Drawing graphs by numerical solution of a system of second order ordinary differential equations

Mohammad Ali Ebrahimi, Michael Monagan.

Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada

Introduction

In this poster we present the spring algorithm for drawing directed and undirected graphs of vertices and edges in 2D or 3D. Starting from random initial minimal total energy of the graph. While graph drawing is a complicated problem, this algorithm requires no special knowledge about the structure the graph, The Maple implementation of this algorithm will be used by the Graph Theory Package.

Problem

- Find an aesthetic layout of the graph that clearly onveys its structure.
- Assign a location for each node and a route for each edge, so that the resulting drawing is "nice"

Methods

- Replace edges with springs (zero rest length). - Replace vertices with electrically charged particles These particles repel each other. - Add damping term

$\frac{d^{2}}{d t^{2}} x_{1}(t)=K\left(2 x_{1}(t)-x_{2}(t)-x_{3}(t)\right)-c\left(\frac{d}{d t} x_{1}(t)\right)$
$+A\left(\frac{x_{1}(t)-x_{2}(t)}{\left(x_{1}(t)-x_{2}(t)\right)^{2}+\left(y_{1}(t)-y_{2}(t)\right)^{2}}+\frac{x_{1}(t)-x_{3}(t)}{\left(x_{1}(t)-x_{3}(t)\right)^{2}+\left(y_{1}(t)-y_{3}(t)\right)^{2}}\right)$
$\frac{d^{2}}{d t^{2}} y_{1}(t)=K\left(2 y_{1}(t)-y_{2}(t)-y_{s}(t)\right)-C\left(\frac{d}{d t} y_{1}(t)\right)$
$+A\left(\frac{y_{1}(t)-y_{2}(t)}{\left(x_{1}(t)-x_{2}(t)\right)^{2}+\left(y_{1}(t)-y_{2}(t)\right)^{2}}+\frac{y_{1}(t)-y_{3}(t)}{\left(x_{1}(t)-x_{3}(t)\right)^{2}+\left(y_{1}(t)-y_{3}(t)\right)^{2}}\right)$
$\frac{d^{2}}{d t^{2}} x_{2}(t)=K\left(2 x_{2}(t)-x_{1}(t)-x_{3}(t)\right)-C\left(\frac{d}{d t} x_{2}(t)\right)$
$+A\left(\frac{x_{2}(t)-x_{1}(t)}{\left(x_{2}(t)-x_{1}(t)\right)^{2}+\left(y_{2}(t)-y_{1}(t)\right)^{2}}+\frac{x_{2}(t)-x_{3}(t)}{\left(x_{2}(t)-x_{3}(t)\right)^{2}+\left(y_{2}(t)-y_{3}(t)\right)^{2}}\right)$ $\frac{d^{2}}{d t^{2}} y_{2}(t)=K\left(2 y_{2}(t)-y_{1}(t)-y_{3}(t)\right)-C\left(\frac{d}{d t} v_{2}(t)\right)$
${ }_{t^{2}}^{+A}\left(\frac{y_{2}(t)-y_{1}(t)}{\left(x_{2}(t)-x_{1}(t)\right)^{2}+\left(y_{2}(t)-y_{1}(t)\right)^{2}}+\frac{y_{2}(t)-y_{3}(t)}{\left(x_{2}(t)-x_{3}(t)\right)^{2}+\left(y_{2}(t)-y_{3}(t)\right)^{2}}\right.$
$\frac{d^{2}}{d t^{2}} x_{3}(t)=K\left(2 x_{3}(t)-x_{1}(t)-x_{2}(t)\right)-C\left(\frac{d}{d t} x_{3}(t)\right)$
$+A\left(\frac{x_{3}(t)-x_{1}(t)}{\left(x_{3}(t)-x_{1}(t)\right)^{2}+\left(y_{3}(t)-y_{1}(t)\right)^{2}}+\frac{x_{3}(t)-x_{2}(t)}{\left(x_{3}(t)-x_{2}(t)\right)^{2}+\left(y_{3}(t)-y_{2}(t)\right)^{2}}\right)$

$+4\left(\frac{y_{3}(t)-y_{1}(t)}{\left(x_{3}(t)-x_{1}(t)\right)^{2}+\left(y_{3}(t)-y_{1}(t)\right)^{2}}+\frac{y_{3}(t)-y_{2}(t)}{\left(x_{3}(t)-x_{2}(t)\right)^{2}+\left(y_{3}(t)-y_{2}(t)\right)^{2}}\right)$
\qquad

We solve this system by the Fehlberg fourth-fifth order Runge-Kutta method (RKF45) with degree four interpolant. This can be done in Maple by the dsolve[numeric] command.

Results

Constants

In order to reconstruct good graphs from the randomly positioned initial vertices it is important that the spring model is not over damped nor under damped. Since we are solving the system of differential equations numerically, in case of over damped or under damped, reaching to we local mise in is almost impossible. constant, and repelling constants carefully. After experimenting with different graphs we have conclur expa a dynamic model with respect to different graphs is required.

Damping constant

we suggest that the value of damping constant is proportional to the degree of each node. For example if we have a node with inree springs connected to

Spring and repulsion Constants

We suggest that the value of the spring constant and also repulsion constant are directly related. For example if we increase the strength of the spring then relation between the spring and repulsion constant is not linear. We suggest the ratio of

$$
\frac{A}{B}=\sqrt{n}
$$

where A is the repulsion constant, B is the spring constant, and n is the number of nodes in the graph. On the other hand if we have a node with a high degree then the repulsion force should be small on this node and consequently less force for our spring. We can summarize all these in the following. Spring constant:

$$
B=\frac{\sqrt{ } n}{\operatorname{deg}(n)}
$$

Damping constant:

$$
\frac{1}{\operatorname{deg}\left(n_{i}\right)}
$$

Repulsion constant:

$$
A=\frac{1}{\operatorname{deg}\left(n_{i}\right)}
$$

Options

We have implemented this idea in Maple. In this implementation we have designed the following options:
-animation: This options will show an animation of the vertices and edges moving toward the local solution. This way the user can follow how the graph evood-looking configuration. good-looking configuration.
-dimension: With this option the user can choose to see the graph in 2D or 3D.
-direction: With this option the user can choose to see the direction of edges.

Remarks

- We observed that the result of this algorithm is better with random initial positions.
- Since the initial positions are chosen randomly the final positions might be different. where n is the number of nodes in 2 D .

Acknowledgments

