A New Solution to the Normalization Problem

Mahdi Javadi (sjavadi@cecm.sfu.ca)
CECM, Simon Fraser University

Problem Statement

- We use Zippel's sparse interpolation to compute $g=\operatorname{gcd}\left(f_{1}, f_{2}\right)$.
- $f_{1}, f_{2} \in F[x, y, \ldots]$.

Problem Statement

- We use Zippel's sparse interpolation to compute $g=\operatorname{gcd}\left(f_{1}, f_{2}\right)$.
- $f_{1}, f_{2} \in F[x, y, \ldots]$.
- Normalization Problem. Example:
- Suppose $g=(2 y+1) x^{2}+(y+2)$ and $p=7$
- The form is $g_{f}=(A y+B) x^{2}+(C y+D)$
- $g(y=1)=x^{2}+6, g(y=2)=x^{2}+1$
- After solving the system of equations: $\{A=0, B=1, C=2, D=4\}$
- The result is wrong.

Problem Statement

- We use Zippel's sparse interpolation to compute $g=\operatorname{gcd}\left(f_{1}, f_{2}\right)$.
- $f_{1}, f_{2} \in F[x, y, \ldots]$.
- Normalization Problem. Example:
- Suppose $g=(2 y+1) x^{2}+(y+2)$ and $p=7$
- The form is $g_{f}=(A y+B) x^{2}+(C y+D)$
- $g(y=1)=x^{2}+6, g(y=2)=x^{2}+1$
- After solving the system of equations: $\{A=0, B=1, C=2, D=4\}$
- The result is wrong.
- More precisely: When $\mathrm{lc}_{x}(g)$ has at least two terms, we can't use Zippel's method directly.

First Solution

- The first solution is presented by de Kleine, Monagan and Wittkopf in 2005.
- The idea is to scale each univariate image with an unknown scaling factor.

First Solution

- The first solution is presented by de Kleine, Monagan and Wittkopf in 2005.
- The idea is to scale each univariate image with an unknown scaling factor.
- Example:
- Consider $g_{f}=\left(A y^{2}+B\right) x^{3}+C y+D$ and $p=17$.
- $g(y=1)=m_{1}\left(x^{3}+12\right)=x^{3}+12, g(y=2)=m_{2}\left(x^{3}+8\right)$ and $g(y=3)=m_{3}\left(x^{3}\right)$.
2 m_{2} and m_{3} are unknowns. We set $m_{1}=1$.
- Solve the system: $\left\{A=7, B=11, C=11, D=1, m_{2}=5, m_{3}=6\right\}$.

First Solution

- The first solution is presented by de Kleine, Monagan and Wittkopf in 2005.
- The idea is to scale each univariate image with an unknown scaling factor.
- Example:
- Consider $g_{f}=\left(A y^{2}+B\right) x^{3}+C y+D$ and $p=17$.
- $g(y=1)=m_{1}\left(x^{3}+12\right)=x^{3}+12, g(y=2)=m_{2}\left(x^{3}+8\right)$ and $g(y=3)=m_{3}\left(x^{3}\right)$.
2 m_{2} and m_{3} are unknowns. We set $m_{1}=1$.
2 Solve the system: $\left\{A=7, B=11, C=11, D=1, m_{2}=5, m_{3}=6\right\}$.
- Suppose coefficients of g have term counts n_{1}, \ldots, n_{s} and
$n_{\max }=\max \left(n_{1}, \ldots, n_{s}\right)$.
- The number of images needed is: $\max \left(n_{\max },\left\lceil\frac{\left(\sum_{i=1}^{s} n_{i}\right)-1}{s-1}\right\rceil\right)$.

First Solution (contd.)

- Example: Let $g_{f}=\left(A y^{2}+B\right) x^{2}+\left(C y z^{2}+D\right) x+E z^{2}+F$.

$$
\left[\begin{array}{cccccccc}
c & c & & & & & & \\
c & c & & & & & & \\
& & c & & & & & \\
& & & c & & & c & \\
& & c & c & & & & \\
& & & & c & c & c & \\
& & & & & c & c & \\
& & & & & & & \\
\hline
\end{array}\right]\left[\begin{array}{c}
A \\
B \\
C \\
D \\
E \\
F \\
1 \\
m_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

First Solution (contd.)

