
Computing with Constructible Sets

Liyun Li & Yuzhen Xie

Joint work with
Changbo Chen, Marc Moreno Maza, Wei Pan

ORCCA, UWO

MOCAA M3 Workshop, May 9, 2008

Outline

• Constructible set and removing redundancy

• Difference: (A, B) 7−→ A \ B

• PairRefine: (A, B) 7−→ (A \ B, A ∩ B, B \ A)

• MPD: C (with redundancy) 7−→ C (without redundancy)

• SMPD:
C =

⋃
Ci 7−→ C =

⋃
Dj

(with redundancy) (without redundancy
and the D′

j s refine the C′
i s)

• Complexity Analysis

• Experimental comparison (different algorithms for SMPD)

What is a Constructible Set?

Definition (Constructible Set)
A constructible set of K

n
is a finite union

(A1 \ B1) ∪ · · · ∪ (Ae \ Be)

where A′
is and B′

i s are algebraic varieties in K
n
.

Definition (Regular System)
A pair [T , h] is a regular system if T is a regular chain, and
h ∈ K[X] is regular with respect to sat(T). The zero set Z (T , h)
given by [T , h] is W (T) \ V (h).

Example (Regular Systems)

(Yes)

{
ax2 + bx + c = 0
a(b2 − 4ac) 6= 0

(No)

x2 − 2xy + t = 0
y2 − t = 0
x − y 6= 0

Representation of Constructible Sets

Example (Constructible Set)
For what value of a, b, c, does the equation

ax2 + bx + c = 0

have solutions over C?

• when a is not zero; rs1 = [a 6= 0]

• when a is zero but b is not; rs2 = [a = 0, b 6= 0]

• when a, b, c are all zero. rs3 = [a = 0, b = 0, c = 0]

cs = {rs1, rs2, rs3} describes the answer.

Another Example

• Example: given two elliptic curves in the complex plane of
coordinates (x , y): g1(x , y) = 0 and g2(x , y) = 0, where

g1(x , y) = x3 + a1x − y2 + 1,

g2(x , y) = x3 + a2x − y2 + 1

In invariant theory, a classical question is whether there
exists a
linear fractional map from the first curve to the second one:

f : (x , y) 7→

(
A x + B y + C
G x + H y + K

,
D x + E y + F
G x + H y + K

)

Another Example

• This problem can be turned into a parametric system:

g1(x , y)− (G x + H y + K)3g2(f (x , y)) = 0.

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1 − K 3 = 0
−a2 AK 2 + a1 − 3 GK 2 = 0
−3 HK 2 − a2 BK 2 = 0
GD2 − a2 G2A − A3 − G3 + 1 = 0
−3 H2K + E2K − 1 − 2 a2 BHK = 0
−3 G2K − 2a2 GAK + D2K = 0
GE2 − 2a2 GBH − a2 AH2 − 3 AB2 − 3 GH2 + 2 DEH = 0
E2H − H3 − a2 BH2 − B3 = 0
D2H − 3 G2H + 2 GDE − 2a2 GAH − 3 A2B − a2 G2B = 0
−3 GHK − a2 AHK − a2 GBK + DEK = 0

• For which parameter values of a1, a2 does this system
have solutions?

Another Example

• The output produced by the command
ComprehensiveTriangularize of the module
ParametricSystemTools consists of 11 regular chains
[T1, . . . , T11] and 3 constructible sets C1, C2 and C3.

C1 : a3
1 = a3

2 = 9
C2 : a1 = a2 = 0
C3 : a3

1 = a3
2, a2 6= 0, a3

2 6= 9 .

• The union of C1, C2, C3 is the answer to our question: for
which parameter values does the input system have
solutions?

Redundancy in Computing with Constructible Sets

• Redundancy in a single constructible set

• Two regular systems have a common part.

• Remove redundancy: make regular systems pairwise
disjoint (MPD)

• Redundancy in a list of constructible sets
• Some zeroes appear in more than one constructible sets.

• Building block: compute the difference of two regular
systems.

Sketch of Difference Algorithm to compute V (T) \ V (T ′) by
exploiting the triangular structure level by level.

