Computations with Ore Polynomial Matrices

Howard Cheng

Department of Mathematics and Computer Science University of Lethbridge, Canada

Joint work with Bernhard Beckermann, Patrick Davies, George Labahn.

Howard Cheng Computations with Ore Polynomial Matrices

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへで

Ore Polynomials

- The ring of Ore polynomials $\mathbb{Q}_{\mathbb{D}}[X; \sigma, \delta]$
 - σ: automorphism over Q_D
 - δ : additive homomorphism on $\mathbb{Q}_{\mathbb{D}}$
 - Polynomial multiplication: $Xa = \sigma(a)X + \delta(a)$

	$\sigma(a(t))$	$\delta(a(t))$
Polynomials	a(t)	0
Differential operator	a(t)	<i>a</i> '(<i>t</i>)
Difference operator	a(t+1)	0

- $\delta = 0 \Rightarrow$ shift polynomials
- Matrices of Ore polynomials represent systems of linear differential equations, difference equations, etc.

(ロ) (同) (三) (三) (三) (三) (○)

Problems

Given an $m \times n$ Ore polynomial matrix $\mathbf{F}(X)$ of degree N, we wish to compute:

• a basis for the left nullspace of F(X);

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Given an $m \times n$ Ore polynomial matrix $\mathbf{F}(X)$ of degree N, we wish to compute:

- a basis for the left nullspace of F(X);
- a row-equivalent matrix with a non-singular trailing coefficient;

Given an $m \times n$ Ore polynomial matrix $\mathbf{F}(X)$ of degree N, we wish to compute:

- a basis for the left nullspace of F(X);
- a row-equivalent matrix with a non-singular trailing coefficient;
- a row-reduced form of **F**(X)

• leading row coefficient of nonzero rows have full row rank and associated unimodular transformation matrix $\mathbf{U}(X)$;

Given an $m \times n$ Ore polynomial matrix $\mathbf{F}(X)$ of degree N, we wish to compute:

- a basis for the left nullspace of F(X);
- a row-equivalent matrix with a non-singular trailing coefficient;
- a row-reduced form of **F**(X)

• leading row coefficient of nonzero rows have full row rank and associated unimodular transformation matrix U(X);

- the Popov form of $\mathbf{F}(X)$
 - leading row coefficient is triangular (weak Popov form)
 - leading entry is monic and has highest degree in its column

and associated unimodular transformation matrix $\mathbf{U}(X)$.

• determine the rank of a matrix of Ore polynomials;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- determine the rank of a matrix of Ore polynomials;
- find rational solutions to systems of linear functional equations;

- determine the rank of a matrix of Ore polynomials;
- find rational solutions to systems of linear functional equations;
- compute greatest common right divisors (GCRD) and least common left multiples (LCLM) i.e. intersection and union of systems;

- determine the rank of a matrix of Ore polynomials;
- find rational solutions to systems of linear functional equations;
- compute greatest common right divisors (GCRD) and least common left multiples (LCLM) i.e. intersection and union of systems;
- reduce order of systems of equations;

- determine the rank of a matrix of Ore polynomials;
- find rational solutions to systems of linear functional equations;
- compute greatest common right divisors (GCRD) and least common left multiples (LCLM) i.e. intersection and union of systems;
- reduce order of systems of equations;
- isolate highest powers.

e.g. convert DAE systems to first order.

interchange two rows

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- interchange two rows
- multiply a row by a nonzero element (constant in most cases)

- interchange two rows
- multiply a row by a nonzero element (constant in most cases)
- add a polynomial multiple of one row to another

- interchange two rows
- multiply a row by a nonzero element (constant in most cases)
- add a polynomial multiple of one row to another

We also wish to compute the transformation matrix in many cases.

Issues

- Straightforward elimination may introduce coefficient growth:
 - from Gaussian elimination;
 - from multiplication by X.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Issues

- Straightforward elimination may introduce coefficient growth:
 - from Gaussian elimination;
 - from multiplication by X.
- Algorithms for polynomial matrices may not work on Ore polynomial matrices.

Issues

- Straightforward elimination may introduce coefficient growth:
 - from Gaussian elimination;
 - from multiplication by X.
- Algorithms for polynomial matrices may not work on Ore polynomial matrices.
- Proofs of correct algorithms for polynomial matrices may rely on commutativity or fractions of matrix elements.

