Computations with Ore Polynomial Matrices

Howard Cheng

Department of Mathematics and Computer Science University of Lethbridge, Canada

Joint work with Bernhard Beckermann, Patrick Davies, George Labahn.

Ore Polynomials

- The ring of Ore polynomials $\mathbb{Q}_{\mathbb{D}}[X ; \sigma, \delta]$
- σ : automorphism over $\mathbb{Q}_{\mathbb{D}}$
- δ : additive homomorphism on $\mathbb{Q}_{\mathbb{D}}$
- Polynomial multiplication: $X a=\sigma(a) X+\delta(a)$

	$\sigma(a(t))$	$\delta(a(t))$
Polynomials	$a(t)$	0
Differential operator	$a(t)$	$a^{\prime}(t)$
Difference operator	$a(t+1)$	0

- $\delta=0 \Rightarrow$ shift polynomials
- Matrices of Ore polynomials represent systems of linear differential equations, difference equations, etc.

Problems

Given an $m \times n$ Ore polynomial matrix $\mathbf{F}(X)$ of degree N, we wish to compute:

- a basis for the left nullspace of $\mathbf{F}(X)$;

Problems

Given an $m \times n$ Ore polynomial matrix $\mathbf{F}(X)$ of degree N, we wish to compute:

- a basis for the left nullspace of $\mathbf{F}(X)$;
- a row-equivalent matrix with a non-singular trailing coefficient;

Problems

Given an $m \times n$ Ore polynomial matrix $\mathbf{F}(X)$ of degree N, we wish to compute:

- a basis for the left nullspace of $\mathbf{F}(X)$;
- a row-equivalent matrix with a non-singular trailing coefficient;
- a row-reduced form of $\mathbf{F}(X)$
- leading row coefficient of nonzero rows have full row rank and associated unimodular transformation matrix $\mathbf{U}(X)$;

Problems

Given an $m \times n$ Ore polynomial matrix $\mathbf{F}(X)$ of degree N, we wish to compute:

- a basis for the left nullspace of $\mathbf{F}(X)$;
- a row-equivalent matrix with a non-singular trailing coefficient;
- a row-reduced form of $\mathbf{F}(X)$
- leading row coefficient of nonzero rows have full row rank and associated unimodular transformation matrix $\mathbf{U}(X)$;
- the Popov form of $\mathbf{F}(X)$
- leading row coefficient is triangular (weak Popov form)
- leading entry is monic and has highest degree in its column and associated unimodular transformation matrix $\mathbf{U}(X)$.

Applications

Solving these problems allows us to:

- determine the rank of a matrix of Ore polynomials;

Applications

Solving these problems allows us to:

- determine the rank of a matrix of Ore polynomials;
- find rational solutions to systems of linear functional equations;

Applications

Solving these problems allows us to:

- determine the rank of a matrix of Ore polynomials;
- find rational solutions to systems of linear functional equations;
- compute greatest common right divisors (GCRD) and least common left multiples (LCLM)
i.e. intersection and union of systems;

Applications

Solving these problems allows us to:

- determine the rank of a matrix of Ore polynomials;
- find rational solutions to systems of linear functional equations;
- compute greatest common right divisors (GCRD) and least common left multiples (LCLM)
i.e. intersection and union of systems;
- reduce order of systems of equations;

Applications

Solving these problems allows us to:

- determine the rank of a matrix of Ore polynomials;
- find rational solutions to systems of linear functional equations;
- compute greatest common right divisors (GCRD) and least common left multiples (LCLM)
i.e. intersection and union of systems;
- reduce order of systems of equations;
- isolate highest powers.
e.g. convert DAE systems to first order.

We can obtain normal forms by elementary row operations:
(1) interchange two rows

We can obtain normal forms by elementary row operations:
(0) interchange two rows
(2) multiply a row by a nonzero element (constant in most cases)

We can obtain normal forms by elementary row operations:
(1) interchange two rows
(2) multiply a row by a nonzero element (constant in most cases)
(3) add a polynomial multiple of one row to another

We can obtain normal forms by elementary row operations:
(1) interchange two rows
(2) multiply a row by a nonzero element (constant in most cases)
(3) add a polynomial multiple of one row to another

We also wish to compute the transformation matrix in many cases.

Issues

- Straightforward elimination may introduce coefficient growth:
- from Gaussian elimination;
- from multiplication by X.