Case 1:

T ′T

〈T 〉 = 〈T ′〉, Easy!

Case 2:

T ′v

T ′T

v

Output [T , T ′

v] and

Difference(V (Tv)∩V (T ′

v), V (T ′));

Case 3:

T ′T

vTv

Output Difference

(T , V (Tv) ∩ V (T ′));

Case 4:

T ′T

Tv T ′v

• g = GCD(Tv , T ′

v , T<v); • g ∈ K ⇒ Output [T , 1];
• mvar(g) < v ⇒ Output [T , g],

Difference(V (g) ∩ V (T), T ′);
• Output Difference(T<v ∪ {g} ∪ T>v , T ′);
• Output Difference(T<v ∪ {Tv/g} ∪ T>v , T ′);

Algorithm 2 MPD

Input: a list L of regular systems
Output: a pairwise disjoint

representation of L

1: n← |L|
2: if n < 2 then
3: return L
4: else
5: d ← L[n]
6: L∗ ←MPD(L[1, . . . , n − 1])
7: for ℓ′ ∈ L∗ do
8: d ← Difference(d , ℓ′)
9: end for

10: return d ∪ L∗

11: end if

1

2 3
4 5

A = {1, 2, 3},

B = {2,4} , C = {3,5} .

A = A \ B = {1, 3}

A = A \ C = {1}

MPD(A, B, C) = {1}, {2, 4}, {3, 5}

Algorithm 2 MPD

Input: a list L of regular systems
Output: a pairwise disjoint

representation of L

1: n← |L|
2: if n < 2 then
3: return L
4: else
5: d ← L[n]
6: L∗ ←MPD(L[1, . . . , n − 1])
7: for ℓ′ ∈ L∗ do
8: d ← Difference(d , ℓ′)
9: end for

10: return d ∪ L∗

11: end if

1

2 3
4 5

A = {1, 2, 3},

B = {2,4} , C = {3,5} .

A = A \ B = {1, 3}

A = A \ C = {1}

MPD(A, B, C) = {1}, {2, 4}, {3, 5}

Algorithm 2 MPD

Input: a list L of monic square-
free zero-dimensional
regular chains

Output: a pairwise disjoint
representation of L

1: n← |L|
2: if n < 2 then
3: return L
4: else
5: d ← L[n]
6: L∗ ←MPD(L[1, . . . , n − 1])
7: for ℓ′ ∈ L∗ do
8: d ← Difference(d , ℓ′)
9: end for

10: return d ∪ L∗

11: end if

1

2 3
4 5

A = {1, 2, 3},

B = {2,4} , C = {3,5} .

A = A \ B = {1, 3}

A = A \ C = {1}

MPD(A, B, C) = {1}, {2, 4}, {3, 5}

Algorithm 2 MPD

Input: a list L of monic square-
free zero-dimensional
regular chains

Output: a pairwise disjoint
representation of L

1: n← |L|
2: if n < 2 then
3: return L
4: else
5: d ← L[n]
6: L∗ ←MPD(L[1, . . . , n − 1])
7: for ℓ′ ∈ L∗ do
8: d ← Difference(d , ℓ′)
9: end for

10: return d ∪ L∗

11: end if

1

2 3
4 5

A = {1, 2, 3},

B = {2,4} , C = {3,5} .

A = A \ B = {1, 3}

A = A \ C = {1}

MPD(A, B, C) = {1}, {2, 4}, {3, 5}

RCPairRefine

In dimension 0, we can do better.

• RCPairRefine performs Difference in a simple case.

• Compute two-side differences and intersection in one
pass.

Example

RCPairRefine([x = 0, y(y + 1) = 0], [x = 0, y(y + 2) = 0])

outputs

[x = 0, y + 1 = 0]
︸ ︷︷ ︸

difference

, [x = 0, y = 0]
︸ ︷︷ ︸

intersection

, [x = 0, y + 2 = 0]
︸ ︷︷ ︸

difference

RCPairRefine Algorithm

RCPairRefine Algorithm

Case 1: T = T ′

⋆ ⇒

T T ′

easy!

