Computing with Constructible Sets

Liyun Li & Yuzhen Xie

Joint work with Changbo Chen, Marc Moreno Maza, Wei Pan

ORCCA, UWO

MOCAA M³ Workshop, May 9, 2008

Sac

Outline

- Constructible set and removing redundancy
- Difference: $(A, B) \longmapsto A \setminus B$
- PairRefine: $(A, B) \mapsto (A \setminus B, A \cap B, B \setminus A)$
- MPD: C (with redundancy) \mapsto C (without redundancy)
- SMPD:

 $C = \bigcup C_i \longmapsto C = \bigcup D_j$ (with redundancy) (without redundancy) and the $D'_i s$ refine the $C'_i s$)

< ロ > < 母 > < 言 > < 言 > こ う < で

- Complexity Analysis
- Experimental comparison (different algorithms for SMPD)

What is a Constructible Set?

Definition (Constructible Set)

A constructible set of $\overline{\mathbb{K}}^n$ is a finite union

$$(A_1 \setminus B_1) \cup \cdots \cup (A_e \setminus B_e)$$

where A'_i s and B'_i s are algebraic varieties in $\overline{\mathbb{K}}^n$.

Definition (Regular System)

A pair [T, h] is a *regular system* if T is a regular chain, and $h \in \mathbb{K}[X]$ is regular with respect to sat(T). The zero set Z(T, h) given by [T, h] is $W(T) \setminus V(h)$.

Example (Regular Systems)

$$(Yes) \begin{cases} ax^{2} + bx + c = 0 \\ a(b^{2} - 4ac) \neq 0 \end{cases} (No) \begin{cases} x^{2} - 2xy + t = 0 \\ y^{2} - t = 0 \\ x - y \neq 0 \end{cases}$$

Representation of Constructible Sets

Example (Constructible Set)

For what value of *a*, *b*, *c*, does the equation

$$ax^2 + bx + c = 0$$

have solutions over \mathbb{C} ?

- when *a* is not zero; $rs_1 = [a \neq 0]$
- when a is zero but b is not;
- when *a*, *b*, *c* are all zero. $rs_3 = [a = 0, b = 0, c = 0]$

 $rs_2 = [a = 0, b \neq 0]$

(ロ) (同) (三) (三) (三) (0)

 $cs = \{rs_1, rs_2, rs_3\}$ describes the answer.

Another Example

Example: given two elliptic curves in the complex plane of coordinates (x, y): g₁(x, y) = 0 and g₂(x, y) = 0, where

$$\begin{array}{rcl} g_1(x,y) &=& x^3 + a_1 x - y^2 + 1, \\ g_2(x,y) &=& x^3 + a_2 x - y^2 + 1 \end{array}$$

In invariant theory, a classical question is whether there exists a

linear fractional map from the first curve to the second one:

$$f: (x, y) \mapsto \left(\frac{Ax + By + C}{Gx + Hy + K}, \frac{Dx + Ey + F}{Gx + Hy + K} \right)$$

< ロ > < 同 > < 三 > < 三 > 三 9 9 9 9

This problem can be turned into a parametric system:

$$g_1(x,y) - (Gx + Hy + K)^3 g_2(f(x,y)) = 0.$$

$$\begin{array}{ll} 1 - K^3 & = 0 \\ -a_2 \,AK^2 + a_1 - 3 \,GK^2 & = 0 \\ -3 \,HK^2 - a_2 \,BK^2 & = 0 \\ GD^2 - a_2 \,G^2 A - A^3 - G^3 + 1 & = 0 \\ -3 \,H^2 K + E^2 K - 1 - 2 \,a_2 \,BHK & = 0 \\ -3 \,G^2 K - 2 a_2 \,GAK + D^2 K & = 0 \\ GE^2 - 2 a_2 \,GBH - a_2 \,AH^2 - 3 \,AB^2 - 3 \,GH^2 + 2 \,DEH & = 0 \\ E^2 H - H^3 - a_2 \,BH^2 - B^3 & = 0 \\ D^2 H - 3 \,G^2 H + 2 \,GDE - 2 a_2 \,GAH - 3 \,A^2 B - a_2 \,G^2 B & = 0 \\ -3 \,GHK - a_2 \,AHK - a_2 \,GBK + DEK & = 0 \end{array}$$

• For which parameter values of *a*₁, *a*₂ does this system have solutions?

