Evaluation Properties of Invariant Polynomials

Jie Wu ${ }^{1,2}$, Eric Schost ${ }^{1}$, Xavier Dahan ${ }^{3}$

${ }^{1}$ University of Western Ontario, Ontario, Canada ${ }^{2}$ Graduate School of the Chinese Academy of Sciences, China
${ }^{3}$ Rikkyô university, Tôkyô, Japan

May 7, 2008

Outline

- Introduction
- Main Result

■ Preliminaries and Notations

- Computation of the Gröbner basis
- Complexity Analysis

Introduction

A polynomial invariant under the actions of a finite group can be rewritten as a polynomial of generators of the invariant ring by using the method of Gröbner basis.

Example

For symmetric group $\mathscr{G}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right\}$, symmetric polynomial $f=x_{1}^{d}+x_{2}^{d} \in \mathbb{Q}\left[x_{1}, x_{2}\right]$ can be written as

$$
P=\sum_{j=0}^{\lfloor d / 2\rfloor}(-1)^{j} \frac{d}{d-j}\binom{n-j}{j} y_{1}^{d-2 j} y_{2}^{j} \in \mathbb{Q}\left[y_{1}, y_{2}\right]
$$

with $f=P\left(x_{1}+x_{2}, x_{1} x_{2}\right)$ by modulo the Gröbner basis of

$$
J=\left\langle x_{1}+x_{2}-y_{1}, x_{1} x_{2}-y_{2}\right\rangle \triangleleft \mathbb{Q}\left[y_{1}, y_{2}, x_{1}, x_{2}\right]
$$

w.r.t. lex order $x_{1}>x_{2}>y_{1}>y_{2}$.

Introduction

■ This rewriting method is well known in invariant theory as a classical application of Gröbner basis method.

■ However, there is probably no hope to get good complexity without using a straight-line program.

- A straight-line program is a sequence of instructions $(+,-, \times)$ that computes a (sequence of) polynomial(s); the cost measure is the size, i.e., the number of instructions. It is a useful tool to measure the complexity of evaluation properties of polynomial systems.
■ It has long been known that this representation is well-adapted to obtain complexity results for questions such as multivariate factorization, GCD computation [Kaltofen] and polynomial system solving [Giusti et al.]

Who Cares?

In the problem of solving polynomial systems:
■ Some algorithms benefit if the input system has a low complexity of evaluation, see

■ Giusti et al.
■ Li, Moreno Maza, Rasheed and Schost
■ If the input system is symmetric

- we want to rewrite it in polynomials of invariants

■ Without spoiling its complexity of evaluation too much

Introduction

Example

$\square f=x_{1}^{8}+x_{2}^{8}$ can be represented by a straight-line program of size 7 as: $G_{1}=x_{1}^{2} ; G_{2}=G_{1}^{2} ; G_{3}=G_{2}^{2} ; H_{1}=x_{2}^{2} ; H_{2}=$ $H_{1}^{2} ; H_{3}=H_{2}^{2} ; f=G_{3}+H_{3}$.

- To compute the rewritten polynomial of f by modulo by $\left\{x_{1}+x_{2}-y_{1}, x_{2}^{2}-y_{1} x_{2}+y_{2}\right\}$, we need at most $2 \times 3 \times 11+3=69$ operations $(+,-, \times)$.
■ In general, for $f=x_{1}^{2^{k}}+x_{2}^{2^{k}}, 2 \times 11 \times k+3$ operations are enough, here 11 is the number of operations for a multiplication in

$$
\mathbb{Q}\left[y_{1}, y_{2}\right]\left[x_{1}, x_{2}\right] /\left\langle x_{1}+x_{2}-y_{1}, x_{1} x_{2}-y_{2}\right\rangle
$$

Remark. One can evaluate P (the rewritten polynomial of f) within $\mathrm{O}(\log (d))$ arithmetic operations, comparing to the fact that P has $\mathrm{O}(d)$ terms.

