
Computing the Greatest Common Divisor of

Multivariate Polynomials over Finite Fields

Suling Yang

Simon Fraser University

syangc@cecm.sfu.ca

Abstract

Richard Zippel’s sparse modular GCD algorithm is widely used to
compute the monic greatest common divisor (GCD) of two multivariate
polynomials over Z. In this report, we present how this algorithm can
be modified to solve the GCD problem for polynomials over finite fields
of small cardinality. When the GCD is not monic, Zippel’s algorithm
cannot be applied unless the normalization problem is resolved. In [6],
Alan Wittkopf et al. developed the LINZIP algorithm for solving the
normalization problem. Mahdi Javadi proposed a refinement to the
LINZIP algorithm in [4]. We implemented his approach and will show
that it is efficient and effective on polynomials over small finite fields.
Zippel’s algorithm also uses properties of transposed Vandermonde sys-
tems to reduce the time and space complexity of his algorithm. We
also investigated how this can be applied to our case.

1 Introduction

Let A and B be polynomials in F [x1, . . . , xn], where F is a unique factoriza-
tion domain (UFD) and n is a positive integer. Our goal is to find a greatest
common divisor (GCD) G of A and B. Let Ā = A/G, B̄ = B/G be the
cofactors of A and B, respectively. When n = 1, A and B are univariate,
and so is G. In this case the Euclidean algorithm can be used. However,
we want to develop efficient algorithms for computing multivariate GCD,

1

1 INTRODUCTION 2

because the size of coefficients grows rapidly in F [x1, . . . , xn] when using
the primitive Euclidean algorithm [2]. This problem is similar to the growth
in the size of coefficients when using naive methods to solve linear equa-
tions over F [x1, . . . , xn]. Using homomorphisms to map the GCD problem
to a simpler domain can improve arithmetic calculation and lead to better
approaches to avoid the problems with coefficient growth.

In [1], Brown developed a modular algorithm which consists of two pro-
cedures to find the GCD of A and B when A and B are polynomials with in-
teger coefficients Z. Brown’s algorithm finds the GCD’s images in univariate
domain, and then uses Chinese Remainder Theorem (CRT) or Polynomial
Interpolation to get the original GCD. The running time of Brown’s algo-
rithm depends on the total degree of G. In [5] Erich Kaltofen and Michael
Monagan explored the generic setting of the modular GCD algorithm. They
showed how it could be applied to GCD problem over the Euclidean ring
Z/(p)[t], where Z/(p) denotes the integer residues modulo p. They also com-
pared it with other algorithms in the domain Z/(p)[t][x] and established it
as better than the known other standard methods.

Zippel presented a sparse modular algorithm which improved the com-
plexity of Brown’s algorithm for sparse G, by reducing the number of uni-
variate images required in [7]. Zippel’s algorithm obtains an assumed form
of G by recursively applying the algorithm in one fewer variable, and then
calculates the constant coefficients from univariate GCD images (we call this
Sparse Interpolation). It is a Las Vegas algorithm which always results in a
correct solution or declares failure. Sparse interpolation requires nmax + 1
images where nmax is the maximum number of terms of the coefficients of
the main variable x1 in G. In [8] Zippel analyzed the properties of Van-
dermonde matrices, whose entries are powers of a same constant in each
column and same power in each row. Zippel constructed an algorithm to
find the inverse of a Vandermonde matrix using linear space and quadratic
time. We call it LinSpaceSol algorithm. We will discuss these properties of
Vandermonde matrices in the next section.

If the GCD G is non-monic in the main variable x1, for example, G =
(x5

2 +x3)x8
1 +(x2 +x3)x2

1 +(x2 +x2
3 +1) ∈ Z[x2, x3][x1], then Zippel’s sparse

2 RELATED WORK 3

modular algorithm cannot be applied directly. This is called the normaliza-
tion problem. In order to solve this problem efficiently, de Kleine, Monagan
and Wittkopf implemented the LINZIP algorithm which uses O(n3

1 + n3
2 +

· · ·+n3
t) time, where t is the number of terms in G when it is written in the

collected form in the main variable x1, and ni’s are the numbers of terms
in the coefficients of x1. E.g. for the above example, t = 3, n1 = 2, n2 = 2,
and n3 = 3. In [4], M. Javadi developed a more efficient method to solve
the normalization problem using only O((n1 + · · ·+ nk)3 + n2

k+1 + · · ·+ n2
t)

time, where n1 ≤ n2 ≤ · · · ≤ nt and k is the number of coefficients of x1

that the algorithm needs to compute the scaling factor.
In the following section, we discuss the work from previous authors.

Then, the algorithms of solving the GCD problems over finite fields of small
cardinalities are given in Section 3. In Section 4, we analyze the probability
of getting an incorrect result, and thus triggering a restart. Experimental
results of the effectiveness and efficiency are given in Section 5. Section 6
concludes this report by providing some potential improvement.

2 Related Work

2.1 Modular GCD Algorithm

Consider A,B ∈ Z[x1, · · · , xn]. Brown’s algorithm for solving the GCD
problem in Z[x1, · · · , xn] consists two algorithms, MGCD and PGCD, to deal
with different types of homomorphisms in Z[x1, · · · , xn]. The MGCD algo-
rithm reduces a GCD problem to a series of GCD problems in Zpi [x1, · · · , xn]
by applying modular homomorphisms [1]. It chooses a sequence of primes
pi ∈ Z, such that pi does not divide LCX(A), LCX(B) where LCX(A) means
the leading coefficient of A in the lexicographic order of X = [x1, · · · , xn],
and repeatedly calls PGCD to obtain Gi = gcd(A mod pi, B mod pi). It
applies the Chinese Remainder Theorem (CRT) on all Gi’s with moduli pi’s
incrementally and the stabilized image is G if it divides both A and B.

Similarly, the PGCD algorithm reduces the Zpi [x1, · · · , xn] GCD prob-
lem to a series of (n−2)-variate finite field GCD problems in Zpi [x1, · · · , xn−1]

2 RELATED WORK 4

by applying evaluation homomorphisms. It chooses αj ∈ Zpi such that
LCX̂(A)(xn−1 = αj), LCX̂(B)(xn−1 = αj) 6= 0 where X̂ = [x1, · · · , xn−1].
Then it recursively calls itself to obtain Gi,j = gcd((A mod pi)(xn−1 =
αj), (B mod pi)(xn−1 = αj)). Then, it applies polynomial interpolation on
coefficients of Gi,j to interpolate xn−1 incrementally stopping when the inter-
polated result stabilizes, and the stabilized image is Gi = gcd(A mod pi, B

mod pi) if it divides both A mod pi and B mod pi in Zpi [x1, · · · , xn].

2.2 Problems with the Modular GCD Algorithm

After the major problem is reduced to a simpler problem over a more al-
gebraic structure domain which allows for a wider range of algorithms, the
arithmetic is simpler because the arithmetic is done in a domain with small
coefficients. However, the trade-off is information loss, which may result in
failure in some cases. Let G = gcd(A,B) where A,B ∈ Z[x1, · · · , xn], and
let Ā = A/G, B̄ = B/G. Let H = gcd(φp(A), φp(B)) in Zp[x1, · · · , xn]. The
problem is that H may not be a scalar multiple of φp(G).

Definition 2.1. A homomorphism φ is bad if degx1
(φ(G)) < degx1

(G). If
degx1

(φ(G)) = degx1
(G mod p) < degx1

(G) where p is a prime in Z, then
p is bad. Similarly, if degx1

(φ(G)) = degx1
(G mod I) < degx1

(G) where
I = < x2 − α2, ..., xn − αn >,αi ∈ Zp, then the evaluation point (α2, ..., αn)
is bad.

Definition 2.2. A homomorphism φ is unlucky if

degx1
(GCD(φ(Ā), φ(B̄))) > 0.