≣

Sac

Another Example

• The output produced by the command ComprehensiveTriangularize of the module ParametricSystemTools consists of 11 regular chains [T_1, \ldots, T_{11}] and 3 constructible sets C_1, C_2 and C_3 .

$$\begin{array}{rrrr} C_1 & : & a_1^3 = a_2^3 = 9 \\ C_2 & : & a_1 = a_2 = 0 \\ C_3 & : & a_1^3 = a_2^3, \ a_2 \neq 0, \ a_2^3 \neq 9 \ . \end{array}$$

• The union of *C*₁, *C*₂, *C*₃ is the answer to our question: for which parameter values does the input system have solutions?

Redundancy in Computing with Constructible Sets

- Redundancy in a single constructible set
 - Two regular systems have a common part.
 - Remove redundancy: make regular systems pairwise disjoint (MPD)
- Redundancy in a list of constructible sets
 - Some zeroes appear in more than one constructible sets.

< ロ > < 同 > < 三 > < 三 > 三 9 9 9 9

• Building block: compute the difference of two regular systems.

Sketch of Difference Algorithm to compute $V(T) \setminus V(T')$ by exploiting the triangular structure level by level.

Input: a list *L* of regular systems **Output:** a pairwise disjoint representation of *L*

1: $n \leftarrow |L|$ 2: if *n* < 2 then 3: return L 4: else 5: $d \leftarrow L[n]$ 6: $L^* \leftarrow \text{MPD}(L[1, \ldots, n-1])$ 7: for $\ell' \in L^*$ do 8: $d \leftarrow \text{Difference}(d, \ell')$ 9: end for 10: return $d \cup L^*$ 11: end if

$$A = \{1, 2, 3\},\$$

$$\mathbf{B} = \boxed{\{2,4\}}, \mathbf{C} = \boxed{\{3,5\}}.$$

< ロ > < 四 > < 三 > < 三 > < 三 > <

∍

Sac

Input: a list *L* of regular systems **Output:** a pairwise disjoint representation of *L*

1: $n \leftarrow |L|$ 2: if *n* < 2 then 3: return L 4: else 5: $d \leftarrow L[n]$ 6: $L^* \leftarrow MPD(L[1, \ldots, n-1])$ 7: for $\ell' \in L^*$ do 8: $d \leftarrow \text{Difference}(d, \ell')$ 9: end for 10: return $d \cup L^*$ 11: end if

$$A = \{1, 2, 3\},\$$

$$\mathbf{B} = \boxed{\{2,4\}}, \mathbf{C} = \boxed{\{3,5\}}.$$

$$A = A \setminus B = \{1,3\}$$

Input: a list *L* of monic squarefree zero-dimensional regular chains **Output:** a pairwise disjoint representation of L 1: $n \leftarrow |L|$ 2: if *n* < 2 then 3: return L 4: else 5: $d \leftarrow L[n]$ 6: $L^* \leftarrow \text{MPD}(L[1,\ldots,n-1]) \mid A = A \setminus B = \{1,3\}$ 7: for $\ell' \in L^*$ do $d \leftarrow \text{Difference}(d, \ell')$ 8: 9: end for 10: return $d \cup L^*$ 11: end if

$$A = A \setminus C = \boxed{\{1\}}$$

Sac

Input: a list *L* of monic squarefree zero-dimensional regular chains **Output:** a pairwise disjoint representation of L 1: $n \leftarrow |L|$ 2: if *n* < 2 then 3: return L 4: else 5: $d \leftarrow L[n]$ 6: $L^* \leftarrow MPD(L[1, ..., n-1]) \mid A = A \setminus B = \{1, 3\}$ 7: for $\ell' \in L^*$ do $d \leftarrow \text{Difference}(d, \ell') \mid A = A \setminus C = |\{1\}|$ 8: 9: end for 10: return $d \cup L^*$ 11: end if

RCPairRefine

In dimension 0, we can do better.

