall cost of the interpolation.



Chapter 3

Fast Polynomial GCD

In this chapter, we are interested in the problem of computing polynomial GCDs over finite

fields. In particular, we will work over Zp, the field of integers modulo p. First, we consider

an example illustrating the importance of fast GCD computation. We then present the

classical Euclid’s algorithm for computing the GCD of two polynomials, followed by a fast

variation of the algorithm, known as the Fast Extended Euclidean algorithm (FEEA).

The idea for the fast GCD algorithm was proposed by Lehmer in [24] for integer GCD

computation. For integers of length n, Knuth [23] proposed a version of the fast algorithm

with O(n log5 n log logn) time complexity in 1970, which was improved by Schönhage [30] to

O(n log2 n log logn) in 1971. In 1973, Moenck [27] adapted Schönhage’s algorithm to work

with polynomials of degree n in O(n loga+1 n) time complexity, assuming fast multiplication

in time complexity O(n loga n) and division at least log reducible to multiplication. We

develop the fast Euclidean algorithm for polynomials, as presented in von zur Gathen and

Gerhard [11], which runs in O(M(n) log n) time complexity, where M(n) is the cost of

multiplying two polynomials of degree at most n. We have implemented the traditional

and the fast algorithms for polynomials and present in Section 3.5 a comparison of their

performance.

As shown in Chapter 2, our sparse interpolation algorithm requires an efficient root-

finding algorithm for univariate polynomials in Zp[x]. We use Rabin’s probabilistic algo-

rithm, presented in Rabin’s 1980 paper [29]. It finds roots of a univariate polynomial over Fq
by computing a series of GCDs. We describe the algorithm here and show that the cost of

computing the GCDs has a large impact on the cost of identifying the roots of a polynomial.

38
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3.0.1 Rabin’s Root Finding Algorithm

Let Fq be a fixed finite field, where q = pn for some odd prime p and n ≥ 1. Suppose we

are given a polynomial f ∈ Fq[x] with deg f = d > 0 and want to find all α ∈ Fq such that

f(α) = 0. We will need the following lemma.

Lemma 3.1. In Fq, xq − x =
∏
α∈Fq(x− α).

Proof. Recall that in a finite field with q elements, F∗q is a multiplicative group of order

q − 1. So aq−1 = 1 for any a ∈ F∗q . Then we have aq = a, i.e., aq − a = 0 for all a ∈ F∗q .
Moreover, 0q − 0 = 0. Thus any a ∈ Fq is a solution to the equation xq − x = 0. That is,

(x− a) | (xq − x) for all a ∈ Fq. Therefore we see xq − x =
∏
α∈Fq(x− α), as claimed.

Rabin’s algorithm first computes f1 = gcd(f, xq − x). Let k = deg f1. By Lemma 3.1,

f1 is the product of all distinct linear factors of f in Fq[x], so we can write

f1(x) = (x− α1) · · · (x− αk), k ≤ d,

where α1, α2, . . . , αk ∈ Fq are all distinct roots of f . Next, the algorithm exploits the

factorization

xq − x = x(x(q−1)/2 − 1)(x(q−1)/2 + 1)

to further separate the linear factors. Let f2 = gcd(f1, x
(q−1)/2−1). Then all the αi satisfying

α
(q−1)/2
i − 1 = 0 will also satisfy (x− αi)|f2 while the rest of the αi satisfy α

(q−1)/2
i + 1 = 0

or αi = 0 instead and thus (x− αi) - f2.
A problem arises at this point, because there is no guarantee that f2 6= 1 or f2 6= f1,

in which case we have no new information. As a solution, Rabin introduces randomization

to try to split f1: after computing f1, Rabin’s algorithm randomly chooses δ ∈ Fq and

computes fδ = gcd(f1, (x + δ)(q−1)/2 − 1). This step is motivated by the observation that

0 < deg fδ < k = deg f1 with high probability.

Example 3.2. The probability of getting 0 < deg fδ < k can be shown to be at least

1−
(
q−1
2q

)k
−
(
q+1
2q

)k
. For k ≥ 2, this probability is minimized when q = 4 and k = 2, giving

the lower bound of 4
9 . (Refer to the proof of Theorem 8.11 in [12] for details.)

Remark 3.3. This algorithm as presented in [29] uses f1 = gcd(xq−1 − 1, f). In it, Rabin

showed the probability 0 < deg fδ < deg f1 is at least q−1
2q ≈

1
2 and conjectured that this

probability is at least 1− (12)k−1 +O( 1√
q ), which was proven by Ben-Or in [2].
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If we are successful (i.e., we have that 0 < deg fδ < deg f1), then the algorithm proceeds

to recursively compute the roots of fδ and f1/fδ. On the other hand, if fδ = 1 or fδ = f1,

then the algorithm chooses another δ at random and tries again to split f1. We repeat this

process of choosing a random δ and computing fδ until we find a satisfactory fδ that splits

f1. We formally describe Rabin’s root finding algorithm in Algorithm 3.1.

Algorithm 3.1 FIND ROOTS(f , q)

– Main routine

Input: f ∈ Fq[x], d = deg f > 0
Output: Distinct roots of f = 0 in Fq
1: f1 ←− gcd(f, xq − x) /* monic GCD */
2: return ROOTS(f1, q)

– Subroutine: ROOTS(f1, q)

1: if f1 = 1 then return {}
2: if deg f1 = 1, i.e., f1 = x− α then return {α}
3: f2 ←− 1
4: while f2 = 1 or f2 = f1 do
5: choose at random δ ∈ Fq
6: f2 ←− gcd(f1, (x− δ)(q−1)/2 − 1) /* monic GCD */
7: end while
8: return ROOTS(f2, q) ∪ ROOTS(f1/f2, q)

Remark 3.4. We can optimize the computation for gcd(f1, (x−δ)(q−1)/2−1) in Step 6 of the

subroutine ROOTS. First, gcd(f1, (x−δ)(q−1)/2−1) = gcd(f1, (x−δ)(q−1)/2−1 mod f1), so

it is sufficient to compute (x−δ)(q−1)/2−1 mod f1. That is, instead of working with a degree
q−1
2 polynomial (x− δ)(q−1)/2 − 1, we can reduce it to (x− δ)(q−1)/2 − 1 mod f1 so that the

GCD computation involves two polynomials of degrees at most k, since deg((x− δ)(q−1)/2−
1 mod f1) < k. Moreover, rather than naively computing (x−δ)(q−1)/2 by multiplying (x−δ)
by itself q−1

2 − 1 times, modulo f1, we can use the technique known as square-and-multiply

and achieve the exponentiation in O(log q) multiplications and divisions of polynomials of

degrees at most 2k ≤ 2d. (See [11], Algorithm 4.8.) Using classical polynomial arithmetic,

this costs O(d2 log q) arithmetic operations in Fq. Note that we can optimize Step 1 of the

main algorithm FIND ROOTS in the same way.

One can show that the expected total number of arithmetic operations made by Al-

gorithm 3.1 is O(d2 log d log q) for the powering plus O(d2 log d) for computing the GCDs.
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Gerhard and von zur Gathen [11] showed that if fast polynomial multiplication is used this

can be reduced to O(M(d) log q log d+M(d) log2 d) arithmetic operations in Fq.

Remark 3.5. In case of p = 2, the algorithm described above is not directly applicable.

However, by making a modification to the algorithm so that it uses the trace polynomial

Tr(x) = x+ x2 + · · ·+ x2
n−1

in place of xq − x, we can apply the same overall strategy to

find roots of f in Fq.

Remark 3.6. Notice that there is a natural relationship between the problem of finding

roots and the problem of factoring polynomial. In fact, root finding can be used to find

polynomial factorization, as shown in [4] and [29]. For example, given the problem of

factoring a polynomial f ∈ Zp[x] into irreducible factors, Rabin reduces it to the problem

of finding roots of the same polynomial. Thus we see that polynomial factorization is, in

turn, another example of an application of polynomial GCD.

3.1 Preliminaries

Here, we introduce some notation. Throughout this section, letD denote an integral domain.

The definitions and algorithms presented here are adopted from von zur Gathen and Gerhard

[11] and Geddes et al. [12].

Definition 3.7. An element u ∈ D is called a unit if there is a multiplicative inverse of u

in D, i.e., there is v ∈ D such that uv = vu = 1.

Definition 3.8. Two elements a, b ∈ D are associates if a | b and b | a, which is denoted

by a ∼ b.

In an integral domain D, if two elements a and b are associates, then a = ub for some

unit u ∈ D. By using the fact that ∼ is an equivalence relation on D, we can partition

D into associate classes [a] = {b : b ∼ a} so that each class is formed by selecting a thus

far unchosen element of D and collecting the set of all associates of D. A single element

from each class is chosen as the canonical representative and is defined to be unit normal.

For example, in Z, the associate classes are {0}, {−1, 1}, {−2, 2}, . . ., and the nonnegative

element from each class is defined to be unit normal. If D is a field, all nonzero elements

are associates of each other, and the only unit normal elements are 0 and 1.
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Definition 3.9. Let n(a) denote the normal part of a ∈ D, the unit normal representative

of the associate class containing a. For nonzero a, the unit part of a is the unique unit

u(a) ∈ D such that a = u(a) n(a). If a = 0, denote n(0) = 0 and u(0) = 1.

Definition 3.10. Let a, b ∈ D. Then c ∈ D is a greatest common divisor (GCD) of a and

b if

(i) c | a and c | b,

(ii) c | r for any r ∈ D that divides both a and b.

Given a, b ∈ D, if c, d ∈ D are both GCDs of a and b then it follows that c ∼ d. As

well, if c is a GCD of a and b, then any associate of c is also a GCD of a and b. Therefore,

it is important to establish that the notation g = gcd(a, b) refers to the unique unit normal

GCD g of a and b whenever the unit normal elements for D are defined. If D is a field, then

gcd(a, b) = 0 for a = b = 0 and gcd(a, b) = 1 otherwise.

Remark 3.11. For any a ∈ D, gcd(a, 0) = n(a).

Definition 3.12. A nonzero element p in D is a prime if p is not a unit and whenever

p = ab for some a, b ∈ D, either a or b is a unit.

