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Outline

• Constructible set and removing redundancy

• Difference: (A, B) 7−→ A \ B

• PairRefine: (A, B) 7−→ (A \ B, A ∩ B, B \ A)

• MPD: C (with redundancy) 7−→ C (without redundancy)

• SMPD:
C =

⋃
Ci 7−→ C =

⋃
Dj

(with redundancy) (without redundancy
and the D′

j s refine the C′
i s)

• Complexity Analysis

• Experimental comparison (different algorithms for SMPD)



What is a Constructible Set?

Definition (Constructible Set)
A constructible set of K

n
is a finite union

(A1 \ B1) ∪ · · · ∪ (Ae \ Be)

where A′
is and B′

i s are algebraic varieties in K
n
.

Definition (Regular System)
A pair [T , h] is a regular system if T is a regular chain, and
h ∈ K[X ] is regular with respect to sat(T ). The zero set Z (T , h)
given by [T , h] is W (T ) \ V (h).

Example (Regular Systems)

(Yes)

{
ax2 + bx + c = 0
a(b2 − 4ac) 6= 0

(No)







x2 − 2xy + t = 0
y2 − t = 0
x − y 6= 0



Representation of Constructible Sets

Example (Constructible Set)
For what value of a, b, c, does the equation

ax2 + bx + c = 0

have solutions over C?

• when a is not zero; rs1 = [a 6= 0]

• when a is zero but b is not; rs2 = [a = 0, b 6= 0]

• when a, b, c are all zero. rs3 = [a = 0, b = 0, c = 0]

cs = {rs1, rs2, rs3} describes the answer.



Another Example

• Example: given two elliptic curves in the complex plane of
coordinates (x , y): g1(x , y) = 0 and g2(x , y) = 0, where

g1(x , y) = x3 + a1x − y2 + 1,

g2(x , y) = x3 + a2x − y2 + 1

In invariant theory, a classical question is whether there
exists a
linear fractional map from the first curve to the second one:

f : (x , y) 7→

(
A x + B y + C
G x + H y + K

,
D x + E y + F
G x + H y + K

)



Another Example

• This problem can be turned into a parametric system:

g1(x , y)− (G x + H y + K )3g2(f (x , y)) = 0.
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:

1 − K 3 = 0
−a2 AK 2 + a1 − 3 GK 2 = 0
−3 HK 2 − a2 BK 2 = 0
GD2 − a2 G2A − A3 − G3 + 1 = 0
−3 H2K + E2K − 1 − 2 a2 BHK = 0
−3 G2K − 2a2 GAK + D2K = 0
GE2 − 2a2 GBH − a2 AH2 − 3 AB2 − 3 GH2 + 2 DEH = 0
E2H − H3 − a2 BH2 − B3 = 0
D2H − 3 G2H + 2 GDE − 2a2 GAH − 3 A2B − a2 G2B = 0
−3 GHK − a2 AHK − a2 GBK + DEK = 0

• For which parameter values of a1, a2 does this system
have solutions?



Another Example

• The output produced by the command
ComprehensiveTriangularize of the module
ParametricSystemTools consists of 11 regular chains
[T1, . . . , T11] and 3 constructible sets C1, C2 and C3.

C1 : a3
1 = a3

2 = 9
C2 : a1 = a2 = 0
C3 : a3

1 = a3
2, a2 6= 0, a3

2 6= 9 .

• The union of C1, C2, C3 is the answer to our question: for
which parameter values does the input system have
solutions?



Redundancy in Computing with Constructible Sets

• Redundancy in a single constructible set

• Two regular systems have a common part.

• Remove redundancy: make regular systems pairwise
disjoint (MPD)

• Redundancy in a list of constructible sets
• Some zeroes appear in more than one constructible sets.

• Building block: compute the difference of two regular
systems.



Sketch of Difference Algorithm to compute V (T ) \ V (T ′) by
exploiting the triangular structure level by level.

Case 1:

T ′T

〈T 〉 = 〈T ′〉, Easy!