- RCPairRefine performs Difference in a simple case.
- Compute two-side differences and intersection in one pass.

Example

RCPairRefine([
$$x = 0, y(y + 1) = 0$$
], [$x = 0, y(y + 2) = 0$])

outputs

$$\underbrace{[x=0, y+1=0]}_{difference}, \quad \underbrace{[x=0, y=0]}_{intersection}, \quad \underbrace{[x=0, y+2=0]}_{difference}$$

RCPairRefine Algorithm

Algorithm 1 RCPairRefine

Input: two monic squarefree zerodimensional regular chains T and T'**Output:** three constructible sets D, I and D', such that $V(T) \setminus V(T') = Z(D),$ $V(T) \cap V(T') = Z(I)$ and $V(T') \setminus V(T) = Z(D')$ 1. if T = T' then return \emptyset , [T], \emptyset 2: 3[,] else $D \leftarrow \emptyset: I \leftarrow \emptyset: D' \leftarrow \emptyset$ 4: Let v be the largest variable 5: s.t. $T_{\leq v} = T'_{\leq v}$ for $(g, G) \in \operatorname{GCD}(T_v, T'_v, T_{\leq v})$ do 6: 7: **if** $q \in \mathbb{K}$ **or** mvar(q) < v **then** 8: $T_a \leftarrow G \cup \{T_v\} \cup T_{>v};$ $T'_q \leftarrow G \cup \{T'_v\} \cup T'_{>v};$ 9: $D \leftarrow D \cup T_q;$ 10: $D' \leftarrow D' \cup \tilde{T}'_a$ 11:

12:	else			
13:	$q \leftarrow \text{pquo}(T_v, g, G);$			
14:	$q' \leftarrow \text{pquo}(T'_v, g, G);$			
15:	$T_q \leftarrow G \cup \{g\} \cup T_{>v};$			
16:	$T'_{g} \leftarrow G \cup \{g\} \cup T'_{>v}$			
17:	$\mathbf{if} \operatorname{mvar}(q) = v \mathbf{then}$			
18:	$T_q \leftarrow G \cup \{q\} \cup T_{>v};$			
19:	$D \leftarrow D \cup T_q$			
20:	end if			
21:	if $mvar(q') = v$ then			
22:	$T'_q \leftarrow G \cup \{q'\} \cup T'_{>v};$			
23:	$D' \leftarrow D' \cup T'_q$			
24:	end if			
25:	$W, J, W' \leftarrow RCPairRefine(T_g, T'_g);$			
26:	$D \leftarrow D \cup W;$			
27:	$I \leftarrow I \cup J;$			
28:	$D' \leftarrow D' \cup W'$			
29:	end if			
30:	end for			
31:	return D, I, D'			
32: end if				

RCPairRefine Algorithm

$$D = T \setminus T'$$

$$I = T \cap T'$$

$$D' = T' \setminus T$$

Sac

Irredundant Representation of a Family of Constructible Sets by *Symmetrically Make Pairwise Disjoint* (SMPD)

- Let $C = \{C_1, \dots, C_m\}$ be a set of constructible sets.
- An intersection-free basis of C : D = {D₁,..., D_n} satisfies

 (1) D_i ∩ D_i = Ø for 1 ≤ i ≠ j ≤ n,
 - (2) each C_i can be uniquely written as a union of some D_i 's.
- CSPairRefine = SMPD(C_1, C_2) = $C_1 \setminus C_2, C_1 \cap C_2, C_2 \setminus C_1$
- Based on RCPairRefine, CSPairRefine can be deduced naturally.

