# Triangular Decompositions for Solving Parametric Polynomial Systems 

## Changbo Chen ${ }^{1}$

joint work with<br>Marc Moreno Maza ${ }^{1}$, Bican $\mathrm{Xia}^{2}$ and Lu Yang ${ }^{3}$

${ }^{1}$ University of Western Ontario, Ontario, Canada
${ }^{2}$ Peking University, Beijing, China
${ }^{3}$ East China Normal University, Shanghai, China

May 9, 2008

## Parametric Polynomial Systems

- A polynomial system of $\mathbb{K}[U, X]$ consists of equations $(=)$.

$$
P(s, x, y):=\left\{\begin{array}{l}
x(1+y)-s=0  \tag{1}\\
y(1+x)-s=0
\end{array}\right.
$$

the solution set of (1) in $\overline{\mathbb{K}}$ is called an algebraic variety.

- Add inequations $(\neq)$ to system (1).

$$
\left\{\begin{array}{l}
P(s, x, y)  \tag{2}\\
x+y-1 \neq 0
\end{array}\right.
$$

the solution set of (2) in $\overline{\mathbb{K}}$ is called a constructible set.

- Add inequalities ( $>, \geq,<, \leq$ ) to system (2).

$$
\left\{\begin{array}{l}
P(s, x, y)  \tag{3}\\
x+y-1>0
\end{array}\right.
$$

the solution set of (3) in $\mathbb{R}$ is called a semi-algebraic set.

## Objectives

For a parametric polynomial system $F \subset \mathbb{K}[U][X]$, the following problems are of interest:

1. compute the values $u$ of the parameters for which $F(u)$ has solutions, or has finitely many solutions.
2. compute the solutions of $F$ as continuous functions of the parameters.
3. provide an automatic case analysis for the number (dimension) of solutions depending on the parameter values.

## Related work $\left(C^{3}\right)$

- (Comprehensive) Gröbner bases (CGB): (V. Weispfenning, 92, 02), (D. Kapur 93), (A. Montes, 02), (M. Manubens \& A. Montes, 02), (A. Suzuki \& Y. Sato, 03, 06), (D. Lazard \& F. Rouillier, 07) and others.
- (Comprehensive) triangular decompositions (CTD): (S.C. Chou \& X.S. Gao 92), (X.S. Gao \& D.K. Wang 03), (D. Kapur 93), (D.M. Wang 05), (L. Yang, X.R. Hou \& B.C. Xia, 01), (C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza \& W. Pan, 07) and others.
- Cylindrical algebraic decompositions (CAD): (G.E. Collins 75), (G.E. Collins, H. Hong 91), (H. Hong 92), (S. McCallum 98), (A. Strzeboński 00), (C.W. Brown 01) and others.


## Main Results

We extend comprehensive triangular decomposition of an algebraic variety (CGLMP, CASC 2007) naturally to:

- comprehensive triangular decomposition of a parametric constructible sets
- and apply it to complex roots counting
- comprehensive triangular decomposition of a parametric semi-algebraic sets
- and apply it to real roots counting


## Constructible Set

Roughly speaking, a constructible set is the solution set of a system of polynomial equations and inequations or any finite union of these solution sets.

## Example

$$
\left\{\begin{array}{r}
x(1+y)-s=0  \tag{4}\\
y(1+x)-s=0 \\
x+y-1 \neq 0
\end{array}\right.
$$

Defi nition
A constructible set of $\overline{\mathbb{K}}^{m}$ is any finite union

$$
\left(A_{1} \backslash B_{1}\right) \cup \cdots \cup\left(A_{e} \backslash B_{e}\right)
$$

where $A_{1}, \ldots, A_{e}, B_{1}, \ldots, B_{e}$ are algebraic varieties over $\mathbb{K}$.

## How to Represent a Constructible Set?

## Defi nition

A pair $R=[T, h]$ is called a regular system if $T$ is a regular chain, and $h$ is a polynomial which is regular w.r.t sat $(T)$. The zero set of $R$ is defined as $Z(R):=V(T) \backslash V\left(h h_{T}\right)$.

## Proposition

The zero set of any regular system is unmixed and nonempty.
Every constructible set can be written as a finite union of the zero sets of regular systems.

