Evaluation Properties of Invariant Polynomials

Jie Wu^{1,2}, Eric Schost¹, Xavier Dahan³

¹University of Western Ontario, Ontario, Canada ²Graduate School of the Chinese Academy of Sciences, China ³Rikkyô university, Tôkyô, Japan

May 7, 2008

(ロ) (同) (三) (三) (三) (○) (○)

Outline

- Introduction
- Main Result
- Preliminaries and Notations
- Computation of the Gröbner basis

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Complexity Analysis

A polynomial invariant under the actions of a finite group can be rewritten as a polynomial of generators of the invariant ring by using the method of Gröbner basis.

Example

For symmetric group $\mathscr{G} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}$, symmetric polynomial $f = x_1^d + x_2^d \in \mathbb{Q}[x_1, x_2]$ can be written as

$$P = \sum_{j=0}^{\lfloor d/2 \rfloor} (-1)^j \frac{d}{d-j} \binom{n-j}{j} y_1^{d-2j} y_2^j \in \mathbb{Q}[y_1, y_2]$$

with $f = P(x_1 + x_2, x_1 x_2)$ by modulo the Gröbner basis of

$$J = \langle x_1 + x_2 - y_1, x_1 x_2 - y_2 \rangle \triangleleft \mathbb{Q}[y_1, y_2, x_1, x_2]$$

w.r.t. lex order $x_1 > x_2 > y_1 > y_2$.

- This rewriting method is well known in invariant theory as a classical application of Gröbner basis method.
- However, there is probably no hope to get good complexity without using a straight-line program.
- A straight-line program is a sequence of instructions (+, -, ×) that computes a (sequence of) polynomial(s); the cost measure is the *size*, *i.e.*, the number of instructions. It is a useful tool to measure the complexity of evaluation properties of polynomial systems.
- It has long been known that this representation is well-adapted to obtain complexity results for questions such as multivariate factorization, GCD computation [Kaltofen] and polynomial system solving [Giusti et al.]

Who Cares?

In the problem of solving polynomial systems:

- Some algorithms benefit if the input system has a low complexity of evaluation, see
 - Giusti et al.
 - Li, Moreno Maza, Rasheed and Schost
- If the input system is symmetric
 - we want to rewrite it in polynomials of invariants
 - Without spoiling its complexity of evaluation too much

(日) (日) (日) (日) (日) (日) (日)

Example

- $f = x_1^8 + x_2^8$ can be represented by a straight-line program of size 7 as: $G_1 = x_1^2$; $G_2 = G_1^2$; $G_3 = G_2^2$; $H_1 = x_2^2$; $H_2 = H_1^2$; $H_3 = H_2^2$; $f = G_3 + H_3$.
- To compute the rewritten polynomial of *f* by modulo by $\{x_1 + x_2 y_1, x_2^2 y_1x_2 + y_2\}$, we need at most $2 \times 3 \times 11 + 3 = 69$ operations $(+, -, \times)$.
- In general, for f = x₁^{2^k} + x₂^{2^k}, 2 × 11 × k + 3 operations are enough, here 11 is the number of operations for a multiplication in

$$\mathbb{Q}[y_1, y_2][x_1, x_2]/\langle x_1 + x_2 - y_1, x_1x_2 - y_2 \rangle$$

Remark. One can evaluate P(the rewritten polynomial of f) within O(log(d)) arithmetic operations, comparing to the fact that P has O(d) terms.

In general, let 𝒢 be a finite subgroup of GL(*k*, *n*), denote x̄ = (x₁, · · · , x_n) and k[x̄]^𝒢 = {f|f = σ ∘ f, ∀σ ∈ 𝒢} the ring of invariants under actions of 𝒢. Suppose that primary and minimal secondary invariants F̄ = (f₁, . . . , f_n) and ō = (σ₁, . . . , σ_e) are known such that

$$k[\overline{x}]^{\mathscr{G}} = \bigoplus_{\sigma \in \overline{\sigma}} k[f_1, \ldots, f_n] \sigma$$

Any $P \in k[\overline{x}]^{\mathscr{G}}$ can be uniquely written as

$$P = \sum_{\sigma \in \overline{\sigma}} P_{\sigma}(f_1, \ldots, f_n) \sigma$$

for some P_{σ} in $k[\overline{y}] = k[y_1, \ldots, y_n]$.

Example

$$\blacksquare \ \mathscr{G} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}$$

• $\overline{F} = (x_1^2, x_2^2)$ and $\overline{\sigma} = (1, x_1 x_2)$ can serve as primary and secondary invariants

Any
$$P \in k[x_1, x_2]^{\mathscr{G}}$$
 can be uniquely written as
 $P = P_1(x_1^2, x_2^2) + P_{x_1x_2}(x_1^2, x_2^2)x_1x_2$, for $P_1, P_{x_1x_2} \in k[y_1, y_2]$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Main Result

Theorem Let $P \in k[\overline{x}]$ (resp. $\overline{F}, \overline{\sigma}$) be given by a straight-line program Γ of size L (resp. Γ' of size $L_{\overline{F},\overline{\sigma}}$). Given Γ and Γ' , one can construct a straight-line program Γ'' of size

 $(L+L_{\overline{F},\overline{\sigma}})(n\delta)^{O(1)}$

that computes all polynomials $(P_{\sigma})_{\sigma \in \overline{\sigma}}$. Here, $\delta = \prod \deg(f_i)$

Remark. Without using a straight-line program, one probably cannot get better complexity than $\binom{n+\delta}{n}$.

