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Triangular Set

Definition
A triangular set is a family of polynomial T = (T1, T2, . . . , Tn) in
R[x1, . . . , xn], where

◮ R is our coefficient ring;
◮ Ti is in R[x1, . . . , xi ];
◮ Ti is monic in Xi ;
◮ Ti is reduced w.r.t. T1, . . . , Ti−1.

Example

T1(x1) = x2
1 + 3x1

T2(x1, x2) = x2
2 + x2x1



Goal of this work

The goal of this work is to compute C ≡ AB mod T where A
and B are two polynomials already reduced modulo T .

Example (continued)

A = x1x2 + x2 + x1 + 1

B = x1x2 + x2 + x1 + 1

AB = x2
1 x2

2 + 2x2
2 x1 + 2x2x2

1 + 4x1x2 + x2
2 + 2x2 + x2

1 + 2x1 + 1

C = −6x2x1 + 2x2 − x1 + 1



Complexity Measure

The complexity measure is δ = d1d2 . . . dn (which is essentially
the input and output size).

Theorem (Li, Moreno Maza, Schost)
The product AB mod T can be computed in time O (̃4nδ).

(the notation O˜ hides logarithmic factors)

Theorem (Li, Moreno Maza, Schost)
Suppose that for all i , Ti is in R[xi ]. Then the product AB
mod T can be computed in time

O (̃δ

n∑

i=1

di).



Current work

Our contribution: extending the previous special case.

Theorem
Let T be a triangular set where, for all i :

◮ Ti is in R[xi , xi−1];
◮ Ti = ti(xi ) + qi(xi−1);
◮ all ti have the same degree d.

Then the product AB mod T can be computed in time

O (̃dδ).

Remarks
◮ The assumption that all di are equal simplifies the

estimates.
◮ Combining this result with the O (̃4nδ) bound, we can

refine the cost to O (̃δe
√

log δ).



Current work Contd.

Theorem
Let T be a triangular set where, for all i :

◮ Ti is in R[xi , xi−1, . . . , x1];
◮ Ti = ti(xi ) + qi(xi−1 . . . x1);
◮ All ti have the same degree d.

Then the product AB mod T can be computed in time

O (̃(2 −
1
d

)n−1δ).



Application of modular arithmetic

Addition of algebraic numbers over Z/pZ.

This requires (in particular) multiplication modulo a triangular
set T , where each Ti is in Z/pZ[xi−1, xi ] has degree p in xi and
1 in xi−1.

T1 = xp
1

T2 = xp
2 − x1

T3 = xp
3 − x2

...

Tn = xp
n − xn−1

Our first theorem cover this case.



Application of modular arithmetic

A problem from cryptology, over Z/pZ.

This requires (in particular) multiplication modulo a triangular
set T where each Ti is in Z/pZ[x1, . . . , xi ] has degree p in xi

and p − 1, . . . , p − 1 in x1, . . . , xi−1.

T1 = xp
1 + x1 + 1

T2 = xp
2 + x2 + xp−1

1

T3 = xp
3 + x3 + xp−1

2 xp−1
1

...

Tn = xp
n + xn + xp−1

n−1 · · · xp−1
1

Our second theorem cover this case.
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Nice case: when the roots are known

When all roots of T1, . . . , Tn are known, the procedure is similar
to the multiplication of multivariate polynomial using FFT.

◮ Let A and B are two polynomials mod T , C is the product
of AB mod T .

◮ C can be obtained by evaluation and interpolation at the
roots of T .

◮ The evaluation of A mod T and B mod T can be done in
time O (̃δ).

◮ The multiplication is pairwise multiplication; the required
time is O(δ).

◮ The interpolation is essentially same as the evaluation
which can be done in O (̃δ)

Total: O (̃δ), optimal!



When the roots are unknown

In general, the roots are not known (they do no exist in R).

◮ Our approach consists in building another triangular set V
with

Vi = ηTi + (1 − η)Ui ,

where Ui has known roots (pairwise distinct).
◮ The root of V are series in η. We can compute them by

Newton iteration, because the roots of Ui are known.
◮ If η = 1, then Vi = Ti .
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Computing modulo the new triangular set

Instead of computing C ≡ AB mod T directly, we compute
◮ C′ = AB mod V by evaluation and interpolation
◮ Substitute η = 1 in C′

This gives us AB mod T .

Proposition
Let r = deg(C′, η), then the cost of the algorithm is O (̃δr)

Question: What will be the value of r?
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Example of reduction

In general r = δ, so we focus on special cases.

Example
◮ The triangular set V is composed of:

V1 = x3
1 − ηx2

1 − ηx1 − η

V2 = x3
2 − ηx2

2 − ηx2 − η − ηx2
1

V3 = x3
3 − ηx2

3 − ηx3 − η − ηx2
2

◮ A and B are two polynomials modV in R[x1, x2, x3]

◮ C = AB mod V in R[η][x1, x2, x3].