Issues

- Straightforward elimination may introduce coefficient growth:
- from Gaussian elimination;
- from multiplication by X.
- Algorithms for polynomial matrices may not work on Ore polynomial matrices.

Issues

- Straightforward elimination may introduce coefficient growth:
- from Gaussian elimination;
- from multiplication by X.
- Algorithms for polynomial matrices may not work on Ore polynomial matrices.
- Proofs of correct algorithms for polynomial matrices may rely on commutativity or fractions of matrix elements.
- GCRD and LCLM of Ore polynomials (Li, Li and Nemes):
- GCRD and LCLM of Ore polynomials (Li, Li and Nemes):
- normal forms of 2×1 Ore polynomial matrix;
- GCRD and LCLM of Ore polynomials (Li, Li and Nemes):
- normal forms of 2×1 Ore polynomial matrix;
- subresultant (fraction-free) and modular algorithms;
- GCRD and LCLM of Ore polynomials (Li, Li and Nemes):
- normal forms of 2×1 Ore polynomial matrix;
- subresultant (fraction-free) and modular algorithms;
- EG elimination and improvements (Abramov, Abramov and Bronstein);
- GCRD and LCLM of Ore polynomials (Li, Li and Nemes):
- normal forms of 2×1 Ore polynomial matrix;
- subresultant (fraction-free) and modular algorithms;
- EG elimination and improvements (Abramov, Abramov and Bronstein);
- many works on polynomial matrices.

Main Tools

- Order basis

Main Tools

- Order basis
- Striped Krylov matrix

Main Tools

- Order basis
- Striped Krylov matrix
- Equivalence of Gaussian elimination and polynomial operations

Main Tools

- Order basis
- Striped Krylov matrix
- Equivalence of Gaussian elimination and polynomial operations
- Fraction-free Gaussian elimination

Main Tools

- Order basis
- Striped Krylov matrix
- Equivalence of Gaussian elimination and polynomial operations
- Fraction-free Gaussian elimination
- Modular algorithm

Order Basis

We have an elimination problem.
We want the module of solutions $\mathbf{P}(X)=\left[P_{1}(X) \cdots P_{m}(X)\right]$ of order $\vec{\omega}$ such that

$$
P_{1}(X) \cdot \mathbf{F}_{1, \cdot}(X)+\cdots P_{m}(X) \cdot \mathbf{F}_{m, \cdot}(X)=\mathbf{R}(X) \cdot X^{\vec{\omega}}
$$

where $\mathbf{F}_{i,(}(X)$ is the i-th row of $\mathbf{F}(Z)$, and $\mathbf{R}(X)$ is a residual.

Order Basis

We have an elimination problem.
We want the module of solutions $\mathbf{P}(X)=\left[P_{1}(X) \cdots P_{m}(X)\right]$ of order $\vec{\omega}$ such that

$$
P_{1}(X) \cdot \mathbf{F}_{1, \cdot}(X)+\cdots P_{m}(X) \cdot \mathbf{F}_{m, \cdot}(X)=\mathbf{R}(X) \cdot X^{\vec{\omega}}
$$

where $\mathbf{F}_{i,(}(X)$ is the i-th row of $\mathbf{F}(Z)$, and $\mathbf{R}(X)$ is a residual.

- A basis of the module: order basis of order $\vec{\omega}$

Order Basis

We have an elimination problem.
We want the module of solutions $\mathbf{P}(X)=\left[P_{1}(X) \cdots P_{m}(X)\right]$ of order $\vec{\omega}$ such that

$$
P_{1}(X) \cdot \mathbf{F}_{1, \cdot}(X)+\cdots P_{m}(X) \cdot \mathbf{F}_{m, \cdot}(X)=\mathbf{R}(X) \cdot X^{\vec{\omega}}
$$

where $\mathbf{F}_{i,(}(X)$ is the i-th row of $\mathbf{F}(Z)$, and $\mathbf{R}(X)$ is a residual.

- A basis of the module: order basis of order $\vec{\omega}$
- An order basis represents row operations on $\mathbf{F}(X)$ to eliminate low-order terms.