Example

SMPD({
$$[x = 0]$$
}, { $[y = 0]$ }) outputs:
{ $[x = 0, y \neq 0]$ }, { $[x = 0, y = 0]$ }, { $[x \neq 0, y = 0]$ }

Algorithm 3 BachSMPD

Input: a list *L* of constructible sets with each consisting of a family of monic squarefree zero-dimensional regular chains Output: an intersection-free basis of L 1: $n \leftarrow |L|$ 2: if *n* < 2 then 3: return L 4: else 5: $I \leftarrow \emptyset; D' \leftarrow \emptyset; d \leftarrow L[n]$ 6: $L^* \leftarrow \text{BachSMPD}(L[1, \ldots, n-1])$ 7: for $l' \in L^*$ do $d, i, d' \leftarrow \mathsf{CSPairRefine}(d, l')$ 8: $I \leftarrow I \cup i: D' \leftarrow D' \cup d'$ 9: 10: end for return $\{d\} \cup I \cup D'$ 11: 12: end if

$$A = \{1, 2, 3\}, \\B = \{2, 4\}, \\C = \{3, 5\}, \\A \bigstar B = \{1, 3\}, \{2\}, \{4\} \\d \bigstar C = \{1\}, \{3\}, \{5\}$$

 $\begin{array}{l} \mathrm{SMPD}(\textit{A},\textit{B},\textit{C}) = \\ \{1\},\{2\},\{4\},\{3\},\{5\} \end{array}$

Sac

1: $n \leftarrow |L|$ 2. if n < 2 then 3: return L 4: else 5: $z \leftarrow |n/2|$ 6: $L_1 \leftarrow \text{DCSMPD}(L[1, \ldots, z])$ 7: $L_2 \leftarrow \text{DCSMPD}(L[z+1,\ldots,n])$ 8: **for** *j* in $1..|L_1|$ **do** for k in $1..|L_2|$ do 9: $L_1[i], i, L_2[k] \leftarrow$ 10: $CSPairRefine(L_1[j], L_2[k])$ $I \leftarrow I \cup i$ 11: end for 12: 13: end for 14: return $L_1 \cup I \cup L_2$ 15: end if

Merge: Line 8-line 13

$$A = \{2, 4, 6\}, B = \{3, 5, 7\}, \\C = \{1, 2, 3\}, D = \{6, 7, 8\}.$$

1: $n \leftarrow |L|$ 2. if n < 2 then 3: return L 4: else 5: $z \leftarrow |n/2|$ 6: $L_1 \leftarrow \text{DCSMPD}(L[1, \ldots, z])$ 7: $L_2 \leftarrow \text{DCSMPD}(L[z+1,\ldots,n])$ 8: **for** *j* in $1..|L_1|$ **do** for k in $1..|L_2|$ do 9: $L_1[i], i, L_2[k] \leftarrow$ 10: $CSPairRefine(L_1[j], L_2[k])$ $I \leftarrow I \cup i$ 11: end for 12: 13: end for 14: return $L_1 \cup I \cup L_2$ 15: end if

Merge: Line 8-line 13

$$A = \{2, 4, 6\}, B = \{3, 5, 7\}, C = \{1, 2, 3\}, D = \{6, 7, 8\}. A \neq C = \{4, 6\}, \{2\}, \{1, 3\}$$

1: $n \leftarrow |L|$ 2. if n < 2 then 3: return L 4: else 5: $z \leftarrow |n/2|$ 6: $L_1 \leftarrow \text{DCSMPD}(L[1, \ldots, z])$ 7: $L_2 \leftarrow \text{DCSMPD}(L[z+1,\ldots,n])$ 8: **for** *j* in $1..|L_1|$ **do** for k in $1..|L_2|$ do 9: $L_1[i], i, L_2[k] \leftarrow$ 10: $CSPairRefine(L_1[j], L_2[k])$ $I \leftarrow I \cup i$ 11: end for 12: 13: end for 14: return $L_1 \cup I \cup L_2$ 15: end if