- Example: Let $g_{f}=\left(A y^{2}+B\right) x^{2}+\left(C y z^{2}+D\right) x+E z^{2}+F$.

$$
\left[\begin{array}{cccccccc}
c & c & & & & & & 1 \\
c & c & & & & & & \\
& & c & & & & & \\
& & & & & & \\
& & c & c & & & & \\
& & & & c & c & c & \\
& & & & c & c & & c
\end{array}\right]\left[\begin{array}{c}
A \\
B \\
C \\
D \\
E \\
F \\
1 \\
m_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Using the trick the total cost is: $O\left(n_{1}^{3}+\cdots+n_{s}^{3}\right)$.

First Solution (contd.)

- Example: Let $g_{f}=\left(A y^{2}+B\right) x^{2}+\left(C y z^{2}+D\right) x+E z^{2}+F$.

$$
\left[\begin{array}{cccccccc}
c & c & & & & & & \\
c & c & & & & & & \\
& & & & & & & \\
& & 1 \\
& & & c & c & & & \\
& c & \\
& & & & & & & c \\
& & & & c & c & c & \\
& & & & c & c & & c
\end{array}\right]\left[\begin{array}{c}
A \\
B \\
C \\
D \\
E \\
F \\
1 \\
m_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Using the trick the total cost is: $O\left(n_{1}^{3}+\cdots+n_{s}^{3}\right)$.
- First problem: the systems of linear equations are now dependent to each other.
- This reduces the parallelism.

Vandermonde Matrix

- In 1990, Zippel presented a trick to solve the systems of linear equations (monic case) in $O\left(n_{1}^{2}+\cdots+n_{s}^{2}\right)$ time and linear space.
- This is a significant gain compared to $O\left(n_{1}^{3}+\cdots+n_{s}^{3}\right)$ time and quadratic space.
- The trick is to choose the evaluation points such that the systems of equations are Vandermonde Matrices.

Vandermonde Matrix

- In 1990, Zippel presented a trick to solve the systems of linear equations (monic case) in $O\left(n_{1}^{2}+\cdots+n_{s}^{2}\right)$ time and linear space.
- This is a significant gain compared to $O\left(n_{1}^{3}+\cdots+n_{s}^{3}\right)$ time and quadratic space.
- The trick is to choose the evaluation points such that the systems of equations are Vandermonde Matrices.
- Example: Suppose $g_{f}=A y^{2} x^{2}+\left(B y z^{2}+C y^{2} z+D\right) x+E z^{2}+F$.
- We need three univariate images.
- For $\alpha=2$ and $\beta=3$ let

$$
\left(y_{0}=1, z_{0}=1\right),\left(y_{1}=\alpha, z_{1}=\beta\right),\left(y_{2}=\alpha^{2}, z_{2}=\beta^{2}\right) .
$$

Vandermonde Matrix

- In 1990, Zippel presented a trick to solve the systems of linear equations (monic case) in $O\left(n_{1}^{2}+\cdots+n_{s}^{2}\right)$ time and linear space.
- This is a significant gain compared to $O\left(n_{1}^{3}+\cdots+n_{s}^{3}\right)$ time and quadratic space.
- The trick is to choose the evaluation points such that the systems of equations are Vandermonde Matrices.
- Example: Suppose $g_{f}=A y^{2} x^{2}+\left(B y z^{2}+C y^{2} z+D\right) x+E z^{2}+F$.
- We need three univariate images.
- For $\alpha=2$ and $\beta=3$ let

$$
\begin{aligned}
& \left(y_{0}=1, z_{0}=1\right),\left(y_{1}=\alpha, z_{1}=\beta\right),\left(y_{2}=\alpha^{2}, z_{2}=\beta^{2}\right) . \\
& \left(\begin{array}{ccc}
1 & 1 & 1 \\
18 & 12 & 1 \\
324 & 144 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
k_{1} & k_{2} & k_{3} \\
k_{1}^{2} & k_{2}^{2} & k_{3}^{2}
\end{array}\right) \text { and }\left(\begin{array}{cc}
1 & 1 \\
9 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
k_{1}^{\prime} & k_{2}^{\prime}
\end{array}\right)
\end{aligned}
$$

Vandermonde Matrix (contd.)

