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Ore Polynomials

The ring of Ore polynomials QD[X ;σ, δ]

σ: automorphism over QD
δ: additive homomorphism on QD
Polynomial multiplication: Xa = σ(a)X + δ(a)

σ(a(t)) δ(a(t))

Polynomials a(t) 0
Differential operator a(t) a′(t)
Difference operator a(t + 1) 0

δ = 0⇒ shift polynomials
Matrices of Ore polynomials represent systems of linear
differential equations, difference equations, etc.
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Problems

Given an m × n Ore polynomial matrix F(X ) of degree N, we
wish to compute:

a basis for the left nullspace of F(X );

a row-equivalent matrix with a non-singular trailing
coefficient;

a row-reduced form of F(X )

leading row coefficient of nonzero rows have full row rank

and associated unimodular transformation matrix U(X );

the Popov form of F(X )

leading row coefficient is triangular (weak Popov form)
leading entry is monic and has highest degree in its column

and associated unimodular transformation matrix U(X ).
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Applications

Solving these problems allows us to:

determine the rank of a matrix of Ore polynomials;

find rational solutions to systems of linear functional
equations;

compute greatest common right divisors (GCRD)
and least common left multiples (LCLM)

i.e. intersection and union of systems;

reduce order of systems of equations;

isolate highest powers.
e.g. convert DAE systems to first order.
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Row Operations

We can obtain normal forms by elementary row operations:
1 interchange two rows

2 multiply a row by a nonzero element (constant in most
cases)

3 add a polynomial multiple of one row to another

We also wish to compute the transformation matrix in many
cases.
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Issues

Straightforward elimination may introduce coefficient
growth:

from Gaussian elimination;
from multiplication by X .

Algorithms for polynomial matrices may not work on Ore
polynomial matrices.

Proofs of correct algorithms for polynomial matrices may
rely on commutativity or fractions of matrix elements.
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Related Works

GCRD and LCLM of Ore polynomials (Li, Li and Nemes):

normal forms of 2× 1 Ore polynomial matrix;
subresultant (fraction-free) and modular algorithms;

EG elimination and improvements (Abramov, Abramov and
Bronstein);

many works on polynomial matrices.
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Main Tools

Order basis

Striped Krylov matrix

Equivalence of Gaussian elimination and polynomial
operations

Fraction-free Gaussian elimination

Modular algorithm
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Order Basis

We have an elimination problem.

We want the module of solutions P(X ) = [P1(X ) · · ·Pm(X )] of
order ~ω such that

P1(X ) · F1,·(X ) + · · ·Pm(X ) · Fm,·(X ) = R(X ) · X ~ω

where Fi,·(X ) is the i-th row of F(Z ), and R(X ) is a residual.

A basis of the module: order basis of order ~ω

An order basis represents row operations on F(X ) to
eliminate low-order terms.

An order basis of a particular order and row degree is
unique up to a constant.
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Striped Krylov Matrix

Given a degree bound ~µ for the order basis⇒ system of
linear equations for the order basis.

Coefficient matrix is structured, called a striped Krylov
matrix.

P(~µ, ~ω) · K (~µ, ~ω) = 0 Expand

It is a generalization of the Sylvester matrix.

The entries in the matrix are commutative—traditional
linear algebra applies.

In general, we do not know the degree bound a priori.
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Fraction-free Order Basis Algorithm (FFreduce)

Compute a sequence of order bases of increasing order
and degrees:

order ⇒ number of columns eliminated
column degree ⇒ number of times a row has

been used as pivot

Matrix structure is exploited by working with only one row
each stripe.

The elimination is done via a fraction-free recurrence.
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Fraction-free Recurrence

Let M(X ) be an order basis of order ~ω and column degree ~µ.

Let rj be the term of residual to be eliminated.

Let π (the pivot) be the smallest index with rπ 6= 0 and
~µπ = minj{~µj : rj 6= 0}.

eM(X)`,· =
“

rπ ·M(X)`,· − r` ·M(X)π,·
”
/pπ for l 6= π,

eM(X)π,· =

0@(rπ · X − δ(rπ)) ·M(X)π,· −
X
6̀=π
σ(p`) · eM(X)`,·

1A /σ(pπ),

where pj = coefficient(M(X )π,j ,X ~µj+δπ,j−1).
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Termination

Order basis and residual of order (mN + 1)n · (1, . . . ,1)
gives:

rank F(X )
basis of left nullspace of F(Z )

For shift polynomials:
reverse the coefficients
eliminate until the trailing coefficient R0 has full rank
(row-reduced form) or is triangular (weak Popov form).
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Modular Algorithm

Design a modular version to improve performance.

Modular reductions:

Z[t ][X ;σ, δ]→ Zp[t ][X ;σ, δ]→ Zp[X ;σ, δ]

Three traditional issues:
definition and detection of unlucky homomorphisms
normalization
termination

We wish to have an output-sensitive algorithm:
number of homomorphisms depends on the size of results
no need to verify the results by trial division/multiplication
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Modular Algorithm

These issues have been resolved for polynomial matrices
(Cheng and Labahn).

Z[t ][X ;σ, δ]→ Zp[t ][X ;σ, δ]: similar to polynomial matrix
case.

The same approach does not work for
Zp[t ][X ;σ, δ]→ Zp[X ;σ, δ]:

evaluation map t ← α is not an Ore ring homomorphism.
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Reduction to Zp[t ][X ;σ, δ]

Compute order basis and residual in Zp[t ][X ;σ, δ].

