Multiplication Modulo A Triangular Set

Muhammad F.I. Chowdhury, Éric Schost
Dept. of Computer Science
University of Western Ontario, Canada

May 07, 2008

Triangular Set

Definition

A triangular set is a family of polynomial $\boldsymbol{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ in $R\left[x_{1}, \ldots, x_{n}\right]$, where

- R is our coefficient ring;
- T_{i} is in $R\left[x_{1}, \ldots, x_{i}\right]$;
- T_{i} is monic in X_{i};
- T_{i} is reduced w.r.t. T_{1}, \ldots, T_{i-1}.

Example

$$
\begin{aligned}
T_{1}\left(x_{1}\right) & =x_{1}^{2}+3 x_{1} \\
T_{2}\left(x_{1}, x_{2}\right) & =x_{2}^{2}+x_{2} x_{1}
\end{aligned}
$$

Goal of this work

The goal of this work is to compute $C \equiv A B \bmod T$ where A and B are two polynomials already reduced modulo T.

Example (continued)

$$
\begin{aligned}
A & =x_{1} x_{2}+x_{2}+x_{1}+1 \\
B & =x_{1} x_{2}+x_{2}+x_{1}+1 \\
A B & =x_{1}^{2} x_{2}^{2}+2 x_{2}^{2} x_{1}+2 x_{2} x_{1}^{2}+4 x_{1} x_{2}+x_{2}^{2}+2 x_{2}+x_{1}^{2}+2 x_{1}+1 \\
C & =-6 x_{2} x_{1}+2 x_{2}-x_{1}+1
\end{aligned}
$$

Complexity Measure

The complexity measure is $\delta=d_{1} d_{2} \ldots d_{n}$ (which is essentially the input and output size).

Theorem (Li, Moreno Maza, Schost) The product $A B \bmod T$ can be computed in time $O^{\sim}\left(4^{n} \delta\right)$. (the notation O^{\sim} hides logarithmic factors)

Theorem (Li, Moreno Maza, Schost)
Suppose that for all i, T_{i} is in $R\left[x_{i}\right]$. Then the product $A B$ $\bmod T$ can be computed in time

$$
O^{\sim}\left(\delta \sum_{i=1}^{n} d_{i}\right)
$$

Current work

Our contribution: extending the previous special case.
Theorem
Let T be a triangular set where, for all i :

- T_{i} is in $R\left[x_{i}, x_{i-1}\right]$;
- $T_{i}=t_{i}\left(x_{i}\right)+q_{i}\left(x_{i-1}\right)$;
- all t_{i} have the same degree d.

Then the product $A B \bmod T$ can be computed in time

$$
O^{\sim}(d \delta)
$$

Remarks

- The assumption that all d_{i} are equal simplifies the estimates.
- Combining this result with the $O^{\sim}\left(4^{n} \delta\right)$ bound, we can refine the cost to $O^{\sim}\left(\delta e^{\sqrt{\log \delta}}\right)$.

Current work Contd.

Theorem

Let T be a triangular set where, for all i :

- T_{i} is in $R\left[x_{i}, x_{i-1}, \ldots, x_{1}\right]$;
- $T_{i}=t_{i}\left(x_{i}\right)+q_{i}\left(x_{i-1} \ldots x_{1}\right)$;
- All t_{i} have the same degree d.

Then the product $A B \bmod T$ can be computed in time

$$
O^{\sim}\left(\left(2-\frac{1}{d}\right)^{n-1} \delta\right) .
$$

Application of modular arithmetic

Addition of algebraic numbers over $\mathbb{Z} / p \mathbb{Z}$.
This requires (in particular) multiplication modulo a triangular set T, where each T_{i} is in $\mathbb{Z} / p \mathbb{Z}\left[x_{i-1}, x_{i}\right]$ has degree p in x_{i} and 1 in x_{i-1}.

$$
\begin{aligned}
T_{1} & =x_{1}^{p} \\
T_{2} & =x_{2}^{p}-x_{1} \\
T_{3} & =x_{3}^{p}-x_{2} \\
& \vdots \\
T_{n} & =x_{n}^{p}-x_{n-1}
\end{aligned}
$$

Our first theorem cover this case.