Bad homomorphisms can be prevented if we choose p and (α2, ..., αn)
such that LCx1(A) mod p 6= 0 and LCx1(B) mod I 6= 0. However, unlucky
homomorphisms cannot be detected in advance. Instead, by the application
of the following lemma, Brown’s algorithms can identify unlucky homomor-
phisms at execution time.

2 RELATED WORK 5

Lemma 2.3. (Lemma 7.3 from Geddes et al. [2]) Let R and R′ be UFD’s
with φ : R → R′ a homomorphism of rings. This induces a natural homo-
morphism, also denoted by φ, from R[x] to R′[x]. Suppose A(x), B(x) ∈ R[x]
and G(x) = GCD(A(x), B(x)) with φ(LC(G(x))) 6= 0. Then

degx(GCD(φ(A(x)), φ(B(x)))) ≥ degx(GCD(A(x), B(x))). (2.1)

Therefore, we can eliminate a univariate image of higher degree than other
univariate images. The probability of getting an unlucky evaluation point
is analyzed in Section 4.
Example 1:

A = (x + y + 11)(3x + y + 1)

B = (x + y + 4)(3x + y + 1)

If we choose p = 3, then gcd(A mod 3, B mod 3) = y + 1, which has
degree 0 in x. Thus, p = 3 is bad. If we choose p = 7, then gcd(A mod 3, B

mod 3) = (x + y + 4)(3x + y + 1). Thus, p = 7 is unlucky.

2.3 Sparse Modular GCD Algorithm

We have seen in the previous sections that modular GCD algorithms can
solve problems by reducing a complex problem into a number of easier prob-
lems. However, another problem that arises from this approach is the growth
in the number of univariate GCD images required. In many cases, especially
when polynomials are multivariate, G is sparse, i.e., the number of nonzero
terms is generally much smaller than the number of possible terms up to
a given total degree d. Hence, sparse algorithms may be more efficient.
Zippel introduced a sparse algorithm for calculating the GCD of two mul-
tivariate polynomials over the integer [7]. We will show the pseudo-code of
the algorithm applied on finite fields in the next section. This approach is
probabilistic, and we will estimate the likelihood of success in the Section 4.

One observation is that if an evaluation point is chosen at random from
a large enough set, then evaluating a polynomial at that point is rarely zero.

2 RELATED WORK 6

Based on this observation, the sparse modular methods determine a solution
for one small domain by normal approach, and then use sparse interpolations
to find solutions for other small domains. For a GCD problem in n variables
where the actual GCD has total degree d, a dense interpolation, for instance,
Newton interpolation, requires (d + 1)n evaluation points, since it assumes
none of the possible terms is absent. Sparse interpolation assumes that
the image Gf from the dense interpolation is of correct form, and it is to
determine t coefficients where t is the number of terms in Gf and t � d.
Hence, it requires only O (n(t + 1)(d + 1)) evaluation points.

2.4 Vandermonde Matrices Applied to Interpolation

In the sparse interpolation, we need to find solutions for a set of linear equa-
tions over a field F , i.e., we need to find the inverse of the matrix formed by
these equations. Algorithms for finding inverses of general matrices require
O(n3) arithmetic operations in F and space for O(n2) elements of F , where
n is the number of rows/columns. But for Vandermonde matrices, one can
find the inverse using O(n) space and O(n2) arithmetic operations. The
form of a Vandermonde matrix is as follows.

Vn =

1 k1 k2

1 . . . kn−1
1

1 k2 k2
2 . . . kn−1

2
...

...
... . . .

...
1 kn k2

n . . . kn−1
n

 , (2.2)

where the ki are chosen from F . We can easily calculate the determinant
of a Vandermonde matrix. We can observe that multiplying the ith column
by k1 and subtract it from the i + 1th column we get,

det Vn =

∣∣∣∣∣∣∣∣∣∣
1 0 0 . . . 0
1 k2 − k1 k2

2 − k1k2 . . . kn−1
2 − k1k

n−2
2

...
...

... . . .
...

1 kn − k1 k2
n − k1kn . . . kn−1

n − k1k
n−2
n

∣∣∣∣∣∣∣∣∣∣
.

2 RELATED WORK 7

We can factor out (k2 − k1) from the second row, (k3 − k1) from the third
row, and so on.

det Vn = 1 ·

∣∣∣∣∣∣∣∣∣
(k2 − k1) · 1 (k2 − k1) · k2 . . . (k2 − k1) · kn−2

2

(k3 − k1) · 1 (k3 − k1) · k3 . . . (k3 − k1) · kn−2
3

...
... . . .

...
(kn − k1) · 1 (kn − k1) · kn . . . (kn − k1) · kn−2

n

∣∣∣∣∣∣∣∣∣ .

Therefore,

det Vn =
∏

1<i≤n

(ki − k1) · det

1 k2 k2
2 . . . kn−2

2

1 k3 k2
3 . . . kn−2

3
...

...
... . . .

...
1 kn k2

n . . . kn−2
n

=
∏

1<i≤n

(ki − k1) · det Vn−1.

Since we know det V1 = det([1]) = 1, we can determine the determinant of
a Vandermonde matrix by applying the above result recursively we have.

Theorem 2.4. The determinant of the Vandermonde matrix is

det Vn =
∏

1≤i<j≤n

(kj − ki). (2.3)

Corollary 2.5. The determinant of a Vandermonde matrix is non-zero if
and only if the ki are distinct.

Assume that V −1
n = [aij] is the inverse of the Vandermonde matrix Vn

and I is the identity matrix. Then,

Vn · V −1
n =

1 k1 k2

1 . . . kn−1
1

1 k2 k2
2 . . . kn−1

2

...
...

... . . .
...

1 kn k2
n . . . kn−1

n

 ·

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

...
...

... . . .
...

an1 an2 an3 . . . ann

 = I .

Consider jth element of the ith row of the product Vn ·V −1
n as a polynomial

in ki as follows.

Pj(ki) = a1j + a2jki + a3jk
2
i + ·+ anjk

n−1
i (2.4)

2 RELATED WORK 8

Then we know,

Pj(ki) =

1 if i = j

0 otherwise
(2.5)

By choosing the Pj(Z) to be

Pj(Z) =
∏
l 6=j

1≤l≤n

Z − kl

kj − kl
,

we can verify that equation (2.5) holds, and thus the coefficients of the Pj

are the columns of V −1
n . Let P (Z) =

∏
1≤l≤n(Z − kl), the master polyno-

mial, which can be computed in O(n2) multiplications. Then we calculate
P̂j(Z) =

∏
l 6=j

1≤l≤n
(Z − kl) = P (Z)/(Z − kj). Thus P̂j(Z) can be computed

using polynomial division, and then Pj(Z) = P̂j(Z)/P̂j(kj) can be computed
using scalar division. This requires only O(n) space and time. We want to
calculate X̄ = (X1, · · · , Xn) such that,

X1 + k1X2 + k2
1X3 + · · ·+ kn−1

1 Xn = w1

X1 + k2X2 + k2
2X3 + · · ·+ kn−1

2 Xn = w2

... =
...

Xn + knX2 + k2
nX3 + · · ·+ kn−1

n Xn = wn

⇔ Vn · X̄T =

w1

w2

...
wn

 .

Then, X̄T = V −1
n · (w1, · · · , wn)T and we get

X1

...
Xn

 =

w1 · coef(P1, Z

0)
...

w1 · coef(P1, Z
n−1)

 + · · ·+

wn · coef(Pn, Z0)

...
wn · coef(Pn, Zn−1)

 . (2.6)

Since the inverse of the transpose of a matrix is the transpose of the inverse,
this approach can also be applied to a transposed Vandermonde matrix,

2 RELATED WORK 9

which has the following form.

1 1 · · · 1
k1 k2 · · · kn

k2
1 k2

2 · · · k2
n

...
...