<□> < 注 > < 注 > < 注 > 三 = < < ○ < ○

GCRD and LCLM of Ore polynomials (Li, Li and Nemes): normal forms of 2 × 1 Ore polynomial matrix;

- normal forms of 2 × 1 Ore polynomial matrix;
- subresultant (fraction-free) and modular algorithms;

- normal forms of 2 × 1 Ore polynomial matrix;
- subresultant (fraction-free) and modular algorithms;
- EG elimination and improvements (Abramov, Abramov and Bronstein);

- normal forms of 2 × 1 Ore polynomial matrix;
- subresultant (fraction-free) and modular algorithms;
- EG elimination and improvements (Abramov, Abramov and Bronstein);
- many works on polynomial matrices.

Order basis

Howard Cheng Computations with Ore Polynomial Matrices

・ロト・(日)・(日)・(日)・(日)・

- Order basis
- Striped Krylov matrix

- Order basis
- Striped Krylov matrix
- Equivalence of Gaussian elimination and polynomial operations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Order basis
- Striped Krylov matrix
- Equivalence of Gaussian elimination and polynomial operations
- Fraction-free Gaussian elimination

- Order basis
- Striped Krylov matrix
- Equivalence of Gaussian elimination and polynomial operations
- Fraction-free Gaussian elimination
- Modular algorithm

We want the module of solutions $\mathbf{P}(X) = [P_1(X) \cdots P_m(X)]$ of order $\vec{\omega}$ such that

$$P_1(X) \cdot \mathbf{F}_{1,\cdot}(X) + \cdots P_m(X) \cdot \mathbf{F}_{m,\cdot}(X) = \mathbf{R}(X) \cdot X^{\vec{\omega}}$$

where $\mathbf{F}_{i,\cdot}(X)$ is the *i*-th row of $\mathbf{F}(Z)$, and $\mathbf{R}(X)$ is a residual.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

We want the module of solutions $\mathbf{P}(X) = [P_1(X) \cdots P_m(X)]$ of order $\vec{\omega}$ such that

$$P_1(X) \cdot \mathbf{F}_{1,\cdot}(X) + \cdots P_m(X) \cdot \mathbf{F}_{m,\cdot}(X) = \mathbf{R}(X) \cdot X^{\vec{\omega}}$$

where $\mathbf{F}_{i,\cdot}(X)$ is the *i*-th row of $\mathbf{F}(Z)$, and $\mathbf{R}(X)$ is a residual.

• A basis of the module: order basis of order $\vec{\omega}$

We want the module of solutions $\mathbf{P}(X) = [P_1(X) \cdots P_m(X)]$ of order $\vec{\omega}$ such that

$$P_1(X) \cdot \mathbf{F}_{1,\cdot}(X) + \cdots P_m(X) \cdot \mathbf{F}_{m,\cdot}(X) = \mathbf{R}(X) \cdot X^{\vec{\omega}}$$

where $\mathbf{F}_{i,\cdot}(X)$ is the *i*-th row of $\mathbf{F}(Z)$, and $\mathbf{R}(X)$ is a residual.

- A basis of the module: order basis of order $\vec{\omega}$
- An order basis represents row operations on F(X) to eliminate low-order terms.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

We want the module of solutions $\mathbf{P}(X) = [P_1(X) \cdots P_m(X)]$ of order $\vec{\omega}$ such that

$$P_1(X) \cdot \mathbf{F}_{1,\cdot}(X) + \cdots P_m(X) \cdot \mathbf{F}_{m,\cdot}(X) = \mathbf{R}(X) \cdot X^{\vec{\omega}}$$

where $\mathbf{F}_{i,\cdot}(X)$ is the *i*-th row of $\mathbf{F}(Z)$, and $\mathbf{R}(X)$ is a residual.

- A basis of the module: order basis of order $\vec{\omega}$
- An order basis represents row operations on F(X) to eliminate low-order terms.
- An order basis of a particular order and row degree is unique up to a constant.

 Given a degree bound µ for the order basis ⇒ system of linear equations for the order basis.