Order Basis

We have an elimination problem.
We want the module of solutions $\mathbf{P}(X)=\left[P_{1}(X) \cdots P_{m}(X)\right]$ of order $\vec{\omega}$ such that

$$
P_{1}(X) \cdot \mathbf{F}_{1, \cdot}(X)+\cdots P_{m}(X) \cdot \mathbf{F}_{m, \cdot}(X)=\mathbf{R}(X) \cdot X^{\vec{\omega}}
$$

where $\mathbf{F}_{i,(}(X)$ is the i-th row of $\mathbf{F}(Z)$, and $\mathbf{R}(X)$ is a residual.

- A basis of the module: order basis of order $\vec{\omega}$
- An order basis represents row operations on $\mathbf{F}(X)$ to eliminate low-order terms.
- An order basis of a particular order and row degree is unique up to a constant.

Striped Krylov Matrix

- Given a degree bound $\vec{\mu}$ for the order basis \Rightarrow system of linear equations for the order basis.

Striped Krylov Matrix

- Given a degree bound $\vec{\mu}$ for the order basis \Rightarrow system of linear equations for the order basis.
- Coefficient matrix is structured, called a striped Krylov matrix.

$$
P(\vec{\mu}, \vec{\omega}) \cdot K(\vec{\mu}, \vec{\omega})=\mathbf{0}
$$

- Given a degree bound $\vec{\mu}$ for the order basis \Rightarrow system of linear equations for the order basis.
- Coefficient matrix is structured, called a striped Krylov matrix.

$$
P(\vec{\mu}, \vec{\omega}) \cdot K(\vec{\mu}, \vec{\omega})=\mathbf{0}
$$

- It is a generalization of the Sylvester matrix.
- Given a degree bound $\vec{\mu}$ for the order basis \Rightarrow system of linear equations for the order basis.
- Coefficient matrix is structured, called a striped Krylov matrix.

$$
P(\vec{\mu}, \vec{\omega}) \cdot K(\vec{\mu}, \vec{\omega})=\mathbf{0}
$$

- It is a generalization of the Sylvester matrix.
- The entries in the matrix are commutative-traditional linear algebra applies.
- Given a degree bound $\vec{\mu}$ for the order basis \Rightarrow system of linear equations for the order basis.
- Coefficient matrix is structured, called a striped Krylov matrix.

$$
P(\vec{\mu}, \vec{\omega}) \cdot K(\vec{\mu}, \vec{\omega})=\mathbf{0}
$$

- It is a generalization of the Sylvester matrix.
- The entries in the matrix are commutative-traditional linear algebra applies.
- In general, we do not know the degree bound a priori.
- Compute a sequence of order bases of increasing order and degrees:
order
column degree
\Rightarrow number of columns eliminated
\Rightarrow number of times a row has been used as pivot
- Compute a sequence of order bases of increasing order and degrees:
order $\quad \Rightarrow \quad$ number of columns eliminated
column degree \Rightarrow number of times a row has been used as pivot
- Matrix structure is exploited by working with only one row each stripe.
- Compute a sequence of order bases of increasing order and degrees:
order $\quad \Rightarrow \quad$ number of columns eliminated
column degree \Rightarrow number of times a row has been used as pivot
- Matrix structure is exploited by working with only one row each stripe.
- The elimination is done via a fraction-free recurrence.

Let $\mathbf{M}(X)$ be an order basis of order $\vec{\omega}$ and column degree $\vec{\mu}$.
Let r_{j} be the term of residual to be eliminated.
Let π (the pivot) be the smallest index with $r_{\pi} \neq 0$ and $\vec{\mu}_{\pi}=\min _{j}\left\{\vec{\mu}_{j}: r_{j} \neq 0\right\}$.

$$
\begin{aligned}
& \widetilde{\mathbf{M}}(X)^{\ell, \cdot}=\left(r_{\pi} \cdot \mathbf{M}(X)^{\ell, \cdot}-r_{\ell} \cdot \mathbf{M}(X)^{\pi, \cdot}\right) / p_{\pi} \quad \text { for } I \neq \pi, \\
& \widetilde{\mathbf{M}}(X)^{\pi, \cdot}=\left(\left(r_{\pi} \cdot X-\delta\left(r_{\pi}\right)\right) \cdot \mathbf{M}(X)^{\pi, \cdot}-\sum_{\ell \neq \pi} \sigma\left(p_{\ell}\right) \cdot \widetilde{\mathbf{M}}(X)^{\ell, \cdot}\right) / \sigma\left(p_{\pi}\right),
\end{aligned}
$$

where $p_{j}=\operatorname{coefficient}\left(\mathbf{M}(X)^{\pi, j}, X^{\vec{\mu}_{j}+\delta_{\pi, j}-1}\right)$.