Application of modular arithmetic

A problem from cryptology, over $\mathbb{Z} / p \mathbb{Z}$.
This requires (in particular) multiplication modulo a triangular set T where each T_{i} is in $\mathbb{Z} / p \mathbb{Z}\left[x_{1}, \ldots, x_{i}\right]$ has degree p in x_{i} and $p-1, \ldots, p-1$ in x_{1}, \ldots, x_{i-1}.

$$
\begin{aligned}
T_{1} & =x_{1}^{p}+x_{1}+1 \\
T_{2} & =x_{2}^{p}+x_{2}+x_{1}^{p-1} \\
T_{3} & =x_{3}^{p}+x_{3}+x_{2}^{p-1} x_{1}^{p-1} \\
& \vdots \\
T_{n} & =x_{n}^{p}+x_{n}+x_{n-1}^{p-1} \cdots x_{1}^{p-1}
\end{aligned}
$$

Our second theorem cover this case.

Nice case: when the roots are known

When all roots of T_{1}, \ldots, T_{n} are known, the procedure is similar to the multiplication of multivariate polynomial using FFT.

Nice case: when the roots are known

When all roots of T_{1}, \ldots, T_{n} are known, the procedure is similar to the multiplication of multivariate polynomial using FFT.

- Let A and B are two polynomials mod T, C is the product of $A B \bmod T$.
- C can be obtained by evaluation and interpolation at the roots of T.

Nice case: when the roots are known

When all roots of T_{1}, \ldots, T_{n} are known, the procedure is similar to the multiplication of multivariate polynomial using FFT.

- Let A and B are two polynomials mod T, C is the product of $A B \bmod T$.
- C can be obtained by evaluation and interpolation at the roots of T.
- The evaluation of $A \bmod T$ and $B \bmod T$ can be done in time $O^{\circ}(\delta)$.

Nice case: when the roots are known

When all roots of T_{1}, \ldots, T_{n} are known, the procedure is similar to the multiplication of multivariate polynomial using FFT.

- Let A and B are two polynomials mod T, C is the product of $A B \bmod T$.
- C can be obtained by evaluation and interpolation at the roots of T.
- The evaluation of $A \bmod T$ and $B \bmod T$ can be done in time $O^{\sim}(\delta)$.
- The multiplication is pairwise multiplication; the required time is $O(\delta)$.

Nice case: when the roots are known

When all roots of T_{1}, \ldots, T_{n} are known, the procedure is similar to the multiplication of multivariate polynomial using FFT.

- Let A and B are two polynomials mod T, C is the product of $A B \bmod T$.
- C can be obtained by evaluation and interpolation at the roots of T.
- The evaluation of $A \bmod T$ and $B \bmod T$ can be done in time $O^{\sim}(\delta)$.
- The multiplication is pairwise multiplication; the required time is $O(\delta)$.
- The interpolation is essentially same as the evaluation which can be done in $O^{\circ}(\delta)$
Total: $O^{\sim}(\delta)$, optimal!

When the roots are unknown

In general, the roots are not known (they do no exist in R).

- Our approach consists in building another triangular set V with

$$
V_{i}=\eta T_{i}+(1-\eta) U_{i},
$$

where U_{i} has known roots (pairwise distinct).

- The root of V are series in η. We can compute them by Newton iteration, because the roots of U_{i} are known.
- If $\eta=1$, then $V_{i}=T_{i}$.

Computing modulo the new triangular set

Instead of computing $C \equiv A B \bmod T$ directly, we compute

- $C^{\prime}=A B \bmod V$ by evaluation and interpolation

Computing modulo the new triangular set

Instead of computing $C \equiv A B \bmod T$ directly, we compute

- $C^{\prime}=A B \bmod V$ by evaluation and interpolation
- Substitute $\eta=1$ in C^{\prime}

This gives us $A B$ mod T.