- Given a degree bound µ for the order basis ⇒ system of linear equations for the order basis.
- Coefficient matrix is structured, called a striped Krylov matrix.

$$P(ec{\mu},ec{\omega})\cdot K(ec{\mu},ec{\omega})={f 0}$$
 Expand

- Given a degree bound µ for the order basis ⇒ system of linear equations for the order basis.
- Coefficient matrix is structured, called a striped Krylov matrix.

$$P(ec{\mu},ec{\omega})\cdot K(ec{\mu},ec{\omega})={f 0}$$
 Expand

• It is a generalization of the Sylvester matrix.

- Given a degree bound µ for the order basis ⇒ system of linear equations for the order basis.
- Coefficient matrix is structured, called a striped Krylov matrix.

$$P(ec{\mu},ec{\omega})\cdot K(ec{\mu},ec{\omega})=oldsymbol{0}$$
 Expand

- It is a generalization of the Sylvester matrix.
- The entries in the matrix are commutative—traditional linear algebra applies.
Striped Krylov Matrix

- Given a degree bound µ for the order basis ⇒ system of linear equations for the order basis.
- Coefficient matrix is structured, called a striped Krylov matrix.

$$P(ec{\mu},ec{\omega})\cdot K(ec{\mu},ec{\omega})=oldsymbol{0}$$
 Expand

- It is a generalization of the Sylvester matrix.
- The entries in the matrix are commutative—traditional linear algebra applies.
- In general, we do not know the degree bound a priori.

● ▶ ▲ 三 ▶ ▲ 三 ▶ 三 三 ● ● ●

Fraction-free Order Basis Algorithm (FFreduce)

- Compute a sequence of order bases of increasing order and degrees:
 - order \Rightarrow column degree \Rightarrow
- ⇒ number of columns eliminated
 ⇒ number of times a row has been used as pivot

◎ ▶ ▲ 三 ▶ ▲ 三 ▶ 三 三 ● ○ ○ ○

Fraction-free Order Basis Algorithm (FFreduce)

- Compute a sequence of order bases of increasing order and degrees:
 - $\begin{array}{lll} \text{order} & \Rightarrow & \text{number of columns eliminated} \\ \text{column degree} & \Rightarrow & \text{number of times a row has} \\ & \text{been used as pivot} \end{array}$
- Matrix structure is exploited by working with only one row each stripe.

◎ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ● ● ● ●

Fraction-free Order Basis Algorithm (FFreduce)

- Compute a sequence of order bases of increasing order and degrees:
 - $\begin{array}{lll} \text{order} & \Rightarrow & \text{number of columns eliminated} \\ \text{column degree} & \Rightarrow & \text{number of times a row has} \\ & \text{been used as pivot} \end{array}$
- Matrix structure is exploited by working with only one row each stripe.
- The elimination is done via a fraction-free recurrence.

● ▶ ▲ 三 ▶ ▲ 三 ▶ 三 三 ● ● ●

Let $\mathbf{M}(X)$ be an order basis of order $\vec{\omega}$ and column degree $\vec{\mu}$. Let r_j be the term of residual to be eliminated.

Let π (the pivot) be the smallest index with $r_{\pi} \neq 0$ and $\vec{\mu}_{\pi} = \min_{j} {\{\vec{\mu}_{j} : r_{j} \neq 0\}}.$

$$\widetilde{\mathsf{M}}(X)^{\ell,\cdot} = \left(r_{\pi} \cdot \mathsf{M}(X)^{\ell,\cdot} - r_{\ell} \cdot \mathsf{M}(X)^{\pi,\cdot} \right) / p_{\pi} \quad \text{for } l \neq \pi,$$

$$\widetilde{\mathsf{M}}(X)^{\pi,\cdot} = \left((r_{\pi} \cdot X - \delta(r_{\pi})) \cdot \mathsf{M}(X)^{\pi,\cdot} - \sum_{\ell \neq \pi} \sigma(p_{\ell}) \cdot \widetilde{\mathsf{M}}(X)^{\ell,\cdot} \right) / \sigma(p_{\pi}),$$

where $p_j = coefficient(\mathbf{M}(X)^{\pi,j}, X^{\vec{\mu}_j + \delta_{\pi,j}-1}).$

(ロ) (同) (三) (三) (三) (三) (○)

- Order basis and residual of order $(mN + 1)n \cdot (1, ..., 1)$ gives:
 - rank $\mathbf{F}(X)$
 - basis of left nullspace of **F**(Z)

<□> < 注 > < 注 > < 注 > 三 = の < ⊙

- Order basis and residual of order $(mN + 1)n \cdot (1, ..., 1)$ gives:
 - rank $\mathbf{F}(X)$
 - basis of left nullspace of **F**(Z)
- For shift polynomials:
 - reverse the coefficients
 - eliminate until the trailing coefficient *R*₀ has full rank (row-reduced form) or is triangular (weak Popov form).