Definition 3.13. An integral domain D is a unique factorization domain (UFD) if for all

nonzero a in D either a is a unit or a can be expressed as a finite product of primes such

that this factorization into primes is unique up to associates and reordering.

Definition 3.14. A Euclidean domain E is an integral domain with an associated valuation

function v : E\{0} → Z≥0 with the following properties:

1. For all a, b ∈ E\{0}, v(ab) ≥ v(a);

2. For all a, b ∈ E with b 6= 0, there exist elements q, r ∈ D such that a = bq+ r where r

satisfies either r = 0 or v(r) < v(b).

Example 3.15. The integers Z and the polynomial ring F [x], where F is a field, are

Euclidean domains, with valuations v(a) = |a| and v(a) = deg a respectively.
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3.2 The Euclidean Algorithm

Given the problem of computing the GCD of two given elements of a Euclidean domain

E, the Euclidean algorithm computes a series of divisions and computing the GCD of two

smaller elements which are remainders from the divisions in E. The correctness of the

algorithm follows from Theorem 3.16.

Theorem 3.16 ([12], Theorem 2.3). Let E be a Euclidean domain with a valuation v. Let

a, b ∈ D, where b 6= 0. Suppose some quotient q ∈ E and remainder r ∈ E satisfy

a = bq + r with r = 0 or v(r) < v(b).

Then gcd(a, b) = gcd(b, r).

Definition 3.17. Given a division a ÷ b, let a rem b and a quo b denote the remainder

r and the quotient q of the division, so that r and q satisfy a = bq + r with r = 0 or

v(r) < v(b).

We will illustrate with an example the Euclidean algorithm for polynomials in F [x],

where F is a field and v(a) = deg(a). However, before we discuss the Euclidean algorithm

for polynomials, we need to choose which elements are the associate class representatives

for F [x]. Recall that in a field F , all nonzero elements are units and thus form one associate

class with 1 as the class representative. Then for a polynomial f ∈ F [x], f ∼ af for any

a ∈ F\{0}, and the associate classes of F [x] are formed by nonzero scalar multiples of the

polynomials of F [x]. Hence, a reasonable choice for the representative of an associate class

in F [x] is the monic polynomial, i.e., the polynomial whose leading coefficient is 1. That

is, if g is a GCD of some a, b ∈ F [x], gcd(a, b) = g/ lc(g), where lc(g) denotes the leading

coefficient of g. Note the leading coefficient of g ∈ F [x] satisfies the definition of the unit

part for g. Thus we can use u(f) = lc(f) and n(f) = f/ lc(f) for any f ∈ F [x]. As usual, if

f = 0 then u(f) = 1 and n(f) = 0.

Example 3.18 (Euclidean Algorithm for Polynomials). Let p = 17 and E = Zp[x]. Since

17 is a prime, Zp is a field, and therefore E is a Euclidean domain. Suppose we are given

a(x) = 8x3 + 3x2 − 2x− 3 and b(x) = 3x3 − 6x2 + 6x− 8. To compute gcd(a(x), b(x)), we
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proceed as follows.

a(x) = −3 · b(x) + (2x2 − x+ 7) (mod 17)

⇒ gcd(a(x), b(x)) = gcd(b(x), 2x2 − x+ 7)

b(x) = (−7x+ 2) · (2x2 − x+ 7) + (6x− 5) (mod 17)

⇒ gcd(b(x), 2x2 − x+ 7) = gcd(2x2 − x+ 7, 6x− 5)

2x2 − x+ 7 = (6x+ 2) · (6x− 5) + 0

⇒ gcd(2x2 − x+ 7, 6x− 5) = gcd(6x− 5, 0)

Thus gcd(a(x), b(x)) = gcd(6x−5, 0), and gcd(6x−5) = n(6x−5) by Remark 3.11. Finally,

n(6x− 5) = x+ 2, so gcd(a(x), b(x)) = x+ 2 in Z17[x].

The Euclidean algorithm we used in our example can be formally described as follows.

Algorithm 3.2 Euclidean Algorithm

Input: a, b ∈ E, where E is a Euclidean domain with valuation v
Output: gcd(a, b)
1: r0 ←− a; r1 ←− b
2: i = 1
3: while ri 6= 0 do
4: ri+1 ←− ri−1 rem ri
5: i←− i+ 1
6: end while
7: g ←− n(ri−1)
8: return g

Definition 3.19. Let a, b ∈ E. The sequence r0, r1, . . . , rl, rl+1 with rl+1 = 0 obtained

from computing gcd(a, b) using the Euclidean algorithm is called the Euclidean remainder

sequence.

3.2.1 Complexity of the Euclidean Algorithm for F [x]

We now examine the complexity of the Euclidean algorithm. We will focus on the case

E = F [x] for some field F , for which the degree function is the valuation. We will assume

classical division and count the number of arithmetic operations in F .

Suppose we are given f, g ∈ F [x] with deg f = n ≥ deg g = m ≥ 0. Let l be the

number of iterations of the while-loop. The cost of the algorithm is the cost of the divisions
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executed in the while-loop plus the cost of computing n(rl). Let di = deg ri for 0 ≤ i ≤ l

and dl+1 = −∞. From ri+1 = ri−1 rem ri, we have di+1 < di or di+1 ≤ di − 1 for

2 ≤ i < l. The number of iterations of the while-loop in the algorithm is therefore bounded

by deg g + 1 = m+ 1.

We now find the cost of a single division. Let qi = ri−1 quo ri. We have the degree

sequence d0 = n ≥ d1 = m > d2 > · · · > dl, and it follows deg qi = di−1 − di. Recall

that given a, b ∈ F [x], where deg a ≥ deg b ≥ 0, the division with remainder a ÷ b costs,

counting subtractions as additions, at most (2 deg b + 1)(deg(a quo b) + 1) additions and

multiplications in F plus one division for inverting lc(b) ([11], Chapter 2). Thus, dividing

ri−1, a polynomial of degree di−1, by ri, a polynomial of degree di < di−1, requires at most

(2di + 1)((di−1 − di) + 1) additions and multiplications plus one inversion in F . Then,

combining the number of iterations and the main cost of each loop, we see the total cost of

the while-loop portion of the Euclidean algorithm is∑
1≤i≤l

(2di + 1)(di−1 − di + 1) (3.2.1)

additions and multiplications plus l inversions in F .

It can be shown that given a degree sequence n = d0 ≥ m = d1 > d2 > · · · > dl ≥ 0,

the maximum value for the sum in (3.2.1) occurs when the sequence is normal, i.e., when

di = di−1 − 1 for 2 ≤ i ≤ l. Note in this case l = m + 1, which is the maximum possible

number of divisions. Moreover, it can also be shown that for random inputs, it is reasonable

to assume the degree sequence to be normal, except in the first division step where it is

possible n−m� 1. So, we consider the worst case di = m− i+ 1 for 2 ≤ i ≤ l = m+ 1 to

obtain a bound for the maximal number of arithmetic operations performed in the while-

loop. Then the expression in (3.2.1) can be simplified to

(2m+ 1)(n−m+ 1) +
∑

2≤i≤m+1

[2(m− i+ 1) + 1] · 2

= (2m+ 1)(n−m+ 1) + 2(m2 −m) + 2m

= 2nm+ n+m+ 1.

(3.2.2)

To compute g = n(rl), we find the leading coefficient lc(rl) and then multiply each of the

terms of rl by the inverse of lc(rl). This process consists of at most one inversion and dl + 1

multiplications in F . Since dl ≤ m, the cost of the final step of the algorithm is bounded

by one inversion and m multiplications in F .
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Adding the cost of the two parts of the algorithm gives us that the total cost of the

Euclidean algorithm is at most m + 2 inversions and 2nm + n + 2m + 1 additions and

multiplications in F . Therefore, the Euclidean algorithm for F [x] presented in Algorithm

3.2 costs O(nm) arithmetic operations in F .

3.3 The Extended Euclidean Algorithm

Given a Euclidean domain E and two elements a, b ∈ E, the extended Euclidean algorithm

(EEA) not only computes g = gcd(a, b) but also computes s, t ∈ E satisfying g = sa+tb. We

obtain g through the exact same steps as in the original Euclidean Algorithm and compute

the new output s and t using the quotients from the division steps. Algorithm 3.3 presents

a formal description of the EEA. In Example 3.20, we apply the EEA to the polynomials

we saw in Example 3.18 over E = Z17[x].

Algorithm 3.3 Extended Euclidean Algorithm

Input: a, b ∈ E, where E is a Euclidean domain with valuation v
Output: g = gcd(a, b), s, t such that g = sa+ tb
1: r0 ←− a; s0 ←− 1; t0 ←− 0;
2: r1 ←− b; s1 ←− 0; t1 ←− 1;
3: i = 1;
4: while ri 6= 0 do
5: qi ←− ri−1 quo ri
6: ri+1 ←− ri−1 − qiri /* ri+1 = ri−1 rem ri */
7: si+1 ←− si−1 − qisi
8: ti+1 ←− ti−1 − qiti
9: i←− i+ 1

10: end while
11: l←− i− 1
12: v ←− u(rl)

−1

13: g ←− vrl; s←− vsl; t←− vtl
14: return g, s, t

Example 3.20. Let E = Z17, a(x) = 8x3 + 3x2 − 2x − 3 and b(x) = 3x3 − 6x2 + 6x − 8.

We start the process by setting

r0 ←− a; s0 ←− 1; t0 ←− 0

r1 ←− b; s1 ←− 0; t1 ←− 1.
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We can write r0 = −3r1 + (2x2 − x+ 7) (mod 17), so

q1 ←− −3;

r2 ←− 2x2 − x+ 7;

s2 ←− 1− (−3)(0) = 1;

t2 ←− 0− (−3)(1) = 3.

Next, since r1 = (−7x+ 2)r2 + (6x− 5) (mod 17),

q2 ←− −7x+ 2;

r3 ←− 6x− 5;

s3 ←− 7x− 2;

t3 ←− 4x− 5.

We have r2 = (6x+ 2)r3 + 0 (mod 17). Hence

q3 ←− 6x+ 2;

r4 ←− 0;

s4 ←− −8x2 − 2x+ 5;

t4 ←− −7x2 + 5x− 4.