∅

D I D′

∅

Case 2: g = GCD(Tv , T ′

v , T<v)

g ∈ K or mvar(g) < v

⋆ ⇒

T T ′ D I D′

∅

Case 3:
g = GCD(Tv , T ′

v , T<v); mvar(g) = v

⋆ ⋆⇒ ∪

T T ′ Dq→D D′

q→D′ Dg D′

g

D = T \ T ′

I = T ∩ T ′

D′ = T ′ \ T

Irredundant Representation of a Family of
Constructible Sets by Symmetrically Make Pairwise

Disjoint (SMPD)

• Let C = {C1, . . . , Cm} be a set of constructible sets.
• An intersection-free basis of C : D = {D1, . . . , Dn} satisfies

(1) Di ∩ Dj = ∅ for 1 ≤ i 6= j ≤ n,
(2) each Ci can be uniquely written as a union of some Dj ’s.

• CSPairRefine = SMPD(C1, C2) = C1\C2, C1 ∩ C2, C2\C1

• Based on RCPairRefine, CSPairRefine can be deduced
naturally.

Example

SMPD({[x = 0]}, {[y = 0]}) outputs:

{[x = 0, y 6= 0]}, {[x = 0, y = 0]}, {[x 6= 0, y = 0]}

Algorithm 3 BachSMPD

Input: a list L of constructible sets
with each consisting of a
family of monic squarefree
zero-dimensional regular chains

Output: an intersection-free basis of L
1: n← |L|
2: if n < 2 then
3: return L
4: else
5: I ← ∅; D′ ← ∅; d ← L[n]
6: L∗ ← BachSMPD(L[1, . . . , n − 1])
7: for l ′ ∈ L∗ do
8: d , i , d ′ ← CSPairRefine(d , l ′)
9: I ← I ∪ i ; D′ ← D′ ∪ d ′

10: end for
11: return {d} ∪ I ∪ D′

12: end if

1

2 3
4 5

A = {1, 2, 3},
B = {2, 4},
C = {3, 5}.

A⋆B = {1, 3}, {2}, {4}
d⋆C = {1}, {3}, {5}

SMPD(A, B, C) =
{1}, {2}, {4}, {3}, {5}

Algorithm 4 DCSMPD

1: n← |L|
2: if n < 2 then
3: return L
4: else
5: z ← ⌊n/2⌋
6: L1 ← DCSMPD(L[1, . . . , z])
7: L2 ← DCSMPD(L[z + 1, . . . , n])
8: for j in 1..|L1| do
9: for k in 1..|L2| do

10: L1[j], i , L2[k]←
CSPairRefine(L1[j], L2[k])

11: I ← I ∪ i
12: end for
13: end for
14: return L1 ∪ I ∪ L2

15: end if

Merge: Line 8-line 13

1
2 3

4 5
6 7

8

A = {2, 4, 6}, B = {3, 5, 7},
C = {1, 2, 3}, D = {6, 7, 8}.

A⋆C = {4, 6}, {2} , {1, 3}

A⋆D = {4} , {6} , {7, 8}

B⋆C = {5, 7}, {3} , {1}

B⋆D = {5} , {7} , {8}

SMPD(A, B, C) = {1}, {2},
{3}, {4}, {5}, {6}, {7}, {8}

Algorithm 4 DCSMPD

1: n← |L|
2: if n < 2 then
3: return L
4: else
5: z ← ⌊n/2⌋
6: L1 ← DCSMPD(L[1, . . . , z])
7: L2 ← DCSMPD(L[z + 1, . . . , n])
8: for j in 1..|L1| do
9: for k in 1..|L2| do

10: L1[j], i , L2[k]←
CSPairRefine(L1[j], L2[k])

11: I ← I ∪ i
12: end for
13: end for
14: return L1 ∪ I ∪ L2

15: end if

Merge: Line 8-line 13

1
2 3

4 5
6 7

8

A = {2, 4, 6}, B = {3, 5, 7},
C = {1, 2, 3}, D = {6, 7, 8}.