Modular Algorithm

• Design a modular version to improve performance.

<□> < 注 > < 注 > < 注 > 三 = の < ⊙

Modular Algorithm

- Design a modular version to improve performance.
- Modular reductions:

$$\mathbb{Z}[t][X;\sigma,\delta] \to \mathbb{Z}_{\rho}[t][X;\sigma,\delta] \to \mathbb{Z}_{\rho}[X;\sigma,\delta]$$

<□> < 注 > < 注 > < 注 > 三 = の < ⊙

- Design a modular version to improve performance.
- Modular reductions:

$$\mathbb{Z}[t][X;\sigma,\delta] \to \mathbb{Z}_{\rho}[t][X;\sigma,\delta] \to \mathbb{Z}_{\rho}[X;\sigma,\delta]$$

- Three traditional issues:
 - definition and detection of unlucky homomorphisms
 - normalization
 - termination

- Design a modular version to improve performance.
- Modular reductions:

$$\mathbb{Z}[t][X;\sigma,\delta] \to \mathbb{Z}_{\rho}[t][X;\sigma,\delta] \to \mathbb{Z}_{\rho}[X;\sigma,\delta]$$

- Three traditional issues:
 - definition and detection of unlucky homomorphisms
 - normalization
 - termination
- We wish to have an output-sensitive algorithm:
 - number of homomorphisms depends on the size of results
 - no need to verify the results by trial division/multiplication

▲□ → ▲ 三 → ▲ 三 → 三 三 → ○ へ ○

• These issues have been resolved for polynomial matrices (Cheng and Labahn).

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

- These issues have been resolved for polynomial matrices (Cheng and Labahn).
- Z[t][X; σ, δ] → Z_p[t][X; σ, δ]: similar to polynomial matrix case.

- These issues have been resolved for polynomial matrices (Cheng and Labahn).
- Z[t][X; σ, δ] → Z_p[t][X; σ, δ]: similar to polynomial matrix case.
- The same approach does not work for $\mathbb{Z}_{p}[t][X; \sigma, \delta] \rightarrow \mathbb{Z}_{p}[X; \sigma, \delta]$:

- These issues have been resolved for polynomial matrices (Cheng and Labahn).
- Z[t][X; σ, δ] → Z_p[t][X; σ, δ]: similar to polynomial matrix case.
- The same approach does not work for $\mathbb{Z}_{p}[t][X; \sigma, \delta] \rightarrow \mathbb{Z}_{p}[X; \sigma, \delta]$:

• evaluation map $t \leftarrow \alpha$ is not an Ore ring homomorphism.

(ロ) (同) (三) (三) (三) (三) (○)

• Compute order basis and residual in $\mathbb{Z}_p[t][X; \sigma, \delta]$.

<□> < 注 > < 注 > < 注 > 三 = の < ⊙

- Compute order basis and residual in $\mathbb{Z}_p[t][X; \sigma, \delta]$.
- Normalization: compute the image of the same order basis and residual as FFreduce.

<□> < □> < □> < □> = □ = のへの

- Compute order basis and residual in $\mathbb{Z}_p[t][X; \sigma, \delta]$.
- Normalization: compute the image of the same order basis and residual as FFreduce.
- Chinese remaindering used to reconstruct the result.

<□> < □> < □> < □> = □ = のへの

 Lucky homomorphism ⇔ the order and degree of order basis computed is correct

<□> < □> < □> < □> = □ = のへの

- Lucky homomorphism ⇔ the order and degree of order basis computed is correct
- Sequence of pivots (the computation path) is useful:

Endpoint of path = degree of order basis

同ト イヨト イヨト 三日 のへの

- Lucky homomorphism ⇔ the order and degree of order basis computed is correct
- Sequence of pivots (the computation path) is useful:

Endpoint of path = degree of order basis

• i.e. lucky homomorphism \Leftrightarrow same endpoint as FFreduce.