Introduction

■ In general, let \mathscr{G} be a finite subgroup of $\mathrm{GL}(k, n)$, denote $\bar{x}=\left(x_{1}, \cdots, x_{n}\right)$ and $k[\bar{x}]^{\mathscr{G}}=\{f \mid f=\sigma \circ f, \forall \sigma \in \mathscr{G}\}$ the ring of invariants under actions of \mathscr{G}. Suppose that primary and minimal secondary invariants $\bar{F}=\left(f_{1}, \ldots, f_{n}\right)$ and $\bar{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{e}\right)$ are known such that

$$
k[\bar{x}]^{\mathscr{G}}=\bigoplus_{\sigma \in \bar{\sigma}} k\left[f_{1}, \ldots, f_{n}\right] \sigma
$$

■ Any $P \in k[\bar{x}]^{\mathscr{G}}$ can be uniquely written as

$$
P=\sum_{\sigma \in \bar{\sigma}} P_{\sigma}\left(f_{1}, \ldots, f_{n}\right) \sigma
$$

for some P_{σ} in $k[\bar{y}]=k\left[y_{1}, \ldots, y_{n}\right]$.

Introduction

Example

■ $\mathscr{G}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]\right\}$
■ $\bar{F}=\left(x_{1}^{2}, x_{2}^{2}\right)$ and $\bar{\sigma}=\left(1, x_{1} x_{2}\right)$ can serve as primary and secondary invariants

- Any $P \in k\left[x_{1}, x_{2}\right]^{9}$ can be uniquely written as $P=P_{1}\left(x_{1}^{2}, x_{2}^{2}\right)+P_{x_{1} x_{2}}\left(x_{1}^{2}, x_{2}^{2}\right) x_{1} x_{2}$, for $P_{1}, P_{x_{1} x_{2}} \in k\left[y_{1}, y_{2}\right]$

Main Result

Theorem

Let $P \in k[\bar{x}]$ (resp. $\bar{F}, \bar{\sigma}$) be given by a straight-line program Γ of size L (resp. Γ^{\prime} of size $L_{\bar{F}, \bar{\sigma}}$). Given Γ and Γ^{\prime}, one can construct a straight-line program $\Gamma^{\prime \prime}$ of size

$$
\left(L+L_{\bar{F}, \bar{\sigma}}\right)(n \delta)^{O(1)}
$$

that computes all polynomials $\left(P_{\sigma}\right)_{\sigma \in \bar{\sigma}}$. Here, $\delta=\prod \operatorname{deg}\left(f_{i}\right)$
Remark. Without using a straight-line program, one probably cannot get better complexity than $\binom{n+\delta}{n}$.

General Idea

Input: $P, \bar{F}, \bar{\sigma}$

Step 1 Compute the Gröbner basis G of $J=\left\langle f_{1}-y_{1}, \cdots, f_{n}-y_{n}\right\rangle$ w.r.t. some particular monomial order

Step 2 By following the sequence of straight-line program which represents P, compute the normal form of P modulo G

Step 3 Compute the coefficients P_{σ} from $P \bmod G$
Remark. If \mathscr{G} is such that the only secondary invariant is 1 , then Step 3 is not needed.

Preliminaries and Notations

■ For simplicity, we assume \mathscr{G} is a reflection group which means $k[\bar{x}]^{\mathscr{G}}=k\left[f_{1}, \cdots, f_{n}\right]$, we also assume k has characteristic 0 which is algebraically closed.
$■$ We define the following monomial order on $k[\bar{y}, \bar{x}]$: $\bar{x}^{\alpha_{1}} \bar{y}^{\beta_{1}}>\bar{x}^{\alpha_{2}} \bar{y}^{\beta_{2}} \Leftrightarrow \bar{x}^{\alpha_{1}}>\bar{x}^{\alpha_{2}}$ for graded lex order $x_{1}>\cdots>x_{n}$, or $\bar{x}^{\alpha_{1}}=\bar{x}^{\alpha_{2}}$ and $\bar{y}^{\beta_{1}}>\bar{y}^{\beta_{2}}$ for lex order $y_{1}>\cdots>y_{n}$.
■ Introducing degrees on y_{i} with degree $\left(y_{i}\right)=$ degree $\left(f_{i}\right)$, make J homogeneous ideal. Let $G=\left\{g_{1}(\bar{x}, \bar{y}), \cdots, g_{m}(\bar{x}, \bar{y})\right\}$ be the reduced Gröbner basis of J, thus g_{i} is homogeneous with weights on $y_{i}^{\prime} s$.
\square For a point $\bar{z} \in k^{n}$, let $\bar{p}=\left(p_{1}, \cdots, p_{n}\right)=\left(f_{1}(\bar{z}), \cdots, f_{n}(\bar{z})\right)$, $I_{p}=\left\langle f_{1}-p_{1}, \cdots, f_{n}-p_{n}\right\rangle \triangleleft k[\bar{x}]$