Termination

- Order basis and residual of order $(m N+1) n \cdot(1, \ldots, 1)$ gives:
- rank $\mathbf{F}(X)$
- basis of left nullspace of $\mathbf{F}(Z)$
- Order basis and residual of order $(m N+1) n \cdot(1, \ldots, 1)$ gives:
- rank $\mathrm{F}(X)$
- basis of left nullspace of $\mathbf{F}(Z)$
- For shift polynomials:
- reverse the coefficients
- eliminate until the trailing coefficient R_{0} has full rank (row-reduced form) or is triangular (weak Popov form).

Modular Algorithm

- Design a modular version to improve performance.

Modular Algorithm

- Design a modular version to improve performance.
- Modular reductions:

$$
\mathbb{Z}[t][X ; \sigma, \delta] \rightarrow \mathbb{Z}_{p}[t][X ; \sigma, \delta] \rightarrow \mathbb{Z}_{p}[X ; \sigma, \delta]
$$

Modular Algorithm

- Design a modular version to improve performance.
- Modular reductions:

$$
\mathbb{Z}[t][X ; \sigma, \delta] \rightarrow \mathbb{Z}_{p}[t][X ; \sigma, \delta] \rightarrow \mathbb{Z}_{p}[X ; \sigma, \delta]
$$

- Three traditional issues:
- definition and detection of unlucky homomorphisms
- normalization
- termination

Modular Algorithm

- Design a modular version to improve performance.
- Modular reductions:

$$
\mathbb{Z}[t][X ; \sigma, \delta] \rightarrow \mathbb{Z}_{p}[t][X ; \sigma, \delta] \rightarrow \mathbb{Z}_{p}[X ; \sigma, \delta]
$$

- Three traditional issues:
- definition and detection of unlucky homomorphisms
- normalization
- termination
- We wish to have an output-sensitive algorithm:
- number of homomorphisms depends on the size of results
- no need to verify the results by trial division/multiplication

Modular Algorithm

- These issues have been resolved for polynomial matrices (Cheng and Labahn).

Modular Algorithm

- These issues have been resolved for polynomial matrices (Cheng and Labahn).
- $\mathbb{Z}[t][X ; \sigma, \delta] \rightarrow \mathbb{Z}_{p}[t][X ; \sigma, \delta]$: similar to polynomial matrix case.

Modular Algorithm

- These issues have been resolved for polynomial matrices (Cheng and Labahn).
- $\mathbb{Z}[t][X ; \sigma, \delta] \rightarrow \mathbb{Z}_{p}[t][X ; \sigma, \delta]$: similar to polynomial matrix case.
- The same approach does not work for $\mathbb{Z}_{p}[t][X ; \sigma, \delta] \rightarrow \mathbb{Z}_{p}[X ; \sigma, \delta]:$

Modular Algorithm

- These issues have been resolved for polynomial matrices (Cheng and Labahn).
- $\mathbb{Z}[t][X ; \sigma, \delta] \rightarrow \mathbb{Z}_{p}[t][X ; \sigma, \delta]$: similar to polynomial matrix case.
- The same approach does not work for $\mathbb{Z}_{p}[t][X ; \sigma, \delta] \rightarrow \mathbb{Z}_{p}[X ; \sigma, \delta]:$
- evaluation map $t \leftarrow \alpha$ is not an Ore ring homomorphism.

Reduction to $\mathbb{Z}_{p}[t][X ; \sigma, \delta]$

- Compute order basis and residual in $\mathbb{Z}_{p}[t][X ; \sigma, \delta]$.

Reduction to $\mathbb{Z}_{p}[t][X ; \sigma, \delta]$

- Compute order basis and residual in $\mathbb{Z}_{p}[t][X ; \sigma, \delta]$.
- Normalization: compute the image of the same order basis and residual as FFreduce.

Reduction to $\mathbb{Z}_{p}[t][X ; \sigma, \delta]$

- Compute order basis and residual in $\mathbb{Z}_{p}[t][X ; \sigma, \delta]$.
- Normalization: compute the image of the same order basis and residual as FFreduce.
- Chinese remaindering used to reconstruct the result.