★ E ► ★ E ► E E • 9 Q @

- Lucky homomorphism ⇔ the order and degree of order basis computed is correct
- Sequence of pivots (the computation path) is useful:

Endpoint of path = degree of order basis

- i.e. lucky homomorphism ⇔ same endpoint as FFreduce.
- Homomorphisms with different endpoints: the one that is further away from a "normal path" is unlucky.

▲□ → ▲ 三 → ▲ 三 → 三 三 → ○ へ ○

For the remainder of this talk, we assume that:

$$\mathsf{deg}_t\left(\boldsymbol{c}_k\left(\boldsymbol{X}^\ell\cdot\mathbf{F}(\boldsymbol{X})_{i,j}\right)\right) \leq T$$
$$\left\|\boldsymbol{c}_k\left(\boldsymbol{X}^\ell\cdot\mathbf{F}(\boldsymbol{X})_{i,j}\right)\right\|_{\infty} \leq \kappa$$

for $1 \le i \le m$, $1 \le j \le n$, $0 \le k < mN + 1$, and $0 \le \ell \le mN + 1$ where $N = \deg \mathbf{F}(X)$.

<□> < 注 > < 注 > < 注 > 三 = の < ⊙

• We can apply Hadamard bound on coefficients (can be very pessimistic).

・ロ> < 回> < 回> < 回> < 回> < 回

- We can apply Hadamard bound on coefficients (can be very pessimistic).
- Suppose $p_1 < p_2 < \cdots$, and τ is such that

 $((mN+1)n)\kappa(T+1) \leq p_1 \cdots p_{\tau}.$

- We can apply Hadamard bound on coefficients (can be very pessimistic).
- Suppose $p_1 < p_2 < \cdots$, and τ is such that

 $((mN+1)n)\kappa(T+1) \leq p_1 \cdots p_{\tau}.$

 Reconstructed results have not changed for *τ* additional primes ⇒ reconstructed results are correct

- We can apply Hadamard bound on coefficients (can be very pessimistic).
- Suppose $p_1 < p_2 < \cdots$, and τ is such that

 $((mN+1)n)\kappa(T+1) \leq p_1 \cdots p_{\tau}.$

- Reconstructed results have not changed for *τ* additional primes ⇒ reconstructed results are correct
- τ is small in many cases (e.g. 1).

• Ore rings with coefficients in \mathbb{Z}_p must be commutative.

・ロ> < 回> < 回> < 回> < 回> < 回

- Ore rings with coefficients in \mathbb{Z}_p must be commutative.
- Evaluation homomorphisms t ← α are not an Ore ring homomorphism in general.

- Ore rings with coefficients in \mathbb{Z}_p must be commutative.
- Evaluation homomorphisms t ← α are not an Ore ring homomorphism in general.
- We cannot simply apply the reductions and reconstruct the results as before.

 Modular algorithms to compute GCRDs of Ore polynomials (Li and Nemes):

・ロ> < 回> < 回> < 回> < 回> < 回

- Modular algorithms to compute GCRDs of Ore polynomials (Li and Nemes):
 - Gaussian elimination on Sylvester matrix

- Modular algorithms to compute GCRDs of Ore polynomials (Li and Nemes):
 - Gaussian elimination on Sylvester matrix
 - use modular algorithm on Sylvester matrix

- Modular algorithms to compute GCRDs of Ore polynomials (Li and Nemes):
 - Gaussian elimination on Sylvester matrix
 - use modular algorithm on Sylvester matrix
- This is not straightforward for matrices of Ore polynomials:

- Modular algorithms to compute GCRDs of Ore polynomials (Li and Nemes):
 - Gaussian elimination on Sylvester matrix
 - use modular algorithm on Sylvester matrix
- This is not straightforward for matrices of Ore polynomials:
 - the computation path (degree bound) is not known a priori

- Modular algorithms to compute GCRDs of Ore polynomials (Li and Nemes):
 - Gaussian elimination on Sylvester matrix
 - use modular algorithm on Sylvester matrix
- This is not straightforward for matrices of Ore polynomials:
 - the computation path (degree bound) is not known a priori
 - it is not known a priori which striped Krylov matrix is needed
We interleave the construction of the striped Krylov matrix with elimination steps:

- when an elimination step is performed, a new row is added (after evaluation homomorphism is applied)
- the added row is reduced with respect to all previous pivot rows