...
...

kn−1
1 kn−1

2 · · · kn−1
n

(2.7)

Then, for V T
n · X̄ = (w1, · · · , wn)T , we get X̄ = (V T

n)−1 · (w1, · · · , wn)T =
(V −1

n)T · (w1, · · · , wn)T , and thus
X1

...
Xn

 =

w1 · coef(P1, Z

0)
...

w1 · coef(Pn, Z0)

 + · · ·+

wn · coef(P1, Z

n−1)
...

wn · coef(Pn, Zn−1)

 . (2.8)

We can use this technique to determine G = gcd(A,B) = c1X̄
ē1 +· · ·+ctX̄

ēt ,
where X̄ = [x1, · · · , xn] and ēi is a vector representing the degrees. First,
we choose a random n-tuple ᾱ = (α1, · · · , αn). Second, evaluate G(ᾱ) =
c1ᾱ

ē1 + · · · + ctᾱ
ēt and denote the value of each monomial X̄ ēi by mi, so

that G(ᾱ) = c1m1+ · · ·+ctmt. Third, we observe that (ᾱj)ēi = (ᾱēi)j = mj
i .

Thus we have the following system of equations in the form of a transposed
Vandermonde system.

G(ᾱ0) = c1 + c2 + · · ·+ ct

G(ᾱ1) = c1m1 + c2m2 + · · ·+ ctmt

G(ᾱ2) = c1m
2
1 + c2m

2
2 + · · ·+ ctm

2
t

...
...

G(ᾱt−1) = c1m
t−1
1 + c2m

t−1
2 + · · ·+ ctm

t−1
t .

We check if all mi’s are distinct. If they are, the above system has a unique
solution and can be solved in O(t2) time and O(t) space by calculating
the master polynomial P (Z) and each Pj(Z), and then using (2.8). This
technique is also used in M. Javadi’s algorithm for solving non-monic GCD
problems.

2 RELATED WORK 10

2.5 Algorithms for Non-monic GCD

Zippel’s sparse interpolation works fine for GCD problems monic in x1,
the main variable, or when the leading coefficient of the GCD in the main
variable has only one term. If LCx1(G) has two or more terms, we need
to deal with the normalization problem. In [6], de Kleine, Monagan and
Wittkopf presented the first solution which treats scaling factors as unknown
coefficients to be solved for. For example, let Gf = (Ay2 + Bu)x8 + (Czy +
Du2)x2+(Ez+Fu2+Gu) ∈ Z[u, y, z][x]. Then the algorithm solves a linear
the system which has the following form, where c represents a constant and
empty entries are zeros.

c c 1
c c 1
c c 1

c c c

c c c

c c c

c c c c

c c c c

c c c c

C1

C2

C3

C4

C5

C6

C7

1
m2

m3

=

0
0
0
0
0
0
0
0
0
0

(2.9)

It solves for the coefficient using Gaussian elimination for each block. The
algorithm always makes the scale factor m1 to be 1, and unknowns mi

for other images. Suppose that Gf = g1x
e1
1 + g2x

e1
1 + · · · + gtx

et
1 , where

gi ∈ Z[x2, · · · , xn] and the terms are sorted by the number of terms, ni, in
gi, i.e., n1 ≤ n2 ≤ · · · ≤ nt. Then the total cost of this first approach is
O(n3

1 + · · ·+ n3
s).

In general we can scale the images based on any coefficient, instead of
unknown coefficients. M. Javadi proposed a second approach to solve the
normalization problem [4]. The second approach scales the images based on
the coefficient with minimum number of terms. If n1 = 1, then the scaling

will be similar to monic case. When n1 > 1, with probability ≥ 1
2
, we can

3 THE ALGORITHM 11

find the leading coefficient by solving only a system of size n1 +n2−1 terms.
After finding the leading coefficient using O((n1 + n2)3) time, we can use
Zippel’s linear space and quadratic time algorithm to find other constant
coefficients using O(n2

i) time. However, there may be a common factor
among g1 and g2. Say G = (y2+uy)x8+(uy+u2)x2+(z+u2+u), which has
assumed form Gf = (Ay2+Buy)x8+(Czy+Du2)x2+(Ez+Fu2+Gu). Then
gcd(g1, g2) = gcd(y2 +uy, uy+u2) = (y+u). Then the system to solve A, B,
C, and D has no solution no matter how many evaluation points we choose.
Therefore, we have to solve for a same system as in (2.9) usingO(n3

1+· · ·+n3
s)

time. Suppose that we need k coefficients of x1 to form a system with no
unlucky factor. We know k < t, because contx1A = contx1B = 1. Then
Javadi’s approach requires O((n1 + · · ·+ nk)3 + n2

k+1 + · · ·+ n2
t) time.

3 The Algorithm

Let A,B ∈ Fq[x1, x2, . . . , xn] be polynomials of total degree d over a finite
field Fq with q elements, and contx1(A) = 1 and contx1(B) = 1. Let G

be a gcd(A,B), and A = G · Ā and B = G · B̄. Hence, gcd(Ā, B̄) = 1.
When q is small, Brown’s MGCD algorithm cannot be applied if there are
not enough evaluation points in Fq to interpolate. We apply Kaltofen and
Monagan’s approach [5] and consider A,B ∈ Fq[xn][x1, . . . , xn−1]. By doing
this, we can apply Brown’s MGCD algorithm on A and B with coefficient
ring Fq[xn]. Since it is an infinite Euclidean domain, we can choose an
irreducible polynomial p(xn) of Fq[xn] of degree d so that K = Fq[xn]/p(xn)
is a finite field with qd elements where qd must be large enough to interpolate
the other variables x2, · · · , xn−1. We also require qd large enough so that the
probability of getting an unlucky evaluation point in K or the probability of
a term vanishing is small.

Our algorithm combines Brown’s modular GCD algorithm with Zippel’s
sparse interpolation approach. During the interpolation, we also apply Zip-
pel’s linear space and quadratic time algorithm to solve Vandermonde ma-
trices. We use Javadi’s approach with a refinement to fix the normalization
problem.

3 THE ALGORITHM 12

3.1 MGCD Algorithm Applied on Finite Field

In the MGCD algorithm of Brown’s modular algorithm, we could choose
degxn

p > degxn
G in which case one irreducible polynomial p ∈ Z[xn]

would be sufficient. However, it is more efficient to apply the Chinese Re-
mainder Theorem (CRT) and choose several pi(xn) such that

∑
degxn

pi >

degxn
G and |Ki| is just big enough for evaluation and interpolation, where

Ki = Fq[xn]/pi(xn). To avoid the bad “prime” problem, we also need to
choose pi ∈ Fq[xn] such that pi does not divide LCX(A) and LCX(B)
where X = [x1, · · · , xn−1]. Then, algorithm PGCD is called repeatly to get
Gi = gcd(A/pi, B/pi). The homomorphism φpi : Fq[xn][x1, · · · , xn−1] →
Ki[x1, · · · , xn−1] restricts the polynomial coefficients to be of lower degree
than pi, and hence stops the growth in the coefficients. Then, we can obtain
G by applying the CRT on Gi’s with moduli pi’s. We will use Ki to denote
the finite field Fq[xn]/pi. The algorithm is shown in Figure 1.

3.2 PGCD Algorithm Applied on Finite Field

Similarly, PGCD uses the evaluation homomorphism to reduce the GCD
problem for A,B ∈ Ki[x1, · · · , xn−1] to a series of problems in Ki[x1, · · · , xn−2],
i.e., it reduces (n − 1)-variate problem to a series of (n − 2)-variate prob-
lems. Let αj ∈ Ki such that xn−1 − αj does not divide LCX̂(A) nor
LCX̂(B) where X̂ = [x1, · · · , xn−2]. The evaluation homomorphism φαj :
Ki[x1, . . . , xn−1]→ Ki[x1, . . . , xn−2] maps A(x1, · · · , xn−1) to A(x1, ..., xn−2, αj)
= Aij and B(x1, · · · , xn−1) to B(x1, ..., xn−2, αj) = Bij . PGCD calls it-
self recursively and finally reduces the problem to univariate GCD prob-
lems which can be solved using Euclidean algorithm (EA). To obtain Gi =
gcd(A, B), PGCD chooses several αj ’s and obtains Gij = gcd(Aij , Bij) by
recursively calling itself. Then it interpolates the Gij ’s and αj ’s. The algo-
rithm is shown in Figure 2.