Merge: Line 8-line 13

$$A = \{2, 4, 6\}, B = \{3, 5, 7\}, \\C = \{1, 2, 3\}, D = \{6, 7, 8\}. \\A \bigstar C = \{4, 6\}, \{2\}, \{1, 3\}, A \bigstar D = \{4\}, \{6\}, \{7, 8\}.$$

1: $n \leftarrow |L|$ 2. if n < 2 then 3: return L 4: else 5: $z \leftarrow |n/2|$ 6: $L_1 \leftarrow \text{DCSMPD}(L[1, \ldots, z])$ 7: $L_2 \leftarrow \text{DCSMPD}(L[z+1,\ldots,n])$ 8: **for** *j* in $1..|L_1|$ **do** for k in $1..|L_2|$ do 9: $L_1[i], i, L_2[k] \leftarrow$ 10: $CSPairRefine(L_1[j], L_2[k])$ $I \leftarrow I \cup i$ 11: end for 12: 13: end for 14: return $L_1 \cup I \cup L_2$ 15: end if

Merge: Line 8-line 13

$$A = \{2, 4, 6\}, B = \{3, 5, 7\}, \\C = \{1, 2, 3\}, D = \{6, 7, 8\}, \\A \bigstar C = \{4, 6\}, \{2\}, \{1, 3\}, \\A \bigstar D = \{4\}, \{6\}, \{7, 8\}, \\B \bigstar C = \{5, 7\}, \{3\}, \{1\}\}$$

1: $n \leftarrow |L|$ 2: if *n* < 2 then 3: return L 4: else 5: $z \leftarrow |n/2|$ 6: $L_1 \leftarrow \text{DCSMPD}(L[1, \ldots, z])$ 7: $L_2 \leftarrow \text{DCSMPD}(L[z+1,\ldots,n])$ 8: **for** *j* in $1..|L_1|$ **do** for k in $1..|L_2|$ do 9: $L_1[i], i, L_2[k] \leftarrow$ 10: $CSPairRefine(L_1[j], L_2[k])$ $I \leftarrow I \cup i$ 11: end for 12: 13: end for 14: return $L_1 \cup I \cup L_2$ 15: end if

Merge: Line 8-line 13

$$A = \{2, 4, 6\}, B = \{3, 5, 7\}, \\C = \{1, 2, 3\}, D = \{6, 7, 8\}$$
$$A \bigstar C = \{4, 6\}, \{2\}, \{1, 3\}$$
$$A \bigstar D = \{4\}, \{6\}, \{7, 8\}$$
$$B \bigstar C = \{5, 7\}, \{3\}, \{1\}$$
$$B \bigstar D = \{5\}, \{7\}, \{8\}$$

1: $n \leftarrow |L|$ 2. if n < 2 then 3: return L 4: else 5: $z \leftarrow |n/2|$ 6: $L_1 \leftarrow \text{DCSMPD}(L[1, \ldots, z])$ 7: $L_2 \leftarrow \text{DCSMPD}(L[z+1,\ldots,n])$ 8: **for** *j* in $1..|L_1|$ **do** for k in $1..|L_2|$ do 9: $L_1[i], i, L_2[k] \leftarrow$ 10: $CSPairRefine(L_1[j], L_2[k])$ $I \leftarrow I \cup i$ 11: end for 12: 13: end for 14: return $L_1 \cup I \cup L_2$ 15: end if

Merge: Line 8-line 13

$$A = \{2, 4, 6\}, B = \{3, 5, 7\}, C = \{1, 2, 3\}, D = \{6, 7, 8\}$$
$$A \bigstar C = \{4, 6\}, \{2\}, \{1, 3\}, A \bigstar D = \{4\}, \{6\}, \{7, 8\}, B \bigstar C = \{5, 7\}, \{3\}, \{1\}, B \bigstar D = \{5\}, \{7\}, \{8\}$$

 $\begin{array}{l} \mathrm{SMPD}(\textit{A},\textit{B},\textit{C}) = \{1\},\{2\},\\ \{3\},\{4\},\{5\},\{6\},\{7\},\{8\} \end{array}$

- The main cost comes from GCD computation modulo regular chains.
- By means of evaluation/interpolation techniques, these GCDs can be performed modulo 0-dim regular chains.
- Let $T = [T_1, ..., T_n]$ be a squarefree regular chain in $\mathbb{K}[X_1 < \cdots < X_n]$.
- Let deg_i $T := deg(T_i, X_i)$, for $1 \le i \le n$, and deg_T be their product.

