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Problem Statement

We use Zippel’s sparse interpolation to compute g = gcd(f1, f2).

f1, f2 ∈ F [x, y, . . . ].
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Problem Statement

We use Zippel’s sparse interpolation to compute g = gcd(f1, f2).

f1, f2 ∈ F [x, y, . . . ].

Normalization Problem. Example:

Suppose g = (2y + 1)x2 + (y + 2) and p = 7

The form is gf = (Ay + B)x2 + (Cy + D)

g(y = 1) = x2 + 6, g(y = 2) = x2 + 1

After solving the system of equations: {A = 0, B = 1, C = 2, D = 4}

The result is wrong.
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Problem Statement

We use Zippel’s sparse interpolation to compute g = gcd(f1, f2).

f1, f2 ∈ F [x, y, . . . ].

Normalization Problem. Example:

Suppose g = (2y + 1)x2 + (y + 2) and p = 7

The form is gf = (Ay + B)x2 + (Cy + D)

g(y = 1) = x2 + 6, g(y = 2) = x2 + 1

After solving the system of equations: {A = 0, B = 1, C = 2, D = 4}

The result is wrong.

More precisely: When lcx(g) has at least two terms, we can’t use Zippel’s

method directly.
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First Solution

The first solution is presented by de Kleine, Monagan and Wittkopf in 2005.

The idea is to scale each univariate image with an unknown scaling factor.
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First Solution

The first solution is presented by de Kleine, Monagan and Wittkopf in 2005.

The idea is to scale each univariate image with an unknown scaling factor.

Example:

Consider gf = (Ay2 + B)x3 + Cy + D and p = 17.

g(y = 1) = m1(x
3 + 12) = x3 + 12, g(y = 2) = m2(x

3 + 8) and
g(y = 3) = m3(x

3).

m2 and m3 are unknowns. We set m1 = 1.

Solve the system: {A = 7, B = 11, C = 11, D = 1, m2 = 5, m3 = 6}.
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The first solution is presented by de Kleine, Monagan and Wittkopf in 2005.

The idea is to scale each univariate image with an unknown scaling factor.

Example:

Consider gf = (Ay2 + B)x3 + Cy + D and p = 17.

g(y = 1) = m1(x
3 + 12) = x3 + 12, g(y = 2) = m2(x

3 + 8) and
g(y = 3) = m3(x

3).

m2 and m3 are unknowns. We set m1 = 1.

Solve the system: {A = 7, B = 11, C = 11, D = 1, m2 = 5, m3 = 6}.

Suppose coefficients of g have term counts n1, . . . , ns and
nmax = max (n1, . . . , ns).

The number of images needed is: max (nmax,
⌈

(
∑s

i=1
ni)−1

s−1

⌉

).
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First Solution (contd.)

Example: Let gf = (Ay2 + B)x2 + (Cyz2 + D)x + Ez2 + F .
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First Solution (contd.)

Example: Let gf = (Ay2 + B)x2 + (Cyz2 + D)x + Ez2 + F .
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Using the trick the total cost is: O(n3
1 + · · · + n3

s).
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First Solution (contd.)

Example: Let gf = (Ay2 + B)x2 + (Cyz2 + D)x + Ez2 + F .























c c 1

c c 1

c c c

c c c

c c c

c c c





















































A

B

C

D

E

F

1

m2































=































0

0

0

0

0

0

0

0































Using the trick the total cost is: O(n3
1 + · · · + n3

s).

First problem: the systems of linear equations are now dependent to each other.

This reduces the parallelism.
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Vandermonde Matrix

In 1990, Zippel presented a trick to solve the systems of linear equations
(monic case) in O(n2

1 + · · · + n2
s) time and linear space.

This is a significant gain compared to O(n3
1 + · · · + n3

s) time and quadratic
space.

The trick is to choose the evaluation points such that the systems of equations
are Vandermonde Matrices.
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Vandermonde Matrix

In 1990, Zippel presented a trick to solve the systems of linear equations
(monic case) in O(n2

1 + · · · + n2
s) time and linear space.

This is a significant gain compared to O(n3
1 + · · · + n3

s) time and quadratic
space.

The trick is to choose the evaluation points such that the systems of equations
are Vandermonde Matrices.