Lucky Homomorphisms

- Lucky homomorphism \Leftrightarrow the order and degree of order basis computed is correct

Lucky Homomorphisms

- Lucky homomorphism \Leftrightarrow the order and degree of order basis computed is correct
- Sequence of pivots (the computation path) is useful:

Endpoint of path = degree of order basis

Lucky Homomorphisms

- Lucky homomorphism \Leftrightarrow the order and degree of order basis computed is correct
- Sequence of pivots (the computation path) is useful:

Endpoint of path = degree of order basis

- i.e. lucky homomorphism \Leftrightarrow same endpoint as FFreduce.

Lucky Homomorphisms

- Lucky homomorphism \Leftrightarrow the order and degree of order basis computed is correct
- Sequence of pivots (the computation path) is useful:

Endpoint of path = degree of order basis

- i.e. lucky homomorphism \Leftrightarrow same endpoint as FFreduce.
- Homomorphisms with different endpoints: the one that is further away from a "normal path" is unlucky.

Size of Input

For the remainder of this talk, we assume that:

$$
\begin{aligned}
\operatorname{deg}_{t}\left(c_{k}\left(X^{\ell} \cdot \mathbf{F}(X)_{i, j}\right)\right) & \leq T \\
\left\|c_{k}\left(X^{\ell} \cdot \mathbf{F}(X)_{i, j}\right)\right\|_{\infty} & \leq \kappa
\end{aligned}
$$

for $1 \leq i \leq m, 1 \leq j \leq n, 0 \leq k<m N+1$, and $0 \leq \ell \leq m N+1$
where $N=\operatorname{deg} \mathbf{F}(X)$.

Termination

- We can apply Hadamard bound on coefficients (can be very pessimistic).
- We can apply Hadamard bound on coefficients (can be very pessimistic).
- Suppose $p_{1}<p_{2}<\cdots$, and τ is such that

$$
((m N+1) n) \kappa(T+1) \leq p_{1} \cdots p_{\tau}
$$

- We can apply Hadamard bound on coefficients (can be very pessimistic).
- Suppose $p_{1}<p_{2}<\cdots$, and τ is such that

$$
((m N+1) n) \kappa(T+1) \leq p_{1} \cdots p_{\tau}
$$

- Reconstructed results have not changed for τ additional primes \Rightarrow reconstructed results are correct
- We can apply Hadamard bound on coefficients (can be very pessimistic).
- Suppose $p_{1}<p_{2}<\cdots$, and τ is such that

$$
((m N+1) n) \kappa(T+1) \leq p_{1} \cdots p_{\tau}
$$

- Reconstructed results have not changed for τ additional primes \Rightarrow reconstructed results are correct
- τ is small in many cases (e.g. 1).

Reduction to \mathbb{Z}_{p}

- Ore rings with coefficients in \mathbb{Z}_{p} must be commutative.

Reduction to \mathbb{Z}_{p}

- Ore rings with coefficients in \mathbb{Z}_{p} must be commutative.
- Evaluation homomorphisms $t \leftarrow \alpha$ are not an Ore ring homomorphism in general.
- Ore rings with coefficients in \mathbb{Z}_{p} must be commutative.
- Evaluation homomorphisms $t \leftarrow \alpha$ are not an Ore ring homomorphism in general.
- We cannot simply apply the reductions and reconstruct the results as before.

Previous Work

- Modular algorithms to compute GCRDs of Ore polynomials (Li and Nemes):

Previous Work

- Modular algorithms to compute GCRDs of Ore polynomials (Li and Nemes):
- Gaussian elimination on Sylvester matrix
- Modular algorithms to compute GCRDs of Ore polynomials (Li and Nemes):
- Gaussian elimination on Sylvester matrix
- use modular algorithm on Sylvester matrix
- Modular algorithms to compute GCRDs of Ore polynomials (Li and Nemes):
- Gaussian elimination on Sylvester matrix
- use modular algorithm on Sylvester matrix
- This is not straightforward for matrices of Ore polynomials:
- Modular algorithms to compute GCRDs of Ore polynomials (Li and Nemes):
- Gaussian elimination on Sylvester matrix
- use modular algorithm on Sylvester matrix
- This is not straightforward for matrices of Ore polynomials:
- the computation path (degree bound) is not known a priori
- Modular algorithms to compute GCRDs of Ore polynomials (Li and Nemes):
- Gaussian elimination on Sylvester matrix
- use modular algorithm on Sylvester matrix
- This is not straightforward for matrices of Ore polynomials:
- the computation path (degree bound) is not known a priori
- it is not known a priori which striped Krylov matrix is needed