At this point, r4 = 0, so the while-loop terminates. Finally, the procedure computes v =

u(r3)
−1 (mod 17) = 3 and returns

g = v · r3 = x+ 2; s = v · s3 = 4x− 6; t = v · t3 = −5x+ 2.

Indeed, a quick check shows (4x − 6)a(x) + (−5x + 2)b(x) = x + 2 in Z17[x], so we have

successfully computed the desired gcd(a, b) and the linear combination g = sa+ tb.

A useful result of the algorithm is that any remainder in the sequence of ri can also be

expressed as a linear combination of a and b, as presented in Lemma 3.21 below.

Lemma 3.21. ri = sia+ tib for 0 ≤ i ≤ l + 1.

Proof. We proceed by induction on i. Initially, s0 = 1, s1 = 0, t0 = 0, and t1 = 1, so

the base cases i = 0 and i = 1 hold true with r0 = s0a + t0b = 1 · a + 0 · b = a and
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r1 = s1a + t1b = 0 · a + 1 · b = b. Suppose 1 ≤ i ≤ l and our claim holds true up to

i. Then the next iteration of the while-loop defines qi = ri−1 quo ri, ri+1 = ri−1 − qiri,
si+1 = si−1 − qisi, and ti+1 = ti−1 − qiti.

Consider ri+1 = ri−1−qiri. Since ri−1 = si−1a+ ti−1b and ri = sia+ tib by the inductive

hypothesis, we have

ri+1 = ri−1 − qiri

= (si−1a+ ti−1b)− qi(sia+ tib)

= (si−1 − qisi)a+ (ti−1 − qiti)b

= si+1a+ ti+1b.

Thus we have shown that ri = sia+ tib for 0 ≤ i ≤ l + 1, as claimed.

Lemma 3.21 proves that the values g, s, and t the algorithm returns at the end correctly

satisfy the linear combination g = sa+ tb: for i = l, we have rl = sla+ tlb. Then

g = n(rl)

= rl/ u(rl)

= (sla+ tlb)/ u(rl)

= (sl/ u(rl))a+ (tl/ u(rl))b

= sa+ tb.

When discussing the result of the EEA, it is convenient to use the following matrix

notation.

Definition 3.22. Given the result of the EEA, let

(i) Pi =

(
0 1

1 −qi

)
for 1 ≤ i ≤ l , and

(ii) Ai = PiPi−1 · · ·P1, for 1 ≤ i ≤ l, with A0 =

(
1 0

0 1

)
for convenience.

For 1 ≤ i ≤ l,

Pi

(
ri−1

ri

)
=

(
0 1

1 −qi

)(
ri−1

ri

)
=

(
ri

ri−1 − qiri

)
=

(
ri

ri+1

)
.
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It follows that

Pi

(
ri−1

ri

)
= PiPi−1

(
ri−2

ri−1

)
= · · · = PiPi−1 · · ·P1

(
r0

r1

)
,

and hence

PiPi−1 · · ·P1

(
r0

r1

)
= Ai

(
r0

r1

)
=

(
ri

ri+1

)
.

Similarly,

Ai

(
s0

s1

)
=

(
si

si+1

)
and Ai

(
t0

t1

)
=

(
ti

ti+1

)
,

from which we can determine the entries of Ai using s0 = 1, s1 = 0, t0 = 0, and t1 = 1. That

is, Ai =

(
si ti

si+1 ti+1

)
for 0 ≤ i ≤ l.

Now, note that Al = PlPl−1 · · ·P1 can be computed if the quotients qi in the EA are

known. Also,

Al

(
a

b

)
=

(
rl

0

)
,

where n(rl) = gcd(a, b). This is one of the ingredients for the FEEA.

In the version of the EEA presented in Algorithm 3.3, the remainders ri are not neces-

sarily unit normal. Consider the case E = Q[x]. The computations following Algorithm 3.3

may produce remainders that have rational coefficients with large numerators and denomi-

nators even for relatively small input size. On the other hand, adjusting ri to be monic helps

to keep the coefficients much smaller. Hence, it is beneficial to use a modified version of the

extended Euclidean algorithm presented in Algorithm 3.4, wherein ρi are used to store the

unit parts of the remainders of the division and ri themselves are unit normal. We will refer

to this version of the EEA as the monic EEA. The sequences si and ti are appropriately

adjusted as well so that Lemma 3.21 still holds true in this new version. The new version

of the algorithm also returns l, the number of divisions the extended Euclidean algorithm

performs in order to compute the GCD. The fast version of the Euclidean algorithm we

introduce in Section 3.4 will use the notations from this version of the EEA.

We define the matrix notations Qi and Bi for the monic EEA analogously to Pi and Ai

introduced in Definition 3.22.

Definition 3.23. Let ρi, ri, and qi be the result of Algorithm 3.4. Let



CHAPTER 3. FAST POLYNOMIAL GCD 50

Algorithm 3.4 Monic Extended Euclidean Algorithm

Input: a, b ∈ E, where E is a Euclidean domain with valuation v
Output: l, ri, si, ti for 0 ≤ i ≤ l + 1 and qi for 0 ≤ i ≤ l, where ri are unit normal
1: ρ0 ←− u(a); r0 ←− n(a); s0 ←− 1; t0 ←− 0;
2: ρ1 ←− u(b); r1 ←− n(b); s1 ←− 0; t1 ←− 1;
3: i = 1;
4: while ri 6= 0 do
5: qi ←− ri−1 quo ri
6: ri+1 ←− ri−1 − qiri; si+1 ←− si−1 − qisi; ti+1 ←− ti−1 − qiti
7: ρi+1 ←− u(ri+1)
8: ri+1 ←− ri+1ρ

−1
i+1; si+1 ←− si+1ρ

−1
i+1; ti+1 ←− ti+1ρ

−1
i+1

9: i←− i+ 1
10: end while
11: l←− i− 1
12: return l, ri, si, ti for 0 ≤ i ≤ l + 1 and qi for 0 ≤ i ≤ l

(i) Qi =

(
0 1

ρ−1i+1 −qiρ−1i+1

)
for 1 ≤ i ≤ l, and

(ii) Bi = Qi · · ·Q1 for 1 ≤ i ≤ l, with B0 =

(
1 0

0 1

)
.

As with Pi and Ai, we have(
ri

ri+1

)
=

(
0 1

ρ−1i+1 −qiρ−1i+1

)(
ri−1

ri

)
= Qi

(
ri−1

ri

)
= Qi · · ·Q1

(
r0

r1

)
(3.3.1)

for 1 ≤ i ≤ l. It follows that (
ri

ri+1

)
= Bi

(
r0

r1

)
for 0 ≤ i ≤ l. (3.3.2)

As well, Bi =

(
si ti

si+1 ti+1

)
for 0 ≤ i ≤ l, where si and ti come from Algorithm 3.4 with

monic ri, not Algorithm 3.3.

3.3.1 Complexity

We now discuss the complexity of the traditional extended Euclidean algorithm as presented

in Algorithm 3.3 for E = F [x]. (The scalar multiplications of ri+1, si+1, and ti+1 by ρ−1i+1 ∈ F
in Step 8 of Algorithm 3.4 do not increase the cost asymptotically, so the two versions of
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the EEA share the same overall complexity.) We will again work with E = F [x]. Since the

new algorithm is exactly the same as the Euclidean algorithm presented in Algorithm 3.2

except the two line augmentation in the while-loop for si and ti, we need only to find the

additional cost of computing the two new sequences for the total cost of the algorithm.

Suppose f, g ∈ F [x] with n = deg f ≥ deg g = m. To determine the cost of computing

si and ti for 2 ≤ i ≤ l + 1, we need the degrees of the polynomials. First, we need the

following lemma.

Lemma 3.24. Let di = deg ri for 0 ≤ i ≤ l. Then deg qi = di−1 − di for 1 ≤ i ≤ l,

deg si =
∑

2≤j<i
deg qj = d1 − di−1 for 2 ≤ i ≤ l + 1, (3.3.3)

and

deg ti =
∑

1≤j<i
deg qj = d0 − di−1 for 1 ≤ i ≤ l + 1. (3.3.4)

Proof. We will show the proof for (3.3.3) for si here. First, we show by induction

deg si−1 < deg si for 2 ≤ i ≤ l + 1. (3.3.5)

Initially s0 = 1, s1 = 0, and s2 = 1− q1 · 0 = 1, so −∞ = deg s1 < deg s2 = 0 and the base

case i = 2 is true. Assume the claim has been proven for 2 ≤ j ≤ i. At this point, ri 6= 0

and deg ri−1 = di−1 > di = deg ri, so deg qi = deg ri−1 − deg ri = di−1 − di > 0. By the

inductive hypothesis,

deg si−1 < deg si < deg si + deg qi = deg(siqi).

Since deg qi > 0, it follows that

deg si < deg(qisi) = deg(si−1 − qisi) = deg si+1.

Next, we prove (3.3.3) also by induction on i. Since deg s2 is the trivial sum 0, the base

case is true. Suppose then the claim holds true for 2 ≤ j ≤ i. By the inductive hypothesis,

we have deg si =
∑

2≤j<i deg qj , which implies

deg si+1 = deg(siqi) = deg si + deg qi =
∑

2≤j<i
deg qj + deg qi =

∑
2≤j<i+1

deg qj .

Since deg qj = dj−1 − dj , we have∑
2≤j<i

deg qj = (d1 − d2) + (d2 − d3) + · · ·+ (di−2 − di−1) = d1 − di−1.
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Thus we have shown the equality in (3.3.3) is true. The equality in (3.3.4) for ti can be

proven in the same way.

We determine the cost of computing ti for 2 ≤ i ≤ l+1 first. To compute ti+1 = ti−1−qiti,
at most (deg qi + 1)(deg ti + 1) field multiplications are required for the product qiti, and

subtracting this product from ti−1 requires at most deg ti+1 + 1 additional field operations.

Using (3.3.4), we see the total number of field operations for ti+1 for 2 ≤ i ≤ l is∑
2≤i≤l

(
(deg qi + 1)(deg ti + 1) + (deg ti+1 + 1)

)
=
∑
2≤i≤l

(2 deg qi deg ti + deg qi + deg ti + deg ti+1 + 2)

=
∑
2≤i≤l

(
2(di−1 − di)(d0 − di−1) + 2(d0 − di + 1)

)
.