Normalization: compute the image of the same order basis
and residual as FFreduce.

Chinese remaindering used to reconstruct the result.
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Lucky Homomorphisms

Lucky homomorphism⇔ the order and degree of order
basis computed is correct

Sequence of pivots (the computation path) is useful:

Endpoint of path = degree of order basis

i.e. lucky homomorphism⇔ same endpoint as FFreduce.

Homomorphisms with different endpoints: the one that is
further away from a “normal path” is unlucky.
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Size of Input

For the remainder of this talk, we assume that:

degt

(
ck

(
X ` · F(X )i,j

))
≤ T∥∥∥ck

(
X ` · F(X )i,j

)∥∥∥
∞
≤ κ

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ k < mN + 1, and 0 ≤ ` ≤ mN + 1
where N = deg F(X ).
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Termination

We can apply Hadamard bound on coefficients (can be
very pessimistic).

Suppose p1 < p2 < · · · , and τ is such that

((mN + 1)n)κ(T + 1) ≤ p1 · · · pτ .

Reconstructed results have not changed for τ additional
primes⇒ reconstructed results are correct

τ is small in many cases (e.g. 1).
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Reduction to Zp

Ore rings with coefficients in Zp must be commutative.

Evaluation homomorphisms t ← α are not an Ore ring
homomorphism in general.

We cannot simply apply the reductions and reconstruct the
results as before.
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Previous Work

Modular algorithms to compute GCRDs of Ore polynomials
(Li and Nemes):

Gaussian elimination on Sylvester matrix
use modular algorithm on Sylvester matrix

This is not straightforward for matrices of Ore polynomials:

the computation path (degree bound) is not known a priori
it is not known a priori which striped Krylov matrix is needed
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Our Modular Algorithm

We interleave the construction of the striped Krylov matrix with
elimination steps:

when an elimination step is performed, a new row is added
(after evaluation homomorphism is applied)

the added row is reduced with respect to all previous pivot
rows
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Our Modular Algorithm

Normalization: same as the case Zp[t ][X ;σ, δ]

Lucky homomorphisms: similar as Zp[t ][X ;σ, δ]

Termination:

results unchanged for T additional homomorphisms
⇒ reconstructed results are correct
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Example

K (~µ, ~ω) =



6t2 2 3t −1 2 1
12t 0 6t2 + 3 2 3t −1
12 0 24t 0 6t2 + 6 2
3t3 t t − 1 3t 0 0
9t2 1 3t3 + 1 t + 3 t − 1 3t
18t 0 18t2 2 3t3 + 2 t + 6

 .

The substitution t ← 0 gives a completely different pivot
choice (third row).

In general, pivot rows and columns correct at the end
⇒ the evaluation is lucky
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Popov Form

Order basis computation eliminates low-order terms.

For shift polynomials, leading term can be eliminated by
reversing coefficients.

In general, this is not possible.

Popov form cannot be computed directly with order basis
even for shift polynomials.
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Popov Form

We compute the left nullspace of the matrix:[
F(X ) · X b

−I

]

The left nullspace can be partitioned as:

M(X ) =
[
U(X ) T(X ) · X b

]
so

U(X ) · F(X ) · Z b = T(X ) · X b

If b > deg U(X), then the leading row coefficient of M(X ) is
the leading row coefficient of T(X ).
M(Z ) in Popov form⇔ T(Z ) in Popov form.
Old idea, but proofs do not work when matrix entries are
not commutative.
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Popov Form

Let ~µ = rdeg F(X ) and b > |~µ| −minj{µj}.

Suppose that [U(X ) R(X )] is a minimal polynomial basis in

Popov form of the left nullspace of
[
F(X ) · X b

−I

]
.

Let T(X ) = R(X ) · X−b.

1 U(X ) is unimodular;
2 T(X ) = U(X ) · F(X ) is an Ore polynomial matrix in Popov

form.
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Final Remarks

Although the Ore polynomials are not commutative, the
coefficients are.

Elimination is formulated as linear systems of equations on
the coefficients.

This allows traditional linear algebra techniques to be used
to control coefficient growth.

Polynomial arithmetic is used to take advantange of the
matrix structure.
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X 0 · · · X nkh
· · ·

p(nk )
k

p(0)
k · · · p(nk )

k · · ·

p(nk )
k

i

X 0 · · · X~ω−~e
X nk · Fk,·(X)

266666666666664

...

· · · X 0 · Fk,·(X) · · ·

X 0

...

X~ω−~e

· · · X nk · Fk,·(X) · · ·

...

377777777777775
= 0
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Example

Let ~µ = (2,2), ~ω = (3,3), and

F(X ) =

[
2X 2 + 3tX + 6t2 X 2 − X + 2
(t − 1)X + 3t3 3tX + t

]
∈ Z[t ][X ;σ, δ]2×2,

with σ(a(t)) = a(t) and δ(a(t)) = a′(t).

K (~µ, ~ω) =

X 0 X 1 X 2

18t t 6t2 + 3 t + 3 6t2 + 6 t + 6


6t2 2 3t −1 2 1
12t 0 6t2 + 3 2 3t −1
12 0 24t 0 6t2 + 6 2
3t3 t t − 1 3t 0 0
9t2 1 3t3 + 1 t + 3 t − 1 3t
18t 0 18t2 2 3t3 + 2 t + 6

 .

Return
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