3.3 Sparse Interpolation Applied on Finite Field

When G is sparse, dense interpolation is not efficient. For example, if MGCD
chooses irreducible polynomials of degree 5 in F2[z] for G = x10 +(y10 +z5 +

3 THE ALGORITHM 13

2z + 1)x2 + z14 mod 2, then it requires three of them polynomials and 11
evaluation values for each of them. Thus, it requires 33 univariate images in
total. On the other hand, after we calculate the univariate images using one
irreducible polynomial, we obtain the assumed form Gf = x10 + (C1y

10 +
C2)x2+C3 from a dense interpolation of y. Then we just need two univariate
images for each of the other two irreducible polynomials.
Example 2:
Let G1 = x10+W11x

2+W12 and G2 = x10+W21x
2+W22 be the images when

y = α1 and y = α2 respectively. Then we can set up two linear systems,[
α10

1 1
α10

2 1

]
·

[
C1

C2

]
=

[
W11

W21

]
and

[
C3

C3

]
=

[
W12

W22

]
, (3.1)

and solve for C1, C2, and C3. Then, it requires only 11 (for the dense in-
terpolation) +4 (for two sparse interpolations) = 15 univariate images in
total. However, if we choose p1(z) = z5 + z + 1, then the coefficient of x2 is
just C1y

10. Then constant term C2 is absent in the assumed form, and thus
the first system in 3.1 becomes[

α10
1

α10
2

]
·

[
C3

C3

]
=

[
W11

W21

]

which may have no solution. Then, the algorithm must restart with another
irreducible polynomial. This problem is called the term vanishing problem.
We estimate the probability of a term vanishing in Section 4. The MGCD
and PGCD algorithms with sparse interpolation are shown in Figure 3 and
Figure 4, respectively. The sparse interpolation algorithm is shown in 5.

3.4 Quadratic Time Algorithm for Non-monic GCD

M. Javadi’s solution to the normalization problem using Zippel’s linear space
and quadratic time algorithm can be also modified to work for non-monic
GCD problems over finite fields with small cardinality. For example, G =
(y2 +1)x10 +(y10 + z)x2 +(y2 +y + z3 +2) ∈ F3[z]/(z5 +2z +1)[x, y] has an
assumed form G = (C1y

2 + C2)x10 + (C3y
10 + C4)x2 + (C5y

2 + C6y + C7).

3 THE ALGORITHM 14

But it cannot be solved using Zippel’s sparse interpolation, because the
LCX(G) = y2 + 1 6= 1 whereas all the univariate image Gi’s in K[x] are
monic. Then, setting C1α

2
i + C2 = 1, we would incorrectly assume C1 = 0.

Using Javadi’s approach, if we let C1 = 1, then we need 3 univariate images
to set up a system for determining C2, C3, and C4. Since we want to build
Vandermonde matrices, we pick α ∈ F3[z]/(z5 +2z+1) and let y = 1, α, α2.
Assume that G1 = x10 + W11x

2 + W12, G2 = x10 + W21x
2 + W22, G3 =

x10 + W31x
2 + W32 are the corresponding images. Then we can set up the

systems as follows.

C3 + C4 = (1 + C2)W11

C3α
10 + C4 = (α + C2)W21

C3α
20 + C4 = (α2 + C2)W31

⇔

 1 1 −W11

α10 1 −W21

α20 1 −W31

 ·
C3

C4

C2

 =

 W11

αW21

α2W31

This requires O(t3) time to solve the inverse of the square matrix by Gaus-
sian elimination, where t is the dimension of the matrix. After C2 is solved,
the system for solving C5, C6 and C7 is the transpose of a Vandermonde
matrix, namely 1 1 1

α2 α 1
α4 α2 1

 ·
C5

C6

C7

 =

 (1 + C2)W13

(α + C2)W23

(α2 + C2)W33

 .

This requires only O(t2) time and O(t) space using Zippel’s algorithm [8].
However, if G is in F2[z]/(z5 + z + 1)[x, y], then choosing y = 1 would make
LCx(G)|y=1 = y2 + 1|y=1 ≡ 0 mod 2. In other words, LCx(A)|y=1 = 0
and LCx(B)|y=1 = 0. Hence, y = 1 is a bad evaluation point. In fact, the
probability of LCx1(G) mod I = 0 where I =< x2−1, x3−1, · · · , xn−1−1 >

is relatively high. A restart of the algorithm does not solve the problem
because Zippel’s LinSpaceSol algorithm always chooses α = (1, 1, · · · , 1) as
the first evaluation point. Therefore, we consider the modified evaluation
sequence y = α, α2 α3 ∈ F2[z]/(z5 + z + 1) instead. Then, we get the two

3 THE ALGORITHM 15

systems as follows.α10 1 −W11

α20 1 −W21

α30 1 −W31

·
C3

C4

C2

 =

 αW11

α2W21

α3W31

 ,

α2 α 1
α4 α2 1
α6 α3 1

·
C5

C6

C7

 =

 (α + C2)W13

(α2 + C2)W23

(α3 + C2)W33

 .

Again this requires O(t3) time to solve the first system, where t is the
dimension of the first square matrix. The second system involves solving the
inverse of a transpose of a generalized Vandermonde matrix. We consider a
general Vandermonde matrix Vt and its inverse V −1

t as follows.

Vt · V −1
t =

k1 k2

1 k3
1 . . . kt

1

k2 k2
2 k3

2 . . . kt
2

...
...

... . . .
...

kt k2
t k3

t . . . kt
t

 ·

a11 a12 a13 . . . a1t

a21 a22 a23 . . . a2t

...
...

... . . .
...

at1 at2 at3 . . . att

 = I.

Consider jth element of the ith row of the product Vt ·V −1
t as a polynomial,

Pj(ki) = a1jki + a2jk
2
i + a3jk

3
i + · + anjk

t
i . Using the similar technique in

Section 2, we can let

Pj(Z) =
Z

kj

∏
l 6=j

1≤l≤t

Z − kl

kj − kl
. (3.2)

We can easily verify that Pj(kj) = 1 and Pj(ki) = 0 ∀i 6= j. The master
polynomial for this case is P (Z) = Z ·

∏
1≤l≤t(Z − kl). Then we calculate

P̂j(Z) = Z ·
∏

l 6=j
1≤l≤t

(Z−kl) = P (Z)/(Z − kj). Thus P̂j(Z) can be computed

using polynomial division, and then Pj(Z) =
P̂j(Z)
P̂j(kj)

can be computed using

scalar division. Again, this requires only O(t) space and time to compute
each Pj . Then, we can find V −1

t by calculating all Pj ’s, 1 ≤ j ≤ t, and
then obtaining the coefficients. To solve Vt · C̄T = (w1, · · · , wt)T where
C̄ = (C1, · · · , Ct), we can calculate

Cj = w1 · coef(P1, Z
j) + · · ·+ wt · coef(Pt, Z

j). (3.3)

3 THE ALGORITHM 16

Since the inverse of the transpose of a matrix is the transpose of the inverse,
we can calculate V T

t ·C̄T = (w1, · · · , wt)T using the same master polynomial
and Pj(Z)’s. We have

Cj = w1 · coef(Pj , Z
1) + · · ·+ wt · coef(Pj , Z

t). (3.4)

As in Section 2, we write G = gcd(A,B) = c1X̄
ē1 + · · · + ctX̄

ēt , where
X̄ = [x1, · · · , xn] and ēi is a degree vector. First, we choose a random n-
tuple ᾱ = (α1, · · · , αn) ∈ Kn. Second, evaluate G(ᾱ) = c1ᾱ

ē1 + · · · + ctᾱ
ēt

and denote the value of each monomial by mi, i.e., G(ᾱ) = c1m1+· · ·+ctmt.
Third, we observe that (ᾱj)ēi = (ᾱēi)j = mj

i . Thus we have the following
system of equations in the form of a transposed Vandermonde system.