For i = 1, computing t2 requires n−m + 1 operations in F . Also, computing t at the end

of the algorithm requires deg tl = d0 − dl−1.
In the normal case, l = m+ 1 and di = m− i+ 1, so the total number of field operations

in F required to compute the sequence ti for 2 ≤ i ≤ l + 1 and the output t is

(n−m+ 1) +
(
n− (m− (m+ 1− 1)) + 1

)
+

∑
2≤i≤m+1

(
2(n− (m− i+ 2)) + 2(n− (m− i+ 1) + 1)

)
= 2n+m+ 2 + 4

∑
2≤i≤m+1

(n−m+ i− 1)

= 2n+m+ 2 + 4m(n+m) + 2(m2 +m) ∈ O(nm).

A similar argument shows that computing si for 2 ≤ i ≤ l+1 and s requires at most n+

2 + 2(m2 +m) ∈ O(m2) arithmetic operations in F . Then computing si, ti, s, and t requires

at most O(nm+m2) = O(nm) arithmetic operations in F . Since the runtime complexity of

EA is also O(nm), we see that the runtime complexity of the EEA is O(nm+nm) = O(nm).

3.4 The Fast Extended Euclidean Algorithm

The Fast Extended Euclidean algorithm (FEEA) is a divide-and-conquer algorithm that

computes the GCD of two integers or two polynomials over a field. Whereas the Euclidean

algorithm sequentially performs a series of polynomial divisions in order to compute the
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GCD, the FEEA speeds up this process by bisecting the workload into two recursive pro-

cesses and using the fact that the leading term of the quotient of the polynomial division

is determined solely by the leading terms of the dividend and the divisor. Throughout this

section, any reference to the EEA will refer to the monic version in Algorithm 3.4.

Definition 3.25. Let f = fnx
n+fn−1x

n−1 + · · ·+f0 ∈ F [x] be a polynomial whose leading

coefficient fn is nonzero and k ∈ Z. Then the truncated polynomial is defined as

f � k = f quo xn−k = fnx
k + fn−1x

k−1 + · · ·+ fn−k,

where fi = 0 for i < 0. If k ≥ 0, f � k is a polynomial of degree k whose coefficients are the

k + 1 highest coefficients of f , and if k < 0, f � k = 0.

Example 3.26. Let f(x) = 3x4 + 5x3 + 7x2 + 2x+ 11. Then f � 2 = 3x2 + 5x+ 7.

Definition 3.27. Let f, g, f∗, g∗ ∈ F [x]\{0}, deg f ≥ deg g and deg f∗ ≥ deg g∗, and k ∈ Z.

Then we say (f, g) and (f∗, g∗) coincide up to k if

f � k = f∗ � k, and

g � (k − (deg f − deg g)) = g∗ � (k − (deg f∗ − deg g∗)).

It can be shown that this defines an equivalence relation on F [x] × F [x]. Moreover, if

(f, g) and (f∗, g∗) coincide up to k and k ≥ deg f−deg g, then deg f−deg g = deg f∗−deg g∗.

Lemma 3.28 ( [11], Lemma 11.1). Let k ∈ Z and f, g, f∗, g∗ ∈ F [x]\{0}. Suppose (f, g)

and (f∗, g∗) coincide up to 2k and k ≥ deg f − deg g ≥ 0. Let q, r, q∗, r∗ ∈ F [x] be the

quotients and remainders in the divisions so that deg r < deg g, deg r∗ < deg g∗, and

f = qg + r

f∗ = q∗g∗ + r∗.

Then q = q∗, and if r 6= 0 then either (g, r) and (g∗, r∗) coincide up to 2(k − deg q) or

k − deg q < deg g − deg r.

Proof. First of all, observe that if f � 2k = f∗ � 2k, then xif � 2k = xjf∗ � 2k for any

i, j ∈ N. Hence, we may safely assume that deg f = deg f∗ ≥ 2k as well as deg g = deg g∗

by multiplying the pairs (f, g) and (f∗, g∗) by appropriate powers if necessary. Now, we

have that deg f = deg f∗ and f � 2k = f∗ � 2k, so at least the 2k + 1 highest terms of
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f and f∗ are exactly the same. Then deg(f − f∗) < deg f − 2k. Moreover, we are given

k ≥ deg f − deg g, so deg f ≤ deg g + k. It follows that

deg(f − f∗) < deg f − 2k ≤ deg g − k. (3.4.1)

Similarly, from the assumptions that (f, g) and (f∗, g∗) coincide up to 2k and deg g = deg g∗,

we have
deg(g − g∗) < deg g − (2k − (deg f − deg g)) = deg f − 2k

≤ deg g − k ≤ deg g − deg q,
(3.4.2)

where the last inequality comes from the fact deg g = deg f − deg g ≤ k. Consider also

deg(r − r∗) ≤ max{deg r, deg r∗} < deg g,

and note deg(f − f∗), deg(g − g∗), and deg(r − r∗) are all less than deg g. Then, from

f − f∗ = (qg + r)− (q∗g∗ + r∗)− qg∗ + qg∗

= q(g − g∗)− (q − q∗)g∗ + (r − r∗),
(3.4.3)

we get deg((q − q∗)g∗) < deg g = deg g∗. It follows that q − q∗ = 0, or q = q∗.

Now, assume r 6= 0 and k − deg q ≥ deg g − deg r. We need to show (g, r) and (g∗, r∗)

coincide up to 2(k − deg q), i.e.,

g � (2(k − deg q)) = g∗ � (2(k − deg q))

r � (2(k − deg q)− (deg g − deg r)) = r∗ � (2(k − deg q)− (deg g∗ − deg r∗))

The first condition is true from the initial assumption (f, g) and (f∗, g∗) coincide up to 2k.

For the second condition, note we have r− r∗ = (f − f∗)− q(g− g∗) from (3.4.3) and hence

deg(r − r∗) ≤ max{deg(f − f∗),deg q + deg(g − g∗)}.

We have deg q = deg f − deg g and know from (3.4.1) and (3.4.2) that deg(f − f∗) and

deg(g − g∗) are both less than deg f − 2k. Thus we have

deg(r − r∗) < deg q + deg f − 2k. (3.4.4)

Since we can write deg f = deg q + deg g, we find

deg(r − r∗) < deg q + deg f − 2k = deg g − 2(k − deg q)

= deg r − (2(k − deg q)− (deg g − deg r)).
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So, our claim r � (2(k − deg q)− (deg g − deg r)) = r∗ � (2(k − deg q)− (deg g∗ − deg r∗)) is

true if deg r = deg r∗. From the assumption k − deg q ≥ deg g − deg r, we have

deg r ≥ deg q + deg g − k ≥ deg q + deg f − 2k,

which, combined with (3.4.4), shows deg r = deg r∗.

Example 3.29. Let

f = x8 + 11x7 + 3x5 + 6x+ 4, g = x7 + 6x5 + 2x4 + 5x2 + 1,

f∗ = x8 + 11x7 + 3x5 + 13x2 + 5x, g∗ = x7 + 6x5 + 2x4 + 3x2 + 7x+ 8

be polynomials over Z17. We have

f � 4 = f∗ � 4 = x4 + 11x3 + 3x, g � 3 = g∗ � 3 = x3 + 6x+ 2,

so if we let k = 2, then (f, g) and (f∗, g∗) coincide up to 2k = 4.

Let q, r, q∗, and r∗ be the quotients and remainders as in Lemma 3.28. Then

q = x+ 11, r = 11x6 + 3x5 + 12x4 + 12x3 + 13x2 + 5x+ 10,

q∗ = x+ 11, r∗ = 11x6 + 3x5 + 12x4 + 14x3 + 7x2 + 5x+ 14.

We see that q = q∗ and r � 1 = r∗ � 1. Then since g � 2 = g∗ � 2, (g, r) and (g∗, r∗) coincide

up to 2 = 2(k − deg q).

Lemma 3.28 shows us that the quotients in polynomial divisions solely depend on the

coefficients of the higher degree terms of the polynomials. That is, if f and f∗ share a

sufficient number of coefficients for the top terms and g and g∗ do as well, the quotients of

the divisions f÷g and f∗÷g∗ are equal. Moreover, the top terms of the respective remainders

will have the same coefficients too, so it is possible the quotients for the divisions g÷ r and

g∗ ÷ r∗ are the same as well.

Recall that Bl = Ql . . . Q1, where Qi =

(
0 1

ρ−1i+1 −qiρ−1i+1

)
for 1 ≤ i ≤ l. The key idea

of the fast GCD algorithm is motivated by this observation: We know that given r0 and

r1, we can compute rl = gcd(r0, r1) by computing

(
rl

rl+1

)
= Bl

(
r0

r1

)
. Using Lemma 3.28,

we can select some smaller polynomials r∗0 and r∗1 that coincide with r0 and r1 to compute

the quotients qi and the leading units ρi required to determine Bl. To use this strategy, we

must identify exactly how many common quotients we can expect running the EA on the

pairs r0, r1 and r∗0, r
∗
1 to yield.
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Example 3.30. Consider the monic polynomials f, g, f∗, g∗ ∈ Z17[x], where

f = x8 + 6x6 + 3x4 + 6x+ 6, g = x7 + x6 − 5x5 − 8x4 − x3 + 6x2,

f∗ = x7 + 6x5 + 3x3 + 6, g∗ = x6 + x5 − 5x4 − 8x3 − x2 + 6x− 2.

Let k = 3. Then (f, g) and (f∗, g∗) coincide up to 2k = 6. Applying the EEA on the two

polynomial pairs gives us the following result. The first three sets of the quotients and the

leading coefficient of the remainders are identical.

i qi q∗i ρi ρ∗i
1 x− 1 x− 1 1 1
2 x+ 5 x+ 5 -5 -5
3 x+ 7 x+ 7 4 4

4 x− 3 x 3 8
5 x2 + 5x+ 7 x+ 5 1 7
6 x− 3 x− 6 6 6
7 x+ 7 x+ 7 4 2

Consider the remainder sequences of the Euclidean algorithm applied to two pairs of

monic polynomials r0, r1 and r∗0, r
∗
1 in F [x] with deg r0 > deg r1 ≥ 0 and deg r∗0 > deg r∗1 ≥ 0:

ri−1 = qiri + ρi+1ri+1 for 1 ≤ i ≤ l with rl+1 = 0

and

r∗i−1 = q∗i r
∗
i + ρ∗i+1r

∗
i+1 for 1 ≤ i ≤ l∗ with rl∗+1 = 0.