A⋆C = {4, 6}, {2} , {1, 3}

A⋆D = {4} , {6} , {7, 8}

B⋆C = {5, 7}, {3} , {1}

B⋆D = {5} , {7} , {8}

SMPD(A, B, C) = {1}, {2},
{3}, {4}, {5}, {6}, {7}, {8}

Algorithm 4 DCSMPD

1: n← |L|
2: if n < 2 then
3: return L
4: else
5: z ← ⌊n/2⌋
6: L1 ← DCSMPD(L[1, . . . , z])
7: L2 ← DCSMPD(L[z + 1, . . . , n])
8: for j in 1..|L1| do
9: for k in 1..|L2| do

10: L1[j], i , L2[k]←
CSPairRefine(L1[j], L2[k])

11: I ← I ∪ i
12: end for
13: end for
14: return L1 ∪ I ∪ L2

15: end if

Merge: Line 8-line 13

1
2 3

4 5
6 7

8

A = {2, 4, 6}, B = {3, 5, 7},
C = {1, 2, 3}, D = {6, 7, 8}.

A⋆C = {4, 6}, {2} , {1, 3}

A⋆D = {4} , {6} , {7, 8}

B⋆C = {5, 7}, {3} , {1}

B⋆D = {5} , {7} , {8}

SMPD(A, B, C) = {1}, {2},
{3}, {4}, {5}, {6}, {7}, {8}

Algorithm 4 DCSMPD

1: n← |L|
2: if n < 2 then
3: return L
4: else
5: z ← ⌊n/2⌋
6: L1 ← DCSMPD(L[1, . . . , z])
7: L2 ← DCSMPD(L[z + 1, . . . , n])
8: for j in 1..|L1| do
9: for k in 1..|L2| do

10: L1[j], i , L2[k]←
CSPairRefine(L1[j], L2[k])

11: I ← I ∪ i
12: end for
13: end for
14: return L1 ∪ I ∪ L2

15: end if

Merge: Line 8-line 13

1
2 3

4 5
6 7

8

A = {2, 4, 6}, B = {3, 5, 7},
C = {1, 2, 3}, D = {6, 7, 8}.

A⋆C = {4, 6}, {2} , {1, 3}

A⋆D = {4} , {6} , {7, 8}

B⋆C = {5, 7}, {3} , {1}

B⋆D = {5} , {7} , {8}

SMPD(A, B, C) = {1}, {2},
{3}, {4}, {5}, {6}, {7}, {8}

Algorithm 4 DCSMPD

1: n← |L|
2: if n < 2 then
3: return L
4: else
5: z ← ⌊n/2⌋
6: L1 ← DCSMPD(L[1, . . . , z])
7: L2 ← DCSMPD(L[z + 1, . . . , n])
8: for j in 1..|L1| do
9: for k in 1..|L2| do

10: L1[j], i , L2[k]←
CSPairRefine(L1[j], L2[k])

11: I ← I ∪ i
12: end for
13: end for
14: return L1 ∪ I ∪ L2

15: end if

Merge: Line 8-line 13

1
2 3

4 5
6 7

8

A = {2, 4, 6}, B = {3, 5, 7},
C = {1, 2, 3}, D = {6, 7, 8}.

A⋆C = {4, 6}, {2} , {1, 3}

A⋆D = {4} , {6} , {7, 8}

B⋆C = {5, 7}, {3} , {1}

B⋆D = {5} , {7} , {8}

SMPD(A, B, C) = {1}, {2},
{3}, {4}, {5}, {6}, {7}, {8}

Algorithm 4 DCSMPD

1: n← |L|
2: if n < 2 then
3: return L
4: else
5: z ← ⌊n/2⌋
6: L1 ← DCSMPD(L[1, . . . , z])
7: L2 ← DCSMPD(L[z + 1, . . . , n])
8: for j in 1..|L1| do
9: for k in 1..|L2| do

10: L1[j], i , L2[k]←
CSPairRefine(L1[j], L2[k])

11: I ← I ∪ i
12: end for
13: end for
14: return L1 ∪ I ∪ L2

15: end if

Merge: Line 8-line 13

1
2 3

4 5
6 7

8

A = {2, 4, 6}, B = {3, 5, 7},
C = {1, 2, 3}, D = {6, 7, 8}.