- Finding inverse of a Vandermonde matrix:

$$
\left(\begin{array}{ccc}
1 & k_{1} & k_{1}^{2} \\
1 & k_{2} & k_{2}^{2} \\
1 & k_{3} & k_{3}^{2}
\end{array}\right) \cdot\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

Vandermonde Matrix (contd.)

- Finding inverse of a Vandermonde matrix:

$$
\left(\begin{array}{ccc}
1 & k_{1} & k_{1}^{2} \\
1 & k_{2} & k_{2}^{2} \\
1 & k_{3} & k_{3}^{2}
\end{array}\right) \cdot\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

- The j th element of the top row of the product of these matrices is:

$$
a_{1 j}+a_{2 j} k_{1}+a_{3 j} k_{1}^{2}=P_{j}\left(k_{1}\right)
$$

Vandermonde Matrix (contd.)

- Finding inverse of a Vandermonde matrix:

$$
\left(\begin{array}{ccc}
1 & k_{1} & k_{1}^{2} \\
1 & k_{2} & k_{2}^{2} \\
1 & k_{3} & k_{3}^{2}
\end{array}\right) \cdot\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

- The j th element of the top row of the product of these matrices is:

$$
a_{1 j}+a_{2 j} k_{1}+a_{3 j} k_{1}^{2}=P_{j}\left(k_{1}\right)
$$

- And the product above is:

$$
\left(\begin{array}{ccc}
P_{1}\left(k_{1}\right) & P_{2}\left(k_{1}\right) & P_{3}\left(k_{1}\right) \\
P_{1}\left(k_{2}\right) & P_{2}\left(k_{2}\right) & P_{3}\left(k_{2}\right) \\
P_{1}\left(k_{3}\right) & P_{2}\left(k_{3}\right) & P_{3}\left(k_{3}\right)
\end{array}\right)
$$

Vandermonde Matrix (contd.)

- Using this method (monic case) the total cost for solving systems of linear equations is $O\left(n_{1}^{2}+\cdots+n_{s}^{2}\right)$.

Vandermonde Matrix (contd.)

- Using this method (monic case) the total cost for solving systems of linear equations is $O\left(n_{1}^{2}+\cdots+n_{s}^{2}\right)$.
- Second problem with scaling factors (non-monic case):
- Since the systems are dependent and we are using scaling factors as unknows, Zippel's trick can not be used.

Vandermonde Matrix (contd.)

- Using this method (monic case) the total cost for solving systems of linear equations is $O\left(n_{1}^{2}+\cdots+n_{s}^{2}\right)$.
- Second problem with scaling factors (non-monic case):
- Since the systems are dependent and we are using scaling factors as unknows, Zippel's trick can not be used.
- Motivation: Find a solution to the normalization problem such that the systems of equations could be solved independently and in quadratic time.

New Solution

- We will use the fact that we know the form of the leading coefficient.

New Solution

- We will use the fact that we know the form of the leading coefficient.
- Example:
- Suppose $g_{f}=\left(A y^{2}+B\right) x^{2}+(C y+D) x+\left(E y^{3}+F y^{2}+G\right)$ and $p=13$.
- Let $y_{0}=1, y_{1}=5, y_{2}=12$ and we force $A=1$.
- $g\left(y=y_{0}\right)=x^{2}+9 x+7, g\left(y=y_{1}\right)=x^{2}+9 x+12, g\left(y=y_{2}\right)=x^{2}+x+6$.

New Solution

- We will use the fact that we know the form of the leading coefficient.
- Example:
- Suppose $g_{f}=\left(A y^{2}+B\right) x^{2}+(C y+D) x+\left(E y^{3}+F y^{2}+G\right)$ and $p=13$.
- Let $y_{0}=1, y_{1}=5, y_{2}=12$ and we force $A=1$.
- $g\left(y=y_{0}\right)=x^{2}+9 x+7, g\left(y=y_{1}\right)=x^{2}+9 x+12, g\left(y=y_{2}\right)=x^{2}+x+6$.
- Since $\operatorname{lc}_{x}(g)=y^{2}+B$, we must scale each image by this evaluated at the corresponding evaluation point.
- $g_{0}=(1+B) x^{2}+9(1+B) x+7(1+B)$.
- $g_{1}=(12+B) x^{2}+9(12+B) x+12(12+B)$.