G(ᾱ1) = c1m1 + c2m2 + · · ·+ ctmt

G(ᾱ2) = c1m
2
1 + c2m

2
2 + · · ·+ ctm

2
t

...
...

G(ᾱt) = c1m
t
1 + c2m

t
2 + · · ·+ ctm

t
t .

This system can be solved in O(t2) time and O(t) space by calculating the
master polynomial P (Z) and each Pj(Z), and then calculating each Ci using
equation (3.4). This refinement of sparse interpolation is shown in Figure 6.

3 THE ALGORITHM 17

Figure 1: MGCD: Brown’s Modular GCD Algorithm
Input: A,B ∈ Fq[xn][x1, . . . , xn−1], nonzero.
Output: G the GCD of A and B.
1: if n = 1 then
2: G← gcd(A,B); # Call univariate GCD algorithm, i.e., Euclidean algorithm
3: if deg(G) = 0 then G← 1; end if
4: Return G;
5: end if
6: Let X = [x1, . . . , xn−1].
7: a← contX(A); b← contX(B); A← A/a; B ← B/b; # Remove scalar content
8: c← gcd(a, b); g ← gcd(lcX(A), lcX(B)); # univariate GCD
9: (M,H, h)← (1, 0, 0); l← min(degx1

(A),degx1
(B));

10: d← min(degX(A),degX(B)); s← dlogq(2 d2)e;

11: while true do
12: Choose an irreducible polynomial p ∈ Fq[xn] such that p - M , p - g and

degxn
(p) ≥ s.

13: Ap ← A mod p ; Bp ← B mod p ; # Ap, Bp ∈ Fqs [x1, . . . , xn−1]
14: gp ← g mod p ; # univariate GCD
15: Gp ← PGCD(Ap, Bp) ∈ Fqs [x1, . . . , xn−1]∪ FAIL ;
16: if Gp = FAIL then
17: (M,H, h)← (1, 0, 0); l← min(degx1

(A),degx1
(B)); # restart

18: else
19: m← degx1

(Gp);
20: Gp ← gp·lcoeff(Gp)−1 ·Gp; # Normalize Gp so that lcoeff(Gp) = gp

21: if m = 0 then
22: Return c;
23: else if m < l then
24: l← m; M ← p; h← Gp

25: else if m = l then
26: H ← h;
27: Solve h ≡ H mod M and h ≡ Gp mod p for h ∈ Fq[xn][x1, · · · , xn]

using Chinese Remainder Theorem.
28: M ←M · p
29: end if
30: if H = h then
31: # Remove content of result and do division check
32: G← primpartX(H);
33: if G | A and G | B then Return c ·G end if
34: end if
35: end if
36: end while

3 THE ALGORITHM 18

Figure 2: PGCD: Multivariate GCD Reduction Algorithm
Input: A,B ∈ K[x1, . . . , xk] nonzero, where K = F[xn]/p and p ∈ F[xn] irreducible.
Output: G the GCD of A and B.
1: if k = 1 then
2: G← gcd(A,B); # univariate GCD algorithm, i.e., Euclidean algorithm
3: if deg(G) = 0 then G← 1; end if
4: Return G;
5: end if
6: Let X = [x1, . . . , xk−1].
7: a← contX(A); b← contX(B); A← A/a; B ← B/b;
8: c← gcd(a, b); g ← gcd(lcX(A), lcX(B)); # univariate GCD
9: (M,H, h)← (1, 0, 0); l← min(degx1

(A),degx1
(B));

10: while true do
11: Choose a new element α ∈ K such that M(α) 6= 0 and g(α) 6= 0. If there is no

such element, then return FAIL. # The coefficient ring is not large enough.
12: Aα ← A mod (xk−α) ; Bα ← B mod (xk−α) ; gα ← g mod (xk−α) ;
13: Gα ← PGCD(Aα, Bα) ∈ Fqs [x1, . . . , xk−1]∪ FAIL ;
14: if Gα = FAIL then
15: (M,H, h)← (1, 0, 0); l← min(degx1

(A),degx1
(B)); # restart

16: else
17: m← degx1

(Gα);
18: Gα ← gα·lcoeff(Gα)−1 ·Gα; # Normalize Gα so that lcoeff(Gα) = gα

19: if h = 0 or m < l then
20: l← m; H ← h; h← Gα; M ← (xk − α);
21: else if m = l then
22: H ← h;
23: Solve h ≡ H mod M and h ≡ Gα mod (xk − α) for h ∈

Fq[xn][x1, · · · , xk] using the Chinese Remainder Theorem.
24: M ←M · p
25: end if
26: if H = h then
27: # Remove content of result and do division check
28: G← primpartX(H);
29: if G | A and G | B then Return c ·G end if
30: end if
31: end if
32: end while

3 THE ALGORITHM 19

Figure 3: SMGCD: MGCD Algorithm with Sparse Interpolation
Input: A,B ∈ Fq[xn][x1, . . . , xn−1], nonzero.
Output: G the GCD of A and B
1: if n = 1 then
2: G← gcd(A,B); # Call univariate GCD algorithm, i.e., Euclidean algorithm
3: if deg(G) = 0 then G← 1; end if
4: Return G;
5: end if
6: Let X = [x1, . . . , xn−1].
7: a← contX(A); b← contX(B); A← A/a; B ← B/b; # Remove scalar content
8: c← gcd(a, b); g ← gcd(lcX(A), lcX(B)); # univariate GCD
9: (M,H, h)← (1, 0, 0);

10: d← min(degX(A),degX(B)); s← dlogq(2 d2)e

11: while true do
12: Choose a new irreducible polynomial p ∈ F[xn] such that p - M , p - g and

degxn
(p) ≥ s.

13: Ap ← A mod p ; Bp ← B mod p ; gp ← g mod p ;
14: Gp ← PGCD(Ap, Bp);
15: if Gp = FAIL then
16: (M,H, h)← (1, 0, 0); # restart
17: else
18: m← deg(Gp);
19: Gp ← gp·lcoeff(Gp)−1 ·Gp; # Normalize Gp so that lcoeff(Gp) = gp

20: if m = 0 then Return c; end if
21: Gf ← Gp; M ←M · p; h← Gp;
22: while true do
23: H ← h;
24: Choose a new irreducible polynomial p ∈ F[xn] such that p - M , p - g

and degxn
(p) ≥ s.

25: Gp ← SGCD(Ap, Bp, Gf); m← degx1
(Gp);

26: if Gp = FAIL then break; end if # Wrong assumed form
27: Gp ← gp·lcoeff(Gp)−1 ·Gp;
28: Solve h ≡ H mod M and h ≡ Gp mod p for h ∈ Fq[xn][x1, · · · , xn]

using Chinese Remainder Theorem.
29: M ←M · p;
30: if h = H then
31: G← primpartX(H);
32: if G | A and G | B then Return c ·G end if
33: end if
34: end while
35: end if
36: end while

3 THE ALGORITHM 20

Figure 4: SPGCD: PGCD Algorithm with Sparse Interpolation
Input: A,B ∈ K[x1, . . . , xk] nonzero, where K = F[xn]/p and p ∈ F[xn] irreducible.
Output: G the GCD of A and B.
1: if k = 1 then
2: G← gcd(A,B); # univariate GCD algorithm, i.e., Euclidean algorithm
3: if deg(G) = 0 then G← 1; end if
4: Return G;
5: end if
6: Let X = [x1, . . . , xk−1].
7: a← contX(A); b← contX(B); A← A/a; B ← B/b;
8: c← gcd(a, b); g ← gcd(lcX(A), lcX(B)); # univariate GCD
9: (M,H, h)← (1, 0, 0);