A⋆C = {4, 6}, {2} , {1, 3}

A⋆D = {4} , {6} , {7, 8}

B⋆C = {5, 7}, {3} , {1}

B⋆D = {5} , {7} , {8}

SMPD(A, B, C) = {1}, {2},
{3}, {4}, {5}, {6}, {7}, {8}

Complexity Analysis

• The main cost comes from GCD computation modulo
regular chains.

• By means of evaluation/interpolation techniques, these
GCDs can be performed modulo 0-dim regular chains.

• Let T = [T1, . . . , Tn] be a squarefree regular chain in
K[X1 < · · · < Xn].

• K(T) := K[X1, . . . , Xn]/〈T 〉 is a direct product of fields
(DPF).

• Let degi T := deg(Ti , Xi), for 1 ≤ i ≤ n, and degT be their
product.

Complexity Analysis

• For practical purpose, we rely on classical i.e. quadratic
algorithms.

• We adapt the extended Euclidean algorithm for
polynomials with coefficients in K to K(T).

• Recall an extended GCD of f1 and f2 in K[x] with degrees
d1 ≥ d2, can be computed in O(d1d2) operations in K.

Complexity Analysis

• What is different in K(T) for EEA?

In a Euclidean division step i , to do

ri−1 rem ri mod T ,

we need first to get the inverse ui of lc(ri) s.t.

ui × lc(ri) = 1 mod T ,

which is called a quasi-inverse.

Let Xk be the main variable of lc(ri). We need to compute

GCD(lc(ri), Txk) mod T<xk

Complexity Analysis

• In case of a zero-divisor, T splits into a family of
T 1, · · · , T m. Then computation splits into m branches.

• All the elements then need to project to each branch. To
perform this projection efficiently, each family of

T 1
xj
, · · · , T m

xj
for 1 ≤ j ≤ m

should be pair-wise coprime, which is called a non-critical
triangular decomposition.

• Thus GCD-free basis computation modulo regular chains
is needed. We extend Bach’s augment refinement method
to K(T) for this.

Complexity Analysis

• Following the inductive process applied in “On the
complexity of D5 principle”, we obtain an arithmetic time for
regular chains based on classical algorithms.

• Recall that an arithmetic time T 7→ An(deg1 T , . . . , degn T)
is an asymptotic upper bound for the cost of basic
polynomial arithmetic operations in K(T) (counted in K),
i.e. +, ∗, quasi-inverse, projection and computation of
non-critical decompositions.

An Arithmetic Time for Regular Chain based on
Classical Algorithms

Theorem (An arithmetic time for regular chain)
There exists a constant C such that, writing

An(d1, . . . , dn) = Cn(d1 × · · · × dn)
2,

the function T 7→ An(deg1 T , . . . , degn T) is an arithmetic time
for regular chain T in n variables, for all n.

Basic Complexity Result

• An extended GCD of f1 and f2 in K(T)[y] with degrees
d1 ≥ d2 can be computed in O(d1d2An(T)) operations in K.

• For a family of monic squarefree polynomials
F = {f1, . . . , fm} in K(T)[y] with degrees d1, . . . , dm, we
can extend the augment refinement method to compute a
GCD-free basis of F modulo T in O(

∑

1≤i<j≤m(didj)An(T))
operations in K.

• With deg(T) = d and deg(T ′) = d ′, RCPairRefine or
Difference(T , T ′) costs O(Cn−1dd ′) operations in K.

Main Complexity Result

Assume all regular chains are monic and squarefree in
dimension zero.

Theorem (Complexity of MPD)
Let L = {U1, . . . , Um} be a set of regular chains and the degree
of Ui be di for 1 ≤ i ≤ m. Then a pairwise disjoint
representation of L can be computed in O(Cn−1 ∑

1≤i<j≤m didj)
operations in K.

Remark
Consider the case when di = dj = d, then MPD can be
computed in O(Cn−1(md)2) operations.