อ $g_{2}=(1+B) x^{2}+(1+B) x+6(1+B)$.

New Solution

- We will use the fact that we know the form of the leading coefficient.
- Example:
- Suppose $g_{f}=\left(A y^{2}+B\right) x^{2}+(C y+D) x+\left(E y^{3}+F y^{2}+G\right)$ and $p=13$.
- Let $y_{0}=1, y_{1}=5, y_{2}=12$ and we force $A=1$.
- $g\left(y=y_{0}\right)=x^{2}+9 x+7, g\left(y=y_{1}\right)=x^{2}+9 x+12, g\left(y=y_{2}\right)=x^{2}+x+6$.
- Since $\operatorname{lc}_{x}(g)=y^{2}+B$, we must scale each image by this evaluated at the corresponding evaluation point.
- $g_{0}=(1+B) x^{2}+9(1+B) x+7(1+B)$.

2 $g_{1}=(12+B) x^{2}+9(12+B) x+12(12+B)$.

- $g_{2}=(1+B) x^{2}+(1+B) x+6(1+B)$.
- $\Rightarrow\{9(1+B)=C+D, 9(12+B)=5 C+D,(1+B)=12 C+D\}$.
- Solving the above system $\Rightarrow\{C=2, B=6, D=9\}$ hence the correct leading coefficient is $y^{2}+6$.

New Solution (contd.)

- In general we can scale the images based on any coefficient and not just the leading coefficient.
- So our goal is to find the coefficient of g with minimum number of terms.
- WLOG assume $n_{1} \leq n_{2} \leq \cdots \leq n_{s}=M$.

New Solution (contd.)

- In general we can scale the images based on any coefficient and not just the leading coefficient.
- So our goal is to find the coefficient of g with minimum number of terms.
- WLOG assume $n_{1} \leq n_{2} \leq \cdots \leq n_{s}=M$.
- if $n_{1}=1$ we will scale all the images based on the coefficients of images corresponding to the term with $n_{1}=1$ terms.
- Otherwise, WLOG assume that the leading coefficient has n_{1} terms.
- For any $k \geq 2$, we can use the coefficients corresponding to $n_{1}, n_{2}, \ldots, n_{k}$ to compute the leading coefficient.

New Solution (contd.)

- In general we can scale the images based on any coefficient and not just the leading coefficient.
- So our goal is to find the coefficient of g with minimum number of terms.
- WLOG assume $n_{1} \leq n_{2} \leq \cdots \leq n_{s}=M$.
- if $n_{1}=1$ we will scale all the images based on the coefficients of images corresponding to the term with $n_{1}=1$ terms.
- Otherwise, WLOG assume that the leading coefficient has n_{1} terms.
- For any $k \geq 2$, we can use the coefficients corresponding to $n_{1}, n_{2}, \ldots, n_{k}$ to compute the leading coefficient.
- Turns out the minimum number of images needed is $N=\max \left(M,\left\lceil\frac{\left(\sum_{i=1}^{s} n_{i}\right)-1}{s-1}\right\rceil\right)$ which is the same as the first solution.
- Let $S_{j}=\left\lceil\frac{\left(\sum_{i=1}^{k} n_{j}\right)-1}{j-1}\right\rceil$. We choose $k \geq 2$ such that $S_{k-1}>N$ but $S_{k} \leq N$.

New Solution (contd.)

- The probability that we can find the leading coefficient using only two coefficients and with minimum number of univariate images $(k=2)$ is $\frac{1}{2}$.
- This means half of the time, we can find the leading coefficient only by solving a system of size $n_{1}+n_{2}-1<N$.

New Solution (contd.)

- The probability that we can find the leading coefficient using only two coefficients and with minimum number of univariate images $(k=2)$ is $\frac{1}{2}$.
- This means half of the time, we can find the leading coefficient only by solving a system of size $n_{1}+n_{2}-1<N$.
- In general, the probability that $k>i \geq 2$ is $\frac{1}{i}$.

New Solution (contd.)