We define di = deg ri for 1 ≤ i ≤ l, d∗i = deg r∗i for 1 ≤ i ≤ l∗, and dl+1 = d∗l∗+1 = −∞. (By

Definition 3.9, we have ρl+1 = u(0) = 1.)

Definition 3.31. For any k ∈ Z≥0, the number η(k) ∈ N is defined as follows.

η(k) = max{0 ≤ j ≤ l :
∑

1≤i≤j
deg qi ≤ k}

That is, η(k) is the number of division steps in the Euclidean algorithm applied to r0 and

r1 so that the sum of the degrees of the quotients is no more than k.

Recall deg qi = di−1−di. Then
∑

1≤i≤j deg qi =
∑

1≤i≤j(di−1−di) = d0−dj . Thus η(k)

is uniquely determined by

d0 − dη(k) =
∑

1≤i≤dη(k)

deg qi ≤ k <
∑

1≤i≤dη(k)+1

deg qi = d0 − dη(k)+1, (3.4.5)
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where the second inequality only holds if η(k) < l. We define η∗(k) analogously for r∗0 and

r∗1. The notion η(k) plays a key role in the following lemma that describes how two pairs

of polynomials that coincide in their higher terms yield the same quotients in the course

of the Euclidean algorithm. That is, if the two pairs coincide up to 2k, then the first η(k)

quotients coincide.

Lemma 3.32 ( [11], Lemma 11.3). Let r0, r1, r
∗
0, r
∗
1 ∈ F [x] be monic with deg r0 > deg r1 ≥ 0

and deg r∗0 > deg r∗1 ≥ 0, k ∈ N, h = η(k), and h∗ = η∗(k). If (r0, r1) and (r∗0, r
∗
1) coincide

up to 2k, then

(i) η(k) = η∗(k),

(ii) qi = q∗i for 1 ≤ i ≤ h,

(iii) ρi+1 = ρ∗i+1 for 1 ≤ i ≤ h− 1.

Remark 3.33. This lemma is incorrectly presented in [11]. The original statement claims

ρh+1 = ρ∗h+1, but in fact this is not necessarily true. In Example 3.30, h = h∗ = 3, but

ρ4 = 3 6= 8 = ρ∗4.

Proof. We will first prove by induction on j the following claim holds for 0 ≤ j ≤ h− 1:

j ≤ h∗ − 1, qi = q∗i and ρi+1 = ρ∗i+1 for 1 ≤ i ≤ j,

and (rj , rj+1) and (r∗j , r
∗
j+1) coincide up to 2(k −

∑
1≤i≤j

deg qi).

For the base case j = 0, there is nothing to prove. Now, assume the claim holds true for all

cases up to j−1 < h−1. Then (rj−1, rj) and (r∗j−1, r
∗
j ) coincide up to 2(k−

∑
1≤i≤j−1 deg qi)

by the inductive hypothesis. We apply Lemma 3.28 to get qj = q∗j , where rj−1 = qjrj +

ρj+1rj+1 and r∗j−1 = q∗j r
∗
j + ρ∗j+1r

∗
j+1. Moreover, j < h ≤ l, so rj+1 6= 0. Then either

(rj , rj+1) and (r∗j , r
∗
j+1) coincide up to 2[(k−

∑
1≤i≤j−1

deg qi)− (deg qj)] = 2(k−
∑

1≤i≤j
deg qi)

or

(k −
∑

1≤i≤j−1
deg qi)− deg qj = k −

∑
1≤i≤j

deg qi < dj − dj+1 = deg qj+1,

the latter of which is equivalent to k <
∑

1≤i≤j+1 deg qi. But j < h, and hence∑
1≤i≤j+1

deg qi ≤
∑

1≤i≤h
deg qi ≤ k.
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So (rj , rj+1) and (r∗j , r
∗
j+1) must coincide up to 2(k −

∑
1≤i≤j deg qi). Then we have

rj+1 � (2(k −
∑

1≤i≤j
deg qi)− (dj − dj+1)) = r∗j+1 � (2(k −

∑
1≤i≤j

deg q∗i )− (d∗j − d∗j+1)),

and since k−
∑

1≤i≤j+1 deg qi ≥ 0, we have that the two truncated polynomials are nonzero

and that rj+1 and r∗j+1 must have the same leading coefficient. That is, ρj+1 = ρ∗j+1. The

assertion j ≤ h∗ − 1 is true because
∑

1≤i≤j deg q∗i =
∑

1≤i≤j deg qi <
∑

1≤i≤h deg qi ≤ k.
Finally, (rh−1, rh) and (r∗h−1, r

∗
h) coincide up to 2(k−

∑
1≤i≤h−1 deg qi), so we can apply

Lemma 3.28 again to obtain qh = q∗h. It follows that h = η(k) = η∗(k) = h∗.

The lemma refines the strategy for computing the GCD of two polynomials of very high

degrees: given large monic polynomials r0, r1 ∈ F [x] with deg r0 > deg r1, it is sufficient to

consider a pair of smaller polynomials (r∗0, r
∗
1) that coincide with (r0, r1) up to 2k for some

k > deg r0 − deg r1. Lemma 3.32 guarantees that the first η(k) quotients qi as well as the

first η(k)− 1 leading coefficients of the remainders ρi we compute will be the same for both

pairs. After computing the first group of quotients in this way, we can compute the rest of

the quotients in the sequence similarly using rη(k) and rη(k)+1.

Adapting this strategy, the fast algorithm makes two recursive calls and a single division

to compute the quotients q1, . . . , ql and the leading coefficients ρ2, . . . , ρl of the remainders

r2, . . . , rl. As well, rather than returning the sequence of quotients qi, the algorithm re-

turns the matrix Bl, the product of the corresponding matrices Qi, i.e., Bl = Ql · · ·Q1,

where Bl

(
r0

r1

)
=

(
rl

rl+1

)
. That is, the algorithm makes one recursive call computing

R = Qη(k)−1 · · ·Q1, one division rη(k)−1 rem rη(k) for Qη(k), and a second recursive call

computing S = Ql · · ·Qη(k)+1 and returns Bl = SQη(k)R.

The use of η(k) addresses the problem of deciding how to divide the division steps into

two smaller tasks of roughly the same size. An obvious approach to divide the total number

of steps l is to group them into two equal parts so that the algorithm first computes the

first l/2 of the quotients and then the second half. However, if there are some quotients

with much higher degrees than some others, this may not be the optimal choice. Therefore,

the right choice is to divide the sequence of quotients into two parts so that the sums of the

degrees of the quotients are roughly the same size as the other. Note that in the case where

the degree sequence of remainders is normal, the two approaches yield the same result.
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The Fast Extended Euclidean Algorithm is presented in Algorithm 3.5. Given the input

r0, r1 ∈ F [x], both monic, and k ∈ N, the algorithm returns two parameters, h = η(k) and

Bh, where the integer h is the number of division steps performed and Bh

(
r0

r1

)
=

(
rh

rh+1

)
.

3.4.1 Proof of Correctness

We will briefly discuss the correctness of the values returned by the algorithm. The overall

correctness of the rest of the algorithm follows from applying induction over k and Lemma

3.32, assuming that the returns from the recursive calls are correct.

Initially in Step 1, the algorithm checks if r1 = 0 or k < d0− d1, and if true, the correct

values l = 0 and B0 =

(
1 0

0 1

)
are returned.

In Step 4, the algorithm obtains through a recursive call j = η∗(k1)+1 and R∗ = B∗j−1 =

Q∗j−1Q
∗
j−2 · · ·Q∗1 for (r∗0, r

∗
1), which is constructed in Step 3 to coincide with (r0, r1) up to

2k1. From Lemma 3.32, we have qi = q∗i for 1 ≤ i ≤ j − 1 and ρi = ρ∗i for 2 ≤ i ≤ j − 1. As

well, ρ∗j and ρj are not necessarily equal. So we have

R∗ = Q∗j−1Bj−2 =

(
0 1

ρ∗−1j −qj−1ρ∗−1j

)(
sj−2 tj−2

sj−1 tj−1

)
=

(
sj−1 tj−1

(ρj/ρ
∗
j )sj (ρj/ρ

∗
j )tj

)

and

R∗

(
r0

r1

)
=

(
rj−1

(ρj/ρ
∗
j )rj

)
.

Let r̃j = (ρj/ρ
∗
j )rj = ρ∗−1j (ρjrj). Then ρ̃j = lc(r̃j) = ρ∗−1j ρj , and we find

R = Bj−1 =

(
1 0

0 1/ρ̃j

)
R∗, and rj = r̃j/ρ̃j ,

where rj is monic.