Computing modulo the new triangular set

Instead of computing $C \equiv A B \bmod T$ directly, we compute

- $C^{\prime}=A B \bmod V$ by evaluation and interpolation
- Substitute $\eta=1$ in C^{\prime}

This gives us $A B \bmod T$.
Proposition
Let $r=\operatorname{deg}\left(C^{\prime}, \eta\right)$, then the cost of the algorithm is $O^{\sim}(\delta r)$

Computing modulo the new triangular set

Instead of computing $C \equiv A B \bmod T$ directly, we compute

- $C^{\prime}=A B \bmod V$ by evaluation and interpolation
- Substitute $\eta=1$ in C^{\prime}

This gives us $A B \bmod T$.
Proposition
Let $r=\operatorname{deg}\left(C^{\prime}, \eta\right)$, then the cost of the algorithm is $O^{\sim}(\delta r)$
Question: What will be the value of r ?

Example of reduction

In general $r=\delta$, so we focus on special cases.

Example of reduction

In general $r=\delta$, so we focus on special cases.

Example

- The triangular set V is composed of:

$$
\begin{aligned}
& V_{1}=x_{1}^{3}-\eta x_{1}^{2}-\eta x_{1}-\eta \\
& V_{2}=x_{2}^{3}-\eta x_{2}^{2}-\eta x_{2}-\eta-\eta x_{1}^{2} \\
& V_{3}=x_{3}^{3}-\eta x_{3}^{2}-\eta x_{3}-\eta-\eta x_{2}^{2}
\end{aligned}
$$

- A and B are two polynomials $\bmod V$ in $R\left[x_{1}, x_{2}, x_{3}\right]$
- $C=A B \bmod V$ in $R[\eta]\left[x_{1}, x_{2}, x_{3}\right]$.

Example of reduction contd.

Example (continued)

- The largest monomial of C, before reduction: $x_{3}^{4} x_{2}^{4} x_{1}^{4}$.
- A single reduction w.r.t. V_{3} :

$$
\begin{aligned}
x_{3}^{4} x_{2}^{4} x_{1}^{4} & =x_{3} x_{3}^{3} x_{2}^{4} x_{1}^{4} \\
& =x_{3} x_{2}^{4} x_{1}^{4}\left(\eta x_{3}^{2}+\eta x_{3}+\eta+\eta x_{2}^{2}\right) \quad \text { reduction w.r.t. } V_{3} \\
& =\eta x_{3}^{3} x_{2}^{4} x_{1}^{4}+\eta x_{3}^{2} x_{2}^{4} x_{1}^{4}+\eta x_{3} x_{2}^{4} x_{1}^{4}+\eta x_{3} x_{2}^{6} x_{1}^{4}
\end{aligned}
$$

- The same process is repeated for $\eta x_{3}^{3} x_{2}^{4} x_{1}^{4}$

Example of reduction contd.

Example (continued)

- The monomial is $\eta x_{3}^{3} x_{2}^{4} x_{1}^{4}$.
- The reduction process:

$$
\begin{aligned}
\eta x_{3}^{3} x_{2}^{4} x_{1}^{4} & =\eta x_{2}^{4} x_{1}^{4}\left(\eta x_{3}^{2}+\eta x_{3}+\eta+\eta x_{2}^{2}\right) \quad \text { reduction w.r.t. } V_{3} \\
& =\eta^{2} x_{3}^{2} x_{2}^{4} x_{1}^{4}+\eta^{2} x_{3} x_{2}^{4} x_{1}^{4}+\eta^{2} x_{2}^{4} x_{1}^{4}+\eta^{2} x_{2}^{6} x_{1}^{4}
\end{aligned}
$$

- Number of steps up to now: 2.
- The largest monomial after reducing w.r.t. $V_{3}: \eta^{2} x_{2}^{6} x_{1}^{4}$.

Example of reduction contd.

Example (continued)

- A single reduction w.r.t. V_{2} :

$$
\begin{aligned}
\eta^{2} x_{1}^{4} x_{2}^{6} & =\eta^{2} x_{1}^{4} x_{2}^{3} x_{2}^{3} \\
& =\eta^{2} x_{1}^{4} x_{2}^{3}\left(\eta x_{2}^{2}+\eta x_{2}+\eta+\eta x_{1}^{2}\right) \quad \text { reduction w.r.t. } v_{2} \\
& =\eta^{3} x_{1}^{4} x_{2}^{5}+\eta^{3} x_{1}^{4} x_{2}^{4}+\eta^{3} x_{1}^{4} x_{2}^{3}+\eta^{3} x_{1}^{6} x_{2}^{3}
\end{aligned}
$$

- This process gives us two alternative way to reduce C further.