10: while true do
11: Choose a new element α ∈ K such that M(α) 6= 0 and g(α) 6= 0. If there is

no such element, return FAIL.
12: Aα ← A mod (xk−α) ; Bα ← B mod (xk−α) ; gα ← g mod (xk−α) ;
13: Gα ← PGCD(Aα, Bα);
14: if Gα = FAIL then
15: (M,H, h)← (1, 0, 0); # restart
16: else
17: m← deg(Gα);
18: Gα ← gα·lcoeff(Gα)−1 ·Gα; # Normalize Gα so that lcoeff(Gα) = gα

19: if m = 0 then Return c end if
20: Gf ← Gα; M ←M · (xk − α); h← Gα;
21: while true do
22: H ← h;
23: Choose a new element α ∈ K such that M(α) 6= 0 and g(α) 6= 0. If there

is no such element, return FAIL.
24: Gα ← SGCD(Aα, Bα, Gf);
25: if Gα = FAIL then break; end if # Wrong assumed form
26: Gα ← gα·lcoeff(Gα)−1 ·Gα;
27: Solve h ≡ H mod M and h ≡ Gα mod (xk − α) for h ∈

Fq[xn][x1, · · · , xk] using the Chinese Remainder Theorem.
28: M ←M · (xk − α);
29: if H = h then
30: # Remove content of result and do division check
31: G← primpartX(H);
32: if G | A and G | B then Return c ·G end if
33: end if
34: end while
35: end if
36: end while

3 THE ALGORITHM 21

Figure 5: SparseInterp: Sparse Interpolation for Monic GCD
Input: A,B ∈ K[x1, . . . , xk] nonzero, where K = F[xn]/p and p ∈ F[xn] irreducible.

Gf the assumed form.
Output: G the GCD of A and B.
1: Let X = [x1, . . . , xk−1].
2: a← contX(A); b← contX(B); A← A/a; B ← B/b; # Remove scalar content
3: c← gcd(a, b); g ← gcd(lcX(A), lcX(B)); # univariate GCD
4: Let X̄ = [x2, . . . , xk].

5: Write Gf = g1x
d1
1 + g2x

d2
1 + · · · + gtx

dt
1 , where t is the number of terms in

Gf written in this form, and gi = Ci1X̄
ēi1 + · · · + Cini

X̄ ēini with ēij ∈ Zk−1
≥0

be degree vectors and ni be the number of terms in gi. Cij ’s are yet to be
determined. Sort terms in Gf by ni’s, i.e., n1 ≤ n2 ≤ · · · ≤ nt.

6: for i from 1 to nt + 1 do
7: Let ᾱ be a new (k − 1)-tuple of Kk−1 such that LCx1(A)(X̄ = ᾱ) 6= 0.
8: Aᾱ ← A(X̄ = ᾱ); Bᾱ ← B(X̄ = ᾱ);
9: Let Gᾱ ← gcd(Aᾱ, Bᾱ) ∈ K[x1] by the Euclidean algorithm.

10: if deg(Gᾱ) 6= degx1
(Gf) then Return FAIL; end if # Wrong assumed form

11: for j from 0 to deg(Gᾱ) do
12: if coeff(Gᾱ, xj

1) 6= 0 and coeff(Gf , xj
1) = 0 then

13: Return FAIL; # Wrong assumed form
14: end if
15: end for
16: for j from 1 to t do
17: Mj ←Mj appends a row of the values of monomials in gj(X̄ = ᾱ);
18: vj ← vj appends an entry with value coeff(Gj , x

j
1);

19: end for
20: end for

21: G← 0;
22: for i from 1 to t do
23: Solve MiCi = vi for Ci ∈ Kni

24: if more than one solution then
25: Return SparseInterp(A,B, Gf); # linearly dependent system
26: end if
27: if no solution then Return FAIL; end if # Wrong assumed form
28: gi ← Ci1X̄

ēi1 + · · ·+ CiniX̄
ēini ;

29: G← gi · xdi
1 + G;

30: end for
31: Return c ·G;

3 THE ALGORITHM 22

Figure 6: LinSpaceInterp: Sparse Interpolation for Non-monic GCD
Input: A,B ∈ K[x1, . . . , xk] nonzero, where K = F[xn]/p and p ∈ F[xn] irreducible.

Gf the assumed form.
Output: G the GCD of A and B.
1: Let X = [x1, . . . , xk−1], and X̄ = [x2, . . . , xk].
2: a← contX(A); b← contX(B); A← A/a; B ← B/b; # Remove scalar content
3: c← gcd(a, b); g ← gcd(lcX(A), lcX(B)); # univariate GCD

4: Write Gf = g1x
d1
1 + g2x

d2
1 + · · · + gtx

dt
1 , where t is the number of terms in

Gf written in this form, and gi = Ci1X̄
ēi1 + · · · + CiniX̄

ēini with ēij ∈ Zk−1
≥0

be degree vectors and ni be the number of terms in gi. Cij ’s are yet to be
determined. Sort terms in Gf by ni’s, i.e., n1 ≤ n2 ≤ · · · ≤ nt.

5: l = max{nt,

∑t
i=1 ni − 1
t− 1

}; # number of univariate images required

6: Let ᾱ be a new (k − 1)-tuple of Kk−1 such that LCx1(A)(X̄ = ᾱ) 6= 0.
7: for i from 1 to l do
8: Aᾱ ← A(X̄ = ᾱi); Bᾱ ← B(X̄ = ᾱi);
9: Let Gᾱ ← gcd(Aᾱ, Bᾱ) ∈ K[x1] by the Euclidean algorithm.

10: if deg(Gᾱ) 6= degx1
(Gf) then Return FAIL; end if # Wrong assumed form

11: for j from 0 to deg(Gᾱ) do
12: if coeff(Gᾱ, xj

1) 6= 0 and coeff(Gf , xj
1) = 0 then

13: Return FAIL; # Wrong assumed form
14: end if
15: end for
16: for j from 1 to t do
17: Mj ←Mj appends a row of the values of monomials in gj(X̄ = ᾱ);
18: vj ← vj appends an entry with value coeff(Gj , x

j
1);

19: end for
20: end for
21: for j from 1 to t do
22: Solve [M1, · · · ,Mj] · [C1, · · · , Cj , 1,m2, · · · ,ml]T = [v1, · · · , vj] for

[C1, · · · , Cj , 1,m2, · · · ,ml], i.e., use g1, · · · , gj to find the scaling factors.
23: if no solution then
24: Return FAIL; # wrong assumed form
25: else if a unique solution then
26: Calculate gi = Ci1X̄

ēi1 + · · ·+ Cini
X̄ ēini for all 1 ≤ i ≤ j.

27: Break; # linearly independent system ⇒ done.
28: end if
29: end for
30: G← 0;
31: for i from 1 to t do
32: if gi has not been solved then
33: Solve MiCi = vi · [1,m2, · · · ,ml]T for Ci

34: if more than one solution then Return SparseInterp(A,B,Gf); end if
35: if no solution then Return FAIL; end if # Wrong assumed form
36: gi ← C1X̄

ēi1 + · · ·+ Cni
X̄ ēini ;

37: end if
38: G← gi · xdi

1 + G;
39: end for
40: Return c ·G;

4 ALGORITHM ANALYSIS 23

4 Algorithm Analysis

We have seen in Section 2 and Section 3 various problems with the modular
and sparse algorithm. In this section, we analyze the probability of success.

4.1 Probability of Getting an Unlucky Evaluation Point

If an unlucky evaluation point is chosen, then the univariate GCD image,
which can be identified by its higher degree than other images, is abandoned.
This may make the execution time longer, since more images are required.
We will prove the following theorem which gives bound on the probability
of choosing an unlucky evaluation point.