- The probability that we can find the leading coefficient using only two coefficients and with minimum number of univariate images $(k=2)$ is $\frac{1}{2}$.
- This means half of the time, we can find the leading coefficient only by solving a system of size $n_{1}+n_{2}-1<N$.
- In general, the probability that $k>i \geq 2$ is $\frac{1}{i}$.
- The special case that $N>M$ happens with probability $\frac{1}{s}$ (not frequently).
- In this case if we want to compute minimum number of images $\Rightarrow k=s$.

New Solution (contd.)

- The probability that we can find the leading coefficient using only two coefficients and with minimum number of univariate images $(k=2)$ is $\frac{1}{2}$.
- This means half of the time, we can find the leading coefficient only by solving a system of size $n_{1}+n_{2}-1<N$.
- In general, the probability that $k>i \geq 2$ is $\frac{1}{i}$.
- The special case that $N>M$ happens with probability $\frac{1}{s}$ (not frequently).
- In this case if we want to compute minimum number of images $\Rightarrow k=s$.
- After solving the first system (to find the leading coefficient) we can scale the images and use Zippel's method to find the other coefficients.
- Hence total cost is $O\left(\left(n_{1}+\cdots+n_{k}\right)^{3}+n_{k+1}^{2}+\cdots+n_{s}^{2}\right)$.

New Solution (contd.)

- The probability that we can find the leading coefficient using only two coefficients and with minimum number of univariate images $(k=2)$ is $\frac{1}{2}$.
- This means half of the time, we can find the leading coefficient only by solving a system of size $n_{1}+n_{2}-1<N$.
- In general, the probability that $k>i \geq 2$ is $\frac{1}{i}$.
- The special case that $N>M$ happens with probability $\frac{1}{s}$ (not frequently).
- In this case if we want to compute minimum number of images $\Rightarrow k=s$.
- After solving the first system (to find the leading coefficient) we can scale the images and use Zippel's method to find the other coefficients.
- Hence total cost is $O\left(\left(n_{1}+\cdots+n_{k}\right)^{3}+n_{k+1}^{2}+\cdots+n_{s}^{2}\right)$.
- Another advantage: We can further parallelize the algorithm after computing the leading coefficient by solving other systems independently.

Problems

- A problem with this method is that there might be a common factor among the set of the coefficients we choose to compute $\mathrm{lc}_{x}(g)$ with.

Problems

- A problem with this method is that there might be a common factor among the set of the coefficients we choose to compute $\operatorname{lc}_{x}(g)$ with.
- Example:

2 Let $g=\left(y^{2}+1\right) x^{2}-\left(y^{3}+y\right) x+\left(y^{3}-2 y+7\right)$ and $p=17$.

- We have the form of the gcd:
$g_{f}=\left(A y^{2}+B\right) x^{2}+\left(C y^{3}+D y\right) x+\left(E y^{3}+F y+G\right)$ and we force $A=1$.

Problems

- A problem with this method is that there might be a common factor among the set of the coefficients we choose to compute $\operatorname{lc}_{x}(g)$ with.
- Example:
- Let $g=\left(y^{2}+1\right) x^{2}-\left(y^{3}+y\right) x+\left(y^{3}-2 y+7\right)$ and $p=17$.
- We have the form of the gcd:

$$
g_{f}=\left(A y^{2}+B\right) x^{2}+\left(C y^{3}+D y\right) x+\left(E y^{3}+F y+G\right) \text { and we force } A=1
$$

- Use the following evaluation points: $\left\{y_{0}=1, y_{1}=7, y_{2}=15\right\}$.
e Set of images: $\left\{g_{0}=x^{2}+16 x+3, g_{1}=x^{2}+10 x+4, g_{2}=x^{2}+2 x+4\right\}$.

Problems

- A problem with this method is that there might be a common factor among the set of the coefficients we choose to compute $\operatorname{lc}_{x}(g)$ with.
- Example:
- Let $g=\left(y^{2}+1\right) x^{2}-\left(y^{3}+y\right) x+\left(y^{3}-2 y+7\right)$ and $p=17$.
- We have the form of the gcd:
$g_{f}=\left(A y^{2}+B\right) x^{2}+\left(C y^{3}+D y\right) x+\left(E y^{3}+F y+G\right)$ and we force $A=1$.
- Use the following evaluation points: $\left\{y_{0}=1, y_{1}=7, y_{2}=15\right\}$.
- Set of images: $\left\{g_{0}=x^{2}+16 x+3, g_{1}=x^{2}+10 x+4, g_{2}=x^{2}+2 x+4\right\}$.
- System of linear equations:

$$
\{16(1+B)=C+D, 10(15+B)=3 C+7 D, 2(4+B)=9 C+15 D\} \text { is }
$$ under-determined.

