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Triangular Set

Definition
A triangular set is a family of polynomial T = (T1, T, ..., Tp) in
R[X1,...,Xn], where

» R is our coefficient ring;

» Tiisin R[Xy,...,X;

» T is monic in X;;

» Tiisreduced w.rt. Tq,...,Ti_1.

Example

Tl(Xl) = Xf—|-3X1

To(X1,X2) = X7 +XoXg



Goal of this work

The goal of this work is to compute C = AB mod T where A
and B are two polynomials already reduced modulo T.

Example (continued)

A = X1Xo+Xo+X1+1
B = XxiXo+X2+Xx1+1

AB = X2x2 4 2x3x1 4 2XoX2 + AX1Xp + X2 + 2Xp + X2 +2x1 + 1
C = —6xoX1+2X — X1 +1



Complexity Measure

The complexity measure is § = d;d, ... d, (which is essentially
the input and output size).

Theorem (Li, Moreno Maza, Schost)
The product AB mod T can be computed in time O7(4"9).
(the notation O~ hides logarithmic factors)

Theorem (Li, Moreno Maza, Schost)

Suppose that for all i, T; is in R[x;]. Then the product AB
mod T can be computed in time

O"(éidi).
i=1



Current work

Our contribution: extending the previous special case.
Theorem
Let T be a triangular set where, for all i:
» Tiisin R[X;,X_1];
> T = ti(X;) + di(Xi—1);
» all tj have the same degree d.
Then the product AB mod T can be computed in time

0"(d?).

Remarks

» The assumption that all d; are equal simplifies the
estimates.

» Combining this result with the O%(4"§) bound, we can
refine the cost to O~(deV!°99),



Current work Contd.

Theorem
Let T be a triangular set where, for all i:
» Tiisin R[Xj,Xi_1,...,X1];

> Ti=t(X) + di(Xi—1-..X1);
» All t; have the same degree d.
Then the product AB mod T can be computed in time

o2 7).



Application of modular arithmetic

Addition of algebraic numbers over Z/pZ.

This requires (in particular) multiplication modulo a triangular
set T, where each T; is in Z/pZ[xj_1, X;] has degree p in x; and

linXx_q.
T, = X][_)
T, = XE — X1
T3 = Xg — X2
Th = Xr? — Xn-1

Our first theorem cover this case.



Application of modular arithmetic

A problem from cryptology, over Z/pZ.

This requires (in particular) multiplication modulo a triangular

set T where each T; isin Z/pZ[Xy, ..., Xj] has degree p in X;
andp—1,....,p—1inXy,...,Xi_1.

Ty = xXP+x+1

T, = xXP4x+xP7t

Ts = x0+x3+x) Xt

T, = x,?+xn+xr‘]’:11---xf_l

Our second theorem cover this case.
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to the multiplication of multivariate polynomial using FFT.
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Nice case: when the roots are known

When all roots of Ty, ..., T, are known, the procedure is similar
to the multiplication of multivariate polynomial using FFT.

» Let A and B are two polynomials mod T, C is the product
of ABmod T.

» C can be obtained by evaluation and interpolation at the
roots of T.

» The evaluation of A mod T and B mod T can be done in
time O7(9).

» The multiplication is pairwise multiplication; the required
time is O(9).

» The interpolation is essentially same as the evaluation
which can be done in O7(9)

Total: O7(¢), optimal!



When the roots are unknown

In general, the roots are not known (they do no exist in R).
» Our approach consists in building another triangular set V
with
Vi =nTi + (1 -n)U;,
where U; has known roots (pairwise distinct).

» The root of V are series in n. We can compute them by
Newton iteration, because the roots of U; are known.

> |f’l7:1, thenV; =T,.
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Computing modulo the new triangular set

Instead of computing C = AB mod T directly, we compute
» C' = AB mod V by evaluation and interpolation
» Substitute n = 1in C’

This gives us AB mod T.

Proposition
Letr = deg(C’, n), then the cost of the algorithm is O(dr)

Question: What will be the value of r?
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Example of reduction

In general r = 4, so we focus on special cases.

Example
» The triangular set V is composed of:

Vi = x2—mx¥—nx1—n
Vo = X3 —1x5 —nXa —n —nx{
Vi = x3—nx§—nXg—n—nx;

» A and B are two polynomials modV in R[Xy, X2, X3]
» C=AB modV in R[?’]][Xl,Xz,X3].