Example: Suppose gf = Ay2x2 + (Byz2 + Cy2z + D)x + Ez2 + F .

We need three univariate images.

For α = 2 and β = 3 let
(y0 = 1, z0 = 1), (y1 = α, z1 = β), (y2 = α2, z2 = β2).
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Vandermonde Matrix (contd.)

Finding inverse of a Vandermonde matrix:
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Vandermonde Matrix (contd.)

Finding inverse of a Vandermonde matrix:
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a11 a12 a13

a21 a22 a23

a31 a32 a33









The jth element of the top row of the product of these matrices is:

a1j + a2jk1 + a3jk
2
1 = Pj(k1)
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Vandermonde Matrix (contd.)

Finding inverse of a Vandermonde matrix:
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a11 a12 a13

a21 a22 a23

a31 a32 a33









The jth element of the top row of the product of these matrices is:

a1j + a2jk1 + a3jk
2
1 = Pj(k1)

And the product above is:









P1(k1) P2(k1) P3(k1)

P1(k2) P2(k2) P3(k2)

P1(k3) P2(k3) P3(k3)
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Vandermonde Matrix (contd.)

Using this method (monic case) the total cost for solving systems of linear
equations is O(n2

1 + · · · + n2
s).
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Vandermonde Matrix (contd.)

Using this method (monic case) the total cost for solving systems of linear
equations is O(n2

1 + · · · + n2
s).

Second problem with scaling factors (non-monic case):

Since the systems are dependent and we are using scaling factors as
unknows, Zippel’s trick can not be used.
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Vandermonde Matrix (contd.)

Using this method (monic case) the total cost for solving systems of linear
equations is O(n2

1 + · · · + n2
s).

Second problem with scaling factors (non-monic case):

Since the systems are dependent and we are using scaling factors as
unknows, Zippel’s trick can not be used.

Motivation: Find a solution to the normalization problem such that the systems
of equations could be solved independently and in quadratic time.
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New Solution

We will use the fact that we know the form of the leading coefficient.
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New Solution

We will use the fact that we know the form of the leading coefficient.

Example:

Suppose gf = (Ay2 + B)x2 + (Cy + D)x + (Ey3 + Fy2 + G) and p = 13.

Let y0 = 1, y1 = 5, y2 = 12 and we force A = 1.

g(y = y0) = x2 + 9x + 7, g(y = y1) = x2 + 9x + 12, g(y = y2) = x2 + x + 6.
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New Solution

We will use the fact that we know the form of the leading coefficient.

Example:

Suppose gf = (Ay2 + B)x2 + (Cy + D)x + (Ey3 + Fy2 + G) and p = 13.

Let y0 = 1, y1 = 5, y2 = 12 and we force A = 1.

g(y = y0) = x2 + 9x + 7, g(y = y1) = x2 + 9x + 12, g(y = y2) = x2 + x + 6.

Since lcx(g) = y2 + B, we must scale each image by this evaluated at the
corresponding evaluation point.

g0 = (1 + B)x2 + 9(1 + B)x + 7(1 + B).
g1 = (12 + B)x2 + 9(12 + B)x + 12(12 + B).
g2 = (1 + B)x2 + (1 + B)x + 6(1 + B).
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New Solution

We will use the fact that we know the form of the leading coefficient.

Example:

Suppose gf = (Ay2 + B)x2 + (Cy + D)x + (Ey3 + Fy2 + G) and p = 13.

Let y0 = 1, y1 = 5, y2 = 12 and we force A = 1.

g(y = y0) = x2 + 9x + 7, g(y = y1) = x2 + 9x + 12, g(y = y2) = x2 + x + 6.

Since lcx(g) = y2 + B, we must scale each image by this evaluated at the
corresponding evaluation point.

g0 = (1 + B)x2 + 9(1 + B)x + 7(1 + B).
g1 = (12 + B)x2 + 9(12 + B)x + 12(12 + B).
g2 = (1 + B)x2 + (1 + B)x + 6(1 + B).

⇒ {9(1 + B) = C + D, 9(12 + B) = 5C + D, (1 + B) = 12C + D}.

Solving the above system ⇒ {C = 2, B = 6, D = 9} hence the correct
leading coefficient is y2 + 6.
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New Solution (contd.)