(口) (同) (三) (三) (三) (0) (0)

- For practical purpose, we rely on classical i.e. quadratic algorithms.
- We adapt the extended Euclidean algorithm for polynomials with coefficients in K to K(T).
- Recall an extended GCD of f_1 and f_2 in $\mathbb{K}[x]$ with degrees $d_1 \ge d_2$, can be computed in $O(d_1d_2)$ operations in \mathbb{K} .

• What is different in $\mathbb{K}(T)$ for EEA?

In a Euclidean division step *i*, to do

 r_{i-1} rem $r_i \mod T$,

we need first to get the inverse u_i of $lc(r_i)$ s.t.

 $u_i \times lc(r_i) = 1 \mod T$,

which is called a quasi-inverse.

Let X_k be the main variable of $lc(r_i)$. We need to compute

 $GCD(Ic(r_i), T_{x_k}) \mod T_{< x_k}$

< ロ > < 同 > < 三 > < 三 > 三 9 9 9 9

- In case of a zero-divisor, *T* splits into a family of *T*¹, ..., *T^m*. Then computation splits into *m* branches.
- All the elements then need to project to each branch. To perform this projection efficiently, each family of

$$T^1_{x_j}, \ \cdots, \ T^m_{x_j}$$
 for $1 \le j \le m$

should be pair-wise coprime, which is called a *non-critical* triangular decomposition.

 Thus GCD-free basis computation modulo regular chains is needed. We extend Bach's augment refinement method to K(T) for this.

< ロ > < 同 > < 三 > < 三 > 三 9 9 9 9

- Following the inductive process applied in "On the complexity of D5 principle", we obtain an arithmetic time for regular chains based on classical algorithms.
- Recall that an arithmetic time T → A_n(deg₁ T,..., deg_n T) is an asymptotic upper bound for the cost of basic polynomial arithmetic operations in K(T) (counted in K), i.e. +, *, quasi-inverse, projection and computation of non-critical decompositions.

□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sac

An Arithmetic Time for Regular Chain based on Classical Algorithms

Theorem (An arithmetic time for regular chain) There exists a constant C such that, writing

$$\mathsf{A}_n(d_1,\ldots,d_n)=C^n(d_1\times\cdots\times d_n)^2,$$

the function $T \mapsto A_n(\deg_1 T, \ldots, \deg_n T)$ is an arithmetic time for regular chain T in n variables, for all n.

Basic Complexity Result

- An extended GCD of f_1 and f_2 in $\mathbb{K}(T)[y]$ with degrees $d_1 \ge d_2$ can be computed in $O(d_1 d_2 A_n(T))$ operations in \mathbb{K} .
- With deg(T) = d and deg(T') = d', RCPairRefine or Difference(T, T') costs O(Cⁿ⁻¹dd') operations in K.

Main Complexity Result

Assume all regular chains are monic and squarefree in dimension zero.

Theorem (Complexity of MPD)

Let $L = \{U_1, \ldots, U_m\}$ be a set of regular chains and the degree of U_i be d_i for $1 \le i \le m$. Then a pairwise disjoint representation of L can be computed in $O(C^{n-1} \sum_{1 \le i < j \le m} d_i d_j)$ operations in \mathbb{K} .

Jac.

Remark

Consider the case when $d_i = d_j = d$, then MPD can be computed in $O(C^{n-1}(md)^2)$ operations.

Main Complexity Result

Theorem (Complexity of SMPD)

Given a set $L = \{C_1, ..., C_m\}$ of constructible sets, each of which is given by some pairwise disjoint regular chains. Let D_i be the number of points in C_i for $1 \le i \le m$. An intersection-free basis of L can be computed in $O(C^{n-1}\sum_{1\le i\le j\le m} D_iD_j)$ operations in \mathbb{K} .