## Example

The constructible set (4) can be represented by two regular systems

$$
R_{1}:\left|\begin{array}{l}
T_{1}=\left\{\begin{array}{l}
(y+1) x-s \\
y^{2}+y-s \\
h_{1}=y-2 s+1
\end{array}\right.
\end{array} \quad R_{2}:\right| \begin{aligned}
& T_{2}=\left\{\begin{array}{l}
x+1 \\
y+1 \\
s
\end{array}\right. \\
& h_{2}=1
\end{aligned}
$$

## Specialization

## Defi nition

A regular system $R:=[T, h]$ specializes well at $u \in \overline{\mathbb{K}}^{d}$ if
[ $T(u), h(u)]$ is a regular system of $\mathbb{K}[X]$ after specialization and no initials of polynomials in $T$ vanish during the specialization.

## Example

$$
R_{1}: \left\lvert\, \begin{aligned}
& T_{1}=\left\{\begin{array}{l}
(y+1) x-s \\
y^{2}+y-s \\
h_{1}=y-2 s+1
\end{array}, ~\right.
\end{aligned}\right.
$$

does not specializes well at $s=0$ or at $s=\frac{3}{4}$
$R_{1}(0):\left|\begin{array}{l}T_{1}(0)=\left\{\begin{array}{l}(y+1) x \\ (y+1) y\end{array} \quad R_{1}\left(\frac{3}{4}\right):\right. \\ h_{1}(0)=y+1\end{array}\right| \begin{aligned} & T_{1}\left(\frac{3}{4}\right)=\left\{\begin{array}{l}(y+1) x-\frac{3}{4} \\ \left(y-\frac{1}{2}\right)\left(y+\frac{3}{2}\right)\end{array}\right. \\ & h_{1}\left(\frac{3}{4}\right)=y-\frac{1}{2}\end{aligned}$

## Pre-comprehensive Triangular Decomposition (1/2)

## Defi nition

The set of parameter values $u \in \overline{\mathbb{K}}^{d}$ where a regular system $R$ specializes well is called the defining set of $R$, denoted by $D(R)$. Define $Z_{C}(R)=Z(R) \cap \pi_{U}^{-1}(D(R))$.

## Example

$$
R_{1}: \left\lvert\, \begin{aligned}
& T_{1}=\left\{\begin{array}{l}
(y+1) x-s \\
y^{2}+y-s \\
h_{1}=y-2 s+1
\end{array} \quad D\left(R_{1}\right):=\left\{s \in \overline{\mathbb{K}} \left\lvert\, s\left(s-\frac{3}{4}\right) \neq 0\right.\right\}\right.
\end{aligned}\right.
$$

## Defi nition

A triangular decomposition $\mathcal{R}$ of a constructible set $C S$ is called a pre-comprehensive triangular decomposition of $C S$ if we have

$$
C S=\bigcup_{R \in \mathcal{R}} Z(R)=\bigcup_{R \in \mathcal{R}} Z_{C}(R)
$$

## PCTD: Algorithm


$R_{1}:\left|\begin{array}{l}T_{1}=\left\{\begin{array}{l}(y+1) x-s \\ y^{2}+y-s \\ h_{1}=y-2 s+1\end{array} \quad R_{2}:\right.\end{array}\right| \begin{aligned} & T_{2}=\left\{\begin{array}{l}x+1 \\ y+1 \\ s\end{array} \quad R_{3}:\right. \\ & h_{2}=1\end{aligned}\left|\begin{array}{l}T_{3}=\left\{\begin{array}{l}x \\ y \\ s\end{array} \quad R_{4}:\right.\end{array}\right| \begin{aligned} & T_{4}=\left\{\begin{array}{l}2 x+3 \\ 2 y+3 \\ 4 s-3\end{array}\right. \\ & h_{4}=1\end{aligned}$

## Comprehensive Triangular Decomposition (CTD)

## Defi nition

Let $C S$ be a constructible set of $\mathbb{K}[U, X]$. A comprehensive triangular decomposition of CS is given by :

1. a finite partition $\mathcal{C}$ of the parameter space $\overline{\mathbb{K}}^{d}$,
2. for each $C \in \mathcal{C}$ a set of regular systems $\mathcal{R}_{C}$ s.t. for $u \in \mathcal{C}$ 2.1 each of the regular systems $R \in \mathcal{R}_{C}$ specializes well at $u$ 2.2 and we have

$$
\pi_{U}^{-1}(u) \cap C S=\bigcup_{R \in \mathcal{R}_{c}} Z(R(u)) .
$$

## Example

A CTD of (4) is as follows:

1. $s \neq 0$ and $s \neq \frac{3}{4} \longrightarrow\left\{R_{1}\right\}$

$$
R_{1}:\left|\begin{array}{l}
T_{1}=\left\{\begin{array}{c}
(y+1) x-s \\
y^{2}+y-s
\end{array}\right. \\
h_{1}=y-2 s+1
\end{array} \quad R_{2}:\right| \begin{aligned}
& T_{2}=\left\{\begin{array}{l}
x+1 \\
y+1 \\
s
\end{array}\right. \\
& h_{2}=1
\end{aligned}
$$

2. $s=0 \longrightarrow\left\{R_{2}, R_{3}\right\}$
3. $s=\frac{3}{4} \longrightarrow\left\{R_{4}\right\}$

$$
R_{3}: \left\lvert\, \begin{array}{ll}
T_{3}=\left\{\begin{array}{ll}
x & \\
y & R_{4}: \\
s &
\end{array} \left\lvert\, \begin{array}{l}
T_{4}=\left\{\begin{array}{l}
2 x+3 \\
2 y+3 \\
4 s-3
\end{array}\right. \\
h_{3}=1
\end{array} \quad h_{4}=1\right.\right.
\end{array}\right.
$$

## Algorithm of CTD

There are two main steps for computing a CTD of a constructible set CS.

- Compute a PCTD $\mathcal{R}$ of $C S$.
- Compute the intersection-free basis of the defining sets of regular systems in $\mathcal{R}$.



## Separation

## Defi nition

A squarefree regular system $R:=[T, h]$ separates well at $u \in \overline{\mathbb{K}}^{d}$ if: $R$ specializes well at $u$ and $R(u)$ is a squarefree regular system of $\overline{\mathbb{K}}[X]$.
specializes well but not separates well at $s=-\frac{1}{4}$ :

$$
R_{1}\left(-\frac{1}{4}\right): \left\lvert\, \begin{aligned}
& T_{1}\left(-\frac{1}{4}\right)=\left\{\begin{array}{l}
(y+1) x+\frac{1}{4} \\
\left(y+\frac{1}{2}\right)^{2}
\end{array}\right. \\
& h_{1}\left(-\frac{1}{4}\right)=y+\frac{3}{2}
\end{aligned}\right.
$$

where the second polynomial of $T_{1}\left(-\frac{1}{4}\right)$ is not squarefree.

## Disjoint Squarefree Comprehensive Triangular Decomposition (DSCTD)

## Defi nition

A disjoint squarefree comprehensive triangular decomposition of a constructible set $C S$ is given by:

1. a finite partition $\mathcal{C}$ of the parameter space $\overline{\mathbb{K}}^{d}$,
2. for each $C \in \mathcal{C}$ a set of squarefree regular systems $\mathcal{R}_{C}$ such that for each $u \in C$ :
2.1 each $R \in \mathcal{R}_{C}$ separates well at $u$,
2.2 the zero sets $Z(R(u))$, for $R \in \mathcal{R}_{C}$, are pairwise disjoint and

$$
\pi_{U}^{-1}(u) \cap C S=\bigcup_{R \in \mathcal{R}_{C}} Z(R(u))
$$

## DSCTD and Complex Root Counting

Example

A DSCTD of system (4) is as follows:

1. $s \neq 0, s \neq-\frac{1}{4}, s \neq \frac{3}{4} \longrightarrow\left\{R_{1}\right\}$
2. $s=0 \longrightarrow\left\{R_{2}, R_{3}\right\}$
3. $s=\frac{3}{4} \longrightarrow\left\{R_{4}\right\}$
4. $s=-\frac{1}{4} \longrightarrow\left\{R_{5}\right\}$

Therefore, we conclude that: if $\left(s+\frac{1}{4}\right)\left(s-\frac{3}{4}\right)=0$, system (4) has 1 complex root; otherwise system (4) has 2 complex roots.