In general we can scale the images based on any coefficient and not just the
leading coefficient.

So our goal is to find the coefficient of g with minimum number of terms.

WLOG assume n1 ≤ n2 ≤ · · · ≤ ns = M .
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New Solution (contd.)

In general we can scale the images based on any coefficient and not just the
leading coefficient.

So our goal is to find the coefficient of g with minimum number of terms.

WLOG assume n1 ≤ n2 ≤ · · · ≤ ns = M .

if n1 = 1 we will scale all the images based on the coefficients of images
corresponding to the term with n1 = 1 terms.

Otherwise, WLOG assume that the leading coefficient has n1 terms.

For any k ≥ 2, we can use the coefficients corresponding to n1, n2, . . . , nk to
compute the leading coefficient.
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New Solution (contd.)

In general we can scale the images based on any coefficient and not just the
leading coefficient.

So our goal is to find the coefficient of g with minimum number of terms.

WLOG assume n1 ≤ n2 ≤ · · · ≤ ns = M .

if n1 = 1 we will scale all the images based on the coefficients of images
corresponding to the term with n1 = 1 terms.

Otherwise, WLOG assume that the leading coefficient has n1 terms.

For any k ≥ 2, we can use the coefficients corresponding to n1, n2, . . . , nk to
compute the leading coefficient.

Turns out the minimum number of images needed is

N = max (M,
⌈

(
∑s

i=1
ni)−1

s−1

⌉

) which is the same as the first solution.

Let Sj =
⌈

(
∑k

i=1
nj)−1

j−1

⌉

. We choose k ≥ 2 such that Sk−1 > N but Sk ≤ N .
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New Solution (contd.)

The probability that we can find the leading coefficient using only two
coefficients and with minimum number of univariate images (k = 2) is 1

2
.

This means half of the time, we can find the leading coefficient only by solving
a system of size n1 + n2 − 1 < N .
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2
.

This means half of the time, we can find the leading coefficient only by solving
a system of size n1 + n2 − 1 < N .

In general, the probability that k > i ≥ 2 is 1
i
.
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New Solution (contd.)

The probability that we can find the leading coefficient using only two
coefficients and with minimum number of univariate images (k = 2) is 1

2
.

This means half of the time, we can find the leading coefficient only by solving
a system of size n1 + n2 − 1 < N .

In general, the probability that k > i ≥ 2 is 1
i
.

The special case that N > M happens with probability 1
s

(not frequently).

In this case if we want to compute minimum number of images ⇒ k = s.
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New Solution (contd.)

The probability that we can find the leading coefficient using only two
coefficients and with minimum number of univariate images (k = 2) is 1

2
.

This means half of the time, we can find the leading coefficient only by solving
a system of size n1 + n2 − 1 < N .

In general, the probability that k > i ≥ 2 is 1
i
.

The special case that N > M happens with probability 1
s

(not frequently).

In this case if we want to compute minimum number of images ⇒ k = s.

After solving the first system (to find the leading coefficient) we can scale the
images and use Zippel’s method to find the other coefficients.

Hence total cost is O((n1 + · · · + nk)3 + n2
k+1 + · · · + n2

s).
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New Solution (contd.)

The probability that we can find the leading coefficient using only two
coefficients and with minimum number of univariate images (k = 2) is 1

2
.

This means half of the time, we can find the leading coefficient only by solving
a system of size n1 + n2 − 1 < N .

In general, the probability that k > i ≥ 2 is 1
i
.

The special case that N > M happens with probability 1
s

(not frequently).

In this case if we want to compute minimum number of images ⇒ k = s.

After solving the first system (to find the leading coefficient) we can scale the
images and use Zippel’s method to find the other coefficients.

Hence total cost is O((n1 + · · · + nk)3 + n2
k+1 + · · · + n2

s).

Another advantage: We can further parallelize the algorithm after computing
the leading coefficient by solving other systems independently.
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Problems

A problem with this method is that there might be a common factor among the
set of the coefficients we choose to compute lcx(g) with.

– p. 11/13



Problems

A problem with this method is that there might be a common factor among the
set of the coefficients we choose to compute lcx(g) with.

Example:

Let g = (y2 + 1)x2 − (y3 + y)x + (y3 − 2y + 7) and p = 17.