Case 2:

T ′v

T ′T

v

Output [T , T ′

v ] and

Difference(V (Tv )∩V (T ′

v ), V (T ′));

Case 3:

T ′T

vTv

Output Difference

(T , V (Tv ) ∩ V (T ′));

Case 4:

T ′T

Tv T ′v

• g = GCD(Tv , T ′

v , T<v ); • g ∈ K ⇒ Output [T , 1];
• mvar(g) < v ⇒ Output [T , g],

Difference(V (g) ∩ V (T ), T ′);
• Output Difference(T<v ∪ {g} ∪ T>v , T ′);
• Output Difference(T<v ∪ {Tv/g} ∪ T>v , T ′);



Algorithm 2 MPD

Input: a list L of regular systems
Output: a pairwise disjoint

representation of L

1: n← |L|
2: if n < 2 then
3: return L
4: else
5: d ← L[n]
6: L∗ ←MPD(L[1, . . . , n − 1])
7: for ℓ′ ∈ L∗ do
8: d ← Difference(d , ℓ′)
9: end for

10: return d ∪ L∗

11: end if

1

2 3
4 5

A = {1, 2, 3},

B = {2,4} , C = {3,5} .

A = A \ B = {1, 3}

A = A \ C = {1}

MPD(A, B, C) = {1}, {2, 4}, {3, 5}
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Algorithm 2 MPD

Input: a list L of monic square-
free zero-dimensional
regular chains

Output: a pairwise disjoint
representation of L

1: n← |L|
2: if n < 2 then
3: return L
4: else
5: d ← L[n]
6: L∗ ←MPD(L[1, . . . , n − 1])
7: for ℓ′ ∈ L∗ do
8: d ← Difference(d , ℓ′)
9: end for

10: return d ∪ L∗

11: end if
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RCPairRefine

In dimension 0, we can do better.

• RCPairRefine performs Difference in a simple case.

• Compute two-side differences and intersection in one
pass.

Example

RCPairRefine([x = 0, y(y + 1) = 0], [x = 0, y(y + 2) = 0])

outputs

[x = 0, y + 1 = 0]
︸ ︷︷ ︸

difference

, [x = 0, y = 0]
︸ ︷︷ ︸

intersection

, [x = 0, y + 2 = 0]
︸ ︷︷ ︸

difference



RCPairRefine Algorithm



RCPairRefine Algorithm

Case 1: T = T ′

⋆ ⇒

T T ′

easy!

∅

D I D′

∅

Case 2: g = GCD(Tv , T ′

v , T<v )

g ∈ K or mvar(g) < v

⋆ ⇒

T T ′ D I D′

∅

Case 3:
g = GCD(Tv , T ′

v , T<v ); mvar(g) = v

⋆ ⋆⇒ ∪

T T ′ Dq→D D′

q→D′ Dg D′

g

D = T \ T ′

I = T ∩ T ′

D′ = T ′ \ T



Irredundant Representation of a Family of
Constructible Sets by Symmetrically Make Pairwise

Disjoint (SMPD)

• Let C = {C1, . . . , Cm} be a set of constructible sets.
• An intersection-free basis of C : D = {D1, . . . , Dn} satisfies

(1) Di ∩ Dj = ∅ for 1 ≤ i 6= j ≤ n,
(2) each Ci can be uniquely written as a union of some Dj ’s.

• CSPairRefine = SMPD(C1, C2) = C1\C2, C1 ∩ C2, C2\C1

• Based on RCPairRefine, CSPairRefine can be deduced
naturally.

Example

SMPD({[x = 0]}, {[y = 0]}) outputs:

{[x = 0, y 6= 0]}, {[x = 0, y = 0]}, {[x 6= 0, y = 0]}



Algorithm 3 BachSMPD

Input: a list L of constructible sets
with each consisting of a
family of monic squarefree
zero-dimensional regular chains

Output: an intersection-free basis of L
1: n← |L|
2: if n < 2 then
3: return L
4: else
5: I ← ∅; D′ ← ∅; d ← L[n]
6: L∗ ← BachSMPD(L[1, . . . , n − 1])
7: for l ′ ∈ L∗ do
8: d , i , d ′ ← CSPairRefine(d , l ′)
9: I ← I ∪ i ; D′ ← D′ ∪ d ′

10: end for
11: return {d} ∪ I ∪ D′

12: end if

1

2 3
4 5

A = {1, 2, 3},
B = {2, 4},
C = {3, 5}.