Theorem 4.1. Let A,B be polynomials in Fq[x1, ..., xn] where Fq is a finite
field with q elements, and G = gcd(A,B). Let Ā = A/G, B̄ = B/G, and
d = max{deg A, deg B}. Let T be a bound on the number of terms in G. If
p ∈ Fq[xn] is an irreducible polynomial with degree s ≥ dlogq(2d2T)e, then
for any (n− 2)-tuple α = (r2, r3, . . . , rn−1) ∈ Kn−2 where K = Fq[xn]/p,

Prob[degx1
(gcd(Āp(α) ∈ K[x1], B̄p(α) ∈ K[x1])) > 0] ≤ 1

2 T
. (4.1)

The GCD problem can be approached differently, because there is strong
relation between the GCD and the resultant of two polynomials. In the
following, R is an arbitrary unique factorization domain (UFD).

Definition 4.2. Let A(x), B(x) ∈ R[x] be nonzero polynomials with A(x) =∑m
i=0 aix

i and B(x) =
∑l

i=0 bix
i. The Sylvester matrix of A and B is an

m + l by m + l matrix

Syl(A,B) =

am am−1 . . . a1 a0

am am−1 . . . a1 a0

.
. . .

am a0

bl bl−1 . . . b1 b0

bl bl−1 . . . b1 b0

.
. . .

bl b0

, (4.2)

4 ALGORITHM ANALYSIS 24

where the upper part of the matrix consists of n rows of coefficients of A(x)
and the lower part consists of m rows of coefficients of B(x). The entries
not shown are zero.

Definition 4.3. Let A(x), B(x) ∈ R[x] be polynomials. The resultant of
A(x) and B(x), denoted by Res(A,B), is the determinant of the Sylvester
matrix of A,B. We also define Res(0, B) = 0 for nonzero B ∈ R[x], and
Res(A,B) = 1 for nonzero A,B ∈ R. We write Resx(A,B) if we wish to
include the polynomial variable.

Proposition 4.4 (Sylvester’s Criterion). [Proposition 8 in Section 3.5
from Cox et al. [3]] Given A(x), B(x) ∈ R[x] be polynomials of positive de-
gree, the resultant Res(A,B) ∈ R is an integer polynomial in the coefficients
of A and B. Furthermore, A and B have a common factor in R[x] if and
only if Res(A,B) = 0.

To prove Theorem 4.1, we still need one more ingredient, the Schwartz-
Zippel Theorem. It is a bound for the probability of encountering a root of
a polynomial. This helps us estimate the probability of choosing unlucky
evaluation point.

Theorem 4.5 (Schwartz-Zippel). Let P ∈ F[x1, x2, . . . , xn] be a non-zero
polynomial of total degree d ≥ 0 over a field F. Let S be a finite subset of F
and let r1, r2, . . . , rn be selected randomly from S, then

Prob[P (r1, r2, . . . , rn) = 0] ≤ d

|S|
. (4.3)

In our algorithm, evaluation points are randomly chosen from the finite
field K = Fq[xn]/p(xn) where degxn

p = s, i.e., S = K. Since |K| = qs,
equation (4.3) can be rewritten as

Prob[P (r1, r2, . . . , rn) = 0] ≤ d

qs
. (4.4)

4 ALGORITHM ANALYSIS 25

Remark 4.6. The Schwartz-Zippel Theorem is a tight bound on the proba-
bility of getting a zero evaluation point. Consider the following example,

Over F3 :

P = x2 + yx + (y2 + 2)

y = 0 : P = x2 + 2 = (x− 1)(x− 2)

y = 1 : P = x2 + x + 0 = x(x + 1)

y = 2 : P = x2 + 2x = x(x + 2)

We see that Prob[P = 0] =
2
3

=
deg(P)
| F3 |

.

Proof of Theorem 4.1: By definition, an evaluation α = (r2, r3, . . . , rn−1)
is unlucky if degx1

(Āp(α), B̄p(α)) > 0. By Proposition 4.4, we know that

degx1
(Āp(α), B̄p(α)) > 0 ⇐⇒ Resx1(Āp(α), B̄p(α)) = 0.

Hence, we need to establish the probability that the Resx1(Āp(α), B̄p(α)) =
0. We can rearrange the terms of Āp and B̄p, and write them in the following
way:

Āp = am(x2, . . . , xn−1)·xm
1 +am−1(x2, . . . , xn−1)·xm−1

1 +· · ·+a0(x2, . . . , xn−1)

and

B̄p = bl(x2, . . . , xn−1) · xl
1 + bl−1(x2, . . . , xn−1) · xl−1

1 + · · ·+ b0(x2, . . . , xn−1)

where ai, bj ∈ K[x2, . . . , xn−1], 1 ≤ i ≤ m, 1 ≤ j ≤ l. The total degree of
each ai or bj is at most d, since the maximum of the total degrees of Ā and
B̄ are d. The Sylvester Matrix of Āp and B̄p in x1 is

4 ALGORITHM ANALYSIS 26

Syl(Āp, B̄p) =

am am−1 . . . a1 a0

am am−1 . . . a1 a0

.
. . .

am a0

bl bl−1 . . . b1 b0

bl bl−1 . . . b1 b0

.
. . .

bl b0

.

There are m + l rows in Syl(Āp, B̄p) and each entry is at most degree d, so
total degree of the determinant r ∈ R[x2, . . . , xn−1] of Syl(Āp, B̄p) is,

deg(r(x2, . . . , xn−1)) ≤ (m + l) · d ≤ 2d · d = 2d2. (4.5)

However, the Bézout bound provides a better asymptotic bound, namely

deg(r(x2, . . . , xn−1)) ≤ deg(Āp) · deg(B̄p) ≤ d · d = d2. (4.6)

In some cases the Bézout bound may be greater than (m + l) · d , so in
practice one calculates both bounds and uses the minimum of the two. By
the application of Theorem 4.5 (equation 4.4), we get

Prob [degx1
(gcd(Āp(α), B̄p(α))) > 0] = Prob[r(α) = 0]

≤ d2

|Fq[xn]/p|
=

d2

qs
≤ d2

qlogq(2d2T)
=

d2

2d2T
=

1
2 T

,

because the algorithm chooses s ≥ dlogq 2d2T e.
For each sparse interpolation, the algorithm computes at most T uni-

variate image, where T is a bound on the number of terms in G. Thus, the
probability that the algorithm chooses an unlucky evaluation point through-
out the whole process is

Prob[choosing an unlucky evaluation point] ≤ T · 1
2 T

=
1
2
.

4 ALGORITHM ANALYSIS 27

4.2 The Probability of a Term Vanishing

In Section 3.3, we mention that if one or more terms are absent from the
assumed form Gf , which is calculated from gcd(A/p1, B/p1), then it will lead
to a failure and trigger a restart of the algorithm. The following theorem
gives a bound on the probability of a failure.

Theorem 4.7. Let A,B be polynomials in Fq[xn][x1, · · · , xn−1] with degree
≤ d, and let G = gcd(A,B). Let T be a bound on the number of terms in G.
If p ∈ Fq[xn] is an irreducible polynomial with degree s > logq (2 (n− 2)d T),
then at any level of sparse interpolation, for the assumed form Gf ,

Prob [one or more terms vanish in Gf] <
1
2
. (4.7)

Proof: Consider the situation where the sparse interpolation is applied
on the variable xk+1, i.e., we have obtained the assumed form of G in the
variables x1, . . . , xk. Let X̄ = [x1, . . . , xk] and ēi ∈ Zk

≥0 be the degree vector.
Then write

G = gt · X̄ ēt + gt−1 · X̄ ēt−1 + · · ·+ g0 (4.8)

where gi ∈ Fq[xn][xk+1, . . . , xn−1], and the number of terms, t, is yet to
determined. We want to establish the probability that one or more terms of
G vanish in the assumed form, i.e., the probability that

∃ gi(βk+1, . . . , βn−1) = 0 mod p

for a tuple (βk+1, . . . , βn−1) ∈ Kn−k−1 chosen at random where K = Fq[xn]/p.
Note that G = gcd(A,B), so the total degree of G is at most d. Thus,

deg(gi(xk+1, . . . , xn−1)) ≤ d. Since T is a bound on the number of terms in
G, then t ≤ T . Therefore, by Theorem 4.5 (Schwartz Theorem), we have

Prob[gi(rk+1, . . . , rn−1) = 0] ≤ d

qs

=⇒ Prob[one or more gi = 0] ≤
t∑

i=1

d

qs
=

d t

qs
≤ d T

qs
.