◎ ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目日 つく(~

- Normalization: same as the case Z_p[t][X; σ, δ]
- Lucky homomorphisms: similar as Z_p[t][X; σ, δ]
- Termination:

results unchanged for T additional homomorphisms \Rightarrow reconstructed results are correct

Example

$$\mathcal{K}(\vec{\mu},\vec{\omega}) = \begin{bmatrix} 6t^2 & 2 & 3t & -1 & 2 & 1 \\ 12t & 0 & 6t^2 + 3 & 2 & 3t & -1 \\ 12 & 0 & 24t & 0 & 6t^2 + 6 & 2 \\ \hline 3t^3 & t & t - 1 & 3t & 0 & 0 \\ 9t^2 & 1 & 3t^3 + 1 & t + 3 & t - 1 & 3t \\ 18t & 0 & 18t^2 & 2 & 3t^3 + 2 & t + 6 \end{bmatrix}$$

 The substitution t ← 0 gives a completely different pivot choice (third row).

In general, pivot rows and columns correct at the end \Rightarrow the evaluation is lucky

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

• Order basis computation eliminates low-order terms.

・ロ> < 回> < 回> < 回> < 回> < 回

- Order basis computation eliminates low-order terms.
- For shift polynomials, leading term can be eliminated by reversing coefficients.

<□> < □> < □> < □> = □ = のへの

- Order basis computation eliminates low-order terms.
- For shift polynomials, leading term can be eliminated by reversing coefficients.
- In general, this is not possible.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三十日 めんで

- Order basis computation eliminates low-order terms.
- For shift polynomials, leading term can be eliminated by reversing coefficients.
- In general, this is not possible.
- Popov form cannot be computed directly with order basis even for shift polynomials.

<□> < □> < □> < □> = □ = のへの

$$\begin{bmatrix} \mathbf{F}(X) \cdot X^b \\ -I \end{bmatrix}$$

Howard Cheng Computations with Ore Polynomial Matrices

・ロ> < 回> < 回> < 回> < 回> < 回

$$\begin{bmatrix} \mathbf{F}(X) \cdot X^b \\ -I \end{bmatrix}$$

• The left nullspace can be partitioned as:

$$\mathbf{M}(X) = \begin{bmatrix} \mathbf{U}(X) & \mathbf{T}(X) \cdot X^b \end{bmatrix}$$

so

$$\mathbf{U}(X) \cdot \mathbf{F}(X) \cdot Z^b = \mathbf{T}(X) \cdot X^b$$

<ロ> <同> <同> <目> <同> <同> <同> <同> <同</p>

$$\begin{bmatrix} \mathbf{F}(X) \cdot X^b \\ -I \end{bmatrix}$$

• The left nullspace can be partitioned as:

$$\mathbf{M}(X) = \begin{bmatrix} \mathbf{U}(X) & \mathbf{T}(X) \cdot X^b \end{bmatrix}$$

SO

$$\mathbf{U}(X)\cdot\mathbf{F}(X)\cdot Z^b=\mathbf{T}(X)\cdot X^b$$

 If b > deg U(X), then the leading row coefficient of M(X) is the leading row coefficient of T(X).

□ > < E > < E > E| = のへの

$$\begin{bmatrix} \mathbf{F}(X) \cdot X^b \\ -I \end{bmatrix}$$

• The left nullspace can be partitioned as:

$$\mathbf{M}(X) = \begin{bmatrix} \mathbf{U}(X) & \mathbf{T}(X) \cdot X^b \end{bmatrix}$$

SO

$$\mathbf{U}(X)\cdot\mathbf{F}(X)\cdot Z^b=\mathbf{T}(X)\cdot X^b$$

- If b > deg U(X), then the leading row coefficient of M(X) is the leading row coefficient of T(X).
- $\mathbf{M}(Z)$ in Popov form $\Leftrightarrow \mathbf{T}(Z)$ in Popov form.

同 ト イヨ ト イヨ ト 三 日 つくつ

$$\begin{bmatrix} \mathbf{F}(X) \cdot X^b \\ -I \end{bmatrix}$$

• The left nullspace can be partitioned as:

$$\mathsf{M}(X) = \begin{bmatrix} \mathsf{U}(X) & \mathsf{T}(X) \cdot X^b \end{bmatrix}$$

so

$$\mathbf{U}(X)\cdot\mathbf{F}(X)\cdot Z^{b}=\mathbf{T}(X)\cdot X^{b}$$

- If b > deg U(X), then the leading row coefficient of M(X) is the leading row coefficient of T(X).
- $\mathbf{M}(Z)$ in Popov form $\Leftrightarrow \mathbf{T}(Z)$ in Popov form.
- Old idea, but proofs do not work when matrix entries are not commutative.