Our Modular Algorithm

We interleave the construction of the striped Krylov matrix with elimination steps:

- when an elimination step is performed, a new row is added (after evaluation homomorphism is applied)
- the added row is reduced with respect to all previous pivot rows

Our Modular Algorithm

- Normalization: same as the case $\mathbb{Z}_{p}[t][X ; \sigma, \delta]$
- Lucky homomorphisms: similar as $\mathbb{Z}_{p}[t][X ; \sigma, \delta]$
- Termination:
results unchanged for T additional homomorphisms
\Rightarrow reconstructed results are correct

Example

$$
K(\vec{\mu}, \vec{\omega})=\left[\begin{array}{cc|cc|cc}
6 t^{2} & 2 & 3 t & -1 & 2 & 1 \\
12 t & 0 & 6 t^{2}+3 & 2 & 3 t & -1 \\
12 & 0 & 24 t & 0 & 6 t^{2}+6 & 2 \\
\hline 3 t^{3} & t & t-1 & 3 t & 0 & 0 \\
9 t^{2} & 1 & 3 t^{3}+1 & t+3 & t-1 & 3 t \\
18 t & 0 & 18 t^{2} & 2 & 3 t^{3}+2 & t+6
\end{array}\right] .
$$

- The substitution $t \leftarrow 0$ gives a completely different pivot choice (third row).

In general, pivot rows and columns correct at the end
\Rightarrow the evaluation is lucky

- Order basis computation eliminates low-order terms.
- Order basis computation eliminates low-order terms.
- For shift polynomials, leading term can be eliminated by reversing coefficients.
- Order basis computation eliminates low-order terms.
- For shift polynomials, leading term can be eliminated by reversing coefficients.
- In general, this is not possible.
- Order basis computation eliminates low-order terms.
- For shift polynomials, leading term can be eliminated by reversing coefficients.
- In general, this is not possible.
- Popov form cannot be computed directly with order basis even for shift polynomials.
- We compute the left nullspace of the matrix:

$$
\left[\begin{array}{c}
F(X) \cdot X^{b} \\
-I
\end{array}\right]
$$

- We compute the left nullspace of the matrix:

$$
\left[\begin{array}{c}
F(X) \cdot X^{b} \\
-I
\end{array}\right]
$$

- The left nullspace can be partitioned as:

$$
\mathbf{M}(X)=\left[\begin{array}{ll}
\mathbf{U}(X) & \mathbf{T}(X) \cdot X^{b}
\end{array}\right]
$$

so

$$
\mathbf{U}(X) \cdot \mathbf{F}(X) \cdot Z^{b}=\mathbf{T}(X) \cdot X^{b}
$$

- We compute the left nullspace of the matrix:

$$
\left[\begin{array}{c}
\mathbf{F}(X) \cdot X^{b} \\
-I
\end{array}\right]
$$

- The left nullspace can be partitioned as:

$$
\mathbf{M}(X)=\left[\begin{array}{ll}
\mathbf{U}(X) & \mathbf{T}(X) \cdot X^{b}
\end{array}\right]
$$

so

$$
\mathbf{U}(X) \cdot \mathbf{F}(X) \cdot Z^{b}=\mathbf{T}(X) \cdot X^{b}
$$

- If $b>\operatorname{deg} \mathbf{U}(\mathbf{X})$, then the leading row coefficient of $\mathbf{M}(X)$ is the leading row coefficient of $\mathbf{T}(X)$.
- We compute the left nullspace of the matrix:

$$
\left[\begin{array}{c}
\mathbf{F}(X) \cdot X^{b} \\
-I
\end{array}\right]
$$

- The left nullspace can be partitioned as:

$$
\mathbf{M}(X)=\left[\begin{array}{ll}
\mathbf{U}(X) & \mathbf{T}(X) \cdot X^{b}
\end{array}\right]
$$

so

$$
\mathbf{U}(X) \cdot \mathbf{F}(X) \cdot Z^{b}=\mathbf{T}(X) \cdot X^{b}
$$

- If $b>\operatorname{deg} \mathbf{U}(\mathbf{X})$, then the leading row coefficient of $\mathbf{M}(X)$ is the leading row coefficient of $\mathbf{T}(X)$.
- $\mathbf{M}(Z)$ in Popov form $\Leftrightarrow \mathbf{T}(Z)$ in Popov form.
- We compute the left nullspace of the matrix:

$$
\left[\begin{array}{c}
\mathbf{F}(X) \cdot X^{b} \\
-I
\end{array}\right]
$$

- The left nullspace can be partitioned as:

$$
\mathbf{M}(X)=\left[\begin{array}{ll}
\mathbf{U}(X) & \mathbf{T}(X) \cdot X^{b}
\end{array}\right]
$$

so

$$
\mathbf{U}(X) \cdot \mathbf{F}(X) \cdot Z^{b}=\mathbf{T}(X) \cdot X^{b}
$$

- If $b>\operatorname{deg} \mathbf{U}(\mathbf{X})$, then the leading row coefficient of $\mathbf{M}(X)$ is the leading row coefficient of $\mathbf{T}(X)$.
- $\mathbf{M}(Z)$ in Popov form $\Leftrightarrow \mathbf{T}(Z)$ in Popov form.
- Old idea, but proofs do not work when matrix entries are not commutative.

Let $\vec{\mu}=\operatorname{rdeg} \mathbf{F}(X)$ and $b>|\vec{\mu}|-\min _{j}\left\{\mu_{j}\right\}$.
Suppose that $[\mathbf{U}(X) \mathbf{R}(X)]$ is a minimal polynomial basis in Popov form of the left nullspace of $\left[\begin{array}{c}F(X) \cdot X^{b} \\ -\boldsymbol{I}\end{array}\right]$.

Let $\mathbf{T}(X)=\mathbf{R}(X) \cdot X^{-b}$.
(1) $\mathbf{U}(X)$ is unimodular;
(2) $\mathbf{T}(X)=\mathbf{U}(X) \cdot \mathbf{F}(X)$ is an Ore polynomial matrix in Popov form.

Final Remarks

- Although the Ore polynomials are not commutative, the coefficients are.
- Although the Ore polynomials are not commutative, the coefficients are.
- Elimination is formulated as linear systems of equations on the coefficients.
- Although the Ore polynomials are not commutative, the coefficients are.
- Elimination is formulated as linear systems of equations on the coefficients.
- This allows traditional linear algebra techniques to be used to control coefficient growth.
- Although the Ore polynomials are not commutative, the coefficients are.
- Elimination is formulated as linear systems of equations on the coefficients.
- This allows traditional linear algebra techniques to be used to control coefficient growth.
- Polynomial arithmetic is used to take advantange of the matrix structure.

$$
\left[\begin{array}{cccc}
& X^{0} & \cdots & X^{n_{k}} \\
\cdots & p_{k}^{(0)} & \cdots & p_{k}^{\left(n_{k}\right)} \mid \cdots
\end{array}\right]\left[\begin{array}{ccc}
& \vdots \\
\cdots & X^{0} \cdot F_{k, \cdot}(X) & \cdots \\
& \vdots & \\
\cdots & X^{n_{k} \cdot F_{k, \cdot}(X)} & \cdots \\
\hline & \vdots
\end{array}\right]=\mathbf{0}
$$

$$
\begin{array}{c|c|c}
X^{0} & \cdots & X^{\vec{\omega}-\vec{e}} \\
{\left[\begin{array}{c|c|c}
& \vdots & \\
\hline \cdots & X^{0} \cdot F_{k, \cdot}(X) & \ldots \\
\ldots & \vdots & \\
\hline & X^{n_{k} \cdot F_{k, \cdot}(X)} & \ldots \\
\hline & \vdots &
\end{array}\right]=\mathbf{0}}
\end{array}
$$

Example

Let $\vec{\mu}=(2,2), \vec{\omega}=(3,3)$, and

$$
\mathbf{F}(X)=\left[\begin{array}{cc}
2 X^{2}+3 t X+6 t^{2} & X^{2}-X+2 \\
(t-1) X+3 t^{3} & 3 t X+t
\end{array}\right] \in \mathbb{Z}[t][X ; \sigma, \delta]^{2 \times 2}
$$

with $\sigma(a(t))=a(t)$ and $\delta(a(t))=a^{\prime}(t)$.

$$
K(\vec{\mu}, \vec{\omega})=\left[\right] .
$$