Example of reduction contd.

Example (continued)
» The largest monomial of C, before reduction: x3x5x;.
» A single reduction w.r.t. Vs:

X3Xaxt = xaxSxgx;
= XaXgX{(nXg +nx3z +n+nx3) reduction w.rt. Vs

U 3u4,4 2,4,4 4,4 6.4
= XXXy + MX3Xp Xy + NX3Xo Xy A+ 1X3Xp Xy

» The same process is repeated for nx3x5x;



Example of reduction contd.

Example (continued)
» The monomial is nx3x3x7.
» The reduction process:
NX3XIXT = mxaXP(nx3 +nxs +n+nx2) reduction w.rt. Vg
= PXEXIXT 4 NPXaXgXT + mPXIXT 4 PXEX]
» Number of steps up to now: 2.
» The largest monomial after reducing w.r.t. Va: n?x$x.



Example of reduction contd.

Example (continued)
» A single reduction w.r.t. V,:
TXIXS = PXIXEXE
= PxIX3(nx3 4 nx2 + 1 +nx?)  reduction w.r.t. Vs
= XX+ 0PXiXg XIS PP

» This process gives us two alternative way to reduce C
further.



Example contd.
The following tree structure describes the reduction more
concisely.
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Example contd.
The following tree structure describes the reduction more
concisely.

2,4,,6
XXy

VRN

3y4,5 3,643
X1 %5 XX,



Example contd.
The following tree structure describes the reduction more
concisely.

7Xyx$

VRN

P P
13X{%3 13XPX3

7NN

x4 - X3
n*x{xs n*xex2 nXg



Example contd.
The following tree structure describes the reduction more

concisely.
7Xyx$
P P
PXLX3 13XPX3 \
x4 n 8
11 %7%3 1 XPX5 " Xq

AN

5y 4y 3 5,6
X7 XS5 X3 X2



Example contd.
The following tree structure describes the reduction more
concisely.

7Xyx$

VRN

P P
13X{%3 13XPX3

7NN

x4 - X3
n*x{xs n*xex2 nXg

AN

5y 4y 3 5,6
X7 XS5 X3 X2

S

6.4y 2
"Xy X5 X1



Generalization

The previous example generalizes to

d di—1
Vi = xgt+cy (mxt T+ +cr(n)
d dp—1 di—1
Voo = X%+ (mXp® T4 A cz(n) FCo (m)Xt T+
_ dy_1—1
V, = xgn + Cn,...(n)Xr?” 1. 4 Cn,..(n) +Cn.(M)X,"{" T+

for some coefficients ¢; () of degree 1.



Bound

The degree bound r will be:
> ifd; <dy <--- <dpog < dy

n
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i=1



Bound

The degree bound r will be:
> ifd; <dy <--- <dpog < dy

n
r<2> d-2
i=1
> ifd; >dy>--- >dy_q1 >dy

n n—1
r<> (di—1)+» i+n(d—1)
i=2 i=2

In particular, this gives our first theorem, when all d; are equal.



Triangular set for 2nd case

Generalized triangular set for Theorem 2:

Vi o= x{+c x4+ (n)
V2 = Xg + CZ,...(n)Xg_l R CZ,...(n) + C27___(7])ch_j_l 4o
Vi = X3+ Cn (xS 4 e () + Ca (xS x4

for some coefficients ¢; () of degree 1.



Degree Changes in two direction:

Decrement of degrees for this case.

» Degrees in other variable remain same except x; (when
reducing w.r.t. V;) which will be decreased by 1 in left
direction

» Degrees in other variable increased by (d — 1) and
decreased by d in x; (when reducing w.r.t. V;) in right
direction



Degree Changes example:

If d = 2 and a monomial start with 3 variables having degrees
9,9, 9, then the reduction steps would be:

0.9,9
<N
9,98  10.10,7
N #F N
9,97 10,106 11115
SON SN SN
9,96 10,105  11.11,4 12,12

i SN N SN
9,94 10,10,  11,11,2 12,121 13,130
SN SN SN
9,93  10,10,2  1L,11,1 12,120
< N
9,92  10,10,1 11,110
N
9,01  10.10,0



Bound

The degree bound r will be:

> ifd]_:dz:-'-:dn,l:dn:d
1
<2(2- )"t
r<22-3)

This gives our second theorem, when all d; are equal.



Thanks
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