Let $\vec{\mu} = \text{rdeg } \mathbf{F}(X)$ and $b > |\vec{\mu}| - \min_j \{\mu_j\}$.

Suppose that $[\mathbf{U}(X) \ \mathbf{R}(X)]$ is a minimal polynomial basis in Popov form of the left nullspace of $\begin{bmatrix} \mathbf{F}(X) \cdot X^b \\ -\mathbf{I} \end{bmatrix}$.

Let
$$\mathbf{T}(X) = \mathbf{R}(X) \cdot X^{-b}$$
.

- **U**(X) is unimodular;
- **2** $\mathbf{T}(X) = \mathbf{U}(X) \cdot \mathbf{F}(X)$ is an Ore polynomial matrix in Popov form.

(ロ) (同) (三) (三) (三) (三) (○)

• Although the Ore polynomials are not commutative, the coefficients are.

・ロ> < 回> < 回> < 回> < 回> < 回

- Although the Ore polynomials are not commutative, the coefficients are.
- Elimination is formulated as linear systems of equations on the coefficients.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆

- Although the Ore polynomials are not commutative, the coefficients are.
- Elimination is formulated as linear systems of equations on the coefficients.
- This allows traditional linear algebra techniques to be used to control coefficient growth.

<□> < E> < E> < E > E| = のへ⊙

- Although the Ore polynomials are not commutative, the coefficients are.
- Elimination is formulated as linear systems of equations on the coefficients.
- This allows traditional linear algebra techniques to be used to control coefficient growth.
- Polynomial arithmetic is used to take advantange of the matrix structure.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

$$\begin{bmatrix} & & & \\ & & & \\ \end{pmatrix} \begin{bmatrix} & & & \\ & & \\ \end{pmatrix} \begin{bmatrix} & & & \\ & & \\ \end{pmatrix} \begin{bmatrix} & & & \\ & & \\ \\ & & \\ \end{pmatrix} \begin{bmatrix} & & & \\ & & \\ \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} & & & \\ & & \\ \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} & & & \\ & & \\ \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} & & & \\ & & \\ \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} & & & \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} & & & \\ & & \\ \\ & & \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} & & & & \\ \\ & & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} & & & & \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} & & & & \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} & & & & \\ & & \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} & & & & \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} & & & & \\ \\ & & & \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} & & & & \\ \\ & & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} & & & & \\ \\ & & & \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} & & & & \\ \\ & & & \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} & & & & \\ \\ & & & \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} & & & & \\ \\ & & & \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} & & & & \\ \\ & & & \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} & & & & \\ \\ & & & \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} & & & & \\ \\ & & & \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} & & & & \\ \\ & & & \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} & & & & \\ \\ & & & \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix}$$

Howard Cheng Computations with Ore Polynomial Matrices

Example

Let
$$\vec{\mu} = (2,2), \ \vec{\omega} = (3,3), \text{ and}$$

$$\mathbf{F}(X) = \begin{bmatrix} 2X^2 + 3tX + 6t^2 & X^2 - X + 2\\ (t-1)X + 3t^3 & 3tX + t \end{bmatrix} \in \mathbb{Z}[t][X; \sigma, \delta]^{2 \times 2},$$
with $\sigma(\mathbf{a}(t)) = \mathbf{a}(t)$ and $\delta(\mathbf{a}(t)) = \mathbf{a}'(t).$

$$\frac{X^0 \qquad X^1 \qquad X^2}{12t \ 0 \ 6t^2 + 3 \ 2 \ 3t \ -1} \qquad \frac{2}{12t \ 0 \ 6t^2 + 3 \ 2 \ 3t \ -1} \qquad \frac{2}{3t^3 \ t \ t-1 \ 3t \ 0 \ 0} \qquad 0}{9t^2 \ 1 \ 3t^3 + 1 \ t+3 \ 1t-1 \ 3t} \qquad 0 \ 0}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・