We have d0− dj−1 ≤ k1 < d0− dj from the inequality in (3.4.5). So, if k < d0− dj , then

d0−dj−1 ≤ k1 = bk/2c ≤ k < d0−dj , and indeed η(k) = j−1, which the algorithm returns

alongside the matrix R. Therefore the algorithm returns the correct values in Step 6. On

the other hand, if d0− dj ≤ k then η(k) ≥ j; the algorithm continues on to compute qj and

rj+1 in Step 7, which gives the matrix Qj , defined in Step 8. Note that Step 7 is where

the algorithm performs the divisions to determine the quotients qi and units ρi required to

compute the return parameter Bh = Qh · · ·Q1.
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Algorithm 3.5 Fast Extended Euclidean Algorithm

Input: monic polynomials r0, r1 ∈ F [x], n = d0 = deg r0 > d1 = deg r1, and k ∈ N with
d0/2 ≤ k ≤ d0

Output: h = η(k) ∈ Z≥0 as in Definition 3.31 and M = Bh = QhQh−1 · · ·Q1 ∈ F [x]2×2

1: if r1 = 0 or k < d0 − d1 then return 0 and

(
1 0
0 1

)
/* Compute j = η(k/2) and R = Qj−1 · · ·Q1 */

2: k1 ←− bk/2c
3: r∗0 ←− r0 � 2k1; r∗1 ←− r1 � (2k1 − (d0 − d1))
4: call the algorithm recursively with r∗0, r

∗
1 and k1 to obtain j − 1 = η∗(k1) and

R∗ = Q∗j−1Qj−2 · · ·Q1, where Q∗j−1 =

(
0 1

ρ∗−1j −qj−1ρ∗−1j

)
and

(
r∗j−1
r∗j

)
= R∗

(
r∗0
r∗1

)
5:

(
rj−1
r̃j

)
←− R∗

(
r0
r1

)
; ρ̃j ←− lc(r̃j);

R←−
(

1 0

0 ρ̃−1j

)
R∗;

rj ←− ρ̃−1j r̃j ; dj ←− deg rj

6: if rj = 0 or k < d0 − dj then return j − 1 and R

/* Compute qj and Qj */

7: qj ←− rj−1 quo rj ; ρj+1 ←− lc(rj−1 rem rj);
rj+1 ←− (rj−1 rem rj)ρ

−1
j+1; dj+1 ←− deg rj+1

8: Qj ←−
(

0 1

ρ−1j+1 −qjρ−1j+1

)
/* Compute h = η(k) and S = Qh · · ·Qj+1 */

9: k2 ←− k − (d0 − dj)
10: r∗j ←− rj � 2k2; r∗j+1 ←− rj+1 � (2k2 − (dj − dj+1))

11: call the algorithm recursively with r∗j , r
∗
j+1 and k2 to obtain h− j = η∗(k2) and

S∗ = Q∗hQh−1 · · ·Qj+1, where Q∗h =

(
0 1

ρ∗−1h+1 −qhρ∗−1h+1

)
and

(
r∗h
r∗h+1

)
= S∗

(
r∗j
r∗j+1

)
12:

(
rh
r̃h+1

)
←− S∗

(
rj
rj+1

)
; ρ̃h+1 ←− lc(r̃h+1);

S ←−
(

1 0

0 ρ̃−1h+1

)
S∗

13: M ←− SQjR
14: return h and M
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From the second recursive call in Step 11, we obtain S∗ = Q∗hQh−1 · · ·Qj+1. We compute

S = Qh · · ·Qj+1 in the same way we found R using R∗:

We have

S∗

(
rj

rj+1

)
= S∗Bj

(
r0

r1

)
= Q∗hQh−1 · · ·Q1

(
r0

r1

)

= Q∗hBh−1

(
r0

r1

)
= Q∗h

(
rh−1

rh

)
=

(
rh

(ρh+1/ρ
∗
h+1)rh+1

)
.

We define r̃j = ρ∗−1h+1(ρh+1rh+1). Then ρ̃h+1 = lc(r̃h+1) = ρ∗−1h+1ρh+1, and we can now

compute

S =

(
1 0

0 1/ρ̃h+1

)
S∗ = Qh · · ·Qj+1 and rh+1 = r̃h+1/ρ̃h+1.

Now, the value h− j also obtained in Step 11 implies

dj − dh = (d0 −
∑

1≤i≤j
mi)− (d0 −

∑
1≤i≤h

mi) =
∑

j+1≤i≤h
mi ≤ k2 < dj − dh+1,

or h = l. But then adding (d0 − dj) to each part of the inequality gives

d0 − dh = (d0 − dj) + (dj − dh) ≤ (d0 − dj) + k2 < (d0 − dj) + (dj − dh+1) = d0 − dh+1

or h = l. Then from the equality (d0 − dj) + k2 = k and (3.4.5), we have

η((d0 − dj) + k2) = η(k) = h.

Finally, consider the values h and SQjR that are returned in Step 14. Since S =

Qh · · ·Qj+1 and R = Qj−1 · · ·Q1, M = SQjR = Qh · · ·Q1 = Bh. Therefore the algorithm

correctly returns h = η(k) and Bh for the input r0, r1 and k.

Remark 3.34. The FEEA requires the input polynomials f and g to be monic with

deg f > deg g ≥ 0. Given f and g that do not satisfy these conditions, we modify the input

as follows.

Step 1a. if deg f = deg g and f/ lc(f) = g/ lc(g), return g/ lc(g).

Step 1b. if f and g are monic with deg f = deg g:

Let ρ2 = lc(f − g), r0 = g and r1 = (f − g)/ρ2 and call the FEEA with these
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three parameters, which returns h and Bh =

(
sh th

sh+1 th+1

)
as results. Then

rh = shg + th(f − g)/ρ2 = (th/ρ2)f + (sh − th/ρ2)g, so we compute the matrix

R = Bh

(
0 1

ρ−12 −ρ−12

)
=

(
th/ρ2 sh − th/ρ2
th+1/ρ2 sh+1 − th+1/ρ2

)
.

Then the top entry of the vector R

(
f

g

)
is rh.

Step 1c. if deg f > deg g but f and g are not monic:

Let r0 = f/ lc(f) and r1 = g/ lc(g) and call the FEEA to obtain h and Bh. Divide

the first and second rows of Bh by lc(f) and lc(g) respectively and denote the

resulting matrix R. Then the top entry of the vector R

(
f

g

)
is rh.

Remark 3.35. The FEEA requires d0/2 ≤ k ≤ d0. If given 0 < k < d0/2, it is sufficient to

call the FEEA with r0 � 2k, r1 � (2k − (deg r0 − deg r1)) and k. Apply the same corrections

as in Step 4 of the algorithm to the output.

It is possible to use Algorithm 3.5 to compute any single row rh, sh, th of the EEA for

1 ≤ h ≤ l, keeping in mind the adjustment for 0 < h < d0/2 described in Remark 3.35.

We can specify h by selecting a k ∈ N so that deg r0 − k is the lower bound on deg rh or,

equivalently, k an upper bound on
∑

1≤i≤h deg qi so that h = η(k). In particular, if we use

k = d0, then the return values will be η(d0) = l and Bl = Ql · · ·Q1 =

(
sl tl

sl+1 tl+1

)
. That

is, given f, g ∈ F [x], we can find the rl = gcd(f, g) by running the algorithm with f, g, and

k = deg f to obtain the matrix M and then computing the top row of the matrix-vector

product M

(
f

g

)
.

3.4.2 Complexity

Let us now consider the cost of running the FEEA. Let T (k) denote the number of arith-

metic operations in F that the algorithm uses on input k. Step 4 takes T (k1) = T (bk/2c)
operations, and Step 11 takes T (k2) operations. Since k2 = k− (d0 − dj) < k− k1 = dk/2e,
k2 ≤ bk/2c and T (k2) ≤ T (bk/2c). Thus the two steps take a total of at most 2T (bk/2c)
arithmetic operations in F .



CHAPTER 3. FAST POLYNOMIAL GCD 63

Next, we consider the cost of making the corrections in Step 5. The degrees of the entries

of the matrix R∗ =

(
sj−1 tj−1

(ρj/ρ
∗
j )sj (ρj/ρ

∗
j )tj

)
are d1−dj−2, d0−dj−2, d1−dj−1, and d0−dj−1.

Since j = η(k1), we have d0 − dj−1 ≤ k1 = bk/2c and thus all entries of R∗ have degrees

at most bk/2c. As well, d0/2 ≤ k ≤ d0, so d1 < d0 ≤ 2k. The matrix-vector multiplication

R∗

(
r0

r1

)
therefore requires four multiplications of polynomials of degrees at most bk/2c by

polynomials of degree at most 2k. By dividing the larger polynomials into blocks of degrees

at most bk/2c, these multiplications can be performed in 16M(bk/2c)+O(k) ≤ 8M(k)+O(k)

operations in F , where M(n) denotes the cost of multiplying two polynomials of degrees at

most n. (This can be further optimized to be computed in 4M(k) + O(k) operations, as

outlined in [22]. This approach requires an extra return parameter

(
r∗j−1

r∗j

)
and uses the

equality R∗

(
r0

r1

)
= R∗

(
r0 − r∗0xd0−2k1

r1 − r∗1xd0−2k1

)
=

(
r∗j−1r

∗
0x

d0−2k1

r∗j r
∗
0x

d0−2k1

)
.)

Computing R from R∗ can be achieved in O(k) arithmetic operations by scaling the

second row of R∗ rather than through a matrix-matrix multiplication, since the top rows

of the two matrices are the same and the second rows differ by a factor of 1/ρ̃j . Given

the degrees of the elements of R∗ discussed earlier, multiplying the two elements of R∗ by a

scalar costs at most bk/2c for each. Since rj is of degree dj < d0 ≤ 2k, computing rj = r̃j/ρ̃j

costs at most k multiplications. Hence the total cost of Step 5 is at most 8M(k) + O(k)

operations in F .

We can find the cost of Step 12 similarly. The elements of the matrix S∗ are of degrees

dj+1 − dh−1, dj − dh−1, dj+1 − dh, and dj − dh, which are at most dj − dh ≤ k2 ≤ bk/2c,
and dj+1 < dj < 2k. Thus the matrix-vector multiplication costs at most 8M(k) + O(k)

operations in F . Moreover, computing S using S∗ costs at most O(k) operations in F . Thus

the whole step costs 8M(k) +O(k) operations in F .

In Step 7, we divide rj−1 by rj to obtain the quotient qj and the remainder rj+1. The

divisor rj has degree dj < 2k. The degree of qj is dj−1 − dj . By this step, from the two

return criteria, we have k1 < d0 − dj ≤ k and

0 < d0 − k ≤ dj < dj+1 ≤ d0 ≤ 2k.

Thus 0 < deg qj = dj−1 − dj ≤ d0 − (d0 − k) = k, although in practice we often have

deg qj = 1. A quotient of degree at most k can be computed using 4M(k)+O(k) operations
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in F and the remainder rj+1 in 2M(k) +O(k) operations in F using fast algorithms such as

one presented in [11], Algorithm 9.5. So the division costs at most 6M(k)+O(k) operations

in F . If the remainder sequence is normal and deg qj = 1 for all j, then the division costs

O(k).