Main Complexity Result

Theorem (Complexity of SMPD)
Given a set L = {C1, . . . , Cm} of constructible sets, each of
which is given by some pairwise disjoint regular chains. Let Di

be the number of points in Ci for 1 ≤ i ≤ m. An
intersection-free basis of L can be computed in
O(Cn−1 ∑

1≤i<j≤m DiDj) operations in K.

Remark
A special case is when Di = Dj = D, then the number of
operations needed to compute an SMPD is bounded by
O(Cn−1(mD)2).

An Experimental Comparison

• OldSMPD:

• the defining regular systems of each constructible set are
made (symmetrically) pairwise disjoint;

• the set theoretical differences and the intersections are
computed separately.

• BachSMPD

• DCSMPD: combining a divide-and-conquer approach with
the augment refinement method for the operation SMPD.

Timing(s) of 15 Examples Computed by 3 SMPD

Algorithms

Sys OldSMPD BachSMPD DCSMPD

1 12.302 3.494 0.786
2 0.303 0.103 0.062
3 1.123 0.259 0.271
4 2.407 1.184 0.703
5 0.574 0.091 0.159
6 0.548 0.293 0.300
7 0.733 0.444 0.211
8 3.430 0.584 0.633
9 25.413 8.292 9.530

10 1097.291 82.468 122.575
11 11.828 0.930 0.985
12 54.197 1.934 1.778
13 0.530 0.047 0.064
14 27.180 13.705 4.626
15 – 1838.927 592.554

An Experimental Comparison

• Improved OldSMPD: extending the RCPairRefine algorithm
to positive dimension and manages to compute the
difference and the intersection in one pass

• BachSMPD + MPD and DCSMPD + MPD: cleaning each
constructible set after SMPD.

Timing(s) of 15 Examples Computed by 3 SMPD

Algorithms

Sys OldSMPD(improved) BachSMPD(+MPD) DCSMPD+MPD

1 3.949 3.766 0.914
2 0.118 0.103 0.062
3 0.271 0.259 0.271
4 1.442 1.449 0.927
5 0.116 0.100 0.173
6 0.257 0.300 0.290
7 0.460 0.444 0.211
8 0.607 0.584 0.633
9 9.291 8.347 9.592

10 95.690 82.795 125.286
11 0.912 0.930 1.784
12 12.330 1.934 2.900
13 0.065 0.047 0.065
14 16.792 16.280 6.323
15 2272.550 1876.061 624.679

Conclusions

• We provide different algorithms for removing the
redundancies and distinguished two cases:

MPD: removal of redundant components within a constructible set
SMPD: removal with refinement among a family of constructible

sets.

• We rely on quadratic arithmetic motivated by practical
concerns.

• We give a complexity analysis of these algorithms in
dimension zero:

• following the work of Bach, Driscoll and Shallit, we have
obtained essentially quadratic time complexity based on
classical (=quadratic) polynomial arithmetic.

• the GCD of polynomials modulo a zero-dimensional regular
chain can be done in essentially quadratic time complexity
based on quadratic arithmetic.

References
Eric Bach, James R. Driscoll, and Jeffrey Shallit. Factor refinement, 1990.

F. Boulier, F. Lemaire, and M. Moreno Maza.
Well known theorems on triangular systems and the D5 principle, 2006.

C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, and W. Pan.
Comprehensive Triangular Decomposition, 2007.

J. von zur Gathen and J. Gerhard. Modern Computer Algebra, 1999.

X. Dahan, M. Moreno Maza, É. Schost, and Y. Xie.
On the complexity of the D5 principle, 2006.

J. Della Dora, C. Dicrescenzo, and D. Duval.
About a new method for computing in algebraic number fields, 1985.

R. Rioboo and M. Moreno Maza.
Polynomial GCD computations over towers of algebraic extensions, 1995.

X. Li, M. Moreno Maza, and R. Rasheed.
Fast arithmetic and modular techniques for triangular decompositions, 2008.

M. Manubens and A. Montes.
Minimal canonical comprehensive Gröbner system.

J. O’Halloran and M. Schilmoeller.

Gröbner bases for constructible sets,2002