A⋆B = {1, 3}, {2}, {4}
d⋆C = {1}, {3}, {5}

SMPD(A, B, C) =
{1}, {2}, {4}, {3}, {5}



Algorithm 4 DCSMPD

1: n← |L|
2: if n < 2 then
3: return L
4: else
5: z ← ⌊n/2⌋
6: L1 ← DCSMPD(L[1, . . . , z])
7: L2 ← DCSMPD(L[z + 1, . . . , n])
8: for j in 1..|L1| do
9: for k in 1..|L2| do

10: L1[j], i , L2[k ]←
CSPairRefine(L1[j], L2[k ])

11: I ← I ∪ i
12: end for
13: end for
14: return L1 ∪ I ∪ L2

15: end if

Merge: Line 8-line 13

1
2 3

4 5
6 7
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A = {2, 4, 6}, B = {3, 5, 7},
C = {1, 2, 3}, D = {6, 7, 8}.

A⋆C = {4, 6}, {2} , {1, 3}

A⋆D = {4} , {6} , {7, 8}

B⋆C = {5, 7}, {3} , {1}

B⋆D = {5} , {7} , {8}

SMPD(A, B, C) = {1}, {2},
{3}, {4}, {5}, {6}, {7}, {8}
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Complexity Analysis

• The main cost comes from GCD computation modulo
regular chains.

• By means of evaluation/interpolation techniques, these
GCDs can be performed modulo 0-dim regular chains.

• Let T = [T1, . . . , Tn] be a squarefree regular chain in
K[X1 < · · · < Xn].

• K(T ) := K[X1, . . . , Xn]/〈T 〉 is a direct product of fields
(DPF).

• Let degi T := deg(Ti , Xi), for 1 ≤ i ≤ n, and degT be their
product.



Complexity Analysis

• For practical purpose, we rely on classical i.e. quadratic
algorithms.

• We adapt the extended Euclidean algorithm for
polynomials with coefficients in K to K(T ).

• Recall an extended GCD of f1 and f2 in K[x ] with degrees
d1 ≥ d2, can be computed in O(d1d2) operations in K.



Complexity Analysis

• What is different in K(T ) for EEA?

In a Euclidean division step i , to do

ri−1 rem ri mod T ,

we need first to get the inverse ui of lc(ri) s.t.

ui × lc(ri) = 1 mod T ,

which is called a quasi-inverse.

Let Xk be the main variable of lc(ri). We need to compute

GCD(lc(ri), Txk ) mod T<xk



Complexity Analysis

• In case of a zero-divisor, T splits into a family of
T 1, · · · , T m. Then computation splits into m branches.

• All the elements then need to project to each branch. To
perform this projection efficiently, each family of

T 1
xj
, · · · , T m

xj
for 1 ≤ j ≤ m

should be pair-wise coprime, which is called a non-critical
triangular decomposition.

• Thus GCD-free basis computation modulo regular chains
is needed. We extend Bach’s augment refinement method
to K(T ) for this.



Complexity Analysis

• Following the inductive process applied in “On the
complexity of D5 principle”, we obtain an arithmetic time for
regular chains based on classical algorithms.

• Recall that an arithmetic time T 7→ An(deg1 T , . . . , degn T )
is an asymptotic upper bound for the cost of basic
polynomial arithmetic operations in K(T ) (counted in K),
i.e. +, ∗, quasi-inverse, projection and computation of
non-critical decompositions.



An Arithmetic Time for Regular Chain based on
Classical Algorithms

Theorem (An arithmetic time for regular chain)
There exists a constant C such that, writing

An(d1, . . . , dn) = Cn(d1 × · · · × dn)
2,

the function T 7→ An(deg1 T , . . . , degn T ) is an arithmetic time
for regular chain T in n variables, for all n.