We have the form of the gcd:
gf = (Ay2 + B)x2 + (Cy3 + Dy)x + (Ey3 + Fy + G) and we force A = 1.
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set of the coefficients we choose to compute lcx(g) with.
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Let g = (y2 + 1)x2 − (y3 + y)x + (y3 − 2y + 7) and p = 17.

We have the form of the gcd:
gf = (Ay2 + B)x2 + (Cy3 + Dy)x + (Ey3 + Fy + G) and we force A = 1.

Use the following evaluation points: {y0 = 1, y1 = 7, y2 = 15}.

Set of images: {g0 = x2 + 16x + 3, g1 = x2 + 10x + 4, g2 = x2 + 2x + 4}.
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Problems

A problem with this method is that there might be a common factor among the
set of the coefficients we choose to compute lcx(g) with.

Example:

Let g = (y2 + 1)x2 − (y3 + y)x + (y3 − 2y + 7) and p = 17.

We have the form of the gcd:
gf = (Ay2 + B)x2 + (Cy3 + Dy)x + (Ey3 + Fy + G) and we force A = 1.

Use the following evaluation points: {y0 = 1, y1 = 7, y2 = 15}.

Set of images: {g0 = x2 + 16x + 3, g1 = x2 + 10x + 4, g2 = x2 + 2x + 4}.

System of linear equations:
{16(1 + B) = C + D, 10(15 + B) = 3C + 7D, 2(4 + B) = 9C + 15D} is
under-determined.

This happens no matter how many evaluation points we choose.

The reason is the common factor gcd(y2 + 1, y3 + y) = y2 + 1.
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Problems (contd.)

Suppose coefficients of g have term counts n1, . . . , ns and n1 ≤ n2 ≤ . . . ns.

Suppose we choose the set S = {n1, . . . , nk} to find the leading coefficient
and there is an unlucky factor.

The proposed solution is to add nk+1 to the set S. If the problem still exists,
keep adding more coefficients to S.
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Problems (contd.)

Suppose coefficients of g have term counts n1, . . . , ns and n1 ≤ n2 ≤ . . . ns.

Suppose we choose the set S = {n1, . . . , nk} to find the leading coefficient
and there is an unlucky factor.

The proposed solution is to add nk+1 to the set S. If the problem still exists,
keep adding more coefficients to S.

Since contx(g) = 1, if at the point where S = {n1, . . . , ns} there is still a
common factor, it must be an unlucky content.

This unlucky content is caused by an unlucky choice of evaluation point or
prime ⇒ Start over.
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Problems (contd.)

Suppose coefficients of g have term counts n1, . . . , ns and n1 ≤ n2 ≤ . . . ns.

Suppose we choose the set S = {n1, . . . , nk} to find the leading coefficient
and there is an unlucky factor.

The proposed solution is to add nk+1 to the set S. If the problem still exists,
keep adding more coefficients to S.

Since contx(g) = 1, if at the point where S = {n1, . . . , ns} there is still a
common factor, it must be an unlucky content.

This unlucky content is caused by an unlucky choice of evaluation point or
prime ⇒ Start over.

Another problem with this method is that we still can not use Zippel’s method
to solve the first system of equations in quadratic time.
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Problems (contd.)

The first system looks like:






















1 · · · 1 α0 · · · α0

k1 · · · km α1km+1 · · · α1km+n

k2
1 · · · k2

m α2k
2
m+1 · · · α2k

2
m+n

...
. . .

...
...

. . .
...

km+n−1
1 · · · km+n−1

m αm+n−1k
m+n−1
m+1 · · · αm+n−1k

m+n−1
m+n























α0, . . . , αm+n−1 are the second coefficients of the univariate images of the
gcd.

– p. 13/13



Problems (contd.)

The first system looks like:






















1 · · · 1 α0 · · · α0

k1 · · · km α1km+1 · · · α1km+n

k2
1 · · · k2

m α2k
2
m+1 · · · α2k

2
m+n

...
. . .

...
...

. . .
...

km+n−1
1 · · · km+n−1

m αm+n−1k
m+n−1
m+1 · · · αm+n−1k

m+n−1
m+n























α0, . . . , αm+n−1 are the second coefficients of the univariate images of the
gcd.

Any suggestions?
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