We consider the cost of computing M = SQjR in Step 13 in two stages. First, consider

the cost of computing Bj = QjR =

(
0 1

ρ−1j+1 −qjρ−1j+1

)(
sj−1 tj−1

sj tj

)
=

(
sj tj

sj+1 tj+1

)
. The

first row of Bj is exactly the same as the second row of R = Bj−1. Therefore, we only need

to compute two new elements, sj+1 = (sj−1 − qjsj)/ρj+1 and tj+1 = (tj−1 − qjtj)/ρj+1.

Since sj and tj are of degrees at most bk/2c and qj is at most of degree k, computing these

elements costs at most 2M(k) +O(k) operations in F . Then computing SBj costs at most

6M(k) +O(k) operations in F , since the degrees of the entries of S are at most bk/2c and

the degrees of the entries of Bj are at most bk/2c for the top row and k for the second

row. Hence the total cost of computing M in Step 13 is at most 8M(k) + O(k) operations

in F . (We could implement Strassen’s algorithm for matrix multiplication, as outlined in

Algorithm 12.1 in [11] to reduce the cost to 7M(k) +O(k).)

There are at most three inversions required ρ∗−1j , ρ̃∗−1j+1, and ρ̃∗−1h+1 per recursive layer.

These can be computed in the total of 3k operations in F for the entire recursive process

and are asymptotically insignificant in the overall cost of the algorithm.

Finally, we can add the costs for all parts of the algorithm and compute the total cost

of running Algorithm 3.5. We see that T satisfies the recursive inequalities

T (0) = 0 and T (k) ≤ 2T (bk/2c) + 30M(k) + ck for k > 0,

for some constant c ∈ R. Hence we conclude that

T (k) ≤ (30M(k) +O(k)) log k ∈ O(M(k) log k).

Now, n = d0 and d0/2 ≤ k ≤ d0, so k ∈ O(n). Thus we haveO(M(k) log k) ∈ O(M(n) log n).

The adjustments discussed in Remarks 3.34 and 3.35 can each be made in O(n) operations in

F and do not affect the algorithm’s overall cost of O(M(n) log n). We used Karatsuba’s mul-

tiplication algorithm in our implementation of the FEEA, which makes M(n) = O(nlog2 3)

and the running cost of FEEA O(nlog2 3 log n) arithmetic operations in F .
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3.5 Timings

Here we compare the performance of the Euclidean Algorithm against the Fast Extended

Euclidean Algorithm. Each algorithm was implemented in C and uses a Maple interface.

All reported timings are in CPU seconds and were obtained using Maple’s time routine.

All tests were executed using Maple 16 on a 64 bit AMD Opteron 150 CPU 2.4 GHz with

2 GB memory running Linux. We measure the CPU time of each of the test cases.

The following Maple code was used to generate ten sets of two random dense polynomials

f, g ∈ Zp for the GCD computations of degree d = 1000 · 2i, 0 ≤ i ≤ 9.

> f := modp1( Randpoly( d, x ), p );

> g := modp1( Randpoly( d, x ), p );

We used a 30-bit prime p = 1073741789. Given f and g, the FEEA applied the adjust-

ments discussed in Remark 3.34 so that deg r0 > deg r1 and r0 and r1 are monic. We used

k = deg r0. The timings are presented in Table 3.1.

Table 3.1: EA vs. FEEA (Cutoff = 150)
i d EA (ms) FEEA (ms) EA/FEEA

0 1000 29.1 31.0 0.938
1 2000 86.2 88.2 0.977

2 4000 341.4 254.3 1.341
3 8000 1371.4 743.4 1.845
4 16000 5544.8 2208.2 2.511
5 32000 22417.6 6552.0 3.421
6 64000 90585.2 19529.0 4.638
7 128000 368053.0 59711.0 6.164
8 256000 1495268.0 178750.0 8.365
9 512000 6050936.0 555564.0 10.892

We have implemented FEEA so that for truncated polynomials of degrees less than

a preset cutoff level, the computation uses EEA instead. This strategy avoids the heavy

overhead cost of FEEA and takes advantage of the efficiency of the straightforward EEA

for low degree polynomials. In our testing, we set the cut-off level to be 150.

Initially, the FEEA shows no significant performance improvement over the EA. This is

due to the overhead cost for all the extra computation such as si and ti in the base cases

as well as the matrix and vector multiplications the FEEA requires. However, the FEEA
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quickly proves to be more efficient than the EA. By the time d = 512000, the FEEA is

almost 11 times faster than the EA.

3.6 Application: Resultant Computation

The resultant of two polynomials is a useful tool in many areas of mathematics such as

rational function integration and algebraic geometry, and like the GCD, it can be computed

using the polynomial remainder sequence. In this section, we will examine how the FEEA

can be modified to efficiently compute the resultant.

Definition 3.36. Let F be a field. Let

f = anx
n + an−1x

n−1 + · · ·+ a0 ∈ F [x]

with roots α1, . . . , αn and

g = bmx
m + bm−1x

m−1 + · · ·+ b0 ∈ F [x]

with roots β1, . . . , βm. The resultant of f and g is defined to be

res(f, g) = amn b
n
m

n∏
i=1

m∏
j=1

(αi − βj).

It is clear from the definition that if f and g share a common root, then res(f, g) = 0.

On the other hand, if res(f, g) = 0, then it must be true that
∏n
i=1

∏m
j=1(αi − βj) = 0. It

follows that αi = βj for some i and j, i.e., f and g have a common root.

Remark 3.37. The resultant is traditionally defined as the determinant of the Sylvester

matrix of f and g (See [9]).

Lemma 3.38. Let f, g ∈ F [x], F a field, where f = an
∏n
i=1(x−αi) and g = bm

∏m
i=1(x−βi).

Then we have the following properties of the resultant.

(i) if f = c for some c ∈ F , then res(f, g) = cm

(ii) res(f, g) = (−1)nm res(g, f)

(iii) res(f, g) = amn
∏n
i=1 g(αi) = (−1)nmbnm

∏m
j=1 f(βj)

(iv) if h ∈ F [x], res(f, g · h) = res(f, g) · res(f, h)
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(v) if c ∈ F , res(f, cg) = cn res(f, g).

These properties follow directly from the definition. We will show here the proof of (iii).

Proof of Part (iii). We have g(αi) = bm
∏m
j=1(αi − βj) for 1 ≤ i ≤ n, so

res(f, g) = amn b
n
m

n∏
i=1

m∏
j=1

(αi − βj)

= amn

n∏
i=1

bm m∏
j=1

(αi − βj)


= amn

n∏
i=1

g(αi).

Similarly, we use the fact f(βj) = an
∏n
i=1(βj−αi) = an(−1)n

∏n
i=1(αi−βj) and obtain the

second equality res(f, g) = bnm
∏m
j=1 (an(−1)n

∏n
i=1(αi − βj)) = (−1)nmbnm

∏m
j=1 f(βj).

Theorem 3.39. Let f, g ∈ F [x]\{0}, where f = an
∏n
i=1(x−αi), g = bm

∏m
i=1(x−βi), and

m,n > 0. Suppose r, q ∈ F [x] and r = f rem g and q = f quo g so that f = gq + r. Then

res(f, g) =

{
0, if r = 0

(−1)nmbn−lm res(g, r), where l = deg r ≥ 0, if r 6= 0.

Proof. If r = 0, f = qg and f and g share a common root and we get res(f, g) = 0. Now,

suppose r 6= 0. By Lemma 3.38 (iii),

res(f, g) = (−1)nmbnm

m∏
j=1

f(βj).

But f(βj) = g(βj)q(βj) + r(βj) and g(βj) = 0 for all j, so f(βj) = r(βj). Then

res(f, g) = (−1)nmbnm

m∏
j=1

(g(βj)q(βj) + r(βj)) = (−1)nmbnm

m∏
j=1

r(βj).

Now, res(r, g) = (−1)mlblm
∏m
j=1 r(βj) again by Lemma 3.38 (iii). Thus we can write

res(f, g) = (−1)nm−mlbn−lm

(−1)mlblm

m∏
j=1

r(βj)

 = (−1)nm−mlbn−lm res(r, g).

Finally, res(r, g) = (−1)ml res(g, r), so res(f, g) = (−1)nmbn−lm res(g, r).
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Theorem 3.39 tells us that we can use the remainder sequence from the EA to com-

pute the resultant of two polynomials. This observation motivates the recursive algorithm,

as presented in Algorithm 3.6, that uses the framework of the classical Euclidean GCD

algorithm.

Algorithm 3.6 RES(f ,g)

Input: f, g ∈ F [x]\{0} with n = deg f , m = deg g, and lc(g) = b
Output: res(f, g)

1: if n = 0 then return fm

2: if m = 0 then return gn

3: if n < m then return (−1)nmRES(g, f)

4: r ←− f rem g; l←− deg r

5: if r = 0 then return 0

6: return (−1)nmbn−lRES(g, r)

Let us briefly consider the cost of Algorithm 3.6. The total cost of the algorithm is

essentially the cost of the classical Euclidean algorithm, O(nm) arithmetic operations in F ,

plus the cost of computing (−1)nmbn−l and multiplying it with res(g, r) in each recursive

layer (or fm or gn in the base case). If m > n, Step 3 computes res(g, f) instead and

multiplies it by (−1)nm at the cost of O(1) additional work, so we can assume n ≥ m.

Computing (−1)nmbn−l for all recursive layers requires at most O(n) arithmetic oper-

ations in F in total: Computing bn−l costs O(log(n − l)) arithmetic operations in F . If

there are many recursive layers then each n − l is small and O(log(n − l)) close to O(1).

The maximum length of remainder sequence is m+ 1 when the sequence is normal, so the

total cost is O(m) ∈ O(n) arithmetic operations in F . On the other hand, if n − l are

large, the exponentiation bn−l costs O(log(n− l)) ∈ O(log n) arithmetic operations in F and

we only have a small number of recursive calls. Hence the total cost of computing bn−l is

O(log n) ∈ O(n) arithmetic operations in F .