## Semi-algebraic Set

Roughly speaking, a semi-algebraic set is the set of real solutions of a system of polynomial equations, inequations and inequalities or any finite union of these solution sets.
Example

$$
\left\{\begin{array}{r}
x(1+y)-s=0  \tag{5}\\
y(1+x)-s=0 \\
x+y-1>0
\end{array}\right.
$$

## Defi nition

A semi-algebraic set of $\mathbb{R}^{n}$ is a finite union of the form:

$$
\left\{x \in \mathbb{R}^{n} \mid \forall f \in F, g \in G, f(x)=0 \text { and } g(x)>0\right\}
$$

where $F$ and $G$ are any finite polynomial sets over $\mathbb{R}$.

## Regular Semi-algebraic System

## Defi nition

A pair $A:=[T, G+]$ is called a regular semi-algebraic system if

1. $G+$ is a finite set of inequalities $\{g>0 \mid g \in G\}$, where $G$ is a finite polynomial set over $\mathbb{R}$.
2. $\left[T, \prod_{g \in G} g\right]$ is a squarefree regular system over $\mathbb{R}$.

The set $Z(A):=Z\left(\left[T, \prod_{g \in G} g\right]\right) \cap\left\{x \in \mathbb{R}^{n} \mid \forall g \in G, g>0\right\}$ is called the zero set of $A$. We say $A$ separates well at $u \in \mathbb{R}^{d}$ if the squarefree regular system $\left[T, \prod_{g \in G} g\right]$ separates well at $u \in \mathbb{R}^{d}$.

Example

$$
A: \left\lvert\, \begin{aligned}
& T=\left\{\begin{array}{l}
(y+1) x-s \\
y^{2}+y-s
\end{array}\right. \\
& G+=\{x+y-1>0\}
\end{aligned}\right.
$$

## CTD of a Semi-algebraic Set

## Defi nition

A CTD of a semi-algebraic set $\mathcal{S}$ of $\mathbb{R}[U, X]$ is given by:

1. a finite partition $\mathcal{C}$ of the parameter space $\mathbb{R}^{d}$ into connected semi-algebraic sets,
2. for each $C \in \mathcal{C}$, an associated sample point $s \in C$,
3. for each $C \in \mathcal{C}$ a set of regular semi-algebraic systems $\mathcal{A}_{C}$ of $\mathbb{R}[U, X]$ such that for each $u \in C$
3.1 each $A \in \mathcal{A}_{C}$ separates well at $u$,
3.2 the zero sets $Z(A(u))$, for $A \in \mathcal{A}_{C}$, are pairwise disjoint and

$$
\pi_{U}^{-1}(u) \cap \mathcal{S}=\bigcup_{A \in \mathcal{A}_{c}} Z(A(u))
$$

## Algorithm:

1. Compute the DSCTD of $C S(\mathcal{S})$.
2. Apply CAD to refine each cell obtained into connected semi-algebraic sets.

## CTD of a Semi-algebraic Set

Example

$$
\begin{gathered}
A_{1}:\left|\begin{array}{l}
T_{1}=\left\{\begin{array}{l}
(y+1) x-s \\
y^{2}+y-s \\
G+=\{x+y-1>0\}
\end{array} \quad A_{2}:\right.
\end{array}\right| \begin{array}{l}
T_{2}=\left\{\begin{array}{l}
x+1 \\
y+1 \\
s \\
G+= \\
x+y-1>0\}
\end{array}\right.
\end{array} A_{3}: \left\lvert\, \begin{array}{l}
T_{3}=\left\{\begin{array}{l}
x \\
y \\
s
\end{array}\right. \\
G+=\{x+y-1>0\}
\end{array}\right. \\
A_{4}:\left|\begin{array}{l}
T_{4}=\left\{\begin{array}{c}
2 x+3 \\
2 y+3 \\
4 s-3 \\
G+=\{x+y-1>0\}
\end{array}\right.
\end{array} \quad A_{5}:\right| \begin{array}{l}
T_{5}=\left\{\begin{array}{c}
2 x+1 \\
2 y+1 \\
4 s+1 \\
G+1 \\
\\
G+y-1>0\}
\end{array}\right.
\end{array}
\end{gathered}
$$

A CTD of system (5) is as follows:


## Real Root Counting

## Proposition

Let $A=[T, G+]$, where $X \subseteq \operatorname{mvar}(T)$, be a regular semi-algebraic system of $\mathbb{R}[U, X]$ and $C$ be a connected semi-algebraic set of $\mathbb{R}^{d}$. If $A$ separates well at any $u \in C$, then the number of solutions of $A$ is constant over $C$ and each solution is a continuous function of the parameters in C .