Example of reduction contd.

Example (continued)
◮ The largest monomial of C, before reduction: x4

3 x4
2 x4

1 .
◮ A single reduction w.r.t. V3:

x4
3 x4

2 x4
1 = x3x3

3 x4
2 x4

1

= x3x4
2 x4

1 (ηx2
3 + ηx3 + η + ηx2

2 ) reduction w.r.t. V3

= ηx3
3 x4

2 x4
1 + ηx2

3 x4
2 x4

1 + ηx3x4
2 x4

1 + ηx3x6
2 x4

1

◮ The same process is repeated for ηx3
3 x4

2 x4
1



Example of reduction contd.

Example (continued)
◮ The monomial is ηx3

3 x4
2 x4

1 .
◮ The reduction process:

ηx3
3 x4

2 x4
1 = ηx4

2 x4
1 (ηx2

3 + ηx3 + η + ηx2
2 ) reduction w.r.t. V3

= η2x2
3 x4

2 x4
1 + η2x3x4

2 x4
1 + η2x4

2 x4
1 + η2x6

2 x4
1

◮ Number of steps up to now: 2.
◮ The largest monomial after reducing w.r.t. V3: η2x6

2 x4
1 .



Example of reduction contd.

Example (continued)
◮ A single reduction w.r.t. V2:

η2x4
1 x6

2 = η2x4
1 x3

2 x3
2

= η2x4
1 x3

2 (ηx2
2 + ηx2 + η + ηx2

1 ) reduction w.r.t. V2

= η3x4
1 x5

2 + η3x4
1 x4

2 + η3x4
1 x3

2 + η3x6
1 x3

2

◮ This process gives us two alternative way to reduce C
further.



Example contd.
The following tree structure describes the reduction more
concisely.
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Example contd.
The following tree structure describes the reduction more
concisely.

η2x4
1 x6

2

η3x4
1 x5

2 η3x6
1 x3

2

η4x4
1 x4

2 η4x6
1 x2

2 η4x8
1



Example contd.
The following tree structure describes the reduction more
concisely.

η2x4
1 x6

2

η3x4
1 x5

2 η3x6
1 x3

2

η4x4
1 x4

2 η4x6
1 x2

2 η4x8
1

η5x4
1 x3

2 η5x6
1 x2



Example contd.
The following tree structure describes the reduction more
concisely.

η2x4
1 x6

2

η3x4
1 x5

2 η3x6
1 x3

2

η4x4
1 x4

2 η4x6
1 x2

2 η4x8
1

η5x4
1 x3

2 η5x6
1 x2

η6x4
1 x2

2 η6x6
1



Generalization

The previous example generalizes to

V1 = xd1
1 + c1,...(η)xd1−1

1 + · · · + c1,...(η)

V2 = xd2
2 + c2,...(η)xd2−1

2 + · · · + c2,...(η) + c2,...(η)xd1−1
1 + · · ·

...

Vn = xdn
n + cn,...(η)xdn−1

n + · · · + cn,...(η) + cn,...(η)xdn−1−1
n−1 + · · · ,

for some coefficients ci ,...(η) of degree 1.
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Bound

The degree bound r will be:
◮ if d1 ≤ d2 ≤ · · · ≤ dn−1 ≤ dn

r ≤ 2
n∑

i=1

di − 2

◮ if d1 ≥ d2 ≥ · · · ≥ dn−1 ≥ dn

r ≤
n∑

i=2

(di − 1) +

n−1∑

i=2

i + n(d1 − 1)

In particular, this gives our first theorem, when all di are equal.



Triangular set for 2nd case

Generalized triangular set for Theorem 2:

V1 = xd
1 + c1,...(η)xd−1

1 + · · · + c1,...(η)

V2 = xd
2 + c2,...(η)xd−1

2 + · · · + c2,...(η) + c2,...(η)xd−1
1 + · · ·

...

Vn = xd
n + cn,...(η)xd−1

n + · · · + cn,...(η) + cn,...(η)xd−1
n−1 · · · xd−1

1 + · · ·

for some coefficients ci ,...(η) of degree 1.



Degree Changes in two direction:

Decrement of degrees for this case.
◮ Degrees in other variable remain same except xi (when

reducing w.r.t. Vi ) which will be decreased by 1 in left
direction

◮ Degrees in other variable increased by (d − 1) and
decreased by d in xi (when reducing w.r.t. Vi ) in right
direction



Degree Changes example:

If d = 2 and a monomial start with 3 variables having degrees
9, 9, 9, then the reduction steps would be:



Bound

The degree bound r will be:
◮ if d1 = d2 = · · · = dn−1 = dn = d

r ≤ 2(2 −
1
d

)n−1

This gives our second theorem, when all di are equal.



Thanks
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