Sketch of Our Algorithm

Step 1 Pick a "lucky" point \bar{p} such that I_{p} is radical

Step 2 Compute the Gröbner basis of I_{p} w.r.t graded lex order $x_{1}>\cdots>x_{n}$

Step 3 Using a lifting technique to get G

Gröbner Basis of I_{p}

Theorem
For every $\bar{z} \in k^{n}, \bar{p}=\left(f_{1}(\bar{z}), \cdots, f_{n}(\bar{z})\right) \in k^{n}$, the reduced
Gröbner basis of I_{p} is $\left\{g_{1}(\bar{x}, \bar{p}), \cdots, g_{m}(\bar{x}, \bar{p})\right\}$
Theorem
$\mathrm{V}\left(I_{p}\right)=\{s \cdot \bar{z} \mid s \in G\}, I_{p}$ is radical if and only if $\left|\mathrm{V}\left(I_{p}\right)\right|=|\mathscr{G}|$.
Methods: Pick a "Lucky" \bar{p}, use "Shape Lemma"(interpolation) to construct a basis (powers of a "primitive element") of $k[\bar{x}] / I_{p}$, by using FGLM (J.C. Faugère, P. Gianni, D. Lazard, and T. Mora) algorithm, we get the Gröbner basis of I_{p}.

Lifting Technique

■ Let $M=\left\langle y_{1}-p_{1}, \cdots, y_{n}-p_{n}\right\rangle$ the maximal ideal in $k[\bar{y}]$, $R_{i}=k[\bar{y}] / M^{i}$

Theorem
For every i, the reduced Gröbner basis of $J \triangleleft R_{i}[\bar{x}]$ is $\{g$ mod $\left.M^{i} \mid g \in G\right\}$.

Strategy of lifting step: Let $G^{k}=\left\{g_{1}^{k}, \cdots, g_{m}^{k}\right\}$, where $g_{i}^{k}=g_{i}$ $\bmod M^{2^{k}}$, be the Gröbner basis of $J \triangleleft R_{2^{k}}[\bar{x}]$. Suppose we know G^{k}, we construct a lifting step to compute G^{k+1}.

Lifting Technique

Algorithm

■ Let $H_{k}=R_{2^{k+1}}[\bar{x}] /\left\langle G^{k}\right\rangle$, and the image of $\alpha \in k[\bar{y}, \bar{x}]$ in H_{k} will be denoted by α_{k}.
■ we treat $F=\left\{f_{1}-y_{1}, \cdots, f_{n}-y_{n}\right\}$ and G^{k} as column matrices, their Jacobian matrices with respect to \bar{x} will be denoted by $\operatorname{Jac}(F)$ and $\operatorname{Jac}\left(G^{k}\right)$ respectively.
■ Compute $\operatorname{Jac}\left(G^{k}\right)_{k} \cdot \mathrm{Jac}^{-1}(F)_{k} \cdot F_{k}$ in H_{k}, let δ be its reduced form, and $\widetilde{\delta}$ be the preimage of δ in $k[\bar{y}, \bar{x}]$, then we have $G^{k+1}=G^{k}+\widetilde{\delta}$.
■ If every polynomial in G^{k+1} is homogeneous with $\operatorname{degree}\left(x_{i}\right)=1$ and $\operatorname{degree}\left(y_{j}\right)=\operatorname{degree}\left(f_{j}\right)$, we have $G=G^{k+1}$.

Remark. This algorithm generates the idea of triangular lifting [E.Schost].

Complexity Estimate

Let $\delta=|\mathscr{G}|$
■ Computation of Gröbner basis of $I_{p}: \mathrm{O}\left(n \delta^{3}+n^{2} \delta\right)$

- Cost of lifting:

Theorem

The cost of lifting from G^{k} to G^{k+1} is
$O\left(\left(n L+n^{3}+n^{2} \delta+n \delta^{2}\right) \delta^{3} 2^{2 k+2}+\left(n \delta^{3}+\delta^{4}\right) 2^{2 k+2}\right)$,
thus the overall cost of the lifting step is
$O\left(\left(\left(n L+n^{3}+n^{2} \delta+n \delta^{2}\right) \delta^{5}+\left(n \delta^{3}+\delta^{4}\right) \delta^{2}\right) \log (\delta)\right)$.
Conclusion. The whole algorithm can be done in polynomial time of $n \delta$ by using straight-line program.

Thank you！

$$
\text { 《ロ〉4可 } \downarrow \text { ミ }
$$