## Example

$$
A_{1}: \left\lvert\, \begin{aligned}
& T_{1}=\left\{\begin{array}{l}
(y+1) x-s \\
y^{2}+y-s \\
G+=\{x+y-1>0\}
\end{array}\right.
\end{aligned}\right.
$$

The regular semi-algebraic system $A_{1}$ separates well at $s>\frac{3}{4}$ and the number of its solutions is 1 .

Moreover, if $s>\frac{3}{4}$, the number of real solutions of system (5) is 1; otherwise system (5) has no real solutions.

## Mad Cow Disease



Mad cow disease causes cattle to behave strangely.

## Laurent Model

- Mad cow disease is a transmissible disease of the central nervous system, thought to be caused prion proteins.
- Prion proteins exist in a normal form $\operatorname{PrP}^{\mathrm{C}}$ and a pathogenic form $\operatorname{PrP}^{S_{C}}$.
- An excess of $\operatorname{PrP}^{S_{C}}$ causes prion diseases. Can a small amount of $\mathrm{PrP}^{\mathrm{S}_{\mathrm{C}}}$ lead finally to excess of $\mathrm{PrP}^{\mathrm{S}_{\mathrm{C}}}$ ?

The model of Laurent reduces this question to studying the equilibria of the dynamical system below, where $x$ and $y$ are the concentrations of $\operatorname{PrP}^{\mathrm{C}}$ and $\operatorname{PrP}^{\mathrm{S}_{\mathrm{C}}}$.

$$
\left\{\begin{array} { l } 
{ \frac { \mathrm { d } x } { \mathrm { d } t } = f _ { 1 } }  \tag{6}\\
{ \frac { \mathrm { d } y } { \mathrm { d } t } = f _ { 2 } }
\end{array} \text { with } \left\{\begin{array}{l}
f_{1}=\frac{16000+800 y^{4}-20 k_{2} x-k_{2} x y^{4}-2 x-4 x y^{4}}{20+y^{4}} \\
f_{2}=\frac{2\left(x+2 x y^{4}-500 y-25 y^{5}\right)}{20+y^{4}}
\end{array}\right.\right.
$$

## From Dynamical System to Semi-algebraic Set

By Routh-Hurwitz criterion, the parametric semi-algebraic set

$$
\mathcal{S}:\left\{f_{1}=f_{2}=0, k_{2}>0, \Delta_{1}>0, \Delta_{2}>0\right\}
$$

encodes exactly the asymptotically hyperbolic equilibria of system (6), where

$$
\begin{aligned}
& \Delta_{1}:=-\left(\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}\right)>0 \\
& \Delta_{2}:=\frac{\partial f_{1}}{\partial x} \cdot \frac{\partial t_{2}}{\partial y}-\frac{\partial t_{1}}{\partial y}+\frac{\partial f_{2}}{\partial x}>0
\end{aligned}
$$

A comprehensive triangular decomposition of $\mathcal{S}$ is illustrated as follows:


## Stability Analysis

Let

$$
\begin{aligned}
R_{1} & =100000 k_{2}^{8}+1250000 k_{2}^{7}+5410000 k_{2}^{6}+8921000 k_{2}^{5} \\
& -9161219950 k_{2}^{4}-5038824999 k_{2}^{3}-1665203348 k_{2}^{2} \\
& -882897744 k_{2}+1099528405056 .
\end{aligned}
$$

If $R_{1}>0$, then the system has 1 equilibrium, which is asymptotically stable. If $R_{1}<0$, then the system has 3 equilibria, two of which are asymptotically stable. If $R_{1}=0$, the system experiences a bifurcation.




## Biochemical explanation

- The turnover rate $k_{2}$ determines whether it is possible for a pathogenic state to occur.
- As an answer to our question, if $k_{2}$ is large, a small amount of $\operatorname{PrP}^{\mathrm{S}_{\mathrm{C}}}$ will not lead to a pathogenic state.
- Compounds that inhibit addition of $\operatorname{PrP}^{S_{C}}$ can be seen as a possible therapy against prion diseases.
- Compounds that increase the turnover rate $k_{2}$ would be the best therapeutic strategy against prion diseases.