Example contd.

The following tree structure describes the reduction more concisely.

Example contd.

The following tree structure describes the reduction more concisely.

$$
\eta^{2} x_{1}^{4} x_{2}^{6}
$$

Example contd.

The following tree structure describes the reduction more concisely.

Example contd.

The following tree structure describes the reduction more concisely.

Example contd.

The following tree structure describes the reduction more concisely.

Example contd.

The following tree structure describes the reduction more concisely.

Generalization

The previous example generalizes to

$$
\begin{aligned}
V_{1} & =x_{1}^{d_{1}}+c_{1, \ldots}(\eta) x_{1}^{d_{1}-1}+\cdots+c_{1, \ldots}(\eta) \\
V_{2} & =x_{2}^{d_{2}}+c_{2, \ldots}(\eta) x_{2}^{d_{2}-1}+\cdots+c_{2, \ldots}(\eta)+c_{2, \ldots}(\eta) x_{1}^{d_{1}-1}+\cdots \\
& \vdots \\
V_{n} & =x_{n}^{d_{n}}+c_{n, \ldots}(\eta) x_{n}^{d_{n}-1}+\cdots+c_{n, \ldots}(\eta)+c_{n, \ldots}(\eta) x_{n-1}^{d_{n-1}-1}+\cdots,
\end{aligned}
$$

for some coefficients $c_{i, \ldots}(\eta)$ of degree 1.

Bound

The degree bound r will be:

- if $d_{1} \leq d_{2} \leq \cdots \leq d_{n-1} \leq d_{n}$

$$
r \leq 2 \sum_{i=1}^{n} d_{i}-2
$$

Bound

The degree bound r will be:

- if $d_{1} \leq d_{2} \leq \cdots \leq d_{n-1} \leq d_{n}$

$$
r \leq 2 \sum_{i=1}^{n} d_{i}-2
$$

- if $d_{1} \geq d_{2} \geq \cdots \geq d_{n-1} \geq d_{n}$

$$
r \leq \sum_{i=2}^{n}\left(d_{i}-1\right)+\sum_{i=2}^{n-1} i+n\left(d_{1}-1\right)
$$

In particular, this gives our first theorem, when all d_{i} are equal.

Triangular set for 2nd case

Generalized triangular set for Theorem 2:

$$
\begin{aligned}
V_{1} & =x_{1}^{d}+c_{1, \ldots}(\eta) x_{1}^{d-1}+\cdots+c_{1, \ldots}(\eta) \\
V_{2} & =x_{2}^{d}+c_{2, \ldots}(\eta) x_{2}^{d-1}+\cdots+c_{2, \ldots}(\eta)+c_{2, \ldots}(\eta) x_{1}^{d-1}+\cdots \\
& \vdots \\
V_{n} & =x_{n}^{d}+c_{n, \ldots}(\eta) x_{n}^{d-1}+\cdots+c_{n, \ldots}(\eta)+c_{n, \ldots}(\eta) x_{n-1}^{d-1} \cdots x_{1}^{d-1}+\cdots
\end{aligned}
$$

for some coefficients $c_{i, \ldots}(\eta)$ of degree 1.

Degree Changes in two direction:

Decrement of degrees for this case.

- Degrees in other variable remain same except x_{i} (when reducing w.r.t. V_{i}) which will be decreased by 1 in left direction
- Degrees in other variable increased by $(d-1)$ and decreased by d in x_{i} (when reducing w.r.t. V_{i}) in right direction

Degree Changes example:

If $d=2$ and a monomial start with 3 variables having degrees $9,9,9$, then the reduction steps would be:

Bound

The degree bound r will be:

- if $d_{1}=d_{2}=\cdots=d_{n-1}=d_{n}=d$

$$
r \leq 2\left(2-\frac{1}{d}\right)^{n-1}
$$

This gives our second theorem, when all d_{i} are equal.

Thanks