Computing and multiplying each (−1)nm costs O(1) arithmetic operations in F and does

not contribute significantly to the overall complexity. Multiplying (−1)nmbn−l by res(g, r)

requires just one multiplication in F . Since there are at most m + 1 recursive layers in

total, this requires O(m) arithmetic operations in F in total. Therefore the total cost of

Algorithm 3.6 is O(nm+m+ n) = O(nm) arithmetic operations in F .

As with the Euclidean algorithm, it is beneficial to modify the algorithm so that the

remainders are monic in order to avoid the coefficients growing large in size. We use
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Lemma 3.38 (v) to implement the modification. E.g., in Step 6 of the algorithm, return

(−1)nmbn−l lc(r)mRES(g, r/ lc(r)). Making the next recursive call with monic r keeps the

size of the coefficients of the remainders small.

One approach to improve the efficiency of the computation of a resultant is to adapt

the FEEA, motivated by the fact the FEEA already computes some of the values that are

needed to compute the resultant.

Given f, g ∈ F [x], deg f,deg g ≥ 0, let ρ0 = lc(f), ρ1 = lc(g), r0 = f/ρ0, r1 = g/ρ1, and

consider the result of the monic EEA (Algorithm 3.4) applied to r0 and r1:

ri−1 = qiri + ρi+1ri+1 for 1 ≤ i ≤ l with rl+1 = 0.

We define di = deg ri for 0 ≤ i ≤ l and dl+1 = −∞. (ρl+1 = u(0) = 1.) Consider the

following theorem.

Theorem 3.40. Given f, g ∈ F [x], let l, ri and ρi be as in the monic EEA as described

above, so that rl = gcd(f, g) with dl = deg rl. Then

res(f, g) =

{
0, dl > 0

(−1)τρd10
∏l
i=1 ρ

di−1

i , dl = 0,

where τ =
∑l−1

j=1 dj−1dj.

Proof. If dl = deg rl > 0, f and g have a common root and res(f, g) = 0.

Now, suppose dl = 0, i.e., rl = 1. By Lemma 3.38 (v), we have

res(f, g) = res(ρ0r0, ρ1r1) = ρd10 ρ
d0
1 res(r0, r1).

Now, r0 = q1r1 + ρ2r2, so by Theorem 3.39, we have res(r0, r1) = (−1)d0d1 res(r1, ρ2r2).

Then

res(f, g) = (−1)d0d1ρd10 ρ
d0
1 res(r1, ρ2r2)

= (−1)d0d1ρd10 ρ
d0
1 ρ

d1
2 res(r1, r2).

Next, from r1 = q2r2 + ρ3r3, we get

res(f, g) = (−1)d0d1ρd10 ρ
d0
1 ρ

d1
2

[
(−1)d1d2ρd23 res(r2, r3)

]
= (−1)(d0d1+d1d2)ρd10 ρ

d0
1 ρ

d1
2 ρ

d2
3 res(r2, r3).
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Continuing, we have

res(f, g) = (−1)(d0d1+···+dl−2dl−1)ρd10 ρ
d0
1 ρ

d1
2 · · · ρ

dl−1

l res(rl−1, rl).

By Lemma 3.38 (i), we have res(rl−1, rl) = 1dl−1 = 1. Therefore

res(f, g) = (−1)(d0d1+···+dl−2dl−1)ρd10 ρ
d0
1 ρ

d1
2 · · · ρ

dl−1

l ,

as claimed.

Theorem 3.40 indicates that if gcd(f, g) = 1 and therefore res(f, g) 6= 0, we can compute

the resultant of f and g by determining the leading coefficients ρ2, . . . , ρl of the remainders

r2, . . . , rl and the respective degrees d2, . . . , dl. (We already know ρ0 = u(f), ρ1 = u(g), d0 =

deg f , and d1 = deg g.) Conveniently, the FEEA already computes ρi, 2 ≤ i ≤ l, which are

necessary to compute the matrices Qi =

(
0 1

ρ−1i+1 −qiρ−1i+1

)
, i = 1, . . . , l. (Recall that we

defined ρl+1 = 1 for convenience.) Thus, if we can extract ρi from the FEEA instance and

determine di, then we can compute the resultant at the cost of O(
∑l

i=0 log di) ∈ O(n log n)

arithmetic operations in F in addition to that of the FEEA.

The obvious way to obtain ρi is to simply store the leading coefficients as they are com-

puted in Step 7 of Algorithm 3.5. However, we run into a problem with this approach, as

some leading coefficients may be incorrect: Recall that in Step 4, the algorithm recursively

obtains j − 1 = η∗(bdeg f2 c) and R∗ = Q∗j−1Qj−2 · · ·Q1, where Q∗j−1 =

(
0 1

ρ∗−1j −qj−1ρ∗−1j

)

and

(
r∗j−1

r∗j

)
= R∗

(
r∗0

r∗1

)
. We would end up collecting ρ2, ρ3, . . . , ρj−2, ρ

∗
j−1 from this re-

cursive call. The solution is to multiply the stored ρ∗j by ρ̃j , which is computed in Step 5

to compute R from R∗, and store the new value ρ∗j ρ̃j instead. This is indeed the correct

ρj we want: in the proof of correctness of Algorithm 3.5, we showed that ρ̃j = ρ∗j
−1ρj , so

ρ∗j × ρ̃j = ρj . We apply a similar modification to ρ∗h after Step 12 to obtain ρh.

Another challenge in adapting the FEEA to compute resultants is that we are unable

to collect the degrees of the remainders during the FEEA instance: The FEEA does not

compute all the ri in the remainder sequence for r0 and r1. Instead, the algorithm uses

truncated polynomials for recursive calls to find qi and ρi, and this may alter the degrees

of the subsequent remainders. E.g., we may encounter r∗l = x2 when rl = 1. As a result,

we must determine di for 2 ≤ i ≤ l. One useful fact is that rl = 1 and dl = 0, because we
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already know that if gcd(f, g) 6= 1, then res(f, g) = 0. Our idea is to recover the di from the

deg qi and the knowledge that dl = 0 once qi are known, i.e., after the FEEA has completed.

To determine the di, we need the following lemma.

Lemma 3.41. di−1 = deg qi + di for 1 ≤ i ≤ l.

Proof. For 1 ≤ i ≤ l, ρi+1ri+1 = ri−1 rem ri = ri−1 − qiri with di+1 < di < di−1. It follows

that di−1 = deg ri−1 = deg(qiri) = deg qi + deg ri = deg qi + di.

Using Lemma 3.41 and the fact that gcd(f, g) = 1 and dl = 0, we can now compute

dl−1 = deg ql, dl−2 = deg ql−1 + dl−1, . . . , d2 = deg q3 + d3, in order, if we save the degrees of

the quotients while the FEEA is running. Once we have retrieved all ρi and di, the resultant

can be easily computed using the formula given in Theorem 3.40.

Theorem 3.42. The cost of computing the resultant using the FEEA is O(M(n) log n).

Proof. As discussed earlier, computing all ρi costs O(n log n) arithmetic operations in F .

Computing di can be done quickly in l integer additions and does not contribute significantly

to the overall cost of the algorithm. Recall that the FEEA requires O(M(n) log n) arithmetic

operations in F . Since all multiplication algorithms cost more than O(n), n ∈ O(M(n)) and

O(n log n) ∈ O(M(n) log n). Therefore the overall cost of computing the resultant using the

FEEA is O(n log n+M(n) log n) ∈ O(M(n) log n).

Remark 3.43. Given f, g ∈ F [x], we let ρ0 = lc(f), r0 = f/ρ0, ρ1 = lc(g), and r1 = g/ρ1

and use the monic polynomials r0 and r1, along with the integer k = deg f , as inputs for the

FEEA. The algorithm requires deg f = deg r0 > deg r1 = deg g, so some pre-adjustments

may be required if deg f ≤ deg g. Following are the necessary adjustments for the resultant

computation. (See Remarks 3.34 for additional adjustments.)

Step 1a. if deg f < deg g: switch f and g and multiply the resultant returned by (−1)nm.

Step 1b. if deg f = deg g and f/ lc(f) = g/ lc(g): return 1 if deg f = 0 and 0 otherwise.

Step 1c. if deg f = deg g and f/ lc(f) 6= g/ lc(g): do a single division to compute

r = f rem g and call the algorithm to obtain R = res(g, r). Then we find

res(f, g) = (−1)deg f deg g lc(g)deg f−deg rR.
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Summary

In this thesis, we presented efficient algorithms for polynomial manipulation. In Chapter

2, we introduced a new algorithm to interpolate sparse polynomials over a finite field using

discrete logarithms. Our algorithm is based on Ben-Or and Tiwari’s deterministic algorithm

for sparse polynomials with integer coefficients. We work over Zp, where p is a smooth prime

of our choice, and the target polynomial is represented by a black box. We compared the

new algorithm against Zippel’s probabilistic sparse interpolation algorithm and showed the

timings from implementations of both. The benchmarks showed that our algorithm performs

better than Zippel’s algorithm for sparse polynomials, benefitting from fewer probes to the

black box and the fact the new algorithm does not interpolate one variable at a time.

However, Zippel’s algorithm proved to be more efficient for dense polynomials.

To interpolate a polynomial with t nonzero terms, we need to compute the roots of

Λ(z) = zt+λt−1z
t−1+· · ·+λ0. We used Rabin’s root-finding algorithm in our implementation

of the interpolation algorithm, which computes a series of polynomial GCDs. Thus we saw

that the ability to efficiently compute polynomial GCDs is critical for our interpolation

algorithm, and for large t, say t ≥ 106, the Euclidean algorithm in which lies complexity

O(t2) is too slow. Motivated by this observation, we reviewed in Chapter 3 the Fast Extended

Euclidean algorithm (FEEA), which divides the division steps of the Euclidean algorithm

into two recursive tasks of roughly the equal sizes and a single division. We implemented

the classical and fast versions of the Euclidean algorithm and presented the respective

benchmarks. While the FEEA was not as fast as the traditional Euclidean algorithm for

polynomials of relatively low degrees due to the heavy overhead cost associated with matrix

operations, the results were quickly reversed for polynomials of high degree to demonstrate
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the clear advantage of using the FEEA over the traditional algorithm. We showed how the

FEEA can be easily modified to compute the resultant of two polynomials at not much

additional cost.
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