Remark

A special case is when $D_i = D_j = D$, then the number of operations needed to compute an SMPD is bounded by $O(C^{n-1}(mD)^2)$.

An Experimental Comparison

• OldSMPD:

- the defining regular systems of each constructible set are made (symmetrically) pairwise disjoint;
- the set theoretical differences and the intersections are computed separately.
- BachSMPD
- DCSMPD: combining a divide-and-conquer approach with the augment refinement method for the operation SMPD.

Timing(s) of 15 Examples Computed by 3 SMPD Algorithms

Sys	OldSMPD	BachSMPD	DCSMPD
1	12.302	3.494	0.786
2	0.303	0.103	0.062
3	1.123	0.259	0.271
4	2.407	1.184	0.703
5	0.574	0.091	0.159
6	0.548	0.293	0.300
7	0.733	0.444	0.211
8	3.430	0.584	0.633
9	25.413	8.292	9.530
10	1097.291	82.468	122.575
11	11.828	0.930	0.985
12	54.197	1.934	1.778
13	0.530	0.047	0.064
14	27.180	13.705	4.626
15	-	1838.927	592.554

An Experimental Comparison

• Improved OldSMPD: extending the RCPairRefine algorithm to positive dimension and manages to compute the difference and the intersection in one pass

Sac

• BachSMPD + MPD and DCSMPD + MPD: cleaning each constructible set after SMPD.

Timing(s) of 15 Examples Computed by 3 SMPD Algorithms

Sys	OldSMPD(improved)	BachSMPD(+MPD)	DCSMPD+MPD
1	3.949	3.766	0.914
2	0.118	0.103	0.062
3	0.271	0.259	0.271
4	1.442	1.449	0.927
5	0.116	0.100	0.173
6	0.257	0.300	0.290
7	0.460	0.444	0.211
8	0.607	0.584	0.633
9	9.291	8.347	9.592
10	95.690	82.795	125.286
11	0.912	0.930	1.784
12	12.330	1.934	2.900
13	0.065	0.047	0.065
14	16.792	16.280	6.323
15	2272.550	1876.061	624.679

Conclusions

• We provide different algorithms for removing the redundancies and distinguished two cases:

MPD: removal of redundant components within a constructible set

- **SMPD**: *removal with refinement* among a family of constructible sets.
 - We rely on quadratic arithmetic motivated by practical concerns.
 - We give a complexity analysis of these algorithms in dimension zero:
 - following the work of Bach, Driscoll and Shallit, we have obtained essentially quadratic time complexity based on classical (=quadratic) polynomial arithmetic.
 - the GCD of polynomials modulo a zero-dimensional regular chain can be done in essentially quadratic time complexity based on quadratic arithmetic.

References

- Eric Bach, James R. Driscoll, and Jeffrey Shallit. Factor refinement, 1990.
- F. Boulier, F. Lemaire, and M. Moreno Maza.
 Well known theorems on triangular systems and the D5 principle, 2006.
- C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, and W. Pan. Comprehensive Triangular Decomposition, 2007.
- J. von zur Gathen and J. Gerhard. Modern Computer Algebra, 1999.
- X. Dahan, M. Moreno Maza, É. Schost, and Y. Xie. On the complexity of the D5 principle, 2006.
- J. Della Dora, C. Dicrescenzo, and D. Duval. About a new method for computing in algebraic number fields, 1985.
- R. Rioboo and M. Moreno Maza.
- Polynomial GCD computations over towers of algebraic extensions, 1995.
- X. Li, M. Moreno Maza, and R. Rasheed.

Fast arithmetic and modular techniques for triangular decompositions, 2008.

Sac

- M. Manubens and A. Montes.

Minimal canonical comprehensive Gröbner system.

J. O'Halloran and M. Schilmoeller.

Gröbner bases for constructible sets,2002