5 EXPERIMENTS ON BENCHMARK EXAMPLES 28

Now consider the whole process where the sparse interpolation is applied
to obtain a GCD using an assumed form Gf . The probability that one or
more terms vanish in any of the Gf ’s throughout the whole process is,

Prob [one or more terms vanish]

≤
n−1∑
k=2

d T

qs

≤ (n− 2)
d T

qs

<
(n− 2)d T

qlogq(2(n−2)d T)
=

(n− 2)d T

2(n− 2)d T
=

1
2
,

because s > logq

(
2 (n− 2)

(
d+n−1

d

)
d
)
.

In conclusion for this section, if we choose an irreducible polynomial
p ∈ Fq[xn] with degree s > max{logq(2d2T), logq(2 (n − 2)d T)}, then the
probability of failure due to either unlucky evaluation point or term vanish-

ing is at most
1
2
. Since the maximum number of monomials in k variables

of degree ≤ d is
(
d+n−1

d

)
, then T ≤

(
d+n−1

d

)
. Thus, we can use

(
d+n−1

d

)
as a bound on the number of terms of G. However, when G is sparse,
T �

(
d+n−1

d

)
. In practice, we choose irreducible polynomial with degree

≥ logq(2d2). When the algorithm encounters unlucky evaluation point or
term vanishing problems, it will trigger a start of the process.

5 Experiments on Benchmark Examples

We implemented our algorithm and other algorithms in Maple using the
RECDEN data structure. The fact that this data structure supports multi-
ple field extensions over Q and Zp allows our implementation to work over
finite fields and algebraic number fields. We also execute some examples to
compare the time complexity of different approaches.

5 EXPERIMENTS ON BENCHMARK EXAMPLES 29

Table 1: Comparison of Running Time for the Algorithms

y10x10 y20x10 y40x10 y80x10 y10x20 y20x20 y40x20 y80x20

Maple 0.828 1.634 4.876 24.75 2.422 5.325 25.79 136.4
MGCD 0.568 1.131 2.874 8.672 0.632 1.318 3.314 10.15
SMGCD 0.515 0.787 1.686 5.074 0.589 0.863 1.923 5.377
LSGCD 0.445 0.630 1.218 3.189 0.475 0.713 1.354 3.431

y10x40 y20x40 y40x40 y80x40 y10x80 y20x80 y40x80 y80x80

Maple 10.25 37.31 182.7 886.2 157.7 713.9 >1000 >2000
MGCD 0.804 1.549 3.561 10.33 1.144 1.950 3.951 8.855
SMGCD 0.669 1.005 1.982 5.460 0.903 1.264 2.312 6.091
LSGCD 0.583 0.839 1.497 3.755 0.745 1.021 1.386 3.123

5.1 Sparse Interpolation in Maple

In Section 3.3, we have seen the gain from using Zippel’s sparse interpolation
algorithm in reducing the number of images required. This gain is significant
if the GCD has a large degree but it is sparse. Consider G = y20x20 +zx20 +
x5 +2yx4 +(2yz+2z2 +zu+1)x3 +(y2 +2yu+zu) ∈ Z3[x, y, z, u]. The total
degree of G is 40, but the number of terms is only 11. We run this example
with different degrees of x and y in the leading term LT (G) = y20x20,
without changing the rest, on a Duo Core CPU computer with 2 GB memory
under the Fedora platform. In Table 5.1, we show the different leading terms
and the running time in seconds for Maple’s GCD function (Maple), Brown’s
modular GCD algorithm (MGCD), modular GCD algorithm with Zippel’s
sparse interpolation (SMGCD), and sparse modular GCD algorithm with
Zippel’s linear space and quadratic time refinement (LSGCD).

We can observe from the data of Table 5.1 that as the degree of y in-
creases the running time of Maple grows rapidly. On the other hand, sparse
interpolation is more efficient and stable than Maple’s default algorithm.
MGCD’s running time is proportional to the degree of y, because it requires
degy(G) + 1 univariate GCD to interpolate y. Since the number of terms in
G is unchanged, after the assumed form is obtained the number of univariate
images required also remains unchanged for sparse interpolation. Therefore,
SMGCD and LSGCD are less sensitive to the increase of the degree of y.

6 CONCLUSION 30

Table 2: Comparion of SMGCD and LSGCD
t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11 t = 12

SMGCD 3.195 3.829 3.846 6.793 7.488 8.258 8.951 9.228 9.466

LNGCD 2.195 2.585 2.689 2.887 3.302 3.766 3.977 4.107 4.281

5.2 Linear Space and Quadratic Time

Since the example in the previous section has no change in the number of
terms, it is not obvious how SMGCD and LSGCD compare to each other.
Consider G := (y10 + zy + z + u)x20 + (y10 + zy + z + u + 1)x10 + (y10 +
zy2 + z2 + u10)x5 + (z10 + zy)x3 + (y2 + y + z), which has term counts in
the main variable x are n1 = 4, n2 = 4, n3 = 4, n4 = 2, and n5 = 3.

SMGCD and LSGCD use Javadi’s solution to solve the normalization
problem, so they both choose the coefficients for x3 and x0 to form the first
system. We will change the number the terms in the coefficients of x20, x10,
and x5, and run SMGCD and LSGCD on it. Table 5.2 shows the running
time in seconds when we change t = n1 = n2 = n3 from 4 to 12. We can
observe that the running time SMGCD is growing faster than LSMGCD
with respect to the increase in the number of terms.

6 Conclusion

We have successfully modified Zippel’s sparse modular GCD algorithm to
work for finite fields with small cardinality. Zippel’s sparse interpolation
algorithm is more efficient than Brown’s algorithm, but may result in a
failure that triggers a new call to the algorithm. We analyzed the probability
of success. If our algorithm chooses an irreducible polynomial from the
coefficient ring with degree large enough, then the probability of unlucky
evaluation point and term vanishing problems will be small.

Javadi’s solution for normalization problem with Zippel’s linear space
and quadratic time refinement make use of Vandermonde matrices, since
it saves time and space to calculate its inverse. Our algorithm employs
a generalized version of the Vandermonde matrix. We introduced a new
master polynomial which efficiently calculates the inverse of the matrix.

REFERENCES 31

References

[1] W. S. Brown. On Euclid’s Algorithm and the Computation of Poly-
nomial Greatest Common Divisors. J. ACM 18, 478-504, 1971.

[2] K. O. Geddes, S. R. Czapor, G. Labahn. Algorithms for Computer
Algebra. p. 300-335, 1992.

[3] D. Cox, J. Little, D. O’Shea. Ideals, Varieties, and Algorithms. Third
edition. p. 156, 2007.

[4] M. Javadi. A New Solution to the Polynomial GCD Normalization
Problem. MOCAA M3 Workshop, 2008.

[5] E. Kaltofen, M. B. Monagan. On the Genericity of the Modular Poly-
nomial GCD Algorithm. Proceeding of ISSAC ’99, ACM Press, 59-66,
1999.

[6] J. de Kleine, M. B. Monagan, A. D. Wittkopf. Algorithms for the
Non-monic Case of the Sparse Modular GCD Algorithm. Proceeding
of ISSAC ’05, ACM Press, pp. 124-131 , 2005.

[7] R. Zippel. Probabilistic Algorithms for Sparse Polynomials, P. EU-
ROSAM ’79, Springer-Verlag LNCS, 2, 216-226, 1979.

[8] R. Zippel. Interpolating Polynomials from their Values. J. Symbolic
Comp. 9(3), 375-403, 1990.