Basic Complexity Result

• An extended GCD of f1 and f2 in K(T )[y ] with degrees
d1 ≥ d2 can be computed in O(d1d2An(T )) operations in K.

• For a family of monic squarefree polynomials
F = {f1, . . . , fm} in K(T )[y ] with degrees d1, . . . , dm, we
can extend the augment refinement method to compute a
GCD-free basis of F modulo T in O(

∑

1≤i<j≤m(didj)An(T ))
operations in K.

• With deg(T ) = d and deg(T ′) = d ′, RCPairRefine or
Difference(T , T ′) costs O(Cn−1dd ′) operations in K.



Main Complexity Result

Assume all regular chains are monic and squarefree in
dimension zero.

Theorem (Complexity of MPD)
Let L = {U1, . . . , Um} be a set of regular chains and the degree
of Ui be di for 1 ≤ i ≤ m. Then a pairwise disjoint
representation of L can be computed in O(Cn−1 ∑

1≤i<j≤m didj)
operations in K.

Remark
Consider the case when di = dj = d, then MPD can be
computed in O(Cn−1(md)2) operations.



Main Complexity Result

Theorem (Complexity of SMPD)
Given a set L = {C1, . . . , Cm} of constructible sets, each of
which is given by some pairwise disjoint regular chains. Let Di

be the number of points in Ci for 1 ≤ i ≤ m. An
intersection-free basis of L can be computed in
O(Cn−1 ∑

1≤i<j≤m DiDj) operations in K.

Remark
A special case is when Di = Dj = D, then the number of
operations needed to compute an SMPD is bounded by
O(Cn−1(mD)2).



An Experimental Comparison

• OldSMPD:

• the defining regular systems of each constructible set are
made (symmetrically) pairwise disjoint;

• the set theoretical differences and the intersections are
computed separately.

• BachSMPD

• DCSMPD: combining a divide-and-conquer approach with
the augment refinement method for the operation SMPD.



Timing(s) of 15 Examples Computed by 3 SMPD

Algorithms

Sys OldSMPD BachSMPD DCSMPD

1 12.302 3.494 0.786
2 0.303 0.103 0.062
3 1.123 0.259 0.271
4 2.407 1.184 0.703
5 0.574 0.091 0.159
6 0.548 0.293 0.300
7 0.733 0.444 0.211
8 3.430 0.584 0.633
9 25.413 8.292 9.530

10 1097.291 82.468 122.575
11 11.828 0.930 0.985
12 54.197 1.934 1.778
13 0.530 0.047 0.064
14 27.180 13.705 4.626
15 – 1838.927 592.554



An Experimental Comparison

• Improved OldSMPD: extending the RCPairRefine algorithm
to positive dimension and manages to compute the
difference and the intersection in one pass

• BachSMPD + MPD and DCSMPD + MPD: cleaning each
constructible set after SMPD.



Timing(s) of 15 Examples Computed by 3 SMPD

Algorithms

Sys OldSMPD(improved) BachSMPD(+MPD) DCSMPD+MPD

1 3.949 3.766 0.914
2 0.118 0.103 0.062
3 0.271 0.259 0.271
4 1.442 1.449 0.927
5 0.116 0.100 0.173
6 0.257 0.300 0.290
7 0.460 0.444 0.211
8 0.607 0.584 0.633
9 9.291 8.347 9.592

10 95.690 82.795 125.286
11 0.912 0.930 1.784
12 12.330 1.934 2.900
13 0.065 0.047 0.065
14 16.792 16.280 6.323
15 2272.550 1876.061 624.679



Conclusions

• We provide different algorithms for removing the
redundancies and distinguished two cases:

MPD: removal of redundant components within a constructible set
SMPD: removal with refinement among a family of constructible

sets.

• We rely on quadratic arithmetic motivated by practical
concerns.

• We give a complexity analysis of these algorithms in
dimension zero:

• following the work of Bach, Driscoll and Shallit, we have
obtained essentially quadratic time complexity based on
classical (=quadratic) polynomial arithmetic.

• the GCD of polynomials modulo a zero-dimensional regular
chain can be done in essentially quadratic time complexity
based on quadratic arithmetic.
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