- This happens no matter how many evaluation points we choose.
- The reason is the common factor $\operatorname{gcd}\left(y^{2}+1, y^{3}+y\right)=y^{2}+1$.

Problems (contd.)

- Suppose coefficients of g have term counts n_{1}, \ldots, n_{s} and $n_{1} \leq n_{2} \leq \ldots n_{s}$.
- Suppose we choose the set $S=\left\{n_{1}, \ldots, n_{k}\right\}$ to find the leading coefficient and there is an unlucky factor.
- The proposed solution is to add n_{k+1} to the set S. If the problem still exists, keep adding more coefficients to S.

Problems (contd.)

- Suppose coefficients of g have term counts n_{1}, \ldots, n_{s} and $n_{1} \leq n_{2} \leq \ldots n_{s}$.
- Suppose we choose the set $S=\left\{n_{1}, \ldots, n_{k}\right\}$ to find the leading coefficient and there is an unlucky factor.
- The proposed solution is to add n_{k+1} to the set S. If the problem still exists, keep adding more coefficients to S.
- Since $\operatorname{cont}_{x}(g)=1$, if at the point where $S=\left\{n_{1}, \ldots, n_{s}\right\}$ there is still a common factor, it must be an unlucky content.
- This unlucky content is caused by an unlucky choice of evaluation point or prime \Rightarrow Start over.

Problems (contd.)

- Suppose coefficients of g have term counts n_{1}, \ldots, n_{s} and $n_{1} \leq n_{2} \leq \ldots n_{s}$.
- Suppose we choose the set $S=\left\{n_{1}, \ldots, n_{k}\right\}$ to find the leading coefficient and there is an unlucky factor.
- The proposed solution is to add n_{k+1} to the set S. If the problem still exists, keep adding more coefficients to S.
- Since $\operatorname{cont}_{x}(g)=1$, if at the point where $S=\left\{n_{1}, \ldots, n_{s}\right\}$ there is still a common factor, it must be an unlucky content.
- This unlucky content is caused by an unlucky choice of evaluation point or prime \Rightarrow Start over.
- Another problem with this method is that we still can not use Zippel's method to solve the first system of equations in quadratic time.

Problems (contd.)

- The first system looks like:

$$
\left(\begin{array}{cccccc}
1 & \cdots & 1 & \alpha_{0} & \cdots & \alpha_{0} \\
k_{1} & \cdots & k_{m} & \alpha_{1} k_{m+1} & \cdots & \alpha_{1} k_{m+n} \\
k_{1}^{2} & \cdots & k_{m}^{2} & \alpha_{2} k_{m+1}^{2} & \cdots & \alpha_{2} k_{m+n}^{2} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
k_{1}^{m+n-1} & \cdots & k_{m}^{m+n-1} & \alpha_{m+n-1} k_{m+1}^{m+n-1} & \cdots & \alpha_{m+n-1} k_{m+n}^{m+n-1}
\end{array}\right)
$$

- $\alpha_{0}, \ldots, \alpha_{m+n-1}$ are the second coefficients of the univariate images of the gcd.

Problems (contd.)

- The first system looks like:

$$
\left(\begin{array}{cccccc}
1 & \cdots & 1 & \alpha_{0} & \cdots & \alpha_{0} \\
k_{1} & \cdots & k_{m} & \alpha_{1} k_{m+1} & \cdots & \alpha_{1} k_{m+n} \\
k_{1}^{2} & \cdots & k_{m}^{2} & \alpha_{2} k_{m+1}^{2} & \cdots & \alpha_{2} k_{m+n}^{2} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
k_{1}^{m+n-1} & \cdots & k_{m}^{m+n-1} & \alpha_{m+n-1} k_{m+1}^{m+n-1} & \cdots & \alpha_{m+n-1} k_{m+n}^{m+n-1}
\end{array}\right)
$$

- $\alpha_{0}, \ldots, \alpha_{m+n-1}$ are the second coefficients of the univariate images of the gcd.
- Any suggestions?