General Idea

Input: $P, \overline{F}, \overline{\sigma}$

- Step 1 Compute the Gröbner basis *G* of $J = \langle f_1 y_1, \cdots, f_n y_n \rangle$ w.r.t. some particular monomial order
- Step 2 By following the sequence of straight-line program which represents *P*, compute the normal form of *P* modulo *G*
- Step 3 Compute the coefficients P_{σ} from $P \mod G$

Remark. If \mathscr{G} is such that the only secondary invariant is 1, then Step 3 is not needed.

Preliminaries and Notations

- For simplicity, we assume *G* is a reflection group which means k[x]^G = k[f₁, · · · , f_n], we also assume k has characteristic 0 which is algebraically closed.
- We define the following monomial order on $k[\overline{y}, \overline{x}]$: $\overline{x}^{\alpha_1}\overline{y}^{\beta_1} > \overline{x}^{\alpha_2}\overline{y}^{\beta_2} \Leftrightarrow \overline{x}^{\alpha_1} > \overline{x}^{\alpha_2}$ for graded lex order $x_1 > \cdots > x_n$, or $\overline{x}^{\alpha_1} = \overline{x}^{\alpha_2}$ and $\overline{y}^{\beta_1} > \overline{y}^{\beta_2}$ for lex order $y_1 > \cdots > y_n$.
- Introducing degrees on y_i with degree (y_i) =degree (f_i) , make J homogeneous ideal. Let $G = \{g_1(\overline{x}, \overline{y}), \dots, g_m(\overline{x}, \overline{y})\}$ be the reduced Gröbner basis of J, thus g_i is homogeneous with weights on $y'_i s$.

For a point
$$\overline{z} \in k^n$$
, let $\overline{p} = (p_1, \cdots, p_n) = (f_1(\overline{z}), \cdots, f_n(\overline{z}))$,
 $I_p = \langle f_1 - p_1, \cdots, f_n - p_n \rangle \triangleleft k[\overline{x}]$

Sketch of Our Algorithm

- Step 1 Pick a "lucky" point \overline{p} such that I_p is radical
- Step 2 Compute the Gröbner basis of I_p w.r.t graded lex order $x_1 > \cdots > x_n$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Step 3 Using a lifting technique to get G

Gröbner Basis of Ip

Theorem

For every $\overline{z} \in k^n$, $\overline{p} = (f_1(\overline{z}), \cdots, f_n(\overline{z})) \in k^n$, the reduced Gröbner basis of I_p is $\{g_1(\overline{x}, \overline{p}), \cdots, g_m(\overline{x}, \overline{p})\}$

Theorem

 $V(I_p) = \{ s \cdot \overline{z} | s \in G \}, I_p \text{ is radical if and only if } |V(I_p)| = |\mathscr{G}|.$

Methods: Pick a "Lucky" \overline{p} , use "Shape Lemma"(interpolation) to construct a basis (powers of a "primitive element") of $k[\overline{x}]/I_p$, by using FGLM (J.C. Faugère, P. Gianni, D. Lazard, and T. Mora) algorithm, we get the Gröbner basis of I_p .

Lifting Technique

Let
$$M = \langle y_1 - p_1, \cdots, y_n - p_n \rangle$$
 the maximal ideal in $k[\overline{y}]$,
 $R_i = k[\overline{y}]/M^i$

Theorem

For every *i*, the reduced Gröbner basis of $J \triangleleft R_i[\overline{x}]$ is $\{g \mod M^i | g \in G\}$.

Strategy of lifting step: Let $G^k = \{g_1^k, \dots, g_m^k\}$, where $g_i^k = g_i \mod M^{2^k}$, be the Gröbner basis of $J \triangleleft R_{2^k}[\overline{x}]$. Suppose we know G^k , we construct a lifting step to compute G^{k+1} .

Lifting Technique

Algorithm

- Let H_k = R_{2^{k+1}}[x̄]/⟨G^k⟩, and the image of α ∈ k[ȳ, x̄] in H_k will be denoted by α_k.
- we treat $F = \{f_1 y_1, \dots, f_n y_n\}$ and G^k as column matrices, their Jacobian matrices with respect to \overline{x} will be denoted by Jac(F) and $Jac(G^k)$ respectively.
- Compute $\operatorname{Jac}(G^k)_k \cdot \operatorname{Jac}^{-1}(F)_k \cdot F_k$ in H_k , let δ be its reduced form, and $\widetilde{\delta}$ be the preimage of δ in $k[\overline{y}, \overline{x}]$, then we have $G^{k+1} = G^k + \widetilde{\delta}$.
- If every polynomial in G^{k+1} is homogeneous with degree(x_i)=1 and degree(y_j)=degree(f_j), we have G = G^{k+1}.

Remark. This algorithm generates the idea of triangular lifting [E.Schost].

Complexity Estimate

Let $\delta = |\mathscr{G}|$

• Computation of Gröbner basis of I_p : O($n\delta^3 + n^2\delta$)

Cost of lifting:

Theorem The cost of lifting from G^k to G^{k+1} is $O((nL + n^3 + n^2\delta + n\delta^2)\delta^3 2^{2k+2} + (n\delta^3 + \delta^4)2^{2k+2}),$ thus the overall cost of the lifting step is $O(((nL + n^3 + n^2\delta + n\delta^2)\delta^5 + (n\delta^3 + \delta^4)\delta^2)\log(\delta)).$

Conclusion. The whole algorithm can be done in polynomial time of $n\delta$ by using straight-line program.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